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Abstract
Leveraging neural networks as surrogate models
for turbulence simulation is a topic of growing in-
terest. At the same time, embodying the inherent
uncertainty of simulations in the predictions of
surrogate models remains very challenging. The
present study makes a first attempt to use denois-
ing diffusion probabilistic models (DDPMs) to
train an uncertainty-aware surrogate model for
turbulence simulations. Due to its prevalence,
the simulation of flows around airfoils with var-
ious shapes, Reynolds numbers, and angles of
attack is chosen as the learning objective. Our
results show that DDPMs can successfully cap-
ture the whole distribution of solutions and, as a
consequence, accurately estimate the uncertainty
of the simulations. The performance of DDPMs is
also compared with varying baselines in the form
of Bayesian neural networks and heteroscedastic
models. Experiments demonstrate that DDPMs
outperform the other methods in terms of a va-
riety of accuracy metrics. Besides, it offers the
advantage of providing access to the complete dis-
tributions of uncertainties rather than providing
a set of parameters. As such, it can yield realis-
tic and detailed samples from the distribution of
solutions.

1. Introduction
From fuel combustion in car engines (Han & Reitz, 1995;
Lumley, 2001) to supersonic flow around aircraft air-
foils (Nieuwland & Spee, 1973; Drela & Giles, 1987), turbu-
lence is ubiquitous in modern engineering. Despite advance-
ments in computing power, simplified turbulence models
like Reynolds-averaged Navier–Stokes (RANS) (Alfonsi,
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2009b) and Large Eddy Simulations (LES) (Georgiadis
et al., 2010) remain prevalent (Argyropoulos & Markatos,
2015). These models introduce uncertainties through hy-
potheses and parameters (Duraisamy et al., 2019), neces-
sitating methods to estimate and mitigate these uncertain-
ties (Iaccarino et al., 2017; Mishra et al., 2019; Wang et al.,
2016; Xiao et al., 2017; Najm, 2009; Roberts et al., 2011).

Recently, deep learning techniques become popular in fluid
dynamics research (Brunton et al., 2020; Vinuesa & Brunton,
2022; Lino et al., 2023). It demonstrated promising capabil-
ities as surrogate models for turbulent phenomena (Thuerey
et al., 2020; Chen et al., 2021; Sabater et al., 2022; Chen &
Thuerey, 2023). Considering the inherent uncertainty of the
underlying simulations, the prediction of surrogate models
should encompasses a probabilistic distribution contain-
ing all possible solutions rather than a single-point estima-
tion for the simulation result. Bayesian inference (George
E.P. Box, 1992) is effective for probabilistic predictions.
Directly employing a neural network as a surrogate model
within Bayesian inference gives rise to Bayesian Neural
Networks (BNNs) (Denker & LeCun, 1990; MacKay, 1992;
Neal, 1996; Wang & Yeung, 2020). BNNs perform poste-
rior sampling based on a prior distribution of the network
parameters. While it has been used in fluid simulations
study (Tang et al., 2023; Qiu et al., 2023; Geneva & Zabaras,
2019; Sun & Wang, 2020), subtle distinctions endure in the
uncertainty it captures compared to the inherent uncertainty
in target simulations.

Researchers often consider two kinds of uncertainty: (data)
and epistemic (model) uncertainty (Duraisamy et al.,
2019; Paté-Cornell, 1996; Kiureghian & Ditlevsen, 2009;
Hüllermeier & Waegeman, 2021). Aleatoric uncertainty,
caused by data noise, can only be reduced by obtaining
better data, while epistemic uncertainty, due to model lim-
itations, can be reduced with better models. In turbulence
simulation, most uncertainty is epistemic. However, this
uncertainty becomes aleatoric when simulation data is used
for training surrogate models. Although fully disentangling
aleatoric and epistemic uncertainty is hard in Bayesian deep
learning, it is important to note that BNNs construct proba-
bilistic distributions on the network parameters, aiming to
capture the epistemic uncertainty inherent in the neural net-
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work rather than the aleatoric uncertainty of the simulation-
generated dataset (Hüllermeier & Waegeman, 2021). It is
thus challenging to use the uncertainty of the prediction of
a BNN to directly represent the inherent uncertainty of the
simulation, as will be shown in the present study. In paral-
lel, methods like mixture density networks (Bishop, 1994)
and heteroscedastic models (Nix & Weigend, 1994; Kendall
& Gal, 2017) which estimate aleatoric uncertainty and are
shown to be effective in fluid dynamics study (Maulik et al.,
2020).

Meanwhile, conventional generative models, including
GANs (Goodfellow et al., 2014) and VAEs (Kingma &
Welling, 2014), sample from latent spaces for predictions.
Linking latent space sampling to posterior sampling pro-
vides a new potential solution for assessing the predic-
tion uncertainty through generative methods (Abdar et al.,
2021). However, these approaches were shown to have
problems generating details and covering whole distribu-
tions of solutions (El-Kaddoury et al., 2019; Creswell et al.,
2018). Recently, denoising diffusion probabilistic mod-
els (DDPMs) (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020) have outperformed previous gen-
erative methods in various contexts (Dhariwal & Nichol,
2021; Rombach et al., 2022a). Despite the vibrant develop-
ments in many other research areas like material design (Xie
et al., 2022; Luo et al., 2022) and medical image reconstruc-
tion (Chung & Ye, 2022; Peng et al., 2022), only very few
studies in fluid dynamics have employed DDPM. Excep-
tions are works that investigate the performance of DDPM
for super-resolution tasks (Shu et al., 2023) and inverse prob-
lem solving (Holzschuh et al., 2023), while the capabilities
of DDPMs as a surrogate model in fluid dynamics have not
been investigated.

In the current study, we leverage DDPMs to train an
uncertainty-aware surrogate model for RANS-based airfoil
flow simulations. Simulations of airfoil flow with RANS
turbulence models are a fundamental problem and a widely
studied use case of turbulence research (Thuerey et al., 2020;
Hui et al., 2020; Sun et al., 2021; Yang et al., 2022; Duru
et al., 2022; Chen & Thuerey, 2023). As such, they provide a
very good basis for assessing the capabilities of DDPM. The
uncertainty considered in the present study is represented
by a distribution of solutions that encapsulates the inher-
ent unpredictability associated with the RANS model. We
compare the performance of DDPMs with varying baselines
like BNNs and heteroscedastic models. The capabilities of
DDPMs and other baseline methods are measured in terms
of their ability to accurately reconstruct the target distribu-
tion of solutions. Additionally, our study distinguishes itself
from common applications such as image and speech gener-
ation by providing a clear ground truth for the distribution
to be learned. This means its uncertainty can be quantified,
and the accuracy of the learned distribution of solutions can

be estimated in a non-trivial setting.

2. Learning Target
For the flow around an airfoil y = [p∗,u∗], the physical
parameters x = [Ω, α,Re] uniquely determine the solution
of a PDE P , i.e., y = P(x). Here, P represents the time-
averaged Navier-Stokes equations with boundary conditions,
p∗ and u∗ denote the dimensionless pressure and velocity
fields, and x includes the airfoil shape Ω, angle of attack α,
and Reynolds number Re. The Reynolds number is defined
as Re = |uf |l/ν, where uf is the freestream velocity, l is
the chord length, and ν is the air viscosity.

