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High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a par-
tial response to this, recent years have seen increasing emphasis to address the dimensionality challenge.
However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges
by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classi-
fication. Different from the usual static linear discriminant analysis, the new method is able to capture the
changing distributions of the underlying populations by modeling their means and covariances as smooth
functions of covariates of interest. Under an approximate sparse condition, we show that the conditional
misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range
of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially
with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established,
implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising per-
formance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer
dataset.

Keywords: Bayes rule; discriminant analysis; dynamic linear programming; high-dimensional data; kernel
estimation; sparsity

1. Introduction

The rapid development of modern measurement technologies has enabled us to gather data that
are increasingly larger. As the rule rather than the exception, these datasets have been gathered
at different time, under different conditions, subject to a variety of perturbations, and so on. As a
result, the complexity of many modern data is predominantly characterized by high dimension-
ality and the data dynamics. The former is featured by a large number of variables in comparison
to the sample size, and the manifestation of the latter can be seen in the distribution of the data
which is non-static and dependent on covariates such as time. Any approach ignoring either of
the two aspects may give unsatisfactory performance and even incorrect conclusions.

The main aim of this paper is to address these two challenges simultaneously, for the first time,
by developing a very simple yet useful dynamic linear programming discriminant (DLPD) rule
for classification. Specializing to binary classification, we allow the means and the covariance
matrices of the populations to vary with covariates of interest, which are estimated via local
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smoothing (Fan and Gijbels [13]). Under an approximate sparsity assumption on a linear index
that is central to classification, we propose to estimate the index vector via a technique akin
to the Dantzig selector (Candes and Tao [7], Cai and Liu [4]) in a dynamic setting. We show
emphatically that the conditional misclassification rate of the DLPD rule converges to the Bayes
risk in probability uniformly over a range of the variables used for modeling dynamics, where
the dimensionality is allowed to be exponentially high relative to the sample size. The uniformity
result is of particular importance as it permits simultaneous statements over the whole range of
the covariate. In addition, we derived minimax lower bounds for the Bayes risk, which indicates
that the misclassification rate of our DLPD rule is minimax-rate optimal. To our best knowledge,
this is the first attempt in developing a high-dimensional discriminant method that exhibits local
features of the data with sound theory. We remark that using existing approaches such as the one
in Cai and Liu [4] coupled with local smoothing, it is possible to establish a pointwise result
for the misclassification rate. However, a pointwise convergence result will not be sufficient in a
dynamic setting, as the main interest is often to assess the estimated classification rule across the
whole of the covariates, not just at a single point of the covariates.

Before we proceed further, let’s quickly look at a dataset that motivated this study. In tradi-
tional disease diagnosis studies, the same classification rule for all the patients was often applied.
However, it has become increasingly more desirable to develop personalized rules that takes into
account individual characteristics (Alyass, Turcotte and Meyre [1]). Intuitively, these patient-
specific factors can be treated as dynamic factors in deriving decision rules. For example, in the
breast cancer data we studied in Section 4.3, both (low dimensional) clinical risk factors (tu-
mor size, age, histological grade etc.) and (high dimensional) expression levels for 24,481 gene
probes were collected for 97 lymph node-negative breast cancer patients. Among them, 46 pa-
tients developed distant metastases within 5 years while the rest 51 remained metastases free for
at least 5 years. To appreciate the need to incorporate dynamic information into the analysis, we
look at the 100 genes with the largest absolute t -statistic values between the two groups choos-
ing the tumor size as the dynamic variable. We fit the gene expression levels as a function of
the tumor size using a local regression model (Cleveland, Grosse and Shyu [9]). The fitted plots
for some randomly selected genes are presented in Figure 1, from which we can see that the
gene expression levels of the patients in the two classes exhibit different levels as the tumor size
changes. Similarly, the covariance matrix of these 100 genes also is found to behave dynamically
in response to the changes of the tumor size. To see this, we separate the 97 observations into two
groups depending on whether the tumor size is greater than the median of the tumor sizes 2.485.
A p-value < 0.001 (Li and Chen [25]) indicates that we should reject the null hypothesis that the
population covariance matrices of the two groups are equal. The method developed in this paper
aims to capture this dynamic information in a high-dimensional setting for classification.

1.1. The setup

We now introduce formally the problem. Let X = (x1, . . . , xp)T , Y = (y1, . . . , yp)T be p-
dimensional random vectors and U be a d-dimensional random covariate, where for simplic-
ity we assume that d is a fixed integer. In this paper, we deal with the situation where p is
large. Given U we assume that X ∼ N(μX(U),�(U)) where μX(U) = (μ1

X(U), . . . ,μ
p
X(U))T
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Figure 1. Gene expression level versus tumor size. Upper panel: selected genes from X class; Lower panel:
selected genes from Y class. The curves are LOWESS fits.

and �(U) = (σij (U))1≤i,j≤p . Similarly, the conditional distribution of Y given U is given as
Y ∼ N(μY (U),�(U)) where μY (U) = (μ1

Y (U), . . . ,μ
p
Y (U))T . In other words, different from

traditional linear discriminant analysis, we assume that the first and second moments of X and Y

change over a d-dimensional covariate U. Here U could be dependent on the features X and Y .
When U is a vector of discrete variables, the above mentioned model is named the location-scale
model and was used for discriminant analysis with mixed data under finite dimension assump-
tions; see, for example, Krzanowski [23] and the references therein.

In discriminant analysis, it is well known that the Bayes procedure is admissible; see for ex-
ample Anderson [2]. Let (Z,UZ) be a generic random sample which can be from either the
population (X;U) or the population (Y ;U). In this paper, we assume a priori that it is equally
likely that (Z,UZ) comes from either population (X;U) or population (Y ;U). Following simple
algebra, it can be easily shown that the Bayes procedure is given as the following:

(i) Classify (Z,UZ) into population (X,U) if

{
Z − [

μX(UZ) + μY (UZ)
]
/2
}T

�−1(UZ)
[
μX(UZ) − μY (UZ)

] ≥ 0;

(ii) Classify (Z,UZ) into population (Y,U) otherwise.

Given Uz = u, by standard calculation, the conditional misclassification rate of this rule is

R(u) = �
(−�p(u)/2

)
, (1.1)
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where �p(u) = √[μX(u) − μY (u)]T �−1(u)[μX(u) − μY (u)], and �(·) is the cumulative dis-
tribution function of a standard normal random variable. The expected misclassification rate is
defined as

R = EUR(U), (1.2)

where EU means taking expectation with respect to U. Practically μX(·), μY (·) and �(·) are
unknown but there are a sequence of independent random observations (Xi,Ui ), i = 1, . . . , n1
from the population (X;U) and a sequence of independent random observations (Yj ,Vj ), j =
1, . . . , n2 from the population (Y,U). The central problem then becomes proposing methods
based on the sample that give misclassification rates converging to that of the Bayes rule under
appropriate assumptions.

1.2. Existing works

There has been increasing emphasis in recent years to address the high-dimensionality challenge
posed by modern data where p is large. However, the dynamic nature of the data collection
process is often ignored in that μ(U) and �(U) are assumed to be independent of U. In this static
case, the Bayes procedure given above reduces to the well-known Fisher’s linear discriminant
analysis (LDA). In static high dimensional discriminant analysis, Bickel and Levina [3] first
highlighted that Fisher’s LDA is equivalent to random guessing. Fortunately, in many problems,
various quantities in the LDA can be assumed sparse; See, for example, Witten and Tibshirani
[41], Shao et al. [37], Cai and Liu [4], Fan, Feng and Tong [12], Mai, Zou and Yuan [30], and
Mai and Zou [29] for a summary of selected sparse LDA methods. Further studies along this
line can be found in Fan, Jin and Yao [15] and Hao, Dong and Fan [20]. More recently, quadratic
discriminant analysis has attracted increasing attention where the population covariance matrices
are assumed static but different. This has motivated the study of more flexible models exploiting
variable interactions for classification, analogous to two-way interaction in linear regression; see
for example, Fan, Ke and Liu [14], Fan et al. [16], and Jiang, Wang and Leng [22]. However,
none of these works addresses the dynamic nature of μ(·) and �(·).

In our setup where dynamics exists, in addition to the high dimensionality, we need to obtain
dynamic estimators for μX(u) − μY (u) and �−1(u), or

β(u) := �−1(u)
[
μX(u) − μY (u)

]
as functions of u. Under a similar setup where U is categorical and supported on a set of finite
elements, Guo et al. [18] proposed a sparse estimator for �−1(u). The emphasis of this work
is for continuous U that is compactly supported. Chen and Leng [8] proposed nonparametric
estimators of sparse �(u) using thresholding techniques for univariate U where d = 1. The focus
of this paper on high-dimensional classification is completely different. Importantly, we do not
require the sparsity assumption on �(u) and our theory applies for any fixed-dimensional U. Our
paper is also different from Cai and Liu [4], Fan, Feng and Tong [12] and Mai, Zou and Yuan [30]
in that β(u) is allowed not only to be a smooth function of U, but also to be approximately sparse
(see Theorem 3.1). Our efforts greatly advance the now-classical approach of local polynomial
(Fan and Gijbels [13]) to the modern era of high-dimensional data analysis.
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If we denote μ̂X(UZ), μ̂Y (UZ) and β̂(UZ) as the estimators of μX(UZ), μY (UZ) and β(UZ)

defined as in Section 2 respectively, our Dynamic Linear Programming Discriminant (DLPD)
rule is given as the following:

(i) Classify (Z,UZ) into population (X,U) if:

{
Z − [

μ̂X(UZ) + μ̂Y (UZ)
]
/2
}T

β̂(UZ) ≥ 0;
(ii) Classify (Z,UZ) into population (Y,U) otherwise.

The rest of this paper is organized as follows. In Section 2, we propose estimators for the
components in the Bayes rule and propose the DLPD rule. Section 3 provides theoretical results
of our DLPD rule. In particular, we show that under appropriate conditions, the risk function
of the DLPD rule converges to the Bayes risk function uniformly in u. In addition, we derived
minimax lower bounds for the estimation of �(u) and the Bayes risk. In Section 4, simulation
study is conducted to assess the finite sample performance of the proposal method. The DLPD
rule is then applied to solve interesting discriminant problems using a breast cancer dataset.
Concluding remarks are made in Section 5. All the theoretical proofs are given in the Appendix.

