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Figure 1: HART stands as the first autoregressive model capable of directly generating high-quality
1024×1024 images. Notably, it achieves 4.5-7.7× higher throughput, 3.1-5.9× lower latency (mea-
sured on A100) and 6.9-13.4× lower MACs compared to state-of-the-art diffusion models.

ABSTRACT

We introduce Hybrid Autoregressive Transformer (HART), the first autoregressive
(AR) visual generation model capable of directly generating 1024×1024 images,
rivaling diffusion models in image generation quality. Existing AR models face
limitations due to the poor image reconstruction quality of their discrete tokeniz-
ers and the prohibitive training costs associated with generating 1024px images.
To address these challenges, we present the hybrid tokenizer, which decomposes
the continuous latents from the autoencoder into two components: discrete tokens
representing the big picture and continuous tokens representing the residual com-
ponents that cannot be represented by the discrete tokens. The discrete compo-
nent is modeled by a scalable-resolution discrete AR model, while the continuous
component is learned with a lightweight residual diffusion module with only 37M
parameters. Compared with the discrete-only VAR tokenizer, our hybrid approach
improves reconstruction FID from 2.11 to 0.30 on MJHQ-30K, leading to a 31%
generation FID improvement from 7.85 to 5.38. HART also outperforms state-
of-the-art diffusion models in both FID and CLIP score, with 4.5-7.7× higher
throughput and 6.9-13.4× lower MACs. Code will be released upon publication.
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Prompt: A small cactus with a happy face in the Sahara desert.

Prompt: A panda that has been cybernetically enhanced.

Prompt: An astronaut riding a horse on the moon, oil painting by Van Gogh.

Prompt: A beautiful cabin in Attersee, Austria, 3d animation style.

Prompt: A lighthouse in a giant wave, origami style.

HART

HART

HART

HART

HART

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

SD-XL

SD-XL

SD-XL

SD-XL

SD-XL

Figure 2: HART generates 1024px images with quality comparable to state-of-the-art diffusion
models such as Playground v2.5 (Li et al., 2024a), PixArt-Σ (Chen et al., 2024a), and SDXL (Podell
et al., 2023) while being 4.6-5.6× faster.
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1 INTRODUCTION

The rapid advancement of large language models (LLMs) is pushing artificial intelligence into a
new era. At the core of LLMs are autoregressive (AR) models, which have gained popularity due
to their generality and versatility. These models typically predict the next token in a sequence based
on the previous tokens as input. While originating from natural language processing, autoregres-
sive models have also recently been adopted for visual generation tasks. These approaches utilize
a visual tokenizer to convert images from pixel space into discrete visual tokens through vector
quantization (VQ) (Van Den Oord et al., 2017). These visual tokens are then processed in the same
manner as language tokens. Benefiting from techniques proven successful in the LLM field, autore-
gressive visual generation methods have demonstrated their effectiveness in diverse tasks, including
text-to-image generation, text-to-video generation, and image editing (Van Den Oord et al., 2017;
Esser et al., 2021; Chang et al., 2022; Yu et al., 2022b; Kondratyuk et al., 2023; Tian et al., 2024).
Autoregressive image generation models have also demonstrated significant potential for building
unified visual language models (Gemini Team, Google, 2023; OpenAI, 2024), such as Emu3 (Emu3
Team, BAAI, 2024), VILA-U (Wu et al., 2024), and Show-o (Xie et al., 2024).

Concurrently, another major trend in visual generation from Ho et al. (2020); Rombach et al. (2022);
Chen et al. (2024a); BlackForest Labs (2024) has centered on diffusion models. These models em-
ploy a progressive denoising process, beginning with random Gaussian noise. Diffusion models
achieve better generation quality compared with autoregressive models, but they can be computa-
tionally expensive to deploy: even with an efficient DPM-Solver sampler from Lu et al. (2022), it
still takes DiT-XL/2 (Peebles & Xie, 2023) 20 denoising steps to generate an image, which translates
to 86.2T MACs at 1024×1024 resolution. In contrast, generating a comparable image using a sim-
ilarly sized AR model capable of predicting multiple tokens in parallel (Tian et al., 2024) requires
only 10.1T MACs at the same resolution, which is 8.5× less computationally intensive.

This paper addresses the following question: Can we develop an autoregressive model that matches
the visual generation quality of diffusion models while still being significantly faster?

Currently, visual generation AR models lag behind diffusion models in two key aspects:

1. Discrete tokenizers in AR models exhibit significantly poorer reconstruction capabilities com-
pared to the continuous tokenizers used by diffusion models. Consequently, AR models have a
lower generation upper bound and struggle to accurately model fine image details.

2. Diffusion models excel in high-resolution image synthesis, but no existing AR model can directly
generate 1024×1024 images.

