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Abstract

Hybrid Optical Neural Networks (ONNs, typically consisting of an optical frontend
and a digital backend) offer an energy-efficient alternative to fully digital deep net-
works for real-time, power-constrained systems. However, their adoption is limited
by two main challenges: the accuracy gap compared to large-scale networks during
training, and discrepancies between simulated and fabricated systems that further
degrade accuracy. While previous work has proposed end-to-end optimizations
for specific datasets (e.g., MNIST) and optical systems, these approaches typically
lack generalization across tasks and hardware designs. To address these limitations,
we propose a task-agnostic and hardware-agnostic pipeline that supports image
classification and segmentation across diverse optical systems. To assist optical
system design before training, we design the metasurface layout based on fabrica-
tion constraints. For training, we introduce Neural Tangent Knowledge Distillation
(NTKD), which aligns optical models with electronic teacher networks, thereby
narrowing the accuracy gap. After fabrication, NTKD also guides fine-tuning of the
digital backend to compensate for implementation errors. Experiments on multiple
datasets (e.g., MNIST, CIFAR, Carvana Image Masking Dataset) and hardware
configurations show that our pipeline consistently improves ONN performance
and enables practical deployment in both pre-fabrication simulations and physical
implementations.

1 Introduction

Optical Neural Networks (ONNs) offer a promising approach to achieve efficient computation and
energy use compared to digital implementations such as Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs), making them well-suited for resource-constrained, real-time physical
systems [1]. For example, ONNs have been proposed for power-limited applications (illustrated in
Figure 1.a), including satellites [2], unmanned aerial vehicles [3], smart home devices [4], autonomous
driving systems [5], wearable electronics [6], and medical devices [7].

Among different ONN implementations, hybrid optical-electronic architectures are practical options
under current hardware constraints [8]. In such systems, the optical frontend accelerates computation
at the speed of light, while the digital backend refines predictions to improve robustness [9]. The
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Figure 1: Overview of potential applications for ONNs and our proposed deployment pipeline. (a)
ONNs for real-time decision-making in power-constrained scenarios. (b) Our proposed pipeline
includes user-driven design, knowledge transfer training, fabrication, and error compensation.

optical frontend generally consists of a single linear layer (as shown in Figure 1.a), since: (1) im-
plementing nonlinear activation functions in physical optics remains extremely challenging due to
material and device limitations; and (2) without nonlinearity, multiple linear transformations can be
mathematically compressed into a single linear transformation. Moreover, from a theoretical stand-
point, the universal approximation property could still be satisfied by shallow networks, suggesting
that hybrid ONNs retain sufficient expressive power for a wide range of tasks when appropriately
optimized [10–12].

Despite their promises, ONNs remain difficult to design and train due to both architectural limita-
tions and fabrication-related challenges. First, existing ONN architectures are typically significantly
simpler than modern deep CNNs or ViTs. These simplifications cannot be directly obtained through
pruning or quantization [13–15]. Second, physical fabrication and experimental deployment in-
evitably introduce various sources of noise, such as optical misalignment, material variability, and
measurement noise, further degrading performance [16]. While some end-to-end optimization
strategies have been proposed to address these challenges, they are typically designed for a specific
dataset (e.g., MNIST) and tailored to a particular optical system, rather than providing a generalized
solution (as also summarized in Related Works). In contrast, we aim to develop a task-agnostic and
hardware-agnostic pipeline that can generalize across different datasets and optical hardware setups.

To address these challenges, knowledge transfer, particularly Knowledge Distillation (KD), offers a
promising solution by transferring knowledge from pre-trained digital networks to optical models [17,
18]. Moreover, recent work shows that successful KD implicitly leads to student-teacher Neural
Tangent Kernel (NTK) similarity, where NTK captures how the network’s predictions change with
respect to small changes in its parameters [19]. As we show here, utilizing NTK for matching is
particularly effective for ONNs, as the NTK provides a linear approximation of network behavior,
naturally aligning with the linear operations performed by optical systems.