2. A dynamic linear programming discriminant rule

We begin by introducing some notations. For any matrix M , we use MT , |M| and tr(M) to
denote its transpose, determinant and trace. Let v = (v1, . . . , vp)T ∈ Rp be a p-dimensional
vector. Define |v|0 = ∑p

i=1 I{vi �=0} as the �0 norm and |v|∞ = max1≤i≤p |vi | as the �∞ norm.
For any 1 ≤ q < ∞, the lq norm of v is defined as |v|q = (

∑p

i=1 |vi |q)1/q . We denote the p-
dimensional vector of ones as 1p and the p-dimensional vector of zeros as 0p .

Denote u = (u1, . . . , ud)T and let K(u) be a kernel function such that

K(u) =
d∏

i=1

K(u1) × · · · × K(ud),

where K(·) is an univariate kernel function, for example, the Epanechnikov kernel used in kernel
smoothing (Fan and Gijbels [13]). Recent literature on multivariate kernel estimation can be
found in Gu, Li and Yang [17] and the references therein. Let H = diag{h1, . . . , hd} be a d × d

diagonal bandwidth matrix and define:

KH (u) = |H |−1K
(
H−1u

)=
d∏

i=1

1

hi

K

(
ui

hi

)
.

Recall that we assume that there are a sequence of independent random observations (Xi,Ui ),
i = 1, . . . , n1, from the population (X;U) and a sequence of independent random observations
(Yj ,Vj ), j = 1, . . . , n2, from the population (Y,U). For simplicity, throughout this paper we
assume that n1 � n2 and denote n = n1 + n2.
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One of the most popular nonparametric estimators for estimating a conditional expectation is
the Nadaraya–Watson estimator, which is a locally weighted average, using a kernel as a weight-
ing function. Denote Xi = (Xi1, . . . ,Xip)T , i = 1, . . . , n1. Let Hx = diag{hx1, . . . , hxd} be a
given bandwidth matrix. We estimate μX(u) using the Nadaraya–Watson estimator (Nadaraya
[32]) μ̂X(u) = (μ̂1

X(u), . . . , μ̂
p
X(u))T , where

μ̂i
X(u) =

∑n1
j=1 KHx (Uj − u)Xji∑n1

j=1 KHx (Uj − u)
, i = 1, . . . , p. (2.1)

Similarly, let Yi = (Yi1, . . . , Yip)T , i = 1, . . . , n2. Given a bandwidth matrix Hy = diag{hy1, . . . ,

hyd}, we estimate μY (u) by μ̂Y (u) = (μ̂1
Y (u), . . . , μ̂

p
Y (u))T , where

μ̂i
Y (u) =

∑n2
j=1 KHy (Vj − u)Yji∑n2

j=1 KHy (Vj − u)
, i = 1, . . . , p. (2.2)

For the covariance matrix �(u), we propose the following empirical estimator:

�̂(u) = (
σ̂ij (u)

)
1≤i,j≤p

= n1

n
�̂X(u) + n2

n
�̂Y (u), (2.3)

where

�̂X(u) =
∑n1

j=1 KHx (Uj − u)XjX
T
j∑n1

j=1 KHx (Uj − u)

− [∑n1
j=1 KHx (Uj − u)Xj ][∑n1

j=1 KHx (Uj − u)XT
j ]

[∑n1
j=1 KHx (Uj − u)]2

, (2.4)

and

�̂Y (u) =
∑n2

j=1 KHy (Vj − u)YjY
T
j∑n2

j=1 KHy (Vj − u)

− [∑n2
j=1 KHy (Vj − u)Yj ][∑n2

j=1 KHy (Vj − u)Y T
j ]

[∑n2
j=1 KHy (Vj − u)]2

. (2.5)

We remark that the estimators μ̂X(u), μ̂Y (u), �̂X(u) and �̂Y (u) are simply the weighted sample
estimates with weights determined by the kernel.

For a given u, we then estimate β(u) = �−1(u)[μX(u) − μY (u)] using a Dantzig selector
(Candes and Tao [7], Cai and Liu [4]) as

β̂(u) = argminβ

{|β|1 subject to
∣∣�̂(u)β − [

μ̂X(u) − μ̂Y (u)
]∣∣∞ ≤ λn

}
. (2.6)

Given a new observation (Z,UZ), our dynamic linear programming discriminant rule is obtained
by plugging in the estimators given in (2.1), (2.2), (2.3) and (2.6) into the Bayes rule given in
Section 1. That is,
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(i) Classify (Z,UZ) into population (X,U) if:{
Z − [

μ̂X(UZ) + μ̂Y (UZ)
]
/2
}T

β̂(Uz) ≥ 0;
(ii) Classify (Z,UZ) into population (Y,U) otherwise.

3. Theory

In this section, we will first derive the theoretical properties of our proposed dynamic linear
programming discriminant rule. In particular, the upper bounds of the misclassification rate are
established. We will then derive minimax lower bounds for estimation of the misclassification
rate. The upper bounds and lower bounds together show that the misclassification rate of our
proposed discriminant rule achieves the optimal rate of convergence.

3.1. Upper bound analysis

In high dimensional data analysis, Bernstein-type inequalities are widely used to prove important
theoretical results; see, for example, Lemma 4 of Bickel and Levina [3], Merlevede, Peligrad and
Rios [31], Lemma 1 of Cai and Liu [4]. Different from existing literature in high dimensional
linear discrimination analysis, we need to accommodate the dynamic pattern. Particularly, to
prove our main results in this section, we establish uniform Bernstein-type inequalities for the
mean estimators μ̂X(u), μ̂Y (u) and the covariance matrix estimators �̂X(u) and �̂Y (u); see
Lemma A.2 and Lemma A.3. We point out that these uniform concentration inequalities could
be essential in other research problems that encounter high dimensionality and non-stationarity
simultaneously. We present the risk function of the DLPD rule first.

Lemma 3.1. Let 	d ∈ Rd be the support of U and V. Given u ∈ 	d , the conditional misclassi-
fication rate of the DLPD rule is

R̂(u) = 1

2
�

(
− (μ̂X(u) − μ̂Y (u))T β̂(u)

2
√

β̂(u)T �(u)β̂(u)

− (μ̂Y (u) − μY (u))T β̂(u)√
β̂(u)T �(u)β̂(u)

)

+ 1

2
�

(
− (μ̂X(u) − μ̂Y (u))T β̂(u)

2
√

β̂(u)T �(u)β̂(u)

+ (μ̂X(u) − μX(u))T β̂(u)√
β̂(u)T �(u)β̂(u)

)
.

To obtain our main theoretical results, we make the following assumptions.

(A1) The kernel function is symmetric in that K(u) = K(−u) and there exists a constant s > 0
such that

∫
R K(u)2+suj du < ∞ for j = 0,1,2. In addition, there exists constants K1

and K2 such that supu∈R |K(u)| < K1 < ∞ and supu∈R |K ′(u)| < K2 < ∞.
(A2) We assume the sample sizes n1 � n2 and denote n = n1 + n2. In addition, we assume

that logp
n

→ 0 as p,n → ∞ and for simplicity we also assume that p is large enough
such that O(logn + logp) = O(logp).
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(A3) U1, . . . ,Un1 , V1, . . . ,Vn2 are independently and identically sampled from a distribution
with a density function f (·), which has a compact support 	d ∈ Rd . In addition, f (·) is
twice continuously differentiable and is bounded away from 0d on its support.

(A4) The bandwidths satisfy hxi � (
logp
n1

)
1

4+d , hyi � (
logp
n2

)
1

4+d , for i = 1, . . . , d .
(A5) Let λ1(�(u)) and λp(�(u)) be the smallest and largest eigenvalues of �(u) re-

spectively. We assume that There exists a positive constant λ such that λ−1 ≤
infu∈	d

λ1(�(u)) ≤ supu∈	d
λp(�(u)) ≤ λ. In addition, there exists a constant B > 0

such that infu∈	d
�p(u) > B .

(A6) The mean functions μX(u), μY (u) and all the entries of �(u) have continuous second
order derivatives in a neighborhood of each u belonging to the interior of 	d .

Clearly, all the supremum and infimum in this paper can be relaxed to essential supre-
mum and essential infimum.

Assumptions (A1), (A3) and (A4) are commonly made on kernel functions in nonparametric
smoothing literature; see, for example, Einmahl and Mason [11], Fan and Gijbels [13] and Pagan
and Ullah [34]. The first statement of assumption (A2) is for simplicity and the second statement
indicates that our approach allows the dimension p to be as large as O(exp(nc)) for any constant
c < 1. That is, the dimensionality is allowed to be exponentially high in terms of the sample
size. For assumption (A3), since the density function f (·) is continuous, the image set D :=
{f (u) : u ∈ 	d} is also compact. Consequently, if there is a sequence of points f1, . . . , fm, . . .

that converges to 0, we must have 0 ∈ D. Therefore, our assumption that f (u) is bounded away
from zero is equivalent to f (u) > 0 in D. Note that the dominator

∑n1
j=1 KHx (Uj − u) in the

Nadaraya–Watson estimator converges to f (u). Our assumption in some sense ensures that the
dominator does not vanish. We can though, relax the compactness condition on the support to the
following: there exist m compact sets 	d,1, . . . ,	d,m ∈ Rd such that for some constant Cu > 0
and M > 0 which is defined as in Theorems 3.1 and 3.2, we have P(U ∈ 	d) ≥ 1 − Cup

−M ,
where 	d :=⋃m

i=1 	d,i . Assumption (A5) is routinely made in high dimensional discrimination
analysis; see, for example, Cai and Liu [4]. Nevertheless, we may allow the uniform bounds
on the eigenvalues to hold on 	d := ⋃m

i=1 	d,i , while assuming that P(U /∈ 	d) is negligible.
Assumption (A6) is a smoothness condition to ensure estimability and is commonly used in the
literature of nonparametric estimation; see, for example, Fan and Gijbels [13], Tsybakov [38].

The following theorem shows that the risk function of the DLPD rule given in Lemma 3.1
converges to the Bayes risk function (1.1) uniformly in u ∈ 	d .

Theorem 3.1. Assume that assumptions (A1)–(A6) and the following assumption hold:

sup
u∈	d

|β(u)|1
�p(u)

= o

((
n

logp

) 2
4+d

)
. (3.1)

For any constant M > 0, by choosing λn = C(
logp

n
)

2
4+d supu∈	d

�(u) for some constant C large
enough, we have with probability larger than 1 − O(p−M),

sup
u∈	d

∣∣R̂(u) − R(u)
∣∣ = O

((
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

)
.
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Consequently, we have

EUR̂(U) − R → 0 as p,n → ∞.

