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Abstract

Reader curiosity, the drive to seek information,
is crucial for textual engagement, yet remains
relatively underexplored in NLP. Building on
Loewenstein’s Information Gap Theory, we in-
troduce a framework that models reader cu-
riosity by quantifying semantic information
gaps within a text’s semantic structure. Our
approach leverages BERTopic-inspired topic
modeling and persistent homology to analyze
the evolving topology (connected components,
cycles, voids) of a dynamic semantic network
derived from text segments, treating these fea-
tures as proxies for information gaps. To empir-
ically evaluate this pipeline, we collect reader
curiosity ratings from participants (n = 49)
as they read S. Collins’s “The Hunger Games”
novel. We then use the topological features
from our pipeline as independent variables to
predict these ratings, and experimentally show
that they significantly improve curiosity pre-
diction compared to a baseline model (73%
vs. 30% explained deviance), validating our
approach. This pipeline offers a new computa-
tional method for analyzing text structure and
its relation to reader engagement.

1 Introduction

Reader curiosity refers to the cognitive and affec-
tive drive that motivates individuals to seek addi-
tional information while reading. In the context of
textual engagement, this can manifest as a reader’s
urge to continue reading, explore related topics, or
seek clarifications (Schiefele, 1999). While curios-
ity is often studied in educational psychology, its
computational modeling in natural language pro-
cessing (NLP) remains relatively underexplored.
Existing approaches to modeling reader engage-
ment often rely on linguistic features, e.g., senti-
ment analysis, readability scores (Sotirakou et al.,
2021), or word-level analyses (Berger et al., 2023;
Maslej et al., 2021; Dvir et al., 2023). These meth-
ods, while valuable, primarily focus on surface-

level characteristics and often fail to capture the
broader semantic structure, narrative flow, and, cru-
cially, the information gaps that stimulate curiosity.
Related work leveraging knowledge graphs, while
providing a richer semantic representation, does
not explicitly model the reader’s evolving under-
standing and points of information need (Abu-Salih
and Alotaibi, 2024).

Building on Loewenstein’s Information Gap The-
ory (Loewenstein, 1994)—where curiosity stems
from recognizing a difference between known and
desired information—we introduce a framework
that models reader curiosity by quantifying seman-
tic information gaps within a text’s semantic struc-
ture. Unlike prior work focused on micro-level
textual features, our approach adopts a macro-level,
cognitive perspective, operationalizing the concept
of plot holes, or information gaps, to predict reader
engagement. We hypothesize that these gaps, repre-
senting areas of missing connections or coherence
in the textual flow, act as intrinsic motivators. Fur-
thermore, we operationalize surprise, a key driver
of curiosity, by measuring the dynamic shifts and
transformations in these information gaps through-
out the text.

To realize this framework, we introduce a
pipeline leveraging Topological Data Analysis
(TDA). This pipeline integrates recent topic mod-
eling (building upon BERTopic (Grootendorst,
2022)) to extract key topics, constructs a dynamic
topic network representing the flow of these top-
ics (Zhu, 2013), and applies TDA, specifically
Persistent Homology (Munch, 2017), to identify
and quantify topological cavities within this net-
work (Patankar et al., 2023; Zhou et al., 2024).
These cavities—disconnected components, cycles,
and voids—represent information gaps. We further
employ Wasserstein and Bottleneck distances to
measure the evolution of these gaps, capturing the
element of surprise. To demonstrate feasibility, we
conducted a pilot study as a proof-of-concept using



S. Collins’s “The Hunger Games” (Collins, 2011)
novel. Participants naive to both the book and its
movie adaptation provided chapter-wise curiosity
ratings, enabling an initial analysis of curiosity dy-
namics in response to information gaps.