Thus, we propose a Neural Tangent Knowledge Distillation (NTKD) pipeline that generalizes across
different optical network designs and datasets to support multiple tasks such as classification and
segmentation (also shown in Figure 1.b). The pipeline starts with specifying the task, the dataset, and
the optical structure. Then, NTKD optimization transfers knowledge from digital teacher models
to hybrid ONNs by matching their NTKs, effectively transferring the relational structure between
classes rather than just matching final predictions. Furthermore, the pipeline compensates for errors
introduced during fabrication and experimental deployment by aligning the student’s and teacher’s
NTKs through a small fraction (e.g., 10%) of real experimental data.

In summary, our contributions are as follows:

• We introduce a Neural Tangent Knowledge Distillation (NTKD) pipeline that supports diverse tasks
and optical structures, addressing the challenges of shallow architectures and physical imperfections.

• We experimentally validate our pipeline with different ONN implementations on both classification
and segmentation tasks, demonstrating its effectiveness through both simulations and fabrications.
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Table 1: Summary of previous ONN works categorized by task type (classification, segmentation)
and implementation level—either simulation only (denoted as Sim) or with physical fabrication and
experimental validation (denoted as Fab).

ONN Capability Works Classification
(Sim)

Classification
(Fab)

Segmentation
(Sim)

Segmentation
(Fab)

Monochromatic 2018–2025: [9, 16, 20–27, 30–38] ✓ ✓ ✗ ✗

Polychromatic
2023–2025: [16, 28, 29, 39, 40] ✓ ✓ ✗ ✗
ExtremeMETA (2025) [5] ✗ ✗ ✓ ✗
Ours (NTKD) ✓ ✓ ✓ ✓

• We leverage NTK analysis to estimate the achievable accuracy of given hybrid ONNs, providing
theoretical guidance on their design and optimization.

2 Related Works

ONN Tasks and Implementations: Table 1 categorizes ONN applications into two tasks (classi-
fication and segmentation) and two optical implementations (monochromatic and polychromatic
systems). Most previous work focused on monochromatic ONNs for MNIST image classification,
including fully optical systems that performed linear transformations [20, 21], physically nonlinear
ONNs that used atomic vapors or intensifiers [22–24], and hybrid architectures that combined an
optical frontend with a digital backend [25–27]. Previous polychromatic ONNs for classification
were limited to small datasets such as CIFAR-10, as ONN architectures faced challenges in scaling
to complex benchmarks [28, 29]. Segmentation tasks are still in the early stages, with a previous
study based only on simulation [5]. Our work considers both classification and segmentation tasks.
In our pipeline, image reconstruction is implicitly incorporated by encouraging the optical frontend
output to align with the simulated result, as the physical output deviates from simulation and requires
correction.

Transfer learning for ONNs: Transfer learning, particularly Knowledge Distillation (KD), offers a
promising solution for transferring knowledge from pre-trained digital networks to optical models [17,
41]. KD minimizes the divergence between a compact student model’s predictions and those
of a pre-trained teacher model, thereby encouraging the student to actively mimic the teacher’s
behavior [17, 42]. Beyond conventional KD, recent studies have shown NTK-based approaches to
understand knowledge transfer [43]. For example, theoretical insights into KD transfer risk and
data efficiency in wide networks have been established through NTK analysis [44]. Subsequent
work demonstrated that successful knowledge distillation implicitly led to student-teacher NTK
alignment [19], and NTK similarity was further applied to quantify task affinities in multi-task
learning [45–47]. In contrast, our work targets physically constrained ONNs, and introduces an
explicit NTK matching strategy to directly guide the distillation process from a digital teacher to an
optical student.

