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Abstract

Simple function classes have emerged as toy
problems to better understand in-context-learning
in transformer-based architectures used for large
language models. But previously proposed
simple function classes like linear regression
or multi-layer-perceptrons lack the structure
required to explore things like prompting and
alignment within models capable of in-context-
learning. We propose univariate polynomial
regression as a function class that is just rich
enough to study prompting and alignment,
while allowing us to visualize and understand
what is going on clearly. Code can be found
at https://github.com/MSNetrom/
in-context-poly-playground.

1. Introduction and Motivation
Once Brown et al. (2020) called out that that pretrained
large language models (LLMs) have the emergent ability to
do in-context learning, this opened the door to using prompt-
ing to direct LLM behavior. Ouyang et al. (2022) showed
how appropriate fine-tuning could strengthen prompting
into instruction-following and also emphasized the need for
alignment. Although this line of work started in the very
rich domain of natural language using very large models,
the computational challenges