Our main contributions are threefold:

1. Pipeline: We designed a pipeline for the mod-
eling of textual information gaps, integrating
topic modeling and TDA.

2. Engagement Data: We conducted a survey
in order to obtain reader engagement data for
“The Hunger Game” novel.

3. Experimental validation: We leveraged the
survey data to evaluate our approach empiri-
cally.

4. Interdisciplinary approach: our method
connects topic modeling and TDA with theo-
ries from motivational psychology, facilitating
further interdisciplinary research.

We share our source code and data at
https://anonymous.4open.science/r/pers_
homol_data-4D10/.

The rest of this article is organized as follows. In
Section 2, we review the literature directly related
to our work. In Section 3, we present our narra-
tive modeling pipeline. Section 4 describes our
experimental setup, while our results are presented
and discussed in Section 5. Finally, we review the
salient points of our work and its perspectives in
Section 6.

2 Related Works

This work builds upon and addresses limita-
tions in computational reader engagement models,
graph-based and topological methods in NLP, and
network-based approaches to curiosity and explo-
ration.

Computational Models of Reader Engagement
Predicting user engagement is an important NLP
task, often approached through text feature analysis.
There are many features that are related to reader
engagement. Early methods relied on surface char-
acteristics like sentiment and readability (Sotirakou
et al., 2021). Other approaches often relied on clas-
sical bag-of-words representations for word-level
analysis (Maslej et al., 2021; Dvir et al., 2023).
However, these methods, while useful, largely ne-
glect semantic structure and cognitive processes.

Other work incorporates cognitive aspects, high-
lighting uncertainty (Berger et al., 2023) and se-
mantic cohesion (Ward and Litman, 2008). Yet,
these typically operate at the word or sentence level,
failing to model the reader’s evolving information
state —critical to theories like Loewenstein’s In-
formation Gap Theory (Loewenstein, 1994). Our
pipeline directly addresses this, modeling the dy-
namic evolution of semantic information gaps.

Graph and Topological Methods in NLP The
drive for higher-level text understanding has in-
creased the use of graph representations in NLP.
Knowledge graphs enhance tasks like question an-
swering (Abu-Salih and Alotaibi, 2024), and graph-
based retrieval augmented generation (RAG) meth-
ods, such as GraphRAG (Han et al., 2025) and
LightRAG (Guo et al., 2024), leverage relational
structure. Topic modeling also benefits from graph
approaches. Traditional methods like Latent Dirich-
let Allocation (LDA) are complemented by ap-
proaches using bipartite networks and community
detection (Gerlach et al., 2018), and embedding-
based methods like BERTopic (Grootendorst, 2022)
or a combination of both embeddings and net-
works (Cao and Fairbanks, 2019), offering richer
semantic representations. However, these gener-
ally do not analyze the fopological structure of the
resulting networks.

Topological Data Analysis (TDA), particularly
Persistent Homology, provides tools to analyze data
shape, including networks. A recent review shows
TDA’s growing interest in NLP (Uchendu and Le,
2024). Christianson et al. (2020) used TDA to
identify knowledge gaps in math textbooks, and
Tymochko et al. (2021) to capture logical holes
in abstracts. Critically, existing NLP applications
of TDA primarily focus on static text representa-
tions. Our work significantly extends this, applying
persistent homology to a dynamic topic network
(inspired by the work of Zhu (2013)), tracking the
evolution of topological features (specifically, cavi-
ties) over time. This dynamic aspect is crucial for
modeling changing reader information gaps.

Engagement and Graph and Topological Meth-
ods Beyond NLP, network science has modeled
text structure to understand its implications to learn-
ing and cognition, including curiosity-driven explo-
ration (Zhou et al., 2024; Patankar et al., 2023).
Patankar et al. (2023) tracked structural changes
in time-varying graphs using persistent homology,
conceptually related to our approach. However,
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their focus was on general graph dynamics, not
reader engagement. We bridge this gap, connecting
network models of exploration with cognitive theo-
ries of curiosity, specifically the Information Gap
Theory, applying them to model reader engagement
in NLP. Operationalizing information gaps as topo-
logical cavities in a dynamically evolving semantic
network provides a novel, quantifiable measure
of reader curiosity, directly linking computational
methods and psychological theories.