This study considers discrete, numerically approximated so-
lutions of a turbulent RANS simulation S for the physics sys-
tem P . Besides the physical parameters x, additional numer-
ical parameters ψ are introduced to determine the flow field,
i.e., y = S(x, ψ). Examples of ψ include discretization
choices, numerical schemes, and turbulence model parame-
ters. These parameters contain inherent uncertainty, as they
are determined by experiments, resource constraints, and
human experience, and represent a probabilistic distribution
Ψ ∼ P (Ψ). Thus, a numerical solution involves sampling
ψ from P (Ψ) and computing y = S(x, ψ), representing
the simulated flow field for given physical parameters x as
a distribution of p(y|x) =

∫
p(y|x, ψ)p(ψ)dψ.

The present study focuses on learning the full distribution
p(y|x) via a surrogate model parameterized by a set of
learnable weights ξ and trained on a dataset d, i.e., to learn
pξ(y|x,d) ≈ p(y|x) without having access to the param-
eters ψ but a dataset with different S(x, ψ). We use the
number of solver iterations, τ , as a representative parameter
ψ for RANS simulation of airfoil flows. We draw samples
from the target distribution p(y|x) using τ to create a dataset
with multiple flow field solutions, capturing the inherent un-
certainty of RANS simulations. This dataset allows us to
build an ”uncertainty-aware surrogate model” and compare
different methods using the ground truth uncertainty from
these snapshots. A more detailed discussion on why we
chose τ to represent ψ can be found in Appendix. C.

3. Methods
This section introduces the basic theory of DDPMs, BNNs,
and heteroscedastic models. The performance of BNNs
and heteroscedastic models will be compared with DDPM
in the next section. Our main focus here is to present the
loss formulation for each approach, LNN , and the target
distribution of solutions, pξ(y|x,d), for each method.
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Figure 1. The sketch of uncertainty prediction process using the DDPM.

3.1. Denoising Diffusion Probabilistic Model

We follow the canonical procedure established for
DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020) to train
a surrogate model, as illustrated in Fig. 1. In the training pro-
cess, the initial data distribution is gradually distorted into a
standard Gaussian distribution through a forward Markov
chain:
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i=1 γ
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βt ∈ (0, 1) controls the noise schedule in the forward chain.
In the present study, βt follows a cosine schedule (Nichol &
Dhariwal, 2021). Via the reparameterization trick (Kingma
et al., 2015), yt

i can then be sampled from a standard Gaus-
sian distribution ϵ ∼ N (0, I):
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In the inference process of DDPM, another Markov chain is
used to recover the data from the added Gaussian noise step
by step. The reverse Markov chain is built with a learned
transition parameterized by θ:
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Then, minimizing the KL divergence
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is equivalent to the fol-

lowing simple loss function for training (Ho et al.,
2020):

LNN (θ) = Ex,ϵ∼N (0,I),t
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]
, (6)

where ϵ is the Gaussian noise used to compute yt
i through

Eq. (2) and ϵθ is the neural network predicting ϵ. The
additional input x of the neural network is the condition,
e.g., the Re, α, and Ω for the DDPM to generate a sample.

Finally, using the reverse chain shown in Eq. (3)-(5), the
distribution of solutions is obtained as
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∫
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Eq. (7) shows that the surrogate model is the whole reverse
Markov chain for DDPM, and the network only works as
a component in the surrogate model. The posterior distri-
bution of the parameters is the distribution of yt

i |Tt=1 while
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the parameters of the neural network are deterministic af-
ter training. The posterior sampling is achieved by sam-
pling yt

i |Tt=1 from Gaussian distribution parameterized by
the given expectation and standard deviation value.

3.2. Alternatives for Uncertainty Estimation with Deep
Learning

3.2.1. BAYESIAN NEURAL NETWORKS

In contrast to DDPMs, BNNs directly use the network as the
surrogate model (Neal, 1996; Wang & Yeung, 2020). Then
the posterior distribution of the surrogate model, p(ξ|d),
turns into the posterior distribution of the network p(θ|d).
Theoretically, this posterior could be computed with the
Bayes rule as

p(θ|d) = p(d|θ)p(θ)
p(d)

, (8)

where p(θ) is a pre-defined prior distribution representing
our prior knowledge of network parameters. A standard
Gaussian distribution is often a reasonable choice since the
network parameters are typically small and can be positive
or negative (Neal, 1996; Wang & Yeung, 2020; Abdar et al.,
2021). Nonetheless, a direct calculation of p(θ | d) via
Eq. (8) is often intractable, and thus methods like Monte
Carlo (MC) dropout (Srivastava et al., 2014; Gal & Ghahra-
mani, 2016), Markov chain Monte Carlo (MCMC) (Kupin-
ski et al., 2003; Chen et al., 2014), and variational inference
(VI) (Hinton & van Camp, 1993; Graves, 2011; Ranganath
et al., 2014) have been proposed to solve this problem. VI
uses a parameterized variational distribution qϕ(θ) to ap-
proximate the posterior of model parameters and then min-
imize the KL divergence KL (qϕ(θ) ∥ p(θ | d)) between
them, which leads to the following negative evidence lower
bound (ELBO) as loss function (Neal & Hinton, 1998; Blun-
dell et al., 2015)

LNN(ϕ) = λKL(qϕ(θ)||p(θ))− Eqϕ [log(p(d|θ))]. (9)

Here, the first and second terms in the loss function pose a
trade-off for the network to approach the prior distribution
and the ground truth data (Blundell et al., 2015; Abdar et al.,
2021). A scaling factor λ < 1 is introduced for the KL
divergence term to adjust this balance, which was shown
to turn p(θ|d) into a cold posterior (Wenzel et al., 2020;
Aitchison, 2021). On the one hand, a higher scaling factor
makes the distribution of the model more like the prior
Gaussian distribution, that is, more random. On the other
hand, a smaller scaling factor forces the model to learn more
from the dataset, and the whole model will degenerate into a
deterministic model when the scaling factor becomes zero.

The distribution of solutions is finally obtained as

pξ(y|x,d) =
∫
p(y|x, θ)p(θ|d)dθ =

∫
p(y|x, θ)qϕ(θ)dθ.

(10)
The posterior sampling is achieved by sampling network
parameters from the learned variational distribution qϕ(θ).

3.2.2. HETEROSCEDASTIC MODELS

Aleatoric uncertainty can be further divided into ho-
moscedastic and heteroscedastic uncertainty, where the for-
mer represents a constant for all data, while the latter varies
w.r.t. different input data (Nix & Weigend, 1994; Le et al.,
2005). Heteroscedastic uncertainty is usually more relevant
since some data in the dataset typically have higher uncer-
tainty than others (e.g., airfoil flow simulations with higher
Res as shown in Fig. 2). To model the heteroscedastic un-
certainty of the airfoil flow simulations, we assume that an
ideally-configured simulation with the physical parameter x
converges to a single flow solution yg where the subscript g
indicates ground truth data, and additional simulation results
y = {y1,y2, · · ·yN} that contain errors can be treated as a
noisy set around the ground truth yg. By doing so, we are
directly modeling the distribution of solutions rather than
modeling the posterior distribution of the surrogate model’s
parameters. For the heteroscedastic model, the surrogate
simulator is then realized by sampling from the modeled
distribution. Under the assumption of normally distributed
noise, a network parameterized by θ can be trained to pre-
dict the standard deviation σy and the expectation µy of
y through the maximum a posterior probability inference
as (Nix & Weigend, 1994; Kendall & Gal, 2017)

LNN(θ) =
1

N

N∑
i=1

[
1

2[σθ,y (x)]2
∥∥yi − µθ,y (x)

∥∥2
+

1

2
log[σθ,y (x)]

2].