Here �p(u) measures the Mahalanobis distance between the two population centroids for a
given u. This theorem does not require β(u) to be sparse, but assumes the �1 norm of β(u)

divided by the Mahalanobis distance is bounded uniformly by a factor with an order smaller than

( n
logp

)
2

4+d . In particular, the dimensionality is allowed to diverge as quickly as o(exp(n)). This
theorem shows that uniformly in U, the conditional misclassification rate converges to the Bayes
risk in probability. In order to connect this theorem to the situation where β(u) is sparse, we note
that from the Cauchy–Schwarz inequality and assumption (A5), we have for any u ∈ 	d ,

|β(u)|21
�2

p(u)
≤ |β(u)|0|β(u)|22

�2
p(u)

≤ |β(u)|0λ2|μX(u) − μY (u)|22
λ−2|μX(u) − μY (u)|22

= λ4
∣∣β(u)

∣∣
0.

Consequently we have:

Corollary 3.1. Assume that assumptions (A1)–(A6) and the following assumption hold:

sup
u∈	d

∣∣β(u)
∣∣
0 = o

((
n

logp

) 4
4+d

)
. (3.2)

For any constant M > 0, by choosing λn = C(
logp

n
)

2
4+d supu∈	d

�p(u) for some constant C

large enough, we have with probability larger than 1 − O(p−M),

sup
u∈	d

∣∣R̂(u) − R(u)
∣∣ → 0 and EUR̂(U) − R → 0 as p,n → ∞.

This corollary states that the conditional misclassification rate converges to the Bayes risk

again, if the cardinality of β(u) diverges in an order smaller than ( n
logp

)
4

4+d . Thus, our results
apply to approximate sparse models as in Theorem 3.1 and sparse models as in Corollary 3.1.

In many high dimensional problems without a dynamic variable U, it has been commonly
assumed that the dimension p and sample size n satisfy logp

n
→ 0. Denote H = Hx or Hy . From

our proofs we see that in the dynamic case where U has an effect, due to the local estimation,

the dimension-sample-size condition becomes logp tr(H−1)
n|H | → 0, which becomes (

logp
n

)
4

4+d → 0
under Assumption (A4). We give here a heuristic explanation for the change in the dimension-
sample-size condition when d = 1. It is known that the variance of a kernel estimator is usually
of order O( 1

nH
) (Fan and Gijbels [13]). On one hand, similar to the asymptotic results in local

kernel estimation, the sample size n would become nH in the denominator of the dimension-
sample-size condition to account for the local nature of the estimators. On the other hand, for
simplicity, assume that 	 = [a, b] for some constants a, b ∈ R. To control the estimation error
or bias for a p-dimensional parameter uniformly over [a, b], it is to some degree equivalent
to controlling the estimation error of a parameter of dimension proportion to (b − a)pH−1.
Therefore, the numerator in the dimension-sample-size condition becomes pH−1 in our case.
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Note that when the Bayes misclassification rate R(u) → 0, any classifier with misclassification
rate R̂(u) tending to 0 slower than R(u) would satisfy |R̂(u)−R(u)| → 0. To better characterize
the misclassification rate of our DLPD rule, we establish the following stronger results on the
rate of convergence in terms of the ratio R̂(u)/R(u).

Theorem 3.2. Assume that assumptions (A1)–(A6) and the following assumption hold:

sup
u∈	d

�p(u) sup
u∈	d

|β(u)|1
�p(u)

= o

((
n

logp

) 2
4+d

)
. (3.3)

For any constant M > 0, by choosing λn = C(
logp

n
)

2
4+d supu∈	d

�p(u) for some constant C

large enough, we have with probability larger than 1 − O(p−M),

sup
u∈	d

∣∣R̂(u)/R(u) − 1
∣∣= O

((
logp

n

) 2
4+d

sup
u∈	d

�p(u) sup
u∈	d

|β(u)|1
�p(u)

)
.

Consequently, we have

EUR̂(U)/R − 1 → 0 as p,n → ∞.

3.2. Minimax lower bound

We first introduce the parameter space and some known results in the literature of minimax lower
bound theory. We consider the following parameter space:

G(κ) =
{(

μX(u),μY (u),�(u)
) : μX,μY ,� ∈ H(2,L), sup

u∈	d

|β(u)|21
�2

p(u)
≤ κ

}
,

where H(2,L) denotes the Hölder class with order two (Tsybakov [38]). For definiteness, 0
0 is

defined to be 1. Clearly, assumptions A3 and A6 together imply that μX(u), μY (u) and �(u)

belong to the Hölder class H(2,L) with domain 	d . We shall denote θ = (μX(u),μY (u),�(u)).
Suppose P is a family of probability measures and θ is the parameter of interest with values

in the functional space D. Let T (θ) be any functional of some parameter θ ∈D. By noticing that
d(θ1, θ2) := supu∈	d

|T (θ1) − T (θ2)| defines a semi-distance for any θ1, θ2 ∈ D, from LeCam’s
lemma (LeCam [24], Yu [42], Cai, Zhang and Zhou [6]) we have

Lemma 3.2. Let T (θ) be any functional of θ and let T̂ be an estimator of T (θ) on P taking val-
ues in the metric space (D, d). Let D0 = θ0 and D1 = {θ1, . . . , θm} be two 2δ-separated subsets
of D in that min1≤i≤m d(θ0, θi) := supu∈	d

|T (θ0) − T (θi)| > 2δ. Let Pi ∈P be the correspond-
ing probability measure for (θi,u), i = 0,1, . . . ,m, and let P̄ = ∑m

i=1 ωiPi where ω1, . . . ,ωm

are nonnegative weights such that
∑m

i=1 ωi = 1. We then have:

inf
T̂

sup
θ∈D

Eθ sup
u∈	d

∣∣T̂ (θ) − T (θ)
∣∣ ≥ δ

(
1 − ‖P̄ − P0‖1

2

)
.
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By the above version of LeCam’ lemma, the derivation of minimax lower bounds thus relies
on the construction of the probability measure P0 corresponding to the null hypothesis D0, the
probability measures P1, . . . ,Pm corresponding to the alternative D1 and the weights ω1, . . . ,ωm

such that (i) θ0, θ1, . . . , θm ∈ D and the distance min1≤i≤m d(θ0, θi) is as large as possible while
(ii) the total variation 1

2‖P0 − P̄‖1 is controlled to be away from 1. These technical details are de-
ferred to the Appendix. By setting T (θ) = �p(u) and R(u) where �p(u) and R(u) are defined as
in (1.1), the following theorem establishes minimax lower bounds for the Bayes misclassification
rate.

Theorem 3.3. Assume that κ = O(pγ ) for some constant 0 < γ < 1
2 and κ = o(( n

logp
)

4
4+d ).

Let �̃p(u) and R̃(u) be estimators of �p(u) and R(u) = φ(−�p(u)

2 ) respectively. Assume that

n1 � n2 and let α = n(1−2γ )
2en1

. We have,

inf
�̃p

sup
θ∈G(κ)

Eθ sup
u∈	d

∣∣�̃p(u) − �p(u)
∣∣ ≥ 1

2

√
κ

(
α logp

n

) 2
4+d

(3.4)

and

inf
R̃

sup
θ∈G(κ)

Eθ sup
u∈	d

∣∣R̃(u) − R(u)
∣∣ ≥ 1

2

√
κ

(
α logp

n

) 2
4+d

. (3.5)

Note that the upper bound we have obtained in Theorem 3.1 is of order
√

κ(
logp

n
)

2
4+d in Gκ .

Together with Theorem 3.3, we conclude that the misclassification rate of our proposed DLPD
achieves the optimal rate of convergence over Gκ . Moreover, since the lower bound in Theo-

rem 3.3 is not negligible when
√

κ has the same order as ( n
logp

)
2

4+d while (A.33) is negligible

when κ = O(pγ ), we conclude that the detection boundary (3.1) for supu∈	d

|β(u)|1
�p(u)

is optimal

when ( n
logp

)
4

4+d = O(pγ ) where γ ∈ (0,1/2).

4. Numerical studies

4.1. Choice of tuning parameters

The bandwidths for the mean functions μ̂X(u) are chosen using the classical leave-one-out cross
validation. Once we obtain the bandwidth for estimating μX(u), the bandwidth matrix for the co-
variance functions �̂X(u) can be obtained using a similar leave-on-out procedure. More specif-
ically, for i = 1, . . . , n1, we denote the estimators of �(Ui ) obtained by leaving the ith sample
out as μ̂X,−i (Ui ) and let �̂X,−i (Ui ) be the mean function estimator with the bandwidth chosen
by leave-one-out cross validation. We then choose Hx such that

rcv(Hx) = 1

p2n1

n1∑
i=1

∥∥(Xi − μ̂X,−i (Ui )
)(

Xi − μ̂X,−i (Ui )
)T − �̂X,−i (Ui )

∥∥2
F
, (4.1)
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is minimized. Here ‖ · ‖F denotes the matrix Frobenius norm. The bandwidths for computing
μ̂Y (u) and �̂Y (u) are chosen similarly.

Following Tsybakov [38], we define the weighted Mean Integrated Squared Error (MISE) as:

r(Hx) = p−2E

∫
	d

∥∥�̂X,−i (u) − �(u)
∥∥2

F
f (u) du.

The following theorem indicates that the cross-validation criterion rcv(Hx) in meaningful in the
sense that it provides an estimator for the weighted MISE r(Hx) subject to a constant shift
(independent of Hx ), and a negligible bias.

Theorem 4.1. Under assumptions (A1)–(A6), we have,

Ercv(Hx) = Er(Hx) + Cσ + O

((
logp

n

) 2
2+d

)
,

where Cσ = p−2E‖(Xi − μX(Ui ))(Xi − μX(Ui ))
T − �(Ui )‖2

F is a constant shift.