3 Methods for Narrative Modeling

We employ a combination of NLP, network anal-
ysis, and TDA to model narrative structure and
its evolution, building on and extending previous
work. Our analysis proceeds in three key stages:

1. Preprocessing. We obtain textual data and
segment it using a sliding window approach.

2. Dynamic Topic Modeling. A dynamic topic
network is built to represent the evolving the-
matic structure of the text. Vertices represent
topics, and edges connect topics appearing in
consecutive text segments, with edge weights
reflecting semantic similarity.

3. Topological Feature Extraction via Persis-
tent Homology. Persistent homology quanti-
fies the network’s evolving topological fea-
tures representing information gaps of the
topic network.

An overview of our suggested pipeline (from text
preprocessing to the topological feature extraction)
is depicted in Figure 1. Details regarding the data
and models we employed are located in Section 4.

3.1 Dataset and Preprocessing

Our approach works with either textual or multi-
modal data (e.g., video), adaptable to the chosen
embedding model. After data collection, the next
step involves cleaning and segmenting the textual
or multimodal data into smaller units. A key aspect
is the collection of user engagement ratings periodi-
cally throughout content consumption. The human
data allows us to validate the persistent homology
measures as reader engagement.

3.2 Dynamic Topic Network

To capture the evolving thematic structure of the
used texts, we construct a dynamic topic network.
Each vertex in this network represents a topic and

1.

1. Preprocessing
Raw text Cleaned text Overlapping chunks

2. Dynamic topic modeling \
Point coud}
2.2. Topic modeling
Lower dimensionnal
Point cloud ClsEe
2.3. Topic network construction
Clusters Static graph topics Dyr;]aém%rtlgpic

3. Persistent homology measures
Dynamic topic Persistence Betti numbers, Bottleneck
network diagrams and Wasserstein distances

Figure 1: Pipeline from preprocessing (top) to persistent
homology measures (bottom).
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edges connect topics that occur across consecutive
chunks, reflecting the narrative flow of the story.
Each edge has a weight corresponding to the cosine
similarity of the dyadic topics in the text embed-
ding space.

3.2.1 Topic Modeling

We employ a pipeline inspired by the BERTopic
approach for topic modeling (Grootendorst, 2022).
It consists of the following three stages:

1. Text Embedding: Text segments are embed-
ded into a high-dimensional vector space us-
ing the transformer-based embedding model



voyage-3-large (Voyage Al, 2025). These em-
beddings capture the semantic meaning of the
chunks, with similar chunks having closer em-
beddings.

2. Dimensionality Reduction: As a prepro-
cessing step for clustering, we reduce the
high-dimensional embedding vectors using
UMAP (Uniform Manifold Approximation
and Projection, (Mclnnes et al., 2020)) fol-
lowing the BERTopic approach (Grootendorst,
2022) for improving cluster quality with high-
dimensional data (Asyaky and Mandala, 2021;
Allaoui et al., 2020).

3. Clustering: We use HDBSCAN (Hierarchi-
cal Density-Based Spatial Clustering of Appli-
cations with Noise, (Campello et al., 2013)),
which identifies non-convex clusters of vary-
ing densities and handles noise explicitly.
Furthermore, HDBSCAN automatically de-
termines the cluster count, avoiding man-
ual parameter tuning and potential bias. Its
strong empirical performance further justifies
its use (scikit-learn developers, 2025; Asyaky
and Mandala, 2021; Mclnnes et al., 2016).
Each topic is represented by the weighted cen-
troid of its constituent text chunk embeddings,
using the cluster-probability as the weight.

3.2.2 Dynamic Topic Network Construction

The dynamic topic network is built incrementally,
based on the measurement points of the user en-
gagement sampling.

* Vertices: Each vertex in the network repre-
sents one topic.