(11)

Note that the network actually predicts log(σθ,yi)
2 rather

than σθ,yi in practice since the latter may result in a neg-
ative standard deviation and induce numerical instability
(Kendall & Gal, 2017). The limitation of the normally
distributed noise can be mitigated by introducing mixture
density networks that use Gaussian mixture distributions
to model potentially more complex distribution for the
noise (Bishop, 1994). However, the simple assumption
of a single Gaussian distribution is the easiest and most
commonly used one (Nix & Weigend, 1994; Kendall & Gal,
2017; Maulik et al., 2020).

Due to the assumed normally distributed noise, the distribu-
tion of solutions can be written as a Gaussian distribution
parameterized by the predicted expectation and standard
deviation:

pξ (y|x,d) = N (y;µθ(x),σθ(x)) . (12)
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4. Experiments
4.1. Dataset

The data generation process in the present study follows
an existing benchmark for learning RANS simulations of
airfoil flows (Thuerey et al., 2020). All simulations are
performed using the open-source code OpenFOAM (Jasak,
1996; Weller et al., 1998) with SA one equation turbu-
lence model (Spalart & Allmaras, 1992). There are 1417
different airfoils from the UIUC database (Group, 2023)
used to generate 5000 two-dimensional simulation cases
(M = 5000). The range of Re and α are (106, 107)
and (−22.5◦, 22.5◦), respectively. A set of 30 airfoils
not used in the training dataset are used to generate a test
dataset with 130 simulation cases. 100 of these samples
use the (Re,α) domain of the training dataset. We de-
note these samples as the interpolation region. The re-
maining 30 samples use the same previously unseen air-
foils and additionally use parameters outside of the origi-
nal distribution (Re ∈ (5 × 105, 106) ∪ (107, 1.1 × 107),
α ∈ (−25◦,−22.5◦) ∪ (22.5◦, 25◦). These tests in the ex-
trapolation region will be used to evaluate the shape and
flow condition generalization. All the simulations in the
training and test dataset will then be post-processed as a
3-channel input and a 3-channel output, as shown in Fig. 3.
The parameter distribution of the dataset is shown in Fig. 2.
Detailed discussion on the data generation and post-process
procedure can be found in Appendix. D.
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Figure 2. The uncertainty distribution in the a) training and b) test
dataset. The shaded area shows the extrapolation region.
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Figure 3. One instance of the encoded input and output simulation
data (ah21-7 airfoil, Re = 8.616× 103, and α = −18.93◦).

4.2. Single-parameter Experiments

It is instructive to evaluate the accuracy of the different
approaches in terms of a reduced setting with a single pa-
rameter before turning to the full dataset. Here, we consider
a problem with a resolution of 32 × 32, where the airfoil
shape Ω (raf30) and the angle of attack α (20◦) are kept
constant. The Re is the only independent variable, and the
training dataset encompasses Re ∈ {1.5×106, 3.5×106,
5.5×106, 7.5×106, 9.5×106}. As the test dataset, the Re
is interpolated and extrapolated into {2.5×106, 4.5×106,
6.5×106, 8.5×106} and {5×105, 10.5×106}, respectively.

Figure 4. The predicted average standard deviation with increasing
Re (raf30 airfoil, α = 20.00◦). The shaded area indicates the
extrapolation region of the test dataset.

Accuracy. Fig. 4 plots the average standard deviation of
the field predicted by the DDPM, heteroscedastic model,
and 3 BNNs with different scaling factors. Discussion on
the physics insight behind the uncertainty shown in Fig. 4
can be found in Appendix. E. Compared with BNNs, the
DDPM and heteroscedastic model predictions agree well
with the ground truth in the interpolation region. For the
extrapolation region, the predictions of DDPM and the het-
eroscedastic model are still adequate for high Re, while the
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standard deviation is over-estimated in the low Re region.
This is not completely unexpected since the cases in the
low Re region substantially differ from those in the training
dataset and exhibit essentially constant fields. For BNNs, all
predictions of the standard deviation are far from the ground
truth. The higher the scaling factor of the BNN, the higher
the standard deviation it predicts. The differences between
different networks initialized with different random seeds
likewise increase, implying a more random distribution of
network parameters as discussed in Sec. 3.2.1. A detailed
discussion on the pattern of the predictions can be found in
Appendix. F.

Figure 5. Samples from the distribution of solutions predicted by
different models and the ground truth distribution (raf30 airfoil,
Re = 6.5× 106, α = 20.00◦).

Individual samples. Fig. 5 shows 5 samples from the dis-
tribution of solutions predicted by different models and the
ground truth distribution for Re = 6.5× 106. DDPM gives
meaningful samples, while the sampling processes for the
other two learned methods result in incoherent and noisy
fields. Each sample of the distribution of solutions predicted
by the DDPM is obtained by iteratively transforming the
Gaussian noise field into a prediction, taking neighborhoods
and the global state into account via the neural network.
In contrast, the sampling of the heteroscedastic model is
a series of independent Gaussian sampling steps at each
data point in the flow field, which only depends on the local
parameters predicted for the distribution and is independent
of adjacent points. Hence, the obtained flow field sample is
fundamentally unsmooth. For the BNN, each sample is pre-
dicted by the network with differently sampled parameters.
While this could theoretically consider neighborhoods and
the global state, the noisy samples illustrate the shortcom-
ings of the BNN training and inference process.

4.3. Multi-parameter Experiments

In this section, we train the networks on the full dataset
where the airfoil shape Ω, Re, and α are all independent
variables. Since BNNs do not predict acceptable results in
the simpler single-parameter case, we focus on the DDPM
and the heteroscedastic model for the following learning
tasks with increased difficulty.

Figure 6. Prediction error distributions of DDPM and heteroscedas-
tic model.

Accuracy. We first evaluate the accuracy with a dataset
of targets with a resolution of 32× 32. The test dataset is
further divided into low-uncertainty(σy,a < 5× 10−3) and
high-uncertainty(σy,a ≥ 5 × 10−3) cases to evaluate the
model predictions separately.