Compensation Strategies for Practical ONNs: Fabrication imperfections and system noise in phys-
ical ONNs often lead to significant performance drops compared to simulations. Some approaches
used deep learning to model the system directly in a data-driven manner [48], including ONN auto-
learning [49,50], where ONNs were trained to fit experimental input-output mappings. Other methods
introduced physical information via hardware-in-the-loop training. For example, physics-constrained
frameworks embedded fabrication-aware models and losses to better align learning with optical
behavior [16]. Moreover, some approaches avoided simulation entirely by randomly fabricating
optical kernels and training a digital backend to adapt to the fixed frontend structure [51–55]. This
simplified fabrication but placed the learning burden entirely on the backend. It is also not clear if
such random surfaces perform better than an ordinary lens. In contrast, our work identifies sources of
physical errors and introduces an NTK alignment strategy for effective compensation.

3 Methods

3.1 Optical Frontend Design

At the initialization of the pipeline, user inputs are required to define the optical system (also shown
in Figure 2.1). Specifically, the user specifies (1) the physical size of the optical frontend (e.g., the
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Figure 2: Overview of the pipeline. It consists of three steps: (1) Optical Frontend Design based on
user-specified inputs, (2) Knowledge Transfer Training using Neural Tangent Kernel (NTK) matching,
and (3) Error Compensation for fabricated optical frontends.

number of meta-optic kernels), (2) the target dataset for the task, and (3) the desired network structure,
such as the number of layers and channels. Prior works have demonstrated that optical convolution
can be physically realized using either a 4f system or a PSF-based free-space propagation system
[18, 30, 38, 56]. In this work, we practically implement a PSF-based metasurface design due to its
advantages in compactness, alignment robustness, and ease of fabrication [29, 30].

Optical Frontend Layout: We consider a metasurface of size (h,w), onto which we aim to place
nkernels square optical kernels, each of size k (in mm), with a minimum edge-to-edge spacing d to
satisfy fabrication constraints. To compute the maximum number of kernels that can be placed while
preserving symmetry, we define

ncols =

⌊
w − d

k + d

⌋
, nrows =

⌊
h− d

k + d

⌋
, nkernels = ncols × nrows. (1)

Performance Estimation: Once the physical layout of the ONN is determined, we aim to estimate
its expected performance without empirical training. We adopt the Neural Tangent Kernel (NTK)
framework, which captures the training dynamics of infinitely wide neural networks under gradient
descent. In particular, we introduce a reference network that shares the same architecture as the
designed ONN (e.g., number of layers and connectivity) but has infinite width at each layer. Under
this assumption, the predictions of the reference network correspond to NTK regression [57, 58]. Let
the reference network f(x; θ) be a neural network parameterized by θ, which maps an input x to an
output f(x; θ). The NTK is defined as

Θ(x, x′) = ∇θf(x; θ)
⊤∇θf(x

′; θ), (2)

where ∇θf(x; θ) is the Jacobian of the network output with respect to its parameters. Let
{xtrain

i , ytrain
i }ntrain

i=1 be the training data and {xtest
i }ntest

i=1 be the test data. We compute

Θtrain,train = Θ(xtrain, xtrain) ∈ Rntrain×ntrain , Θtest,train = Θ(xtest, xtrain) ∈ Rntest×ntrain . (3)

and use kernel regression to predict outputs on the test set

f(xtest; θ) = Θtest,train (Θtrain,train + λI)
−1

ytrain, (4)

where λ is a regularization parameter, which is selected via grid search on a validation set.

The NTK-based performance estimation serves as a diagnostic tool to evaluate whether the specified
ONN architecture is expressive enough for the given task. While this estimation is not used for
training or loss computation, it provides an early signal to guide architectural decisions and allows
users to iteratively refine the optical design before full training and fabrication. For example, if the
estimated test accuracy is much lower than the expected performance, it may suggest a mismatch
between the ONN’s capacity (e.g., depth) and task complexity.
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3.2 Knowledge Transfer Training

After the user specifies the ONN architecture, we train the system for the target task. We define a
supervised learning problem with input-output pairs (x, y), where x represents the input samples and
y denotes the corresponding ground-truth labels. The network parameters (θ), including the optical
frontend and the digital backend, are initialized and optimized jointly (shown in Figure 2.2).