* Edges: Undirected edges are created between
topic vertices appearing in consecutive text
chunks. This captures the sequential flow of
topics throughout the narrative, as suggested
by Zhu (2013) and applied in studies such
as (Patankar et al., 2023).

» Edge Weights: The weight of each edge is de-
termined by the cosine similarity between the
embedding vectors of the connected topics in
the original embedding space. Higher cosine
similarity results in a stronger connection.

* Network Series: We segment the narrative
based on user engagement rating points. Each
such segment is represented by a distinct static

topic graph built upon the topics and relation-
ships occurring in the narrative up to this point.
This sequence of static graphs forms a cumu-
lative dynamic network: The first graph rep-
resents only the topics and relationships up to
the first user engagement rating point, the sec-
ond graph contains these topics and relations
plus those occurring in the second segment,
and so on. The last graph in the sequence
represents all topics and relationships.

3.3 Persistent Homology Measures

To evaluate the gaps in information flow within
our dynamic topic networks, we employ persistent
homology, a method derived from topological data
analysis. In essence, persistent homology allows
us to detect and monitor the evolution of specific
topological features within a network —namely, con-
nected components, cycles (loops), and voids (en-
closed empty spaces) (Moroni and Pascali, 2021;
Munch, 2017)- that we compare in Figure 2.

gap

Figure 2: Identified topological features of the topic net-
work: Components, cycles/ loops, and voids. Adapted
from (Patankar et al., 2023).

The core of persistent homology lies in exam-
ining how a network’s structure evolves as a func-
tion of a filtration parameter, denoted by €. Intu-
itively, € represents a proximity threshold. As e
increases, connections (edges, and in more general
cases, higher-dimensional counterparts called sim-
plices) are progressively added between vertices
that are closer than the given €. This process gen-
erates a nested sequence of simplicial complexes,
each representing the network’s structure at a spe-
cific proximity level. From this sequence, we can
count the number of topological features: [y rep-
resents the number of connected components, 31
the number of cycles (or loops), and 55 the number
of voids (enclosed empty spaces). Persistent ho-
mology tracks the "birth" (emergence) and "death”
(merging or disappearance) of these features as €
increases. The results are summarized in a persis-
tence diagram, which plots each topological feature
as a point (b, d), where b signifies the e value at



which the feature is born, and d represents the €
value at which it dies. Figure 3 shows the persis-
tence diagram for the first chapter of our dataset,
revealing one highly persistent feature in dimen-
sion 1 (loop).
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Figure 3: Persistence diagram of the first chapter of our
dataset.

4 Experimental Setup

4.1 Dataset and Preprocessing

4.1.1 Dataset

The primary dataset for this pilot study consists
of the young adult novel “The Hunger Games” by
Collins (2011) and corresponding reader engage-
ment data (n = 76 participants) collected through
Prolific’s online platform (www.prolific.com).
Prior to reading, participants indicated their famil-
iarity with the book and its movie adaptation. Dur-
ing reading, participants provided continuous self-
reported ratings (0—100) on multiple engagement
dimensions after each chapter. For this analysis, we
focus specifically on curiosity ratings (“I was cu-
rious about this chapter”) from readers unfamiliar
with either the movie or book (n = 49). To approx-
imate a measure of general curiosity, we compute
the mean curiosity rating across participants for
each chapter.

4.1.2 Preprocessing

We apply a two-step text preprocessing. First, we
remove part titles (e.g., "Part One"), chapter ti-
tles (e.g., "The Tributes"), chapter numbers (e.g.,
"Chapter 1"), and empty lines. Second, we employ
a sliding window approach to create text segments,
using windows of 5 sentences with a 2-sentence
overlap. This results in 2,656 text segments. The

median chunk length is 60 words (MAD = 20.76,
range = 13-155 words).

4.2 Topic Modeling

Text Embedding : We embed text segments into
a 1,024-dimensional vector space using the Voyage-
Al voyage-3-large transformer-based embedding
model (Voyage Al, 2025) via the VoyageAl API,
accessed through Python. We select transformer-
based models, and especially this one, due to its
state-of-the-art performance on the Massive Text
Embedding Benchmark (MTEB) (Muennighoff
et al., 2022), indicating its ability to capture nu-
anced semantic relationships (Morris et al., 2023;
Yu, 2024).