The MSE of the predicted expectation fields and standard
deviation fields are summarized in Table. 1. Among the
cases from the interpolation region, the DDPM outperforms
the heteroscedastic model in all metrics. While the het-
eroscedastic model seems to perform slightly better for
predictions of high-uncertainty cases in the extrapolation
region, Fig. 6 provides a more detailed evaluation of the
error distributions. Here, values on the y-axis represent
the ratio of predictions whose MSE is less than the corre-
sponding value on the x-axis. It clearly shows that DDPM
surpasses the heteroscedastic model in terms of predicting
expectation and standard deviation in the low-uncertainty
test cases. Excellent performance is shown in the predic-
tions of the standard deviation, where more than 80% and
60% of the DDPM predictions have an error less than 10−5

for interpolation and extrapolation region, respectively. In
contrast, the minimal error of the heteroscedastic model
prediction is greater than 10−5 in both cases. Meanwhile,
Fig. 6 indicates that the DDPM still gives a better predic-
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Table 1. The average MSE of the model prediction on the test dataset. Cases where DDPM outperforms the heteroscedastic model are
shown bolded.

Dataset region Uncertainty (MSEµy
)a × 103 (MSEσy)a × 103

categories Heteroscedastic DDPM Heteroscedastic DDPM
low σy cases 0.834±0.043 0.320±0.037 1.329±0.293 0.384±0.112

Interpolation region high σy cases 1.029±0.041 1.014±0.144 1.240±0.388 0.885±0.059
All cases 0.900±0.038 0.556±0.033 1.299±0.325 0.555±0.056

low σy cases 1.465±0.132 0.837±0.050 0.363±0.206 0.027±0.020
Extrapolation region high σy cases 2.284±0.169 2.838±0.249 1.744±0.191 3.196±0.916

All cases 1.765±0.127 1.571±0.118 0.869±0.124 1.189±0.333

tion of standard deviations for high-uncertainty cases in the
interpolation region, while the difference between the ex-
pectation predictions of these two models is not significant.
Similarly, It also demonstrates that although the DDPM
seems to produce cases with higher maximum error than the
heteroscedastic model, the accuracy of DDPM’s predictions
is nonetheless mostly on-par with the heteroscedastic model
for high uncertainty cases in the extrapolation region.

Figure 7. The drag coefficient distribution predicted by the het-
eroscedastic model and DDPM (ag09 airfoil, Re = 6.918× 106,
α = 15.83◦)

As illustrated in Fig.5, one of the major advantages of the
DDPM is that it can produce meaningful target samples. To
characterize the distribution of solutions predicted by the
DDPM in more detail, we first compare the distribution of
the drag coefficient Cd computed from the sampled flow
fields with the ground truth in Fig. 7. Details of the Cd cal-
culation can be found in Appendix A. The Cd distribution
obtained from the samples of the heteroscedastic model is
also shown for comparison. As illustrated in the figure, the
Gaussian hypothesis of the heteroscedastic model does not
capture the distribution of the ground truth drag coefficients.
DDPM model, on the other hand, infers samples that closely
align with the ground truth distribution, accurately capturing
the peak around Cd = 0.1. To further show the flexibility
of the posterior sampling enabled by DDPM, we analyze a
specific airfoil case in terms of a Proper Orthogonal Decom-
position (POD) as a popular representative of tools for flow

analysis (Berkooz et al., 1993). We perform POD on both
the ground truth and a set of samples inferred by the pre-
trained DDPM model for airfoil kc135d, Re = 5.702×106,
and α = 21.49◦ to investigate the potential for vortex shed-
ding. Fig. 8 displays the first three modes along with their
corresponding energy fractions. While the first mode, typi-
cally associated with the mean of the snapshots, dominates
all modes with an energy fraction around 90%, the second
and third modes distinctly reflect the vortex shedding pattern
present in the simulation. Importantly, the predictions of
DDPM align well with the ground truth in the POD results,
underscoring the position of DDPM as the only method
capable of generating physical samples for POD analysis.

Figure 8. The first 3 POD modes of the ground truth and DDPM
predictions with corresponding energy fractions. (kc135d airfoil,
Re = 5.702× 106, α = 21.49◦).

Predictions with enlarged resolutions. Scaling the pre-
dictions to high resolutions is a crucial aspect of all practical
applications of a learning algorithm. To evaluate the capabil-
ities of DDPM to scale to larger resolutions, we extend the
depth and width of networks and retrain them on datasets
with higher resolution. Fig. 9 compares DDPM’s predic-
tions with a resolution of 32×32, 64×64, and as an outlook,
128× 128. It shows that the performance of higher resolu-
tion predictions is in line with the accuracy of the 32× 32
predictions despite the larger number of degrees of freedom.
A full set of DDPM predictions evaluated on the whole test

7



Under review at ICML 2024 AI for Science workshop

dataset with the output resolution of 128× 128 is also avail-
able in Fig. 15 and Fig. 16 of Appendix G. The resolution
of 128× 128 additionally allows us to directly compare our
results to the previous benchmark work on airfoil flow pre-
diction (Thuerey et al., 2020), denoted as DFP model in the
following (see Appendix B for details). The DFP network
is deterministic and trained with a dataset in a supervised
manner assuming σy = 0. Thus, only the predictions on
low uncertainty cases are meaningful for inference with the
DFP model. Despite being 1.5 times larger than the DDPM
model, the DFP model gives significantly lower accuracy.
Over 40% of the DDPM predictions have lower errors than
the best prediction error of the DFP model. This holds
for the interpolation as well as the extrapolation region, as
shown in Fig. 10. The supervised training of the DFP model
forces it to learn averaged solutions for ambiguous inputs,
which invariably lowers the quality of the inferred solutions
for cases with high uncertainty. However, the evaluation
above shows that the DDPM model still has an advantage for
cases with low uncertainty, for which the DFP model could
theoretically have learned a similarly accurate solution.

Figure 9. Prediction error distributions of DDPM with different
data resolutions.

These experiments demonstrate that DDPM networks, like
regular neural networks, can be scaled up to produce more
detailed outputs. At the same time, DDPM retains its capa-
bilities to produce accurate samples from the distribution of
solutions at enlarged resolutions.

Figure 10. Prediction error distributions of DDPM and DFP
model (Thuerey et al., 2020) on low σy cases with the resolu-
tion of 128× 128

5. Conclusions
Focusing on the inherent uncertainty of RANS simulations,
the present study provides a first evaluation of denoising
diffusion probabilistic models to train uncertainty-aware
surrogate models that provide a complete and accurate dis-
tribution of solutions. Our detailed evaluation shows that
DDPMs faithfully reconstruct the complex distributions of
solutions of the RANS dataset and generate meaningful in-
dividual samples from the distribution of solutions. The
distribution of drag coefficients in the flow fields predicted
by DDPMs also matches the ground truth very well. While
the heteroscedastic models can estimate the expectation and
the standard deviation of the target distribution, DDPMs
nonetheless show a very substantial gain in inference accu-
racy. The BNN predictions, on the other hand, require a
manual adjustment of the training hyperparameters to match
the ground truth distributions. Both methods additionally
show a significantly lower quality in terms of their samples
from the distribution of solutions compared to DDPM. An
extended discussion on these three methods can be found in
Appendix. I.