To address these challenges, we introduce HART (Hybrid Autoregressive Transformer) for effi-
cient high-resolution visual synthesis. HART bridges the reconstruction performance gap between
discrete tokenizers in AR models and continuous tokenizers in diffusion models through hybrid tok-
enization. The hybrid tokenizer decomposes the continuous latent output of the autoencoder into two
components: one as the sum of discrete latents derived from a VAR tokenizer (Tian et al., 2024), and
the other as the continuous residual, representing the information that cannot be captured by discrete
tokens. The discrete tokens captures the big picture, while continuous residual tokens focus on fine
details (Figure 3). These two latents are then modeled by our hybrid transformer: the discrete latents
are handled by a scalable-resolution VAR transformer, while the continuous latents are predicted by
a lightweight residual diffusion module with 5% parameter and 10% runtime overhead.

HART achieves significant improvements in both image tokenization and generation over its
discrete-only baseline. Compared with VAR, it reduces the reconstruction FID from 2.11 to 0.30 at
1024×1024 resolution on MJHQ-30K (Li et al., 2024a), enabling HART to lower the 1024px gen-
eration FID on the same dataset from 7.85 to 5.38 (a 31% relative improvement). Furthermore, we
demonstrate that HART achieves up to a 7.8% improvement in FID over VAR for class-conditioned
generation on ImageNet (Deng et al., 2009). HART also outperforms MAR on this task with 13×
higher throughput.

Notably, HART closely matches the quality of state-of-the-art diffusion models in multiple text-to-
image generation metrics. Simultaneously, HART achieves 3.1-5.9× faster inference latency, 4.5-
7.7× higher throughput, and requires 6.9-13.4× less computation compared with diffusion models.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prompt: A close up of a helmet on a person, digital art, victorian armor.
HARTHART discrete tokens HART residual tokens

Prompt: selfie of a woman and her lion cub on the plains
HARTHART discrete tokens HART residual tokens

+ = + =

Figure 3: HART synergizes discrete and continuous tokens. The discrete tokens capture the overall
image structure, while the fine details (e.g. eyes, eyebrows and hair) are reflected in the residual
tokens, which is modeled by residual diffusion (introduced in Section 3.2).

2 RELATED WORK

Visual generation has become a key focus in machine learning research. Initial work by Kingma
& Welling (2013) introduced variational autoencoders (VAEs) for image synthesis. Subsequently,
Goodfellow et al. (2014) proposed generative adversarial networks (GANs), which were further
improved by Brock et al. (2018); Karras et al. (2019); Kang et al. (2023).

Diffusion models from Ho et al. (2020); Nichol & Dhariwal (2021); Dhariwal & Nichol (2021);
Ramesh et al. (2022); Betker et al. (2023) have emerged as the state-of-the-art approach for gen-
erating high-quality images after VAE and GAN. The latent diffusion model from Rombach et al.
(2022); Podell et al. (2023) applies U-Net to denoise the Gaussian latent input, and is succeeded by
DiT from Peebles & Xie (2023) and U-ViT from Bao et al. (2023) which replaces the U-Net with
transformers. Chen et al. (2023; 2024b;a) scale up DiTs to text-to-image (T2I) generation. Con-
currently, Kolors Team (2024); Ma et al. (2024a); Li et al. (2024a) further scaled up T2I diffusion
models to billions of parameters. Recent research from Esser et al. (2024); Auraflow Team (2024);
BlackForest Labs (2024) also explored rectified flow for fast sampling.

Autoregressive models pioneered by Chen et al. (2020) generate images as pixel sequences, rather
than denoising an entire latent feature map simultaneously. Early research VQVAE and VQGAN
from Van Den Oord et al. (2017); Esser et al. (2021) quantize image patches into discrete tokens and
employ a decoder-only transformer to predict these image tokens, analogous to language modeling.
VQGAN was subsequently enhanced in several aspects: Yu et al. (2022a) improved its autoencoder
modeling, Chang et al. (2022); Yu et al. (2023a); Li et al. (2023) increased its sampling speed with
MaskGIT, while Mentzer et al. (2023), Yu et al. (2023b), and Yu et al. (2024) enhanced its tok-
enization performance and efficiency. Lee et al. (2022) introduced residual quantization to reduce
tokenization error. Building on this, Tian et al. (2024) developed VAR, which innovatively trans-
formed next-token prediction in RQVAE to next-scale prediction, significantly improving sampling
speed. There were also efforts that scaled up autoregressive models to text-conditioned visual gen-
eration: Ramesh et al. (2021); Ding et al. (2021; 2022); Liu et al. (2024); Sun et al. (2024); Crowson
et al. (2022); Gafni et al. (2022); Emu3 Team, BAAI (2024) were T2I generation methods based
on VQGAN, and Chang et al. (2023); Villegas et al. (2022); Kondratyuk et al. (2023); Xie et al.
(2024) extended MaskGIT. STAR, VAR-CLIP and ControlVAR from Ma et al. (2024b); Zhang et al.
(2024); Li et al. (2024c) were extensions of VAR.