Dimensionality Reduction : As a preprocess-
ing step for clustering, we reduce the 1,024-
dimensional embedding vectors to 32 dimensions
using UMAP (Mclnnes et al., 2020). The UMAP
parameters are set to the cosine similarity metric
and 15 nearest neighbors to ensure the preserva-
tion of both global and local structure in the lower-
dimensional representation.

Clustering : Clustering is performed using HDB-
SCAN (Campello et al., 2013)) with a minimum
cluster size of 3 data points, for fine-grained results.
This results in the identification of 302 topics. Em-
beddings identified as noise (n = 717, 27%) are
excluded from further analysis.

These steps were implemented in R (R Core
Team, 2024) using the uwot package (Melville,
2024) for the UMAP implementation, and
dbscan (Campello et al., 2013) for hierarchical
density-based clustering.

4.3 Persistent Homology Measures

We first create a series of 27 static topic graphs (as
outlined in section 3.2.2) and then use a Vietoris-
Rips filtration to construct a simplicial complex
from each graph. The filtration is based on the edge
weights (cosine similarity), with simplices (edges,
triangles, etc.) added as the distance threshold
increases. From the resulting persistence diagrams,
we extract the following topological features:

* Betti Numbers: [y, (1, (2 represent
the number of connected components,
one-dimensional cycles (loops), and two-
dimensional voids, respectively. They indicate
information gaps in the graph.
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¢ Bottleneck Distance: distp measures the
maximum difference between the persistence
diagrams of consecutive graphs (i.e., between
graphs representing chapters n and n + 1). A
large bottleneck distance indicates a signifi-
cant singular structural change, such as the
creation or filling of a large void.

¢ Wasserstein Distance: disty, measures the
average difference between the persistence di-
agrams of consecutive graphs. A large Wasser-
stein distance indicates a significant average
structural change, such as a shift in the aver-
age void size.

We detrend the data using residuals from a linear
model fitted to the chapter index and winsorized
due to the presence of outliers. Specifically, for
each feature, values below the 2.5" percentile are
capped at the 2.5™ percentile, and values above the
97.5™ percentile are capped at the 97.5™ percentile.

Network analysis is handled by the igraph pack-
age (Csardi and Nepusz, 2006) (with qgraph (Ep-
skamp et al., 2012)) in R. Persistent homology
and related distance measures were computed us-
ing the R packages TDA (Fasy et al., 2024) and
TDAstats (Wadhwa et al., 2018). Single-threaded
persistent homology calculations took approxi-
mately 100 seconds on an AMD Ryzen 7 7840U
(64 GB RAM).

4.4 Generalized Additive Model

To investigate the relationship between the topo-
logical features extracted from the text and the
readers’ reported curiosity, we employ a Gener-
alized Additive Model (GAM) using the R package
mgcv (Wood, 2011). We choose GAMs for two
key reasons: their ability to capture non-linear re-
lationships and their robust options for addressing
overfitting, which is crucial given our limited sam-
ple size.

We assess topological features’ unique contribu-
tion to explaining variance in reader curiosity by
comparing a Null Model (control variables: novel
topics per chapter, chapter index) and a Full Model
(control variables + topological features: Betti num-
bers, Wasserstein distances, Bottleneck distances).

Due to the limited number of observations (n =
27 chapters), our primary goal is to explore the
explained deviance of the model using topological
features, rather than making definitive claims about
the precise functional form of the relationships.
The dependent variable (DV) is the mean curiosity

reported per chapter (based on n = 49 observations
per chapter). Predictor variables (IVs) include de-
trended Betti numbers, Wasserstein and Bottleneck
distances between chapters, and, as control vari-
ables, the number of novel topics per chapter and
the chapter index number itself.