By providing uncertainty-aware and accurate predictions,
DDPM-based surrogate models have the potential to serve
as a compelling building block for diverse applications, e.g.,
to accelerate iterative designs (Sekar et al., 2019b; Li et al.,
2020; Chen et al., 2021). Investigating the uncertainty of a
scenario and accessing multiple possible solutions is typi-
cally a more favorable workflow than obtaining and working
with a single prediction. This is especially important in the
aerospace research community, where safety and reliabil-
ity are of paramount importance (Cook & Jarrett, 2017;
Huyse et al., 2002). Meanwhile, exploring the application
of DDPM in turbulence modeling is a highly interesting
topic for future work. While the large-scale flow captured
in RANS/LES simulations is generally deterministic, the
unresolved flow details manifest themselves as probabilistic
distributions rather than deterministic solutions, owing to
their stochastic nature (Pope, 2000). In this context, DDPM
could provide a powerful tool to capture the distribution
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of unresolved small-scale flows in order to capture their
effect on larger scales. Its capabilities to capture complex
distributions and flexible conditioning position DDPM as a
very promising technique to advance turbulence modeling.

To ensure reproducibility, the source code and datasets of
the present study are published at anonymous_url. The
quantification of the accuracy of the learned distribution
of solutions is of general importance for DDPMs. As this
training dataset is the first non-trivial and high-dimensional
case that provides ground truth for the distribution of so-
lutions, we expect that this dataset will have merit beyond
applications in aerospace engineering.
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A. Drag coefficient calculation
The drag coefficient in the present study is calculated as

Cd =
Fd

0.5ρuf
2A

≈
∑s2

k [pknk + µnk × (∇× u)k]h

0.5ρuf
2l

uf

|uf |
, (13)

where Fd is the drag force, ρ is the density of air, A is the reference area chosen as the wing area, h is the cell size of the
prediction field, subscript k represents the kth data in the field, and n is the unit normal vector field of the airfoil shape
calculated as

n =
∇Ω

|∇Ω| . (14)

Here, all gradient calculations are directly performed on the s× s data using convolutions.

B. Network Architectures and Training Details
Following the prevalent DDPM studies, we use a modernized U-Net architecture (Ho et al., 2020; Dhariwal & Nichol,
2021), which slightly modifies several components of classic U-Net architectures (Ronneberger et al., 2015; Thuerey et al.,
2020). The network consists of L basic blocks and its structure is shown in Fig. 11. Each basic block has two convolutional
blocks and one optional multi-head self-attention block (Vaswani et al., 2017) which is activated in the (L− 1)th and Lth
basic blocks. The convolutional block follows a depthwise separable convolution (DSC) style (Chollet, 2017) with a 7× 7
depthwise convolutional layer and a 3 × 3 pointwise convolutional layer. Besides, an SPD-Conv layer (Sunkara & Luo,
2023) and an interpolation layer followed by a convolution are used for the downsampling and upsampling, respectively.
The initial block of the U-Net is built with a 1×1 convolutional layer to expand the input channels, and the final block is
built with a basic block followed by a convolutional layer. In the bottleneck of the U-Net, there are four DSC convolutional
layers with a multi-head self-attention block in the middle.
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Figure 11. The structure of the U-Net used in the present study.

In our experiments, the DDPM model, heteroscedastic model, and BNN model for a certain resolution all use the same
network architecture. The major differences between these three models are the number of input and output channels. For
the network of DDPM, there are 3 channels for the noise field yt

i and 3 channels for the condition x in the input. The
number of output channels is also 3, representing the predicted noise ϵθ. The input for the heteroscedastic network and BNN
are both the 3-channel condition x. While the output of the heteroscedastic model is a 2× 3-channel tensor representing
the predicted µy,θ and σy,θ. For the BNN, the output is only a 3-channel predicted yi,θ. Besides, the time embedding for
the heteroscedastic model and BNN is kept constant t = 200 as this information is not used in these two variants. In the
BNN network, all convolutional layers are replaced with the Flipout Monte Carlo estimator convolutional layers (Wen et al.,
2018), which we implement with the BayesianTorch package (Krishnan et al., 2022). The resulting number of trainable
parameters of the networks used in the present study are summarized in Table. 2.
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Table 2. The network parameters for different models

Data size Number of channels in each layer Number of trainable parameters
s× s DDPM Heteroscedastic model BNN DFP Net

32× 32 [16,32,64,64] 1185218 1185686 2367332 \
64× 64 [16,32,64,64,128] 3208770 \ \ \
128× 128

[32,64,128,128,256,256] 19766642 \ \ \
[128,256,256,512,1024,1024,1024] \ 30905859

All the networks are trained with the AdamW optimizer using β1 = 0.5 and β2 = 0.999. The training uses a batch size of
50 for the data with the resolution of 32 × 32, 64 × 64, and 25 for 128 × 128. The initial learning rate is 1 × 10−4 and
the final learning rate is 1 × 10−5 with a learning rate decay every 12.5 × 104 iteration for the training of 32 × 32 and
64 × 64 data. We use the same learning rate decay for 128 × 128 data while the initial learning rate is set to 5 × 10−5.
All networks are trained with 12.5× 106 iterations at which the training loss has largely converged. However, we found
that the heteroscedastic model overfits after 2× 106 iterations in the multi-parameter experiments. Thus all results of the
heteroscedastic model are obtained with 2× 106th iterations. The Bayes by Backprop (BBB) (Blundell et al., 2015) method
is used to update the parameters distribution of BNN during the backpropagation.

The DFP network used in Sec. 4.3 is a pre-trained neural network from the RANS airfoil benchmark setup outlined
above (Thuerey et al., 2020). It uses a channel exponent factor to control the network size, which was set to 7 to obtain
a network with ca. 30m trainable parameters, as shown in Table. 2. The details of the network architecture and training
procedure of DFP net can be found in Ref . (Thuerey et al., 2020).

The number of diffusion steps of DDPM used in the present study is T = 200. We have also tested the performance of
DDPM with a varying number of steps, i.e. T = 100 and T = 400. However, both models perform similarly to T = 200
for the predicted expectations of low uncertainty cases, while the diffusion model with T = 200 slightly outperformed the
other models in the high uncertainty cases. Thus, the experiments in our manuscript focus on DDPM models with T = 200.

C. Constructing the Distribution of Solutions ψ
RANS simulations are pivotal in iterative aerodynamic shape optimization, where the fluid dynamics performance of a given
shape is accessed through a flow snapshot of a converged RANS simulation. However, the inherent flow instability around
bodies poses a challenge to RANS simulations for shape optimization. For instance, high transient features like vortex
shedding in the flow around airfoils will occur when certain Reynolds number and angle of attack are reached (Ramesh
et al., 2012). Steady-state RANS simulations are inadequate in capturing these highly transient flows, inducing oscillation
in number of simulation iterations. While alternative transient simulation methods are available for such unsteady flows,
assessing flow steadiness adds challenges to the shift between steady and transient methods. This difficulty is pronounced
during shape optimization iterations, where the shapes of airfoils could be highly flexible. Moreover, well-acknowledged
limitations of RANS methods in capturing critical flow phenomena, such as separation (Spalart, 2000), further compound
the challenges. Temporal averaging inherent in RANS proves insufficient in accounting for turbulence energy input from
dominant periodic wake components (Alfonsi, 2009a; Tucker, 2012). Additionally, deficiencies in addressing Reynolds shear
stress anisotropy and the impact of streamline curvature in separated flows are common among many RANS models (Mente,
2011; Sheng, 2020). These inherent limitations of RANS methods introduce convergence difficulties, particularly when
faced with separations. As a result, all the challenges from highly transient flow and separated flow result in the oscillating
snapshots in steady state RANS simulations, introducing uncertainties to the simulation results and finally adversely affecting
shape optimization (Dicholkar et al., 2022; Xu et al., 2015). While Detached-Eddy Simulation (DES) and Large-Eddy
Simulation (LES) offer more accurate alternatives for critical flows, steady-state RANS simulations retain favorability in
engineering design due to their computational efficiency and reliable performance in the converged regime (Lyu & Martins,
2013; Lyu et al., 2014; Chauhan & Martins, 2021). Notably, the research community has recognized this uncertainty in
the RANS simulation and has undertaken numerous initiatives to mitigate its adverse implications (Dicholkar et al., 2022;
Xu et al., 2023). Meanwhile, neural networks become more popular to serve as surrogate models for aerodynamic shape
optimization. Most of these neural networks typically utilize only one snapshot or an average of snapshots of RANS
simulation as training data. In such cases, the inherent uncertainty in the simulation tends to be overlooked. This neglect can
result in suboptimal performance during the optimization process, as the network may struggle to accurately predict the
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correct flow dynamics. Thus, the present study employs τ as an instance of ψ for the RANS simulation of airfoil flows.