Hybrid models represent a new class of visual generative models that synergize discrete and con-
tinuous image modeling approaches. GIVT from Tschannen et al. (2023) predicted continuous vi-
sual tokens with autoregressive models while VQ-Diffusion from Gu et al. (2022) extended diffusion
to discrete latents. MAR from Li et al. (2024b) and DisCo-Diff from Xu et al. (2024) conditioned
a diffusion model with autoregressive prior. This idea was also concurrently explored in visual lan-
guage models by Ge et al. (2024); Jin et al. (2023). Transfusion (Zhou et al., 2024) fuses DiT and
LLM into a single model, and is natively capable of multi-modal generation.

3 HART: HYBRID AUTOREGRESSIVE TRANSFORMER

We introduce Hybrid Autoregressive Transformer (HART) for image generation. Unlike all existing
generative models that operate exclusively on either discrete or continuous latent spaces, HART
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models both discrete and continuous tokens with a unified transformer. The key factors enabling
this are a hybrid tokenizer and residual diffusion.

3.1 HYBRID VISUAL TOKENIZATION

Reference (256 256)× VAR (discrete) HART (hybrid) VAR (discrete) HART (hybrid)Reference (1k 1k)×

Figure 4: Reconstruction quality comparison between VAR and HART tokenizers. The discrete
tokenizer employed by VAR will lose some details or have some distortion during the reconstruction,
which is solved by hybrid tokenization in HART. Please zoom in for details in 1k images.

……
Discrete tokensContinuous tokens

Visual 
Encoder

❄❄
VQ 

Quantizer
❄ Visual 

Decoder

🔥

50%

50% (@ tokenizer training)

-

…Residual tokens

100% (@ generation decoding)

(to be modeled by residual diffusion)

Tokenization Generation Discrete Continuous

Resize and 
Sum up…

Figure 5: Unlike conventional image tokenizers that decode either continuous or discrete latents, the
hybrid tokenizer in HART is trained to decode both continuous and discrete tokens. At inference
time, we only decode continuous tokens, which are the sum of discrete tokens and residual tokens.
The residual tokens will be modeled by residual diffusion (introduced in Figure 6).

Conventional autoregressive visual generation encodes images into discrete tokens using trained
tokenizers. These tokens map to entries in a vector-quantized (VQ) codebook and can reconstruct
the original images from the VQ tokens. This approach transforms text-to-image generation into a
sequence-to-sequence problem, where a decoder-only transformer, or LLM, predicts image tokens
from text input. The tokenizer’s reconstruction quality sets the upper limit for image generation.
Constrained by their finite vocabulary codebooks, discrete tokenizers often struggle to faithfully
reconstruct images with intricate, high-frequency details such as human faces, as in Figure 4.

Hybrid tokenization. We introduce our hybrid tokenizer in Figure 5. The primary goal of hybrid
tokenization is to enable the decoding of continuous features during generation, thereby overcoming
the poor generation upper bound imposed by finite VQ codebooks. We begin with a CNN-based vi-
sual encoder that transforms the input image into continuous visual tokens in the latent space. These
tokens are then quantized into discrete tokens across multiple scales, following VAR (Tian et al.,
2024). The multi-scale vector quantization process results in a difference between the accumulated
discrete features and the original continuous visual features, which can not be accurately represented
using VQ codebook elements. We term this difference residual tokens, which are subsequently mod-
eled by residual diffusion, as detailed in Section 3.2.

Alternating training. To train our hybrid tokenizer, we begin by initializing the visual encoder,
quantizer (i.e., codebook), and visual decoder from a pretrained discrete VAR tokenizer. We then
freeze the visual encoder and quantizer, allowing only the visual decoder to be trained. During each
training step, we randomly choose with equal probability (50%) whether to provide the decoder
with discrete or continuous visual tokens for reconstructing the input image. Specifically, when the
continuous path is selected (lower red path in Figure 5), it bypasses the VQ quantizer, effectively
turning the model into a conventional continuous autoencoder. Otherwise, if the discrete path is
selected (upper red path in Figure 5), we are essentially training a standard VQ tokenizer. Empirical
results show that the HART tokenizer achieves comparable continuous rFID (i.e., reconstruction FID
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when the continuous path is activated) to the SDXL tokenizer (Podell et al., 2023), while its discrete
rFID matches the performance of the original VQ tokenizer. As a result, the generation upper bound
of HART remains consistent with state-of-the-art diffusion models. This alternating training strategy
also ensures that the continuous and discrete latents remain sufficiently similar from the decoder’s
perspective, facilitating easier modeling of continuous latents.

Discussions. It’s important to note that low rFID does not necessarily indicate better generation
FID. The alternating approach in training our hybrid tokenizer is crucial for high-quality generation.
In Section 4.3, we demonstrate that other methods, such as using separate decoders for continuous
and discrete tokens, may achieve similar continuous reconstruction FID but significantly compro-
mise generation FID. Furthermore, the next subsection explains why autoregressive methods utiliz-
ing continuous tokenizers, like MAR (Li et al., 2024b), are less efficient than HART.