The proof of the above theorem is provided in the Appendix. Now we obtain the bandwidths
for computing the estimators �̂X(u), μ̂X(u), �̂Y (u) and μ̂Y (u). For a given λn, the convex
optimization problem (2.6) is implemented via linear programming as

min
p∑

i=1

vi subject to − vi ≤ βi ≤ vi and

−λn ≤ γ T
i (u)β − (

μ̂i
X(u) − μ̂i

Y (u)
)≤ λn, i = 1, . . . , p,

where v = (v1, . . . , vp)T ∈ Rp and γi(u)T is the ith row of �̂(u).
This is similar to the Dantzig selector (Candes and Tao [7], Cai and Liu [4]). The tuning param-

eter λn in (2.6) is chosen using K-fold cross validation. More specifically, randomly divide the
index set {1, . . . , n1} into K subgroups N11, . . . ,N1K , and divide {1, . . . , n2} into K subgroups
N21, . . . ,N2K . Denote the full sample set as S = {(Xi,Ui ), (Yj ,Vj ) : 1 ≤ i ≤ n1,1 ≤ j ≤ n2}
and let Sk = {(Xi,Ui ), (Yj ,Vj ) : i ∈ N1k, Y ∈ N2k} for k = 1, . . . ,K . For a given λn and

1 ≤ k ≤ K , let μ̂
(k)
X (u), μ̂

(k)
Y (u) and β̂(k)(u) be estimators of μX(u), μY (u) and β(u) computed

using (2.1), (2.2) and (2.6), samples in S \ Sk and bandwidths Hx , Hy . For each k = 1, . . . ,K ,
let

C1k =
∑

i∈N1k

I{[Xi−(μ̂
(k)
X (Ui )−μ̂

(k)
Y (Ui ))/2]T β̂(k)(Ui )≥0},

and

C2k =
∑

i∈N2k

I{[Yi−(μ̂
(k)
X (Vi )−μ̂

(k)
Y (Vi ))/2]T β̂(k)(Vi )≤0}.
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Here I{·} is the indicator function. Clearly, C1k + C2k gives the total number of correct classifi-
cation for the test data set Sk using the DLPD rule based on S \ Sk . We then find λn such that the
following averaged correct classification number is maximized:

CV (λn) = 1

K

K∑
k=1

(C1k + C2k).

We remark that local smoothing estimates are obtained in our method before applying linear
programming. Hence the computation time consists of the time for local smoothing and the
time for linear programming. The proposed method is computationally manageable for large
dimensional data.

To speed up computation, instead of fitting the classifier for every new observation, we may fit
it on a sufficient fine grid of u and interpolate when a new instance comes. Here we provide an
argument when the dynamic factor u is one-dimensional on an interval denoted as 	 = [a, b]. As-
sume that �(u) has continuous first derivative on 	. Suppose the classifier is fitted on the grid of
points denoted as ui = a+(i−1)(b−a)/k for i = 1, . . . , k+1. For any UZ ∈ [a, b], we can sim-
ply use the classifier fitted in the nearest point, say ut with t ∈ {1, . . . , k + 1}, for classifying the

new observation with u = UZ . In particular, by choosing k = O((
logp

n
)

4+d
2 (supu∈	d

|β(u)|1
�p(u)

)−1),

we can show that the conditional misclassification rate R̂(UZ) of this interpolated classifier sat-

isfies R̂(UZ) − R(UZ) ≤ R̂(UZ) − R(ut ) + |R(ut ) − R(UZ)| = O((
logp

n
)

2
4+d supu∈	d

|β(u)|1
�p(u)

)

under the assumptions of Theorem 3.1. This implies that the order of the error rate remain un-
changed when k is large enough.

4.2. Simulation

For the simulation study, we consider the following four models:
Model 1. We generate U1, . . . ,Un1 , V1, . . . , Vn2 independently from U [0,1], and generate

Xi ∼ N(μX(Ui),�(Ui)), Yj ∼ N(μY (Vj ),�(Vj )) for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. The mean func-
tions μX(u) = (μ1

X(u), . . . ,μ
p
X(u))T and μY (v) = (μ1

Y (v), . . . ,μ
p
Y (v))T are set as μ1

X(u) =
· · · = μ

p
X(u) = 1, μ1

Y (v) = · · · = μ20
Y (v) = 0 and μ21

Y (v) = · · · = μ
p
Y (v) = 1. The covariance

matrix is set as �(u) = (0.5|i−j |)1≤i,j≤p .
Model 2. We generate U1, . . . ,Un1 , V1, . . . , Vn2 independently from U [0,1], and generate

Xi ∼ N(μX(Ui),�(Ui)), Yj ∼ N(μY (Vj ),�(Vj )) for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. The mean func-
tions μX(u) = (μ1

X(u), . . . ,μ
p
X(u))T and μY (v) = (μ1

Y (v), . . . ,μ
p
Y (v))T are set to be μ1

X(u) =
· · · = μ

p
X(u) = exp(u), μ1

Y (v) = · · · = μ20
Y (v) = v and μ21

Y (v) = · · · = μ
p
Y (v) = exp(v). The

covariance matrix is set as �(u) = (u|i−j |)1≤i,j≤p .
Model 3. We take the same model as Model 2 except that the mean functions are set to be

μ1
X(u) = · · · = μ

p
X(u) = u, μ1

Y (v) = · · · = μ20
Y (v) = −v and μ21

Y (v) = · · · = μ
p
Y (v) = v, and the

covariance matrix is set to be �(u) = (u)1≤i,j≤p + (1 − u)Ip .

Model 4. We take d = 2 and let U1 = (U
(1)
1 ,U

(2)
1 ), . . . ,Un1 = (U

(1)
n1 ,U

(2)
n1 ) and V1 =

(V
(1)
1 ,V

(2)
1 ), . . . ,Vn2 = (V

(1)
n2 ,V

(2)
n2 ). We generate U

(k)
i , V

(k)
j independently from U [0,1]

for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, k = 1,2. We then generate Xi ∼ N(μX(Ui ),�(Ui )), Yj ∼
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Figure 2. β(U) in Models 2–4 when p = 100: (a) plot of β(u) for u = 0.2,0.4,0.7 under Model 2; (b)
plot of β(u) for u = 0.2,0.4,0.7 under Model 3; (c) β10(U1,U2) under Model 4; (d) β40(U1,U2) under
Model 4.

N(μY (Vj ),�(Vj )) for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, where μ1
X(U) = · · · = μ20

X (U) = 0.5 +
sin(U(1) + U(2)), μ21

X (U) = · · · = μ
p
X(U) = cos(U(1) + U(2)), μ1

Y (V) = · · · = μ
p
Y (V) =

cos(V (1) + V (2)) and �(U) = (
|U(1)−U(2)|
U(1)+U(2) )1≤i,j≤p + (1 − |U(1)−U(2)|

U(1)+U(2) )Ip .
Model 1 is a static case where the means and the covariances are independent of the covariate.

The other three models are dynamic ones. Under Models 1–4, β(u) is approximately sparse
in the sense that some of the elements of |βi(u)|’s have large values while others are much
smaller. Figure 2(a) and (b) show β(u) for u = 0.2,0.4,0.7 under Models 2 and 3 when p = 100.
Generally, under Model 2, β1(u), . . . , β21(u) are nonzero while β22(u), . . . , βp(u) are very close
to zero. Under Model 3, β1(u), . . . , β21(u) are much larger than β22(u), . . . , βp(u), which are not
necessarily close to zero. Figure 2(c) and (d) plot β10(U1,U2) and β40(U1,U2) as functions of
U1, U2 under Model 4 when p = 100. Clearly, β1(U1,U2), . . . , β21(U1,U2) have various shapes
as functions of U1, U2 and β22(U1,U2), . . . , βp(U1,U2) are very close to zero.

For each model, we consider p = 50,100,200 and n1 = n2 = 100. We generate 100 samples
from population (X,U) and 100 samples from population (Y,V) as testing samples to compute
the misclassification rate Rdlpd of our DLPD rule. Gaussian kernel function is used in our DLPD
rule. For comparison, we also use the LPD rule in Cai and Liu [4], the support vector machine
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Table 1. The misclassification rates of DLPD, LPD, SVM, KNN, and the optimal misclassification rate R
under Models 1–4

p 50 100 200 50 100 200

Model 1 Model 2
R 0.083 (–) 0.083 (–) 0.083 (–) 0.041 (–) 0.041 (–) 0.041 (–)
Rdlpd 0.104 (0.023) 0.110 (0.023) 0.111 (0.022) 0.086 (0.020) 0.102 (0.024) 0.108 (0.024)
Rlpd 0.103 (0.023) 0.111 (0.021) 0.113 (0.025) 0.113 (0.025) 0.116 (0.021) 0.115 (0.027)
Rsvm 0.152 (0.033) 0.157 (0.027) 0.160 (0.028) 0.159 (0.039) 0.161 (0.039) 0.162 (0.033)
Rknn 0.143 (0.029) 0.172 (0.036) 0.225 (0.038) 0.155 (0.038) 0.178 (0.052) 0.210 (0.062)

Model 3 Model 4
R 0.092 (–) 0.083 (–) 0.079 (–) 0.095 (–) 0.084 (–) 0.079 (–)
Rdlpd 0.145 (0.025) 0.141 (0.025) 0.143 (0.027) 0.191 (0.032) 0.189 (0.030) 0.187 (0.033)
Rlpd 0.162 (0.025) 0.153 (0.026) 0.154 (0.027) 0.199 (0.036) 0.194 (0.033) 0.197 (0.032)
Rsvm 0.161 (0.031) 0.148 (0.028) 0.137 (0.024) 0.227 (0.039) 0.226 (0.036) 0.217 (0.042)
Rknn 0.194 (0.026) 0.217 (0.029) 0.228 (0.034) 0.283 (0.054) 0.333 (0.062) 0.386 (0.053)

(SVM) with a linear kernel, and the k-nearest-neighbor (KNN) algorithm to classify these 200
testing samples and compute their misclassification rates, denoted as Rlpd, Rsvm, Rknn, respec-
tively. The k in KNN is chosen using a bootstrapping algorithm in Hall, Park and Samworth
[19]. The optimal Bayes risk is denoted by R. The procedure is repeated for 100 times. The
mean and standard deviation of the misclassification rates over these 100 replications are re-
ported in Table 1. From Table 1, we can see that the Rslpd values are all very close to the optimal
misclassification rate R, and are relatively smaller than the mean misclassification rates of other
methods. Overall, the numerical performance of DLPD is better than other methods. Although
Model 1 favors the LPD method, we observe that our DLPD rule works as well as the LPD rule.
Interestingly, the linear LPD approach is also performing well in all the cases, implying that the
linear method is robust in some sense. From the formulation of the Nadaraya–Watson estimators
introduced in Section 2, we know that loosely speaking, LPD can be viewed as a special case of
DLPD when the bandwidths tend to infinity. Therefore, practically we would expect DLPD to
outperform LPD under dynamic assumptions and work as well as LPD under static assumptions
as long as the bandwidths in the numerical study is taken to be large enough.