D. Data-generation and post-process procedure
The (Re,α) distribution of the training dataset is chosen to be non-uniform to generate more cases with higher uncertainty:
half of the cases in the training dataset are generated with Res and αs randomly sampled from the uniform distribution
U(106, 107) and U(−22.5◦, 22.5◦), respectively. In contrast, the other half of cases are simulated with Res and αs obtained
from fsample(10

6, 107) and fsample(±22.5◦, 0), respectively. Here, fsample is a sample function:

fsample(a, b) =

{
a+ (b− a) e

x−1
10 , a < b

b+ (a− b) 11−ex

10 , a > b
, (15)

where x is randomly sampled from U(0, ln11).

For the test dataset, cases in the interpolation region are generated with the sampling as described above, while cases in the
extrapolation region are obtained by uniform sampling from the enlarged range.

The simulation data is pre-processed to be normalized and nondimensionalized for training and inference. The Re will be
encoded as the freestream velocity and then embedded with Ω and α as a three-channel tensor [|uf |cos α, |uf |sin α,Ω]. The
decision to encode the input as a three-channel field was carefully considered and motivated by several factors:

Network architecture compatibility. The DDPM approach profits from a UNet structure (Ho et al., 2020), and has been
widely employed in published literature for DDPM. The UNet’s convolutional nature requires fields as both input and output.

Fair comparison with BNNs and heteroscedastic models. In the present study, the input to the UNet in the DDPM
consists of a six-channel field, incorporating both noisy fields (u, v, p) and conditioning fields (α, Re, Ω). An alternative
approach could be to utilize only the noisy fields as input, incorporating a separate encoder for the conditioning values (α,
Re, Ω). The encoded scalar information could then be added as an embedding for the UNet, aligning with common practices
in text-image generation (Rombach et al., 2022b; Yang et al., 2023). However, it is pertinent to note that the introduced
encoder component is deemed unnecessary for BNNs and heteroscedastic models. These models exclusively require α,
Re, and Ω as input fields for the UNet. Thus, we have opted to employ field input for α, Re, and Ω in DDPM to ensure
consistency in input data representation for different methods and avoid unnecessary complexity in the network architecture
for BNNs and heteroscedastic models. This maintains a fair and comparable experimental setup across all methods.

Information about airfoil shapes in simulation results. The decision to directly use the airfoil shape Ω as a field aligns
with the inherent information about the airfoil shape contained in the simulation result. The preprocessing step to obtain the
field of airfoil shape from the OpenFOAM simulations is considered natural and straightforward, similar to the extraction of
velocity and pressure fields (u, v, p). Another possible alternative solution was to integrate the (Re, Ω) field into the airfoil
shape, with values Ω field representing α and Re instead of 0 and 1. However, this approach would introduce challenges in
balancing the proportion of α and Re in the single-channel field. Besides, there are no substantial changes in the network
size with different numbers of input channels, as shown in Table 3.

Table 3. The size of network with different number of input channels

Data size
(s× s) nc,in = 1 nc,in = 2 nc,in = 3 nc,in = 4 nc,in = 5 nc,in = 6

32× 32 1185138 1185154 1185170 1185186 1185202 1185218
64× 64 3208690 3208706 3208722 3208738 3208754 3208770
128× 128 19766482 19766514 19766546 19766578 19766610 19766642

In summary, the choice to encode parameters as three-channel fields serves to harmonize the network architecture require-
ments, facilitate fair comparisons, and leverage the existing mesh information in the OpenFOAM simulation results.

The simulation outputs are also encoded as a three-channel tensor where the first channel corresponds to the dimensionless
pressure field pi∗ = (pi − pi,a)/|uf |2 and the latter two are the dimensionless x and y components of the output velocity,
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i.e., (u∗x,i,u
∗
y,i) = (ux,i/|uf |,uy,i/|uf |), respectively. Fig. 3 shows an instance of the encoded input and output simulation

data. Finally, all input and output quantities are rescaled to [−1, 1] over the entire training dataset. The tensor resolution in
each channel of the input and output data is interpolated to a square field of s× s values, for which we use s ∈ {32, 64, 128}
in the experiments below. The other preprocessing and data generation steps follow the previous benchmark (Thuerey et al.,
2020).

In training dataset, we draw N samples of τ from a uniform distribution T ∼ U(2500, 3500) to obtain N snapshots of
flow fields, {y1,y2, · · ·yN} = {S(x, τ1),S(x, τ2), · · · ,S(x, τN )}, as a representation of the target distribution. Unless
specified otherwise, the number of snapshots in the test dataset, N̂ , is the same as the number of snapshots in the training
dataset, i.e., N̂ = N = 25. Figure 2 showcases the distribution of standard deviation among these 25 samples in the training
and test datasets, serving as a quantification of uncertainty. The increase of |α| and Re exacerbates the instability inherent in
the flow, resulting in high uncertainty of the target distribution, particularly evident in the high (α,Re) region at the top-left
and top-right corners of Fig. 2. The shape of the airfoil also plays a crucial role in influencing the development of flow
instability. Certain airfoils are meticulously designed to mitigate flow separation, as such phenomena can be detrimental to
engineering design. This intricacy results in the low uncertainty points in the high (α,Re) region, adding further complexity
to the distribution of uncertainty and presenting heightened challenges for network predictions.

E. An analysis of the aleatoric uncertainty of the dataset
Before evaluating the different methods, a comprehensive exploration of the discussed uncertainty is imperative. Fig. 12
provides an exhaustive depiction of the uncertainty transition in the simulation of the raf30 airfoil across the (α,Re)
parameter space. Corresponding to the trend in Fig. 2, higher uncertainty is observed in the high angle of attack region,
escalating with the increase in Re. A closer look at the flow field shows that the boundary of the uncertainty transition is
also where the flow separation occurs. Fig. 13 provides a more detailed investigation, which presents streamlines of the
mean flow field and the uncertainty distribution of velocity magnitude.

a)b)

c)d)

Figure 12. Uncertainty transitions of the RANS simulation for raf30 airfoil. Labeled arrows denote parameter regions as in Fig. 13.