We use cubic regression splines for all smooth
functions, setting the basis dimension & to 4 for all
smooth terms based on GAM diagnostics, as rec-
ommended by Wood (2017, Section 5.9). To avoid
overfitting, we use Restricted Maximum Likeli-
hood (REML) for parameter estimation with an
additional penalty term (v = 1) during model fit-
ting. To assess the significance of the explained
deviance and R?, we employ a permutation test
with 1,000 iterations, where we permute the values
of the mean curiosity across chapters and refit the
model.

5 Results

5.1 Distribution of the Detected Topics

HDBSCAN identifies 302 distinct clusters, i.e. top-
ics, over the entire text. A comprehensive sum-
mary of these topics, generated using DeepSeek
V3 (DeepSeek-Al et al., 2024), is provided on the
online repository hosting our source code. Figure 4
shows the distribution of topics across chapters
and the number of new topics by chapter, respec-
tively. On average, each chapter contains 25 topics
(SD =5, range: 15-35). Chapter 9 exhibits the
highest number of topics, while Chapter 11 con-
tains the largest number of newly introduced topics
(n = 28). In contrast, Chapter 14 has the fewest
total topics, and Chapter 25 introduces the fewest
new topics (n = 1).

Visual inspection of the topic clusters across
chapters reveals notable shifts in thematic con-
tent, particularly around Chapters 11 and 26, as
displayed in Figure 5. These shifts correspond to
key narrative transitions within the book: Chap-
ter 11 marks the beginning of the Hunger Games,
the deadly battle to be the last person standing, and
Chapter 26 signifies their conclusion.

5.2 Description of the Extracted Topic
Network

Figure 6 shows the last graph constituting our dy-
namic network, which contains all topics and re-
lationships for the whole novel. It consists of 302
vertices, representing the 302 identified topics, and
778 weighted undirected edges. It exhibits an aver-
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Figure 4: Total number of topics by chapter (top) and
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Figure 5: Distribution of topics across chapters. The
chapter number is on the z-axis, and the topics are
listed on the y-axis. Color indicates the frequency of
each topic within a chapter, calculated as the base-2
logarithm of the number of text chunks assigned to that
topic.

age degree of 5.15 (SD = 3.13, median = 4, MAD
= 3.00, range = 1-31), a weighted diameter of 1.49
(8 when considering unweighted edges), and its de-
gree distribution follows a log-normal law (mean-
log = 1.48, SDlog = 0.56).

The small-worldness index, as defined by
Humphries and Gurney (2008), is 3.40, indicat-
ing a small-world network structure. The average
shortest path length (unweighted) is 3.80. A signifi-
cant hierarchical tendency is observed (hierarchical

Figure 6: Topic network. The radius and the color of
the vertices are proportional to their degree. The thick-
ness of the edges is proportional to the cosine distance
between the topic embeddings.

clustering coefficient = 0.16, p < .001, (Mones
et al., 2012)).

Community detection, using the Walktrap algo-
rithm (Pons and Latapy, 2006), reveals a minimum
of two distinct communities within the network. A
qualitative analysis of these communities reveals
a strong correspondence with the narrative struc-
ture: one community primarily encompasses topics
from Chapters 11-25 (the Hunger Games phase),
while the other represents topics from the remain-
ing chapters.

5.3 Persistent Homology

All derived topological features are detrended, and
are shown in Figure 7. The trends observed in the
three plots exhibit a resemblance to the overarching
narrative structure of “The Hunger Games”, where
the Games themselves commence in Chapter 11
and conclude in Chapter 25. Additional descriptive
statistics are shown in Table 1.

5.4 Generalized Additive Model

The dependent variable in the generalized additive
model (GAM) is the average curiosity score per
chapter (M = 69.5, SD = 3.8, range: 60.3-77.0),
as shown in Figure 8. Figure 9 presents the bi-
variate Spearman’s rank correlation matrix for all
variables (Spearman, 1904).