End-to-end loss: The first loss term we consider is a standard end-to-end supervision loss, which
directly minimizes the discrepancy between the network’s predictions and the ground-truth labels.
Formally, we optimize the following objective

LE2E = E(x,y)∼D [ℓ(fONN(x; θ), y)] , (5)

where ℓ(·, ·) is a standard loss function such as cross-entropy for classification tasks, fONN(x; θ)
denotes the output of the network with parameters θ, and D represents the training dataset.

Neural Tangent Knowledge Distillation (NTKD) Loss: In addition to the standard end-to-end loss,
we introduce a knowledge transfer loss based on Neural Tangent Kernel (NTK). Specifically, we
assume access to a pretrained teacher network, such as LeNet for MNIST, AlexNet for CIFAR-10, or
U-Net for image segmentation tasks.

Given a minibatch of input samples {xi}nbatch
i=1 , we compute the Jacobian matrices of both the teacher

network (fteacher) and student ONN (fONN) with respect to their parameters (θteacher, θONN)

Jteacher =

[
∂fteacher(xi)

∂θteacher

]nbatch

i=1

, JONN =

[
∂fONN(xi)

∂θONN

]nbatch

i=1

. (6)

The Jacobians Jteacher ∈ Rnbatch×pteacher×nclass and JONN ∈ Rnbatch×pONN×nclass may differ in width depend-
ing on the number of trainable parameters in each network. Here, pteacher and pONN denote the number
of parameters in the teacher and ONN, respectively. Their corresponding NTK matrices,

Θteacher = JteacherJ
⊤
teacher, ΘONN = JONNJ

⊤
ONN, (7)

are both of size nbatch × nbatch. We define the NTKD loss by minimizing the discrepancy between the
NTK matrices of the teacher network and the ONN (e.g., MSE)

LNTKD = E{xi}
nbatch
i=1 ∼D [ℓ (Θteacher,ΘONN)] . (8)

Then, we minimize a weighted sum of two losses, controlled by hyperparameters α and β

min
θ

(αLE2E + βLNTKD) . (9)

3.3 Error Compensation

The physical fabrication uses the optimized simulation parameters obtained through the process
described in Section 3.2. The fabrication fixes the optical frontend, and only the digital backend
remains tunable. Due to unavoidable fabrication and experimental errors, discrepancies arise between
the designed and realized optical system. Given an input image a and convolution kernel k, the ideal
output is y = a ∗ k. The fabricated optical convolution output with noise at location (i, j) is

ỹi,j = αβ

ksize∑
m=1

ksize∑
n=1

ai+m−1,j+n−1 (km,n + δm,n) + ϵi,j . (10)

Here, the scaling factors α (image brightness) and β (image–kernel misalignment) can be experi-
mentally calibrated to match the designed system, while the sensor noise ϵ is primarily determined
by the imaging device characteristics. We further quantify the impact of fabrication noise δ (with
proof provided in the Supplementary). In particular, we show that perturbations in the NTK caused
by kernel fabrication errors (δij) scale as

∥∆ΘONN∥ ∼ O

(
∥δ∥
m

)
, (11)

where ∆ΘONN denotes the NTK perturbation, and m is the number of kernels (i.e., the network
width). This result indicates that networks with more kernels are inherently more robust to fabrication
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Figure 3: Optical systems. (a) Compressed Meta ONN on MNIST [37]; (b) Polychromatic Meta
ONN on CIFAR-10 [29]; (c) ExtremeMETA for segmentation with dual optical frontends [5]; (d)
Customized Polychromatic Meta ONN for segmentation (Ours); (e) Optical measurement setup; (f)
Fabricated PSF-engineered meta-optics; (g) Scanning electron microscopy image of the meta-optics.

Table 2: Teacher and student network details.

Student Architecture Teacher Model Teacher Accuracy Teacher Size

Compressed Meta (0.05M) LeNet 99.1% ∼0.18M
Polychromatic Meta (1.62M) AlexNet 85.4% 233.29M
Polychromatic Meta (1.06M) U-Net 95.4% 196.97M

noise. Indeed, if m ≫ ∥δ∥, the impact of fabrication noise on the prediction can be considered
negligible. If δ is interpreted as a gradient descent step, Eq. 11 is consistent with NTK theory: as
m → ∞, the NTK (Θ) remains constant during training, implying ∆Θ → 0 [57].