Analyzing Fig. 13a)b) reveals a clear correlation between the progression of flow separation and an increasing angle of attack.
The growth of the angle of attack augments the radius of curvature of the streamline and enhances the adverse pressure
gradient on the upper surface of the airfoil, resulting in an expanding separation bubble and a gradual forward shift in the
separation point. Meanwhile, increasing the Reynolds number leads to a gradual transition to turbulence in the flow. Despite
the significant increase in flow chaos with the development of turbulence, vortices within the turbulent regime enhance
momentum transfer perpendicular to the flow direction, bringing streamlines closer to the airfoil. This proximity mitigates
adverse pressure gradients, impeding the advancement of flow separation. The separation bubble structures in Fig. 13c)d)
illustrate limited growth with rising Reynolds numbers, highlighting the stabilizing effect of turbulence on separation. The
uncertainty distribution in velocity closely corresponds to the presence of separation, primarily concentrated around the
separation bubble. It increases together with the expansion of the separation bubble and the intensity of turbulence near the
airfoil. Beyond regions directly influenced by separation, farther away from the airfoil, the impact on uncertainty gradually
diminishes. This intricate relationship highlights the interplay between observed uncertainty and the inherent challenges of
RANS simulation in capturing critical flows.

F. Pattern of the distribution
The pattern of the predicted expectation and standard deviations predicted by DDPM and the heteroscedastic model agree
well with the ground truth, as shown in Fig. 14. The performance of the BNNs strongly depends on the scaling factor λ
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a)

b)

c)

d)

Figure 13. Mean streamlines and the uncertainty distribution of velocity magnitude σ|u∗| (raf30 airfoil). a,b) Re = 6.5 × 106 with
varying α. c) α = 20◦, and d) α = −20◦, both with varying Re.

instead, where a more deterministic BNN with a smaller λ can predict a more accurate expectation field as shown in Fig. 14.
Nonetheless, it is worth noting that the pattern of the standard deviation predicted by BNN is far from the ground truth even
when λ is manually adjusted to match the magnitudes of the standard deviation of the ground truth distribution.

In the single-parameter experiments, the accuracy of the BNNs’ predictions for expectation fields decreases as λ increases.
Additionally, the magnitude of the predicted standard deviation field amplifies with λ, while the distribution pattern of the
standard deviation always deviates from the ground truth. This observed trend is deeply rooted in the nature of BNNs. The
probabilistic nature of BNN predictions is achieved through the probabilistic distribution of network parameters. Each
prediction sample from BNNs results from sampling network parameters from a distribution within the parameter space.

When the distribution variance of neural network parameters is large, the variance of prediction results using sampled
parameters is also substantial. Conversely, decreasing the distribution variance yields predictions with lower variability.
As elucidated in the manuscript, the coefficient λ adjusts the strength of the loss term which makes the distribution of
network parameters conform to the prior distribution, as shown in Eq. 9. When λ tends to zero, the network parameters
cease to follow a probabilistic distribution. The remaining term in the loss function aims to maximize the log-likelihood of
Eqϕ[log(p(d|θ))], aligning predictions closely with the ground truth dataset. In this scenario, the standard deviation of BNNs’
prediction becomes zero, and the accuracy in expectation predictions is highest.

Conversely, as λ increases, the distribution of the network’s parameter gradually adheres to the prior distribution. In extreme
cases where the KL divergence dominates, the network learns minimally from the data, focusing primarily on matching the
prior distribution. This circumstance results in the lowest accuracy for expectation predictions since the network scarcely
learns from the data. However, it doesn’t imply that standard deviation predictions attain the highest accuracy, as the
correctness of the prior distribution is not guaranteed. In our case, the standard practice involves a Gaussian distribution as
the prior. Predictions with parameters sampled from a Gaussian distribution may not align well with the ground truth data.

Fig. 4 demonstrates that the standard deviation magnitude is close to zero for small λ, but at λ = 0.01, it already surpasses
the ground truth magnitude. Further increases in λ could lead to even greater deviations from the ground truth. In summary,
the intrinsic properties of BNNs make it challenging to definitively assert how standard deviation prediction accuracy
changes with the coefficient λ. Small λ renders the neural network deterministic, resulting in zero standard deviation
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a) b)

Figure 14. The expectation a) and standard deviation b) distribution of the flow field (raf30 airfoil, Re = 6.5× 106, α = 20.00◦).

predictions. Conversely, increasing λ moves the distribution of network parameters toward the prior distribution. However,
ensuring consistency with the real solution using the network’s parameter from the prior distribution is challenging without
knowledge of the ”correct” distribution for the network’s parameters. This potentially leads to increased prediction errors.

G. Test set outputs
The full set of DDPM predictions evaluated on the whole test dataset with the output resolution of 128× 128 is shown in
Fig. 15 and Fig. 16.

H. Acceleration performance
As the DDPM approach incurs an enlarged computational cost due to its iterative nature, it is important to evaluate whether
the trained models retain an advantage over regular simulations in terms of resources required for producing an output.
Table. 4 summarizes the inference times of the diffusion models with different resolutions on both GPU and CPU. As a
reference, we compare with the OpenFOAM simulations that were used to compute the training dataset samples. Our
measurements show that the DDPM can provide acceleration by a factor of 4.5 or 25 to generate a 128 × 128 sample
using CPU or GPU, respectively. The GPU support offers the potential to increase the sample resolution without strongly
impacting the runtime: generating 10 samples with 128× 128 resolution only results in a 3.2 times longer runtime, while
generating 10 64×64 samples requires only 1.3 times longer than a single sample. On the other hand, a significant number of
samples is required in practice to obtain stable statistics for a given input condition and airfoil (typically N = 25 simulation
samples are used in the present study). However, the DDPM runtime to generate 25 128× 128 samples on a GPU is still
less than half of the original simulation runtime.
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Figure 15. The (µp∗ ,µu∗
x
,µu∗

y
) distribution from DDPM (top) and ground truth (bottom) with 128× 128 test set. a) Interpolation region.

b) Extrapolation region.

Table 4. The inference time (s) of DDPM on the Intel® Core™ i9-11900K CPU and NVIDIA GeForce RTX 3060 GPU. Cases where
DDPM outperforms the simulation are shown bolded.