3.2 HYBRID AUTOREGRESSIVE MODELING WITH RESIDUAL DIFFUSION

Discrete tokens

Scalable-Resolution 
Autoregressive Transformer MLP

Noise ϵ

Residual Diffusion

Residual tokens

+

Continuous tokens

Sum of Discrete tokens

Prompt: a 
beautiful cyborg 
with golden hair

LLM

text tokens

❄

🔥 🔥

Step 1 Step 2 Step N

Step 1 Step 1 to N-1 sum

…

… HART 
attention mask

Text

Step 2

Step 3

Step 1

hidden 
states

Figure 6: HART is an efficient hybrid autoregressive image generation framework. It decom-
poses continuous image tokens into two components: 1) a series of discrete tokens modeled by
a scalable-resolution (up to 1024px) autoregressive transformer, and 2) residual tokens modeled by
a lightweight residual diffusion (37M parameters and 8 steps) module. The final image representa-
tion is the sum of these two components.

Hybrid tokenization offers superior rFID and a better generation upper bound compared to discrete
tokenization. We introduce HART (Figure 6) to efficiently translate this improved upper bound into
real enhancements in generation quality. HART models the continuous image tokens as the sum of
two components: (1) discrete tokens, modeled by a scalable-resolution autoregressive transformer,
and (2) residual tokens, fitted by an efficient residual diffusion process.

Scalable-resolution autoregressive transformer. Our discrete token modeling extends VAR to
text-to-image generation and improves scalability at higher resolutions. HART concatenates text
tokens with visual tokens during training, in contrast to VAR which use a single class token. The text
tokens are visible to all visual tokens, as in Figure 6 (right). Our approach is 25% more parameter-
efficient than STAR (Ma et al., 2024b)’s cross-attention method (Chen et al., 2023).

Unlike Parti, the only prior AR-based method achieving 1024px generation through super-resolution
with Imagen (Saharia et al., 2022), HART directly generates 1024px images with a single model.
To mitigate the O(n4) training cost for high-resolution AR transformers, we finetune from pre-
trained low-resolution checkpoints. We convert all absolute position embeddings (PEs) in VAR to
interpolation-compatible relative embeddings, including step (indicating the resolution each token
belongs to) and token index embeddings. We utilize sinusoidal PE for step embeddings, which
naturally accommodates varying sampling steps in 256/512px (10 steps) and 1024px (14 steps) gen-
eration. For token index embeddings, we implement a hybrid approach: 1D rotary embeddings for
text tokens and 2D rotary embeddings (Sun et al., 2024; Ma et al., 2024a; Wang et al., 2024) for
visual tokens. The position indices of visual tokens directly continue from those of text tokens. We
found these relative embeddings significantly accelerates HART convergence at higher resolutions.

Residual diffusion. We employ diffusion to model residual tokens, given their continuous nature.
Similar to MAR (Li et al., 2024b), we believe that a full DiT is unnecessary for learning this residual.
Instead, a lightweight (37M parameters) residual diffusion MLP would be sufficient. This MLP is
conditioned on the last layer hidden states from our scalable-resolution AR transformer, as well as
the discrete tokens predicted in the last VAR sampling step.

Despite similar denoising MLP model architectures, HART differs fundamentally from MAR. While
MAR predicts full continuous tokens, HART models residual tokens—a crucial distinction for effi-
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cient diffusion modeling. Although both trained with a 1000-step noise schedule, HART achieves
optimal quality with just 8 sampling steps at inference, compared to MAR’s 30-50, resulting in a
4-6× reduction in diffusion module overhead. This demonstrates that HART’s residual tokens are
significantly easier to learn than MAR’s full tokens.

Other differences. The AR transformers in HART and MAR differ significantly in their formu-
lation. MAR’s AR transformer generates only conditions for its diffusion MLP, lacking a discrete
codebook for token generation. In contrast, HART’s AR transformer produces both discrete tokens
and diffusion conditions. These discrete tokens can be decoded into meaningful, albeit less detailed,
images using our hybrid tokenizer design (Figure 3). This approach reduces the burden on residual
diffusion, which only needs to model fine details rather than the overall image structure. Further-
more, HART supports KV caching for faster inference, significantly reducing computational costs.
MAR’s transformer, based on MaskGIT (Chang et al., 2022), lacks this capability.

In contrast to other representative AR+diffusion methods such as LaVIT (Jin et al., 2023) and SEED-
X (Ge et al., 2024), which employ complete diffusion models (1B parameters, 20 steps) for full
continuous tokens, HART provides significant efficiency gains through the use of a tiny diffusion
MLP (37M parameters, 8 steps) that models only residual tokens.

3.3 EFFICIENCY ENHANCEMENTS

While our scalable-resolution AR transformer and residual diffusion designs are crucial for high-
quality, high-resolution image generation, they inevitably introduce inference and training overhead.
We address these efficiency challenges in this section.

Training. Naively adding the residual diffusion module incurs both computational and memory
overhead during training. To address this, we found that discarding 80% of the tokens (on average)
in the final step and applying supervision only to the remaining tokens during training does not de-
grade performance. This approach accelerates training by 1.4× at 512px and 1.9× at 1024px, while
also reducing training memory usage by 1.1×. In the appendix, we explain the effectiveness of this
method by demonstrating that the attention pattern in our autoregressive transformer is mostly lo-
cal. Consequently, although token subsampling during training may compromise global interactions
between tokens, it has small impact on attention calculation.

Inference. For inference, we observed that relative position embeddings introduced multiple
memory-bound GPU kernel calls, in contrast to the single call required for absolute position em-
beddings in VAR (Tian et al., 2024). To optimize performance, we fused these computations into
two kernels: one for sinusoidal calculation and another for rotary embedding. This optimization
resulted in a 7% improvement in end-to-end execution time. Additionally, fusing all operations in
RMSNorm into a single GPU kernel also improved total runtime by 10%.

4 EXPERIMENTS

In this section, we evaluate HART’s performance in tokenization and generation. For generation,
we present both text-to-image and class-conditioned image generation results.

4.1 SETUP

Models. For class-conditioned image generation models, we follow VAR (Tian et al., 2024) to
construct HART models with varying parameter sizes in the AR transformer: 600M, 1B, and 2B. The
diffusion MLP contains an additional 37M parameters. We replace VAR’s attention and FFN blocks
with Llama-style (Touvron et al., 2023) building blocks. For text-conditioned image generation, we
start with the 1B model and remove all AdaLN (Peebles & Xie, 2023) layers, resulting in a 30%
reduction in parameters. We employ Qwen2-1.5B (Yang et al., 2024) as our text encoder and follow
LI-DiT (Ma et al., 2024a) to reformat user prompts.

Evaluation and Datasets. We evaluate HART on ImageNet (Deng et al., 2009) for class-
conditioned image generation, and on MJHQ-30K (Li et al., 2024a), GenEval (Ghosh et al., 2024),
and DPG-Bench (Hu et al., 2024) for text-to-image generation. The HART tokenizer is trained on
OpenImages (Kuznetsova et al., 2020). For HART transformer training, we utilize ImageNet, Jour-
neyDB (Pan et al., 2023), and internal MidJourney-style synthetic data. All text-to-image generation
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Type Model #Params Resolution MJHQ-30K GenEval DPG-Bench
FID↓ CLIP-Score↑ Overall↑ Average↑

Diff. SD v2.1 860M 768×768 26.96 25.90 0.50 68.09
Diff. SD-XL 2.6B 1024×1024 8.76 28.60 0.55 74.65
Diff. PixArt-α 630M 512×512 6.14 27.55 0.48 71.11
Diff. PixArt-Σ 630M 1024×1024 6.34 27.62 0.52 79.46
Diff. Playground v2.5 2B 1024×1024 6.84 29.39 0.56 76.75
Diff. SD3-medium 2B 1024×1024 11.92 27.83 0.62 85.80
AR LlamaGen 775M 512×512 25.59 23.03 0.32 65.16
AR Show-o 1.3B 256×256 14.99 27.02 0.53 67.48

512×512 5.22 29.01 0.56 80.72AR HART 732M 1024×1024 5.38 29.09 0.56 80.89

Table 2: The performance of HART on MJHQ-30K, GenEval and DPG-Bench benchmarks. We
compare HART with open-source diffusion models and autoregressive models. Results demonstrate
that HART can achieve comparable performance to state-of-the-art diffusion models with <1B pa-
rameters, surpassing prior autoregressive models by a large margin.

Model #Params #Steps 512×512 1024×1024
Latency (s) Throughput (image/s) MACs (T) Latency (s) Throughput (image/s) MACs (T)

SDXL 2.6B 20 1.4 2.1 30.7 2.3 0.49 120
40 2.5 1.4 61.4 4.3 0.25 239

PixArt-Σ 630M 20 1.2 1.7 21.7 2.7 0.4 86.2

Playground v2.5 2B 20 – – – 2.3 0.49 120
50 – – – 5.3 0.21 239

SD3-medium 2B 28 1.4 1.1 51.4 4.4 0.29 168

LlamaGen 775M 1024 37.7 0.4 1.5 – – –

10 0.3 10.6 3.2 – – –HART 732M 14 – – – 0.75 2.23 12.5

Table 3: Compared to state-of-the-art diffusion models, HART achieves 5.0-9.6× higher throughput
and 4.0-4.7× lower latency at 512×512 resolution. At 1024×1024 resolution, it demonstrates 4.5-
7.7× higher throughput and 3.1-5.9× lower latency.

data are recaptioned using VILA1.5-13B (Lin et al., 2024). We measure all quality and efficiency
metrics using open-source models with recommended sampling parameters as released by their au-
thors. Latency and throughput (batch=8) measurements are conducted on NVIDIA A100.