To correct these errors, we re-apply minimization in Eq. 9, but restrict optimization to the unfrozen
backend parameters (shown in Figure 2.3). The teacher network takes the raw input images and
computes its NTK matrix over a batch of samples, as defined in Eq. 7. The student network receives
feature maps from the fixed optical frontend, which processes the same batch of input images and
produces an NTK matrix of size nbatch × nbatch.

4 Results

4.1 Implementation Details, Pre-trained Teachers, Datasets and Evaluation Metrics

Implementation Details: Figure 3 demonstrates four different optical systems used in the exper-
iments. For monochromatic image classification, we conducted experiments on the Compressed
Meta ONN architecture [37] using the MNIST dataset [59]. This system consists of a single optical
frontend with 8 kernels (7 × 7) and a compact digital backend composed of two fully connected
layers. For polychromatic image classification, we evaluated the Polychromatic Meta ONN [29] on
the CIFAR-10 dataset [60]. This model consists of a single optical frontend with 16 kernels (7× 7)
and a digital backend consisting of three fully connected layers.

For image segmentation, we performed experiments on both the Extreme Meta ONN [5] and a
modified version of the Polychromatic Meta ONN [29], using Kaggle’s Carvana Image Masking
dataset. ExtremeMETA consists of two parallel polychromatic optical frontends, followed by a
dual-path digital backend composed of CoarseNet for global feature extraction and FineNet for
detail enhancement, with their outputs fused to produce the final segmentation. Our customized
polychromatic segmentation system extends the Polychromatic Meta ONN by incorporating a single
optical frontend with 56 kernels (8, 16, and 32 kernels to capture hierarchical depth representations,
each of size 3× 3) and a backend composed of upconvolutional layers to support dense prediction
tasks. For a fair comparison between the two systems, we matched the number of optical kernels.
Optical implementation details are in the Supplementary.

In experiments, we manipulate polychromatic−red, green, and blue−point spread functions (PSFs)
of the meta-optics using a gradient descent algorithm. Physical shapes and dimensions of the PSF-
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Figure 4: Simulation: t-SNE and confusion matrices in MNIST (a-d) and CIFAR-10 (e-h).

engineered meta-optics are shown in Figure 3. Since the meta-optics are designed with PSFs that
function as convolutional kernels, optical convolution occurs naturally during image capture. Our
experimental setup is straightforward: we replace a conventional imaging lens with PSF-engineered
meta-optics. The meta-optics are carefully positioned and aligned with the color camera, enabling
the capture of PSFs and convolved images using a laser pointer and an OLED display, respectively. A
schematic representation and a photograph of the setup are provided in Figure 3.

Computing the NTK explicitly via Jacobian–Jacobian products is memory-intensive and infeasible at
scale. To address this, we adopt the approximation strategy of NTK-SAP [61–63], which estimates
the NTK trace rather than constructing the full matrix. We use batch size of 128 for MNIST and
CIFAR-10/100, batch size of 64 for ImageNet-100, and batch size of 8 for segmentation tasks.

Pre-trained teachers and Datasets: The MNIST and CIFAR-10 datasets each consist of 50, 000
training images and 10, 000 testing images. The Carvana dataset, originally introduced in Kaggle’s
Carvana Image Masking Challenge, contains 5,088 high-resolution 1920 × 1280 car images. We
adopt LeNet (99.1% accuracy on MNIST), AlexNet (84.5% on CIFAR-10), and a full U-Net (95.4%
mIoU on Segmentation) as teacher models for their respective tasks. Table 2 summarizes the teacher
and student networks.

Evaluation Metrics: For classification tasks, we ran each experiment five times with different
random seeds and reported the mean and standard deviation (std) of the classification accuracy. For
segmentation tasks, we similarly conducted five independent runs and reported the mean Intersection
over Union (mIoU) along with the standard deviation.