Device Batch size DDPM Simulation
32× 32 64× 64 128× 128 30.032±1.504 K cells

CPU

1 1.398±0.008 2.439±0.056 16.242±0.218

72.998±4.786
5 2.836±0.027 6.766±0.135 87.822±0.618
10 4.418±0.038 12.950±0.073 187.751±0.742
25 10.150±0.019 33.821±0.201 494.848±8.174
50 23.109±0.197 83.508±1.655 942.307±21.951

GPU

1 1.294±0.471 1.488±0.466 2.845±0.494
5 1.086±0.006 1.616±0.012 9.071±0.119
10 1.154±0.014 2.103±0.002 17.392±0.145
25 1.658±0.010 4.543±0.023 41.966±0.256
50 2.861±0.005 8.777±0.005 81.255±1.198
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Figure 16. The (σp∗ ,σu∗
x
,σu∗

y
) distribution from DDPM (top) and ground truth (bottom) with 128× 128 test set. a) Interpolation region.

b) Extrapolation region.
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I. Extended Discussion on Different Method
I.1. The capabilities of BNNs, heteroscedastic models and DDPMs

The conducted experiments provide an intuitive understanding of the inherent characteristics of the three methods investigated
in the present study. BNNs, serving as epistemic uncertainty models, assume a distribution for network parameters during
training. The inherent challenge lies in the elusive nature of the true distribution of network parameters, stemming from the
difficulty in establishing prior beliefs on parameter space. The assumption of a Gaussian distribution for network parameters
is practical but not universally correct, and alternative prior distribution types may be more suitable for specific tasks (Wenzel
et al., 2020; Fortuin et al., 2022) In our scenario, despite employing a scaling factor λ to adjust reliance on the prior
Gaussian distribution of parameters, the predictions of the BNNs still fail to capture the characteristic features of the target
distribution. This limitation underscores the complexity of effectively incorporating data uncertainties into BNN predictions.
Besides, it’s essential to note that the loss function of BNNs, Eq. 9, primarily focuses on maximizing the expectation of the
probabilistic distribution in generating the ground truth flow data given the network parameters, i.e., Eqϕ [log(p(d|θ)). It
lacks a guarantee that each sample drawn from p(d|θ) agrees to the ground truth, as indicated in the noise samples in Fig. 5.
Another well-known drawback of BNNs is the high training cost, primarily attributed to the requirement of evaluating the
distance from the prior distribution across the entire network parameters. In our single-parameter experiment, the BNN
achieves a considerably lower training speed using the same training configuration, completing only 1.9 iterations per second.
In comparison, both the heteroscedastic model and the DDPM exhibit substantially higher training speeds, completing 7.1
and 6.9 iterations per second, respectively.

The heteroscedastic model relies on the assumption of Gaussian-distributed data to predict the moment of the target
distribution. While the Gaussian distribution assumption provides relatively accurate predictions for the mean and standard
deviation of the target distribution in the current RANS simulation case, it falls short when applied to the distribution of the
drag coefficient. One potential remedy is extending the heteroscedastic model into a mixture density network, utilizing
Gaussian mixture distributions to represent intricate distributions, albeit at the cost of increased computational resources.
Another drawback of the heteroscedastic model is that it evaluates the moment on each data point independently, resulting in
a noisy sampled flow field akin to BNNs’ prediction.

In contrast to the other approaches, DDPMs circumvents a direct modeling of the target distribution by employing a
series of transformations from the target distribution to a simple standard Gaussian distribution. The process involves
gradually distorting samples from the original distribution with Gaussian noise until a distribution consisting of only
standard Gaussians is reached. A neural network is employed to learn the added noise fields. Subsequently, starting with
samples drawn from the standard Gaussian distribution, DDPMs reconstruct the original target variable step by step with the
network-predicted noise. In contrast to the heteroscedastic model, which relies on an a priori assumptions about the target
distribution parameterized with predicted moments, DDPMs deduce the target distribution by iteratively recovering data
samples from the noise. This key distinction eliminates the need for assumptions about the original distribution, which is
crucial in complex flow scenarios where obtaining the prior distribution is challenging. In our case, the assumption-free
DDPMs not only enhance accuracy in predicting distribution moments but also successfully reconstruct the distribution of
the drag coefficient. Moreover, the directly generated samples by DDPMs avoid the loss of association among data points
within a sample, ensuring noiseless and physically meaningful samples compared to both BNN and heteroscedastic models.
The analysis with POD shown above indicates the possibilities that arise from the efficient sampling procedure enabled by
DDPM.

I.2. Limitations on DDPMs

The advantages of DDPMs come with associated drawbacks. Firstly, since moments and other static features are derived
from a series of samples, the inference procedure of DDPMs must be executed multiple times to generate sufficient samples.
While both BNNs and DDPMs require multiple samples to represent the distribution, DDPMs require a more compute-
intensive process, typically requiring hundreds of network inference steps to generate a single sample. The estimation of the
solution distribution by DDPMs is slower than other models, yielding smaller speed-up factors than reported in previous
studies (Sekar et al., 2019a; Thuerey et al., 2020; Du et al., 2021). Nevertheless, the research community of DDPMs remains
highly dynamic, and several recent publications have outlined promising directions to accelerate the sampling process (Meng
et al., 2022; Song et al., 2021)

In this manuscript, the capabilities of DDPM to generalize are assessed by evaluating its performance across datasets of
different sizes and testing the accuracy in interpolation/extrapolation regions. Compared with other methods, DDPM’s

23



Under review at ICML 2024 AI for Science workshop

Table 5. The performance comparison between different models

BNNs Heteroscedastic Models DDPMs
Training cost ↑↑ ↓ ↓
Inference cost ↑ ↓ ↑↑

Assumption-free
Accurate moment prediction

Accurate drag coefficient prediction
Physical samples

generalization ability exhibits a nuanced profile. On the one hand, it generally excels with various sizes of snapshot samples
and simulation cases. On the other hand, it does not demonstrate superiority in extrapolation cases where the range of Re
and α differs from the training dataset. Notably, DDPM showcases good generalization ability for new airfoil shapes, as both
interpolation and extrapolation regions in the test dataset involve novel airfoil shapes. This may relate to the convolutional
UNet’s effectiveness in capturing spatial hierarchies rather than magnitude changes in terms of values. Enhancing the
generalizability of DDPM poses an interesting and challenging avenue for future work. The challenges stem from the initial
application of DDPM in image synthesis, where defining the concept of generalizability is intricate, and relevant research
within the DDPM research community is notably scarce (Li et al., 2023). Moreover, the sampling and training procedures are
not solely determined by neural networks; they involve complex mathematical transformations on intermediate distributions
of the target variable. These transformations play a crucial role in the generalizability of DDPM. Despite these challenges,
the observation in our research can provide valuable insights to improve generalization in the future. While augmenting
simulation data, increasing sample sizes, and introducing new airfoil shapes are both beneficial for enhancing the method’s
generalizability, the range of Reynolds numbers and angles of attack in the training dataset is the primary limiting factor.
Broadening the range of Reynolds numbers and angles of attack in the dataset is more promising to improve generalization
in our context. However, it’s also crucial to simultaneously ensure data adequacy in other dimensions. The diversity of
airfoil shapes is particularly important, especially in scenarios like aerodynamic shape optimization, where encountering new
airfoils beyond the training dataset is common. Therefore, a balanced dataset encompassing diverse parameters, including
Reynolds numbers, angles of attack, and airfoil shapes, is essential to comprehensively enhance the model’s capabilities for
generalization.

As a summary, Table. 5 shows a comparison of several key aspects between different models. In light of the current status of
the respective algorithms, practitioners are faced with a decision: if sampling from the distribution of solutions is essential for
an application, DDPM emerges as a fitting choice, offering superior accuracy and complete information on the distribution.
On the other hand, if the requirement is limited to moment distributions, alternative models, particularly the heteroscedastic
model, provide a more expedient process for estimation.
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