4.3. Breast cancer study

Breast cancer is the second leading cause of deaths from cancer among women in the United
States. Despite major progresses in breast cancer treatment, the ability to predict the metastatic
behavior of tumor remains limited. This breast cancer study was first reported in van’t Veer et al.
[40] where 97 lymph node-negative breast cancer patients, 55 years old or younger, participated
in this study. Among them, 46 developed distant metastases within 5 years (X class) and 51
remained metastases free for at least 5 years (Y class). In this study, covariates including clinical
risk factors (tumor size, age, histological grade etc.) as well as expression levels for 24,481
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Figure 3. Histogram of tumor sizes in the X and Y classes of the Breast Cancer data.

gene probes were collected. The histograms of the tumor sizes for both classes are presented in
Figure 3. Shapiro’s normality test is used to test the normality of the tumor size with p-value <

0.001 for class X and 0.221 for class Y , indicating that it might not be suitable to treat tumor
size as one of the covariates to conduct classification using the LPD rule. On the other hand, as
introduced before, Figure 1 indicates that the gene expression levels for patients in the X class
and the Y class vary differently as tumor size changes. We thus set the tumor size as the dynamic
factor. For comparison, we also consider the LPD rule with or without including the tumor size
as one of the covariates, denoted as “LPD with U” and “LPD without U”, respectively. The
intercept is chosen according to Proposition 2 of Mai, Zou and Yuan [30]. For simplicity, we use
the p genes with the largest absolute t -statistic values between the two groups for discriminant
analysis, and in our study we set p = 25,50,100 and 200. We randomly choose 92 observations
as training samples and set the rest 5 observations as test samples. This procedure is repeated
for 100 times. The mean misclassification rate and its standard deviation over 100 replications
are reported in Table 2. From the results, we can see that no significant improvement is observed
when the tumor size is included as one of the covariate in the LPD rule. However, when it is set
to be a dynamic factor as in our DLPD rule, the misclassification rate of is seen to be reduced.

5. Conclusion and discussion

We have proposed a new and simple model for high dimensional linear discriminant analysis
when data is high-dimensional and the local features of the data can play important roles in clas-
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Table 2. Mean classification rate and its standard deviation
for the Breast Cancer study over 100 replications

p LPD without U LPD with U DLPD

25 0.198 (0.018) 0.198 (0.018) 0.190 (0.018)
50 0.184 (0.016) 0.184 (0.016) 0.170 (0.016)

100 0.186 (0.015) 0.184 (0.016) 0.172 (0.015)
200 0.216 (0.019) 0.216 (0.020) 0.204 (0.019)

sification. Our approach combines the simplicity of kernel smoothing and the powerful method of
regularization for studying high dimensional problems. We have established uniform Bernstein-
type inequalities for our high-dimensional nonparametric estimators, and shown that the risk
function of the proposed DLPD rule converges to the optimal Bayes risk in probability under
general sparsity assumptions, uniformly over the range of the covariates. The minimax lower
bounds for the estimation of the Bayes risk are also established, and it is shown that the misclas-
sification rate of our proposed rule is minimax-rate optimal. Both the uniform convergence and
the minimax results appear to be new in the literature of classification.

A limitation of the linear discriminant rule is its Gaussian assumption. An immediate gen-
eralization of our method is to allow a more flexible family of distributions, for example, the
transnormal family in Lin and Jeon [26]. On the other hand, the smoothness assumption (A6)
might not be appropriate in some cases. For example, discontinuity of the brain activity is com-
mon in certain applications (Vairavan et al. [39]), leading to discontinuous μ(u) and �(u) which
are usually modeled as piecewise-continuous functions. This gives rise to a similar problem as
ours where the aim is to identify the number of the discontinuous points and their locations. We
also remark that the assumption of independent observations (Xi,Ui ), i = 1, . . . , n1, (Yj ,Vj ),
j = 1, . . . , n2 can be relaxed to that Xi |Ui , i = 1, . . . , n1, Yj |Vj , j = 1, . . . , n2 are weakly de-
pendent, which might enable us to incorporate temporal correlations. Under suitable weakly de-
pendence assumptions such as strongly mixing (Merlevede, Peligrad and Rios [31]), estimators
of the components in the Bayes rule proposed in Section 2 can be shown consistent. Nevertheless,
for time series data, it would be interesting to incorporate our DLPD rule with time series models
so as to capture the structures of the covariance matrix and the dependency among the sequences
of observations. This is beyond the scope of the current paper and will be studied elsewhere.

In our work, we have assumed that �X(u) = �Y (u) which seems to be reasonable for the
data analysis. It is however worth considering problems where covariances are dynamic but not
equal. Finally, we have only discussed binary classification in this paper. It will be interesting to
extend this work to study multiclass classification (Pan, Wang and Li [35], Mai, Yang and Zou
[28]), and other recent approaches which considered more complex structures (Niu, Hao and
Dong [33]). Last but not least, in the unbalanced case, the cut-off point in the Bayes procedure
becomes log(π2/π1), which is usually estimated by log(n2/n1). Here π1 is the prior probability
of observing a sample from Class X and π2 = 1 − π1. However, as pointed out in Mai, Zou and
Yuan [30], the problem of finding the right cut-off point receives little attention in the literature
and it is also important to find a optimal estimator of the cut-off points to improve classification
accuracy.
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One alternative of our DLPD rule is to develop a dynamic logistic regression model in which
a rule is obtained by minimizing a dynamic version of the penalized entropy loss. It is well know
that under Gaussian assumptions, logistic regression and LDA are equivalent in that the solution
(in a population sense) of logistic regression is exactly the Bayes rule. For the fixed dimension
and static case, earlier numerical studies have shown that logistic regression and LDA would
give the same linear discriminant function (Press and Wilson [36]), while theoretically, Efron
[10] showed that LDA is more efficient than logistic regression under the Gaussian assumptions.
On one hand, it is worth exploring the theoretical properties of logistic regression based rules
under the more general sparsity assumption (3.1). On the other hand, it would be interesting and
challenging to compare the efficiency of logistic regression rules and LDA rules under both high
dimensional and non-stationary assumptions.

As pointed out in Candes and Tao [7], a two-stage procedure generally produces better estima-
tion results in the strict sparse case where many parameters are zero. When the true discriminant
direction β(u) is sparse, we may use a two-stage procedure similar to the one in Jiang and Leng
[21]. That is, in the first stage, the same bandwidth is used to obtain a sparse first stage estimator
β̂(u). In the second stage, we can apply our approach again to estimate the identified nonzero
elements in β̂(u). If the number of nonzeros in the second stage is very low, different bandwidths
can be considered for different elements.

Appendix

Before we proceed to the proofs for the main theorems, we introduce some technical lemmas.

Lemma A.1. Suppose εn → 0, n|Hx |ε2
n → ∞ and there exists a large enough constant Ch such

that ε2
n > Ch(h

4
x + h4

y). Under assumptions (A1)–(A6), there exist constants C1 > 0 and C2 > 0
such that

P

(
sup

u∈	d

∣∣∣∣∣ 1

n1

n1∑
i=1

KHx (Ui − u) − f (u)

∣∣∣∣∣≥ εn

)

≤ C1

(
n

logp

) 4
4+d

exp

{
−C2n

(
logp

n

) d
4+d

ε2
n

}
;

and

P

(
sup

u∈	d

∣∣∣∣∣ 1

n2

n2∑
i=1

KHy (Vi − u) − f (u)

∣∣∣∣∣ ≥ εn

)

≤ C1

(
n

logp

) 4
4+d

exp

{
−C2n

(
logp

n

) d
4+d

ε2
n

}
.

Proof. Without loss of generality, assume that 	d = [a1, b1] × · · · × [ad, bd ] and decompose
it as 	d = ⋃

1≤ij ≤qj ,j=1,...,d ωi1,...,id , where qj = bj −aj

2h4
xj

for j = 1, . . . , d and ωi1,...,id = [a1 +
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2(i1 −1)h4
x1, a1 +2i1h

4
x1]× · · ·× [ad +2(id −1)h4

xd , ad +2idh4
xd ]. Denote Wi(u) = [KHx (Ui −

u) − EKHx (Ui − u)]/n1. We then have: for any u ∈ 	d , using assumption (A1) and Markov’s
inequality we have, for any 0 < t <

n1|Hx |
2K1

,

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − EKHx (Ui − u)

∣∣∣∣∣ > εn

)

≤ 2 exp{−tεn}
n1∏
i=1

E exp
{
tWi(u)

}

≤ 2 exp{−tεn}
n1∏
i=1

{
1 + t2EWi(u)2}

≤ 2 exp

{
−tεn +

n1∑
i=1

t2EWi(u)2

}

≤ 2 exp

{
−tεn + Ct2

n1|Hx |
}
, (A.1)

for some large enough constant C. By setting t = (2C)−1n1|Hx |εn, we have:

P

(∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − EKHx (Ui − u)

∣∣∣∣∣> εn

)
≤ 2 exp

{
−ε2

nn1|Hx |
4C

}
. (A.2)

Write ui1,...,id = (a1 + 2i1h
4
x1, . . . , ad + 2idh4

xd)T for 1 ≤ ij ≤ qj , j = 1, . . . , d . Note that

sup
u∈	d

∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − EKHx (Ui − u)

∣∣∣∣∣
≤ max

1≤ij ≤qj ,j=1,...,d

∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − ui1,...,id ) − EKHx (Ui − ui1,...,id )

∣∣∣∣∣
+ max

1≤ij ≤qj ,j=1,...,d
sup

u∈ωi1,...,id

∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − 1

n1

n1∑
j=1

KHx (Uj − ui1,...,id )

− [
EKHx (Ui − u) − EKHx (Ui − ui1,...,id )

]∣∣∣∣∣. (A.3)

Denote diag(H 4
x ) = (h4

x1, . . . , h
4
xd)T . For each (i1, . . . , id ), using the mean value theorem and

assumption (A1) we have, there exist random scalars 0 ≤ Ri1,...,id ≤ 2 depending on U1, . . . ,Un1
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such that

sup
u∈ωi1,...,id

∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − 1

n1

n1∑
j=1

KHx (Uj − ui1,...,id )

∣∣∣∣∣
≤ 2 tr(H 3

x )

n1

n1∑
j=1

sup
u∈ωi1,...,id

∣∣K′
Hx

(
Uj − ui1,...,id + Ri1,...,id diag

(
H 4

x

))∣∣∞
≤ 2K2 tr

(
H 3

x

)
. (A.4)

On the other hand, it can be easily shown that

max
1≤ij ≤qj ,j=1,...,d

sup
u∈ωi1,...,id

[
EKHx (Ui − u) − EKHx (Ui − ui1,...,id )

] = O
(
tr
(
H 4

x

))
. (A.5)

Combining (A.2), (A.3), (A.4) and (A.5) with the assumption on εn, we have

P

(
sup

u∈	d

∣∣∣∣∣ 1

n1

n1∑
j=1

KHx (Uj − u) − EKHx (Ui − u)

∣∣∣∣∣> εn

)

≤ c1q1 · · ·qd exp
{−c2n1|Hx |ε2

n

}
= C1

(
n1

logp

)4/(4+d)

exp
{−C2n1h

d
xε2

n

}
, (A.6)

for some constants c1 > 0, c2 > 0, C1 > 0, C2 > 0. The first argument of Lemma A.1 is then
proved by combining (A.6) and the following well known result (see, for example, Pagan and
Ullah [34]):

sup
u∈	d

∣∣EKHx (Ui − u) − f (u)
∣∣= O

(
trH 2).