4.2 Main Results

Simulation Results: Table 3 summarizes the accuracy of different ONN training strategies in
classification and segmentation tasks. For monochromatic classification, NTKD achieved 97.3%
accuracy and outperformed both KD-based transfer (95.9%) and the non-transfer baseline (91.4%).
Similar trends were observed in the more challenging polychromatic classification setting, where
NTKD achieved 75.6%, surpassing KD (72.5%) and baseline (56.4%). For segmentation tasks, we
evaluated models on both the Extreme Meta and our proposed Polychromatic Meta datasets. NTKD

Table 3: Performance comparison of ONN methods across different tasks and training strategies.

Methods Monochromatic Classification (%) Polychromatic Classification (%) Polychromatic Segmentation (mIoU)
Compressed Meta (2025) [37] Polychromatic Meta (2025) [29] Extreme Meta (2025) [5] Polychromatic Meta (Ours)

Simulation, No Transfer 91.4 ± 0.8% 56.4 ± 1.9% 68.3 ± 0.5% 74.3 ± 0.4%
Simulation, KD 95.9 ± 0.6% 72.5 ± 2.1% 75.3 ± 0.2% 86.7 ± 0.4%
Simulation, NTKD 97.3 ± 0.6% 75.6 ± 0.9% 80.1 ± 0.2% 91.5 ± 0.4%
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Figure 5: Fabrication: t-SNE and confusion matrices on MNIST (a–d) and CIFAR-10 (e–h).

consistently achieved higher mIoU scores across both optical systems, surpassing KD-based transfer
and end-to-end training without transfer (75.3% and 86.7%, respectively).

These results indicate that training ONNs end-to-end without transfer often leads to suboptimal
performance. Incorporating knowledge transfer through KD or NTKD improves learning efficacy
and overall segmentation quality. In particular, the NTKD approach outperformed KD in different
tasks, demonstrating its ability to guide representation learning in optical neural networks.

Figure 4 demonstrates knowledge transfer strategies on MNIST and CIFAR-10 representations and
classification performance. Compared to the no-transfer baseline, these strategies improve class
separability in t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations and reduce noise
in confusion matrices. NTKD transfer shows improved clustering and accuracy in experiments.

Fabrication and Compensation Results: Table 4 summarizes the impact of error compensation
strategies on ONN performance in classification and segmentation tasks. Due to unavoidable fabrica-
tion and experimental errors, optical frontends suffer significant accuracy drops, especially in the
polychromatic setting. Without compensation, the monochromatic system exhibits an 8.1% drop, and
the more fabrication-sensitive polychromatic system shows a 28.3% drop on CIFAR-10 and a 41.8%
reduction in mIoU on the Carvana segmentation task. This performance gap highlights the increased
challenge of fabricating RGB-sensitive kernels in polychromatic ONNs compared to monochromatic
ONNs. Our results demonstrate that knowledge transfer methods are able to assist with denoising that
gap. NTKD compensation yields higher accuracy in both cases (95.1% for monochromatic, 74.9%
for polychromatic and 81.2% for image segmentation task), outperforming end-to-end deep learning
compensation, and validating its effectiveness in robust corrections for fabrication.

Figure 5 compares the t-SNE visualizations and confusion matrices of MNIST and CIFAR-10
representations under different compensation strategies. Without compensation (Figures 5 a, c, e, g),
both optical systems exhibit class overlap in the feature space and reduced classification accuracy,
primarily due to fabrication errors and optical misalignments. The NTKD correction (Figures 5 b, d,
f, h) compensates for these errors and improves the clustering structure and classification accuracy,
demonstrating robustness and generalization across datasets and optical systems.

Table 4: Evaluation of ONN error compensation methods on fabricated optical systems across both
classification and segmentation tasks.