We compare two GAMs to assess the unique con-
tribution of topological features towards modeling
the readers’ curiosity:

Null Model (Control Variables only) : It ex-
plains 23.8% of the variance and 29.7% of the de-
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Variable Mean SD Min Max
Curiosity 69.5 39 603 77.0
Novel topics  11.2 6.3 1.0 28.0
Bo 187.0 889 24.0 301.0
51 1657 1123 4.0 368.0
Ba 202.6  176.0 3.0 555.0
dist(Bo) 04 0.0 0.3 0.5

distp(51) 0.5 0.2 0.3 1.0

distp(52) 0.3 0.1 0.2 1.0

disty (Bo) 4.5 2.5 05 116

(B
distyy (31) 6.2 21 24 98
(B2) 3.2 19 05 64

Table 1: Descriptive statistics. The Bottleneck and
Wasserstein distances are denoted by dist g and distyy .
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Figure 8: Average curiosity per chapter.

viance (permutation tests, both p < .001).

Full Model (Topological Features + Control
Variables) : It explains 65.7% of the variance
(permutation test, p < .05) and 72.9% of the de-
viance (permutation test, p < .06).

A likelihood ratio test comparing the full model
to the null model reveals a significant improvement
in model fit (x? = 11.25, df = 4.7, p < .001).
This indicates that the inclusion of topological fea-
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Figure 9: Spearman’s bivariate rank correlations. Circle
size and color are proportional to the correlation coeffi-
cient magnitude.

tures significantly improves the model’s ability to
explain variation in chapter-level curiosity, even
after accounting for the number of novel topics
and chapter index. These results show that our
proposed pipeline, based on topological analysis
of a dynamic topic network, can effectively model
readers’ curiosity ratings.

6 Conclusion

In this study, we combined existing methods into a
pipeline for modeling semantic information gaps
and explored their connection to reader curiosity,
grounded in motivational psychology theories link-
ing information gaps to curiosity. By construct-
ing dynamic topic networks and using Topological
Data Analysis to identify topological cavities as
proxies for information gaps, we explored a dis-
tinct method from text structure analysis. Our pre-
liminary findings demonstrate the feasibility of this
approach, with statistical modeling indicating that
topological features significantly enhance the pre-
diction of reader curiosity beyond basic content
and chapter progression. This proof-of-concept
study provides a first step towards a quantifiable
understanding of textual features associated with
curiosity, potentially informing future research in
computational text analysis and narrative under-
standing. Further research is needed to refine this
pipeline, evaluate its generalizability across differ-
ent text and media types, and investigate the spe-
cific contributions of various topological features
to reader curiosity and engagement.



Limitations

The first limitation of our study is the small sam-
ple size, with limited measurement points focusing
solely on the first novel of “The Hunger Games”
trilogy. Because of this, and to avoid overfit-
ting, we intentionally restricted our topological
data analysis to simple measures like Betti num-
bers and distances. This may affect the robust-
ness of our conclusions. Second, we model texts
as topic networks rather than knowledge graphs,
which could limit granularity. A possibility would
be to explore semantic representation with Ligh-
tRAG or GraphRAG (Han et al., 2025; Guo et al.,
2024). Third, our network is undirected, which
may overlook important learning dependencies,
particularly in educational texts (Liu et al., 2012).
Future work could explore directed networks to
better capture the sequential progression of knowl-
edge. Fourth, we rely on shortest-path distances,
but diffusion-based measures might better reflect
how information evolves and interacts. Addition-
ally, our focus on narrative structure constrains the
applicability of our approach to raw embedding
spaces. Investigating how to integrate narrative
progression directly into embeddings, potentially
through learning-theoretic models, should be ex-
plored. Moreover, we did not compare different
embedding models, opting for a state-of-the-art
option for feasibility (voyage-3-large, (Voyage Al,
2025)). Finally, since our analysis is based on a nar-
rative text, further research is needed to assess its
effectiveness across different genres and domains.
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