The second argument of Lemma A.1 can be proved similarly. �

Lemma A.2 and Lemma A.3 below give the Bernstein-type inequalities (uniformly in u ∈ 	d )
for the functional estimators of the means and covariance matrix defined as in (2.1), (2.2) and
(2.3). We only provide the proof for Lemma A.3 and the proof for Lemma A.2 is similar.

Lemma A.2. Suppose εn → 0, n|Hx |ε2
n → ∞ and there exists a large enough constant Ch such

that ε2
n > Ch(h

4
x + h4

y). Under assumptions (A1)–(A6), there exist constants C3 > 0 and C4 > 0
such that

P
(

max
1≤i≤p

sup
u∈	d

∣∣μ̂i
X(u) − μi

X(u)
∣∣≥ εn

)

≤ C3p

(
n

logp

) 4
4+d

exp

{
−C4n

(
logp

n

) d
4+d

ε2
n

}
,
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and

P
(

max
1≤i≤p

sup
u∈	d

∣∣μ̂i
Y (u) − μi

Y (u)
∣∣ ≥ εn

)

≤ C3p

(
n

logp

) 4
4+d

exp

{
−C4n

(
logp

n

) d
4+d

ε2
n

}
.

Lemma A.3. Suppose εn → 0, n|Hx |ε2
n → ∞ and there exists a large enough constant Ch such

that ε2
n > Ch(h

4
x + h4

y). Under assumptions (A1)–(A6), there exist constants C5 > 0 and C6 > 0
such that

P
(

max
1≤i,j≤p

sup
u∈	d

∣∣σ̂ij (u) − σij (u)
∣∣ ≥ εn

)

≤ C5p
2
(

n

logp

) 4
4+d

exp

{
−C6n

(
logp

n

) d
4+d

ε2
n

}
.

Proof. We first show that there exist positive constants c1, c2 such that

P

(
max

1≤i,j≤p
sup

u∈	d

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uk − u)XkiXkj − E(X1iX1j |U1 = u)f (u)

∣∣∣∣∣ ≥ εn

)

≤ c1p
2
(

n

logp

) 4
4+d

exp

{
−c2n

(
logp

n

) d
4+d

ε2
n

}
. (A.7)

Denote Wkij (u) = [KHx (Uk −u)XkiXkj −EKHx (Uk −u)XkiXkj ]/n1 and M = max1≤l≤p EX4
1l .

Notice that

EWkij (u)2 ≤ 4K2d
1

n2
1|H 2

x |EX2
kiX

2
kj ≤ 2K2d

1

n2
1|H 2

x |E
(
X4

ki + X4
kj

)≤ 4K2d
1 M

n2
1|H 2

x | .

For any u ∈ 	d , using Markov’s inequality we have, for any 0 < t <
n1|Hx |

2Kd
1 M1/2 ,

P

(∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uk − u)XkiXkj − EKHx (Uk − u)XkiXkj

∣∣∣∣∣> εn

)

≤ 2 exp{−tεn}
n1∏

k=1

E exp
{
tWkij (u)

}
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≤ 2 exp{−tεn}
n1∏

k=1

{
1 + t2EWkij (u)2}

≤ 2 exp

{
−tεn +

n1∑
k=1

t2EWkij (u)2

}

≤ 2 exp

{
−tεn + Ct2

n1|Hx |
}
, (A.8)

for some large enough constant C. Here in the last step we have used the fact that Var(Wkij (u)) =
O(n−2

1 |Hx |−1). By setting t = (2C)−1n1|Hx |εn, we have:

P

(∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uk − u)XkiXkj − EKHx (Uk − u)XkiXkj

∣∣∣∣∣> εn

)

≤ 2 exp

{
−ε2

nn1|Hx |
4C

}
. (A.9)

Again, without loss of generality, assume that 	d = [a1, b1]×· · ·×[ad, bd ] and let q1, . . . , qd ,
ωi1,...,id and ui1,...,id for 1 ≤ ij ≤ qj , 1 ≤ j ≤ d be defined as in the proof of Lemma A.1.

Note that

sup
u∈	d

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uj − u)XkiXkj − EKHx (Uj − u)XkiXkj

∣∣∣∣∣
≤ max

1≤ij ≤qj ,j=1,...,d

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uj − ui1,...,id )XkiXkj

− EKHx (Uj − ui1,...,id )XkiXkj

∣∣∣∣∣
+ max

1≤ij ≤qj ,j=1,...,d
sup

u∈ωi1,...,id

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uj − u)XkiXkj

− 1

n1

n1∑
k=1

KHx (Uj − ui1,...,id )XkiXkj

− [
EKHx (Ui − u)XkiXkj − EKHx (Ui − ui1,...,id )XkiXkj

]∣∣∣∣∣. (A.10)
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Using the mean value theorem we have, there exists a random scalars 0 ≤ Ri1,...,id ≤ 2 depending
on U1, . . . ,Un1 such that

sup
u∈ωi1,...,id

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uj − u)XkiXkj − 1

n1

n1∑
k=1

KHx (Uj − ui1,...,id )XkiXkj

∣∣∣∣∣
≤ 2 tr(H 3

x )

n1
sup

u∈ωi1,...,id

∣∣∣∣∣
n1∑

k=1

K′
Hx

(
Uj − ui1,...,id + Ri1,...,id diag

(
H 4

x

))
XkiXkj

∣∣∣∣∣
≤ K2 tr(H 3

x )

n1

n1∑
k=1

(
X2

ki + X2
kj

)
.

Note that assumption (A5) implies that there exists a constant M1 < ∞ such that for any
1 ≤ i ≤ p,

sup
u∈	d

∣∣μi
X(u)

∣∣ ≤ M1, sup
u∈	d

∣∣μi
Y (u)

∣∣ ≤ M1, sup
u∈	d

∣∣σii(u)
∣∣≤ M1.

By verifying the conditions of Bernstein’s inequality (see, for example, Lin and Bai [27]), we
have that

P

(
1

n1

n1∑
k=1

X2
ki > M2

1 + M1 + 1

)
= b1 exp{−b2n1},

for some positive constants b1, b2. Therefore, with probability greater than 1 − b1 exp{−b2n1},

sup
u∈ωi1,...,id

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uj − u)XkiXkj − 1

n1

n1∑
k=1

KHx (Uj − ui1,...,id )XkiXkj

∣∣∣∣∣
≤ K2 tr(H 3

x )(M2
1 + M1 + 1)

n1
. (A.11)

Clearly, b1 exp{−b2n1} is negligible comparing to the right-hand side of (A.7). On the other
hand, by conditional on Uk first, we obtain:

max
1≤ij ≤qj ,j=1,...,d

sup
u∈ωi1,...,id

[
EKHx (Uk − u)XkiXkj

− EKHx (Ui − ui1,...,id )XkiXkj

] = O
(
tr
(
H 4

x

))
. (A.12)

Combining (A.9), (A.10), (A.11) and (A.12) we have:

P

(
sup

u∈	d

∣∣∣∣∣ 1

n1

n1∑
k=1

KHx (Uk − u)XkiXkj − EKHx (Uk − u)XkiXkj

∣∣∣∣∣> εn/2

)

≤ c3

(
n

logp

) 4
4+d

exp

{
−c4n

(
logp

n

) d
4+d

ε2
n

}
,
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for some constants c3 > 0, c4 > 0. Here in the last step we have used Assumption (A4). This
together with the following well-known result:

sup
u∈	d

∣∣EKHx (Uk − u)XkiXkj − E(X1iX1j |U1 = u)f (u)
∣∣= O

(
tr
(
H 2))

proves (A.7). Let σ̂ X
ij (u) be the (i, j)th element of �̂X(u) defined as in (2.4). Using Lemma A.1

and (A.7), it can be shown that there exist positive constants c5, c6 such that

P
(

max
1≤i,j≤p

sup
u∈	d

∣∣σ̂ X
ij (u) − σX

ij (u)
∣∣ ≥ εn

)

≤ c1p
2
(

n

logp

) 4
4+d

exp

{
−c2n

(
logp

n

) d
4+d

ε2
n

}
. (A.13)

Similarly let σ̂ Y
ij (u) be the (i, j)th element of �̂Y (u) defined as in (2.5). we have that there exist

positive constants c7, c8 such that

P
(

max
1≤i,j≤p

sup
u∈	d

∣∣σ̂ Y
ij (u) − σY

ij (u)
∣∣ ≥ εn

)

≤ c7p
2
(

n

logp

) 4
4+d

exp

{
−c8n

(
logp

n

) d
4+d

ε2
n

}
. (A.14)

Lemma A.3 is then proved by (A.13), (A.14) and the definition of σ̂ij (u). �

Note that when n < p and logp
n

→ 0, Lemmas A.2 and A.3 are true for εn = M(
logp

n
)

2
4+d ,

where M > 0 is a large enough constant. The next lemma shows that the true β(u) =
�−1[μX(u) − μY (u)] belongs to the feasible set of (2.6) with overwhelming probability uni-
formly in u ∈ 	d .