Method Monochromatic Classification (%) Polychromatic Classification (%) Polychromatic Segmentation (mIoU)
Compressed Meta (2025) [37] Polychromatic Meta (2025) [29] Polychromatic Meta (Ours)

No compensation (baseline) 89.2% 47.3% 49.7%
Error compensation (End-to-End) 93.2 ± 0.1% 70.4 ± 2.1% 62.7 ± 0.9%
Error compensation (NTKD) 95.1 ± 0.1% 74.9 ± 1.3% 81.2 ± 0.6%
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Table 5: Random PSF kernel design across different tasks.

Monochromatic Classification (%) Polychromatic Classification (%) Polychromatic Segmentation (mIoU)
8 kernels 96.12% 36.73% 49.3%
500 kernels 96.81% 49.32% 64.1%
1000 kernels 97.24% 56.23% 69.9%
∞ kernels 97.72% 67.33% 72.1%

4.3 Discussion and Ablation Study

Backend Complexity of ONNs: The complexity of the backend plays a critical role in the
performance of optical systems, particularly in hybrid optical-digital architectures. When a strong
digital backend is employed, it can effectively denoise and recover accurate outputs, even when the
optical frontend introduces significant noise. However, a strong backend not only diminishes the
contribution of the optical frontend but also significantly increases power consumption—undermining
the core motivation for adopting optical computing in resource-constrained environments. In such
scenarios, digital networks (e.g., ViT or U-Net) are often a more practical and effective choice
than hybrid ONNs with disproportionately strong backends. For practical deployment, we need
to carefully balance the computational load between optics and computational backend and find a
tradeoff between acceptable energy consumption/ latency and acceptable accuracy, which will be an
application dependent trade-off.

Random vs. Designed Parameters: Another possible direction for designing and training ONNs is
to use randomly initialized optical parameters while training only the digital backends. This approach
aims to avoid the need for extensive simulation and hardware-in-the-loop optimization of the optical
frontends. We conducted experiments using a single optical convolutional layer and a lightweight
backend—consisting of a single fully connected layer for classification, or a single upsampling
layer for segmentation. As shown in Table 5, increasing the number of random kernels consistently
improves performance across tasks. For example, in polychromatic classification, accuracy improves
from 36.73% (8 kernels) to 56.23% (1000 kernels), and further to 67.33% in the NTK regime, which
approximates an infinite number of random kernels. Similarly, in polychromatic segmentation, mIoU
rises from 49.3% to 69.9% and reaches 72.1% under NTK estimation. These results demonstrate
that while increasing the number of random PSFs improves performance, they still underperform our
approach (designed kernels with knowledge transfer).

Scalability of ONNs: Scaling current ONNs remains challenging, as most designs rely on shallow
structures with limited linear computational capacity. Implementing nonlinear operations in ONNs
is especially difficult due to physical constraints, such as the limited pixel size. These hardware
limitations make it hard for ONNs to support deep and expressive architectures like those used in
digital networks. We observed that using different kernels to simulate multiple layers of a digital
network leads to better performance, compared to simply compressing a deep CNN into a single-layer
ONN.

Table 6: Impact of Teacher Complexity on NTK Distillation Performance for Classification and
Segmentation Tasks.

Dataset Task Teacher Student Teacher Accuracy Student Accuracy (with / without NTKD)

ImageNet-100 Classification ResNet-18 Polychromatic Meta 78.43% 46.32% / 33.45%
ImageNet-100 Classification ResNet-50 Polychromatic Meta 88.32% 47.86% / 33.45%

COCO-Stuff 10k Segmentation U-Net Polychromatic Meta 61.89% 41.43% / 35.03%
COCO-Stuff 10k Segmentation ResU-Net Polychromatic Meta 69.23% 42.73% / 35.03%