4.2 MAIN RESULTS

Method MJHQ-30K rFID↓ ImageNet rFID↓
256px 512px 1024px 256px 512px

VAR 1.42 1.19 2.11 0.92 0.58
SDXL 1.08 0.54 0.27 0.69 0.28
Ours (dis.) 1.70 1.64 1.09 1.04 0.89
Ours 0.78 0.67 0.30 0.41 0.33

Table 1: HART significantly outperforms VAR and
matches SDXL tokenizer performance on MJHQ-
30K and ImageNet datasets.

Hybrid tokenization. We evaluate the HART
hybrid tokenizer on ImageNet and MJHQ-30K,
two datasets not observed during training. As
shown in Table 1, our hybrid tokenization offers
significant advantages over discrete tokenization,
reducing the 1024px rFID from 2.11 to 0.30. This
matches the performance level of the SDXL tok-
enizer, indicating that the generation upper bound
of HART is comparable to that of diffusion mod-
els. The discrete rFID of our hybrid tokenizer also
ensures that the discrete tokens still capture the majority of image structure, so that the residual
tokens remain easily learnable.

Text-to-image generation. We present quantitative text-to-image generation results in Table 2.
On MJHQ-30K, our method achieved superior FID compared to all diffusion models. HART also
demonstrates better image-text alignment than the 3.6× larger SD-XL (Podell et al., 2023), as indi-
cated by the CLIP score on the same dataset. On GenEval and DPG-Bench, HART achieves results
comparable to diffusion models with <2B parameters. Importantly, HART achieves this genera-
tion quality at a significantly lower computational cost. As shown in Table 3, HART achieves a
9.3× higher throughput compared to SD3-medium (Esser et al., 2024) at 512×512 resolution. For
1024×1024 generation, HART achieves at least 3.1× lower latency than state-of-the-art diffusion
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Type Model FID↓ IS↑ #Params #Step (AR.) #Step (diff.) MACs Time (s)

Diff. DiT-XL/2 2.27 278.2 675M – 250 57.2T 113

AR VAR-d20 2.57 302.6 600M 10 – 412G 1.3
AR VAR-d24 2.09 312.9 1.0B 10 – 709G 1.7
AR VAR-d30 1.92 323.1 2.0B 10 – 1.4T 2.6
AR MAR-B 2.31 281.7 208M 64 100 7.0T 26.1
AR MAR-L 1.78 296.0 479M 64 100 16.0T 34.9

AR HART-d20 2.39 316.4 649M 10 8 579G 1.5
AR HART-d24 2.00 331.5 1.0B 10 8 858G 1.9
AR HART-d30 1.77 330.3 2.0B 10 8 1.5T 2.7

Table 4: HART achieves better class-conditioned image generation results compared to MAR (Li
et al., 2024b) with 10.7× lower MACs and 12.9× faster runtime. It also offers 7.8% FID reduction
with 4% runtime overhead compared with VAR (Tian et al., 2024). Time: bs=64 on A100.

models. Compared to the similarly sized PixArt-Σ (Chen et al., 2024a), our method achieves 3.6×
faster latency and 5.6× higher throughput, which closely aligns with the theoretical 5.8× reduction
in MACs. Compared to SDXL, HART not only achieves superior quality across all benchmarks in
Table 2, but also demonstrates 3.1× lower latency and 4.5× higher throughput.

Class-conditioned generation. Table 4 presents our class-to-image generation results. HART
outperforms MAR-L (Li et al., 2024b) in terms of FID and inception score, while requiring 10.7×
fewer MACs and achieving 12.9× lower latency. Across all model sizes, HART demonstrates a
4.3-7.8% improvement in FID and consistent enhancement in inception score. For larger models
(d ≥24), the residual diffusion overhead accounts for only 4-11% of the total runtime. HART also
compares favorably to DiT-XL/2 (Peebles & Xie, 2023), with our largest model being 3.3× faster,
even when DiT employs a 20-step sampler.

4.3 ABLATION STUDIES AND ANALYSIS

Depth Res. tokens FID↓ IS↑ Time (s)

20 ✗ 2.67 297.3 1.3
20 ✓ 2.39 316.4 1.5

24 ✗ 2.23 312.7 1.7
24 ✓ 2.00 331.5 1.9

30 ✗ 2.00 311.8 2.5
30 ✓ 1.77 330.3 2.7

Resolution Res. tokens FID↓ CLIP↑ Time (s)

256px ✗ 6.11 27.96 2.23
256px ✓ 5.52 28.03 2.42

512px ✗ 6.29 28.91 5.62
512px ✓ 5.22 29.01 6.04

1024px ✗ 5.73 29.08 25.9
1024px∗ ✗ 7.85 28.85 25.9
1024px ✓ 5.38 29.09 28.7

Table 5: HART learns residual tokens, which enhance conditioned image generation as evidenced
by improvements in FID, inception score, and CLIP score. The HART-VAR results are obtained by
omitting residual diffusion from the full HART model. Left: class-to-image, right: text-to-image, ∗:
results obtained using the official VAR quantizer.
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dle/Right: Despite achieving similar reconstruction FID, single decoder with alternating training
enables faster and better generation convergence.
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Official VAR, 256px 512px, 4000 steps→ HART (scalable-resolution), 256px 512px, 4000 steps→
Dog

portrait photo of a girl, 
photograph, highly detailed 
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Self-portrait oil painting, a 
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Figure 8: Scalable-resolution transformer accelerates convergence when finetuning HART at
higher resolution thanks to relative position embeddings that supports resolution interpolation.

We evaluate the key design choices in HART by examining: the effectiveness and efficiency of
residual diffusion, the impact of our alternating training strategy for the hybrid tokenizer, and the
importance of the scalable-resolution AR transformer.

Residual diffusion: effectiveness. Table 5 demonstrates the effectiveness of learning residual to-
kens in HART. For ImageNet 256×256 generation, residual diffusion yields a 10-14% improvement
in FID and up to a 6.4% increase in inception score compared to the baseline model, HART-VAR.
We constructed HART-VAR using the publicly available VAR codebase, which resulted in slightly
lower discrete-only performance than reported in Tian et al. (2024). For text-conditioned generation
on MJHQ-30K, FID improved by 11.1% at 256px and 17.0% at 512px. At 1024px, where the orig-
inal VAR tokenizer shows poor reconstruction performance (Table 1), HART achieves a 31% FID
improvement. Even compared to the stronger discrete-only HART tokenizer, residual diffusion still
offers a 6.1% FID improvement. Figure 3 visualizes the residual tokens, illustrating how residual
diffusion enhances discrete tokens with high-resolution details.

Residual diffusion: efficiency. Figure 7 (left) demonstrates that HART’s approach of learning
residual tokens is significantly more efficient than MAR’s method of learning full tokens. Notably,
HART achieves a higher inception score with just 3 diffusion sampling steps compared to MAR’s
60 denoising steps, resulting in a 20× reduction in runtime for continuous token learning.

Alternating training in hybrid tokenizer. We explored various strategies to train the hybrid tok-
enizer while maintaining similar continuous rFID. Figure 7 (middle and right) compares our current
approach (single decoder with alternating training) to using separate decoders for continuous and
discrete latents, with the discrete decoder frozen. Our design offers faster, better convergence for
class-conditioned image generation. Alternative strategies, such as finetuning the entire hybrid tok-
enizer from a pretrained continuous tokenizer or decoding only continuous latents during training,
are proven to be as bad as the separate decoder solution.

Scalable-resolution transformer. Lastly, Figure 8 illustrates that substituting all absolute PEs in
VAR with relative PEs significantly enhances convergence when fine-tuning HART at higher resolu-
tions from pretrained low-resolution checkpoints. Given that the token count in HART increases by
4× (resulting in a 16× increase in attention computation) when the output image resolution doubles,
this accelerated convergence is crucial for maintaining manageable training costs.

5 CONCLUSION

We introduce HART (Hybrid Autoregressive Transformer), the first autoregressive model ca-
pable of directly generating 1024×1024 images from text prompts without super-resolution.
HART achieves quality comparable to diffusion models while being 3.1-5.9× faster and of-
fering 4.5-7.7× higher throughput. Our key insight lies in the decomposition of continuous
image latents through hybrid tokenization, producing discrete tokens that capture the overall
structure and residual tokens that refine image details. We model the discrete tokens using a
scalable-resolution AR transformer, while a lightweight residual diffusion module with just
37M parameters and 8 sampling steps learns the residual tokens. We believe HART will cat-
alyze new research into modeling both discrete and continuous tokens for sequence-based visual
generation.
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A APPENDIX

Stage 8 Stage 9 Stage 10 Layer 1 (Stage 10) Layer 6 (Stage 10) Layer 11 (Stage 10)

(a)The VAR attention in HART follows the stage-wise “sink + local” pattern (b) Within the last stage, the attention pattern is local

Figure 9: Left: The VAR attention in HART exhibits a sink + local pattern: for stages 8-10 visual-
ized here, attention scores concentrate in the most recent two stages and the first three stages, akin
to StreamingLLM. Right: Within the final stage, the attention score distribution is predominantly
local. Note: For clearer visualization, we apply a sigmoid function to the attention scores in the
rightmost three subfigures.

Prompt: Eiffel Tower was Made up of more than 2 million translucent straws 
to look like a cloud, with the bell tower at the top of the building, Michel 
installed huge foam-making machines in the forest to blow huge amounts of 
unpredictable wet clouds in the building's classic architecture.

Prompt: A 3D render of a coffee mug placed on a window sill during a stormy 
day. The storm outside the window is reflected in the coffee, with miniature 
lightning bolts and turbulent waves seen inside the mug. The room is dimly lit, 
adding to the dramatic atmosphere. A minimap diorama of a cafe adorned with 
indoor plants. Wooden beams crisscross above, and a cold brew station stands 
out with tiny bottles and glasses.

1024px 512px 1024px 512px

Figure 10: Direct high-resolution (1024×1024) image generation yields significantly more detailed
results compared to low-resolution (512×512) generation.

A.1 ATTENTION PATTERN ANALYSIS

We visualize the attention patterns of a pretrained VAR (Tian et al., 2024) in Figure 9. Our empirical
analysis reveals that for each VAR stage (i.e., sampling step), the attention score is predominantly
concentrated on three key areas: the current stage, the preceding stage, and the initial three stages.

Within the current stage, where the attention score is highest, we further examine the spatial atten-
tion map, as depicted in the rightmost three subfigures of Figure 9. Interestingly, despite the VAR
attention mechanism allowing all tokens within the last stage to interact, the attention map exhibits
a surprisingly localized pattern: each token primarily attends to its immediate neighbors, similar to
convolution operations.

This observation has important implications. Even when we significantly reduce the number of
tokens in the last stage during training (by up to 80%), the fundamental attention pattern remains
intact due to the limited global interaction between tokens. This explains why the partial supervision
approach during training (discussed in Section 3.3) does not compromise generation quality.

We have also empirically verified that explicitly restricting attention patterns to the first 3 stages
plus 2 local stages during training does not impact final results. Consequently, implementing a
sparse attention kernel to further accelerate training is feasible, which we leave as a future direction.
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Prompt: A boy and a girl fall in love.

Prompt: Full body shot, a French woman, Photography, French streets…

Prompt: Drone view of waves crashing against the rugged cliffs in Big Sur ..

Prompt: A dog that has been meditating all the time

HART

HART

HART

HART

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

SD-XL

SD-XL

SD-XL

SD-XL

SD-XL

HART

Prompt: Editorial photoshoot of a old woman, high fashion 2000s fashion

Figure 11: Additional 1024×1024 text-to-image generation results with HART. Full prompt for
example 2: Full body shot, a French woman, Photography, French Streets background, backlighting,
rim light, Fujifilm. Full prompt for example 3: Drone view of waves crashing against the rugged
cliffs along Big Sur’s Garay Point beach. The crashing blue waters create white-tipped waves, while
the golden light of the setting sun illuminates the rocky shore.
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Prompt: A alpaca made of colorful building blocks, cyberpunk.

Prompt: A man looks up at the starry sky, lonely and ethereal, Minimalism..

Prompt: The subject is a woman. She wore a blue coat with a gray dress …

Prompt: A melting apple

HART

HART

HART

HART

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

Playground v2.5

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

PixArt-Σ

SD-XL

SD-XL

SD-XL

SD-XL

SD-XL

HART

Prompt: beautiful lady, freckles, big smile, blue eyes, short ginger hair …

Figure 12: Additional 1024×1024 text-to-image generation results with HART. Full prompt for
example 2: 8k uhd A man looks up at the starry sky, lonely and ethereal, Minimalism, Chaotic
composition Op Art. Full prompt for example 3: A close-up photo of a person. The subject is a
woman. She wore a blue coat with a gray dress underneath. She has blue eyes and blond hair, and
wears a pair of earrings. Behind are blurred city buildings and streets. Full prompt for example 5:
beautiful lady, freckles, big smile, blue eyes, short ginger hair, dark makeup, wearing a floral blue
vest top, soft light, dark grey background.
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Figure 13: 256×256 class-conditional generation results from HART on ImageNet (Deng et al.,
2009).
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A.2 MORE VISUALIZATIONS

Reference VAR MAR (KL-16) HART

512 512×

1024 1024×

Figure 14: Additional image reconstruction comparison among VAR (discrete), MAR (KL-16, con-
tinuous) and HART (hybrid) tokenizers.

Figure 10 demonstrates the significant impact of direct synthesis at 1024×1024 resolution: the
1024px generated images exhibit substantially more details compared to their 512px counterparts.
Figures 11 and 12 demonstrate text-conditioned generation. HART produce these images with com-
parable quality to diffusion models, while offering up to 7.7× higher throughput. In Figure 13,
we also showcase additional visualizations of HART-generated images for class-conditioned gen-
eration. Finally, Figure 14 presents additional image reconstruction results for various tokenizers.
The HART tokenizer demonstrates reconstruction performance comparable to MAR’s continuous
tokenizer, while significantly outperforming VAR’s discrete tokenizer.
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