Lemma A.4. Under assumptions (A1)–(A6), for any constant M > 0, by choosing

λn = C

(
logp

n

) 2
4+d

sup
u∈	d

�(u),

for some constant C large enough, we have with probability greater than 1 − O(p−M),

sup
u∈	d

∣∣�̂(u)β(u) − [
μ̂X(u) − μ̂Y (u)

]∣∣∞ ≤ λn.

Proof. By Lemma A.2 we have, for any constant M > 0, there exists a positive constant c1 > 0
large enough, such that

P

(
sup

u∈	d

∣∣μ̂X(u) − μ̂Y (u) − μX(u) + μY (u)
∣∣∞ ≥ c1

(
logp

n

) 2
4+d

)
≤ p−M. (A.15)
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On the other hand, using similar arguments as in the proofs of Lemma A.1, we have there exists
c2 > 0 such that,

P

(
sup

u∈	d

∣∣∣∣ [
∑n1

j=1 KHx (Uj − u)XT
j β(u)]∑n1

j=1 KHx (Uj − u)
− μX(u)T β(u)

∣∣∣∣
≥ c2 sup

u∈	d

∣∣β(u)
∣∣
2

(
logp

n

) 2
4+d

)
≤ p−M. (A.16)

Similar to (A.16), from the proofs of Lemma A.3, it can be shown that, there exists constant
c3 > 0 such that, for i = 1, . . . , p,

P

(∣∣∣∣ sup
u∈	d

∑n1
j=1 KHx (Uj − u)XjiX

T
j β(u)∑n1

j=1 KHx (Uj − u)
− EXjiX

T
j β(u)

∣∣∣Uj = u

∣∣∣∣
≥ c3 sup

u∈	d

∣∣β(u)
∣∣
2

(
logp

n

) 2
4+d

)
≤ p−M−1. (A.17)

Let �̂X(u)i,· and �(u)i,· be the ith row of �̂X(u) and �(u), respectively. By combining (A.16)
and (A.17) we have there exist constants c4 > 0, c5 > 0 such that

P

(
sup

u∈	d

∣∣(�̂X(u) − �(u)
)
β(u)

∣∣∞ ≥ c2 sup
u∈	d

∣∣β(u)
∣∣
2

(
logp

n

) 2
4+d

)

≤
p∑

i=1

P

(
sup

u∈	d

∣∣(�̂(u)i,· − �(u)i,·
)
β(u)

∣∣ ≥ c2 sup
u∈	d

∣∣β(u)
∣∣
2

(
logp

n

) 2
4+d

)

≤ c5p
−M. (A.18)

Similarly, we have

P

(
sup

u∈	d

∣∣(�̂Y (u) − �(u)
)
β(u)

∣∣∞ ≥ c2 sup
u∈	d

∣∣β(u)
∣∣
2

(
logp

n

) 2
4+d

)
≤ c5p

−M.

The lemma is proved by combining the above two inequalities with (A.15), (A.18), the following
inequality:

sup
u∈	d

∣∣�̂(u)β(u) − [
μ̂X(u) − μ̂Y (u)

]∣∣∞
≤ sup

u∈	d

∣∣(�̂(u) − �(u)
)
β(u)

∣∣∞ + sup
u∈	d

∣∣μ̂X(u) − μ̂Y (u) − μX(u) + μY (u)
∣∣∞,

and the fact that λ|β(u)|22 ≥ �2
p(u) > λ−1|β(u)|22, where λ is defined as in Assumption (A5). �
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Proof of Theorem 3.1. We first of all derive upper bounds for

(i) supu∈	d
|(μ̂X(u)−μX(u))T β̂(u)|/�p(u) and supu∈	d

|(μ̂Y (u)−μY (u))T β̂(u)|/�p(u),

(ii) supu∈	d
|(μ̂X(u) − μ̂Y (u))T β̂(u) − (μX(u) − μY (u))T β(u)|/�p(u),

(iii) supu∈	d
|β̂(u)T �(u)β̂(u) − (μX(u) − μY (u))T β(u)|/�2

p(u).

(i) By Lemma A.2, there exists a constant C1 > 0 large enough such that for any M > 0, with
probability larger than 1 − O(p−M),

sup
u∈	d

∣∣μ̂X(u) − μX(u)
∣∣∞ ≤ C1

(
logp

n

) 2
4+d

, (A.19)

and

sup
u∈	d

∣∣μ̂Y (u) − μY (u)
∣∣∞ ≤ C1

(
logp

n

) 2
4+d

. (A.20)

Together with the definition of β̂(u) and Lemma A.4 we have, with probability larger than 1 −
O(p−M),

sup
u∈	d

∣∣(μ̂X(u) − μX(u)
)T

β̂(u)
∣∣/�p(u) ≤ C1

(
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

, (A.21)

sup
u∈	d

∣∣(μ̂Y (u) − μY (u)
)T

β̂(u)
∣∣/�p(u) ≤ C1

(
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

. (A.22)

(ii) Notice that

∣∣(μ̂X(u) − μ̂Y (u)
)T

β̂(u) − (
μX(u) − μY (u)

)T
β(u)

∣∣
≤ ∣∣(μ̂X(u) − μ̂Y (u)

)T
β̂(u) − β(u)T �̂(u)β̂(u)

∣∣
+ ∣∣β(u)T �̂(u)β̂(u) − β(u)T

(
μ̂X(u) − μ̂Y (u)

)∣∣
+ ∣∣(μ̂X(u) − μ̂Y (u) − μX(u) + μY (u)

)T
β(u)

∣∣. (A.23)

By the definition of β̂(u) and Lemma A.4 we have with probability larger than 1 − O(p−M),

sup
u∈	d

∣∣(μ̂X(u) − μ̂Y (u)
)T

β̂(u) − β(u)T �̂(u)β̂(u)
∣∣/�p(u)

≤ sup
u∈	d

∣∣(μ̂X(u) − μ̂Y (u)
)− �̂(u)β(u)

∣∣∞∣∣β̂(u)
∣∣
1/�p(u)

≤ λn sup
u∈	d

|β(u)|1
�p(u)

. (A.24)
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Similarly, by the definition of β̂(u), we have

sup
u∈	d

∣∣β(u)T �̂(u)β̂(u) − β(u)T
(
μ̂X(u) − μ̂Y (u)

)∣∣/�p(u)

≤ λn sup
u∈	d

|β(u)|1
�p(u)

. (A.25)

From (A.23), (A.24), (A.25) and the proofs of (A.19), (A.20), we have with probability larger
than 1 − O(p−M),

∣∣(μ̂X(u) − μ̂Y (u)
)T

β̂(u) − (
μX(u) − μY (u)

)T
β(u)

∣∣/�p(u)

≤ 2λn sup
u∈	d

|β(u)|1
�p(u)

+ 2C1

(
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

. (A.26)

(iii) Notice that

∣∣β̂(u)T �(u)β̂(u) − (
μX(u) − μY (u)

)T
β(u)

∣∣
≤ ∣∣β̂T

(
μ̂X(u) − μ̂Y (u)

)− β(u)T
(
μX(u) − μY (u)

)∣∣
+ ∣∣β̂(u)T �(u)β̂(u) − β̂T

(
μ̂X(u) − μ̂Y (u)

)∣∣. (A.27)

From the definition of β̂(u) and the bounds for (ii), we have, there exists a constant C2 large
enough such that with probability larger than 1 − O(p−M),

sup
u∈	d

∣∣β̂(u)T �(u)β̂(u) − (
μX(u) − μY (u)

)T
β(u)

∣∣/�2
p(u)

≤ 2λn sup
u∈	d

|β(u)|1
�2

p(u)
+ 2C1

(
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�2

p(u)
+ λn sup

u∈	d

|β(u)|1
�2

p(u)
. (A.28)

Combining (A.21), (A.22), (A.26), (A.28) and Assumption (A5) we have, there exists large
enough constants C3,C4 > 0, such that with probability larger than 1 − O(p−M), uniformly
for any u ∈ 	d ,

(μ̂X(u) − μ̂Y (u))T β̂(u)

2
√

β̂(u)T �(u)β̂(u)

+ (μ̂Y (u) − μY (u))T β̂(u)√
β̂(u)T �(u)β̂(u)

= (μ̂X(u) − μ̂Y (u))T β̂(u)/�p(u) + 2(μ̂Y (u) − μY (u))T β̂(u)/�p(u)

2
√

β̂(u)T �(u)β̂(u)/�2
p(u)
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≤
�p(u) + 2λn supu∈	d

|β(u)|1
�p(u)

+ C4(
logp

n
)

2
4+d supu∈	d

|β(u)|1
�p(u)

2
√

1 − 3λn supu∈	d

|β(u)|1
�2

p(u)
− C3(

logp
n

)
2

4+d supu∈	d

|β(u)|1
�2

p(u)

= �p(u)

2

[
1 + O

((
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

)]
. (A.29)

Theorem 3.1 can be proved by (3.1) and Lemma 3.1. �

Lemma A.5. Let � and φ be the cumulative distribution function and density function of a
standard Gaussian random variable. For any x ≥ 1, we have

φ(x)

2x
≤ �(−x) ≤ φ(x)

x
.

Proof. Using integration by parts, we have for x ≥ 1:

�(−x) = −φ(x)

x
−
∫ +∞

x

1

u2
φ(u)du ≤ −φ(x)

x
− �(−x).

Lemma A.5 is then proved immediately from the above inequality. �

Remark. Lemma A.5 implies that �(−x) = O(
φ(x)

x
) for any x > B/2.