Table 6 examines the impact of stronger teachers on the student ONN under optical physical limita-
tions, with additional experiments conducted using ResNet variants and more complex datasets such
as ImageNet-100 and COCO-Stuff 10k. For the classification task, we employed both ResNet-18
and ResNet-50 to train a Polychromatic Meta student network. While both teacher models improved
performance through NTK distillation, the gain from ResNet-18 to ResNet-50 was marginal with only
an increase of 1.54%. Similarly, for segmentation, we used U-Net and ResU-Net as teacher networks
to train a Polychromatic Meta-optical student on COCO-Stuff 10k for binary foreground-background
segmentation. In this setting, the foreground includes all semantic object classes, and the background
consists of non-object regions. Again, while both stronger teacher models provided improvements,
the performance gain from a more complex teacher was limited.
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These results indicate that bottleneck in performance is primarily due to the physical modeling
limitations of current ONN hardware, rather than the complexity of the teacher model. In the case
of ONN technology being improved in the future, as one would expect, in such a case, a stronger
teacher network can provide additional gains in performance through the NTKD approach that will
transfer knowledge from stronger teachers to enhanced students. In summary, scalable and expressive
ONNs will ultimately rely on physical advances enabling deep and nonlinear optical computations.

Fabrication Analysis: Several factors may help explain the discrepancy between the designed
and measured kernels. First, the local periodic approximation, which simplified the metasurface
optics design by assuming the scatterers were arranged periodically, neglected the coupling between
adjacent dissimilar scatterers and could introduce phase errors. Second, unavoidable fabrication
errors further contributed to the observed discrepancy. Third, the pre-designed kernel needed to be
properly matched to the sensor’s pixel array; any misalignment between the metasurface optics and
the camera could also lead to deformation of the measured kernels. Regarding the polychromatic
versus single-wavelength kernels, metasurfaces inherently suffered from strong chromatic aberrations,
a universal characteristic of diffractive optics. While we co-optimized the kernel across multiple
wavelengths during the design process to ensure consistent behavior, the performance remained
limited by the intrinsic material properties.

MACs and Power Consumption: We estimated the multiply–accumulate operations (MACs)
and power consumption of hybrid ONNs using our polychromatic ONN as an example (details
in the Supplementary). The total number of MAC operations in the simulated digital network is
approximately 239 MMACs (while the full U-Net requires 65.9 GMACs and Efficient U-Net reaches
1.37 GMACs), which is reduced to 65 MMACs after incorporating optical frontends [64]. The
total energy consumption includes both image capture and digital computation. The full U-Net
(pre-trained teacher) consumes 2.03 J for computation and 2.36 mJ for image capture, totaling 2.04 J
per image. The compact digital network requires 7.37 mJ for computation and 2.36 mJ for image
capture, totaling 9.73 mJ per image. In contrast, our hybrid ONN consumes 3.82 mJ for image
capture and 2.01 mJ for backend processing, totaling 5.83 mJ—representing over a 40% reduction in
system-level energy consumption compared to the simulated digital network, and over 300× energy
compression compared to the pre-trained teacher U-Net.

5 Conclusion

We propose a comprehensive NTKD pipeline that addresses multiple tasks and multiple optical sys-
tems in ONN design, training, and compensation. By incorporating knowledge transfer, particularly
NTK-based knowledge distillation, our framework consistently improves the accuracy of different
optical systems across both classification and segmentation tasks. Based on extensive experiments,
we observe that the current ONN performance is primarily limited by the shallow and linear nature
of existing optical architectures. Future advances in deeper, nonlinear ONNs may help narrow the
performance gap between optical and electronic neural networks, improving scalability and accuracy.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the paper’s scope and contribu-
tions, stating the proposed NTKD pipeline and supporting claims with both theory and
experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper acknowledges limitations such as the shallow and linear nature of
current ONNs, the difficulty of implementing nonlinearities and scaling up, and fabrication-
induced issues in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [Yes]

Justification: The Supplementary provides the assumptions and a complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Supplementary includes optical implementation and setup details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The experiments use open-source benchmark datasets, and additional imple-
mentation details are provided in the Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The implementation details are provided in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments are repeated with multiple random seeds, and results are reported
with mean and standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide estimates of MACs and system-level power consumption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have a significant societal impact, and it is a foundational
research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: ] We correctly credited all the assets used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce any new datasets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research did not involve any crowdsourcing or human subject studies.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects or user studies and therefore does
not require IRB approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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