Proof of Theorem 3.2. By Lemma A.5, similar to (A.29), we have, uniformly in u ∈ 	d ,

�

(
− (μ̂X(u) − μ̂Y (u))T β̂(u)

2
√

β̂(u)T �(u)β̂(u)

− (μ̂Y (u) − μY (u))T β̂(u)√
β̂(u)T �(u)β̂(u)

)

= �

(
−�p(u)

2

)
+ O

((
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

)

× φ

(
−�p(u)

2
+ O

((
logp

n

) 2
4+d

sup
u∈	d

|β(u)|1
�p(u)

))

= �

(
−�p(u)

2

)[
1 + O

((
logp

n

) 2
4+d

sup
u∈	d

�p(u) sup
u∈	d

|β(u)|1
�p(u)

× exp

{(
logp

n

) 2
4+d

sup
u∈	d

�p(u) sup
u∈	d

|β(u)|1
�p(u)

})]

= �

(
−�p(u)

2

)[
1 + O

((
logp

n

) 2
4+d

sup
u∈	d

�p(u) sup
u∈	d

|β(u)|1
�p(u)

)]
. (A.30)

Theorem 3.2 can then be proved by (3.3) and Lemma 3.1. �
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Proof of Theorem 3.3. For simplicity, we consider the case where the dynamic factor u is
of dimension d = 1 and use the notation u instead in this proof. The following proofs can be
generalized for any given integer d > 0 simply by some regular arguments. We prove (3.4) first
where the distance is defined as d(θ1, θ2) := supu∈	d

|T (θ1) − T (θ2)| with T (θ) = �p(u).
STEP 1. Construction of the hypotheses.
We assume that u is generated from U [0,1]. Consider �(u) = Ip where Ip is the p ×

p identity matrix. We then have β(u) = μX(u) − μY (u). We set the null hypothesis as
(μX(u),μY (u),�(u)) = θ0 = (0p,0p, Ip), where 0p is the p-dimensional vector of zeros.
Clearly we would have θ0 ∈ G(κ). For the alternatives, let 
·� be the largest integer function
and define:

mh = ⌊
h−1⌋, h =

(
logp

n

)1/5

, uk = k − 0.5

mh

,

εk(u) = h2K

(
u − uk

h

)
, k = 1, . . . ,mh,u ∈ [0,1],

where K : R → [0,+∞) is a kernel function such that K ∈ H(2,1/2) ∩ C∞(R) and K(u) >

0 ⇐⇒ u ∈ (−1/2,1/2), and α is a constant such that 0 < α < (2e)−1. We set μY = 0p and
so β(u) = μX(u). Without loss of generality, assume that κ ∈ Z, the set of all integers. The
parameter space D1 is then set to be

D1 = {(
μX(u),μY (u),�(u)

) : μY = 0p,� = Ip,μX = εia = εi(a1, . . . , ap)T ,

|a|0 = κ, aj ∈ {0,1}, i = 1, . . . ,mh

}
.

The cardinality of D1 is then m = mh

(
p
κ

)
. Clearly we have, for any θi ∈D1, i = 1, . . . ,m,

(i) θi ∈ G(κ).
(ii) d(θ0, θi) = supu∈[0,1] |θi |2 = h2√κ = √

κ(
α logp

n
)2/5.

STEP 2. Bounding the total variance.
Given u, we denote the density function of the multivariate standard Gaussian distribution

N(0p, Ip) as f0 and for any θi ∈ D1. Recall that θ = (μX(u),μY (u),�(u)). For a given θ = θi ,
we shall denote the corresponding μY as νi := μY |θ=θi

and let fi be the density of the Gaussian
distribution N(νi, Ip). We set the weight to be ω1 = · · · = ωm = m−1 and for any probability
measures Q, R, we use χ2(Q,R) to denote the χ2 divergence of Q and R. By (2.27) in Tsybakov
[38], we have,

‖P̄ − P0‖2
1

≤ χ2(P̄ ,P0)

=
∫

[0,1]n

∫
Rp×n

(
∑m

j=1 m−1 ∏n2
i=1 fj (xi)

∏n
l=n2+1 f0(xl))

2∏n
i=1 f0(xi)

dx1 · · · dxn du1 · · · dun − 1

=
∫

[0,1]n2

∫
Rp×n2

(
∑m

j=1 m−1 ∏n2
i=1 fj (xi))

2∏n2
i=1 f0(xi)

dx1 · · · dxn2 du1 · · · dun2 − 1. (A.31)
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Note that for any 1 ≤ j �= k ≤ mh and t = 1, . . . , κ ,

∫
[0,1]n2

∫
Rt×n2

[∏n2
i=1 e− (xi−εj (ui ))

2

2 e− (xi−εk(ui ))
2

2

(2π)
n2
2
∏n2

i=1 e− x2
i
2

]t

dx1 · · · dxn2 du1 · · · dun2 = 1.

Using some combination arguments, we thus have

∫
[0,1]n2

∫
Rp×n2

(
∑m

j=1 m−1 ∏n2
i=1 fj (xi))

2∏n2
i=1 f0(xi)

dx1 · · · dxn2 du1 · · · dun2

=
(

1 − mh

(
p
κ

)2

m2

)
· 1

+ 1

m2

∫
[0,1]n2

mh∑
i=1

κ∑
j=0

(
p

κ

)(
κ

j

)(
p − κ

κ − j

)
ej

∑n2
l=1 ε2

i (ul) du1 · · · dun2

=
(

1 − 1

mh

)
+ 1

m2
h

∫
[0,1]n2

E

mh∑
i=1

eJ
∑n2

l=1 ε2
i (ul) du1 · · · dun2, (A.32)

where J is a random variable with the Hypergeometric distribution with parameters (p, κ, κ). On
the other hand, by Lemma 3 in Cai and Guo [5] and the fact that ex ≤ 1 + ex for any 0 ≤ x ≤ 1,
we have, when κh4 ≤ 1,

1

m2
h

∫
[0,1]n2

E

mh∑
i=1

eJ
∑n2

l=1 ε2
i (ul ) du1 · · · dun2

= 1

m2
h

E

mh∑
i=1

(
1 − 1

mh

+ 1

mh

eJh4
)n2

≤ 1

mh

E

(
1 + e

mh

Jh4
)n2

≤ 1

mh

Ee
n2eJh4

mh

≤ 1

mh

e
κ2

p−κ

(
1 − κ

p
+ κ

p
e

n2eh4

mh

)κ

,

= O
(
m−1

h eκ2p2eα−1)
. (A.33)

Here in the last step we have used the fact that n2eh
4

mh
≤ n2h

5

1−h
≤ 2eα logp, κ = O(pγ ) with

γ < 1
2 and 2eα < 1. By setting α = 1−2γ

2e
, from (A.31), (A.32) and (A.33) we immediately
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have,

‖P̄ − P0‖2
1 = O

(
m−1

h

)
.

Consequently, by Lemma 3.2, we conclude that (3.4) holds. �

Proof of (3.5). Set the distance to be d(θ1, θ2) := supu∈	d
|T (θ1) − T (θ2)| with T (θ) = R(u).

By the assumption that κ = o(( n
logp

)
4

4+d ) we have that (ii) in the proof of step 1 becomes

d(θ0, θi) = 1
2 − �(−h2√κ

2 ) ≤ √
κ(

α logp
n

)2/5. The rest of the proofs are the same as those for
(3.4). �

Proof of Theorem 4.1. We first of all show that

E
∥∥μ̂X,−i (Ui ) − μX(Ui )

∥∥2
∞ = O

((
logp

n

) 2
2+d

)
, (A.34)

and

E
∥∥�̂X,−i (Ui ) − �(Ui )

∥∥2
∞ = O

((
logp

n

) 2
2+d

)
. (A.35)

By Lemma A.2, we have

E
∥∥μ̂X,−i (Ui ) − μX(Ui )

∥∥2
∞

≤ ε2
n +

∫ ∞

εn

C3p

(
n

logp

) 4
4+d

exp

{
−C4n

(
logp

n

) d
4+d

x2
}

dx

≤ ε2
n + C3p

(
n

logp

) 4
4+d

[
−2C4n

(
logp

n

) d
4+d

xx

]−1

exp

{
−C4n

(
logp

n

) d
4+d

x2
}∣∣∣∣

∞

εn

.

Equation (A.34) is then proved by choosing εn = C(
logp

n
)

2
2+d for a large enough constant C.

(A.35) can be similarly proved using Lemma A.3. Now we proceed to prove the theorem. Note
that

E
∥∥(Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T − �̂X,−i (Ui )
∥∥2

F

= E
∥∥�(Ui ) − �̂X,−i (Ui )

∥∥2
F

+ E
∥∥(Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T − �(Ui )
∥∥2

F

+ 2E tr
[
�(Ui ) − �̂X,−i (Ui )

]
× [(

Xi − μ̂X,−i (Ui )
)(

Xi − μ̂X,−i (Ui )
)T − �(Ui )

]
. (A.36)

On the other hand, we have

p−2E
∥∥�(Ui ) − �̂X,−i (Ui )

∥∥2
F

= r(Hx), (A.37)
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p−2E
∥∥(Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T − �(Ui )
∥∥2

F

= p−2E
∥∥(Xi − μX(Ui )

)(
Xi − μX(Ui )

)T − �(Ui )
∥∥2

F

+ p−2E
∥∥(Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T
− (

Xi − μX(Ui )
)(

Xi − μX(Ui )
)T ∥∥2

F

+ 2p−2E tr
[(

Xi − μX(Ui )
)(

Xi − μX(Ui )
)T − �(Ui )

]
× [(

Xi − μ̂X,−i (Ui )
)(

Xi − μ̂X,−i (Ui )
)T − (

Xi − μX(Ui )
)(

Xi − μX(Ui )
)T ]

= p−2E
∥∥(Xi − μX(Ui )

)(
Xi − μX(Ui )

)T − �(Ui )
∥∥2

F

+ O
(
E
∥∥μ̂X,−i (Ui ) − μX(Ui )

∥∥2
∞
)

= p−2E
∥∥(Xi − μX(Ui )

)(
Xi − μX(Ui )

)T − �(Ui )
∥∥2

F
+ O

((
logp

n

) 2
2+d

)
, (A.38)

and, by the fact that �(Ui ) − �̂X,−i (Ui ) and (Xi − μX(Ui ))(Xi − μX(Ui ))
T − �(Ui ) are con-

ditionally independent given Ui , we have

p−2E tr
[
�(Ui ) − �̂X,−i (Ui )

][(
Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T − �(Ui )
]

= p−2E tr
[
�(Ui ) − �̂X,−i (Ui )

][(
Xi − μ̂X,−i (Ui )

)(
Xi − μ̂X,−i (Ui )

)T
− (

Xi − μX(Ui )
)(

Xi − μX(Ui )
)T ]

= O
(
E
∥∥�̂X,−i (Ui ) − �(Ui )

∥∥2
∞
)+ O

(
E
∥∥μ̂X,−i (Ui ) − μX(Ui )

∥∥2
∞
)

= O

((
logp

n

) 2
2+d

)
. (A.39)

The theorem is then proved by combining (A.36), (A.37), (A.38) and (A.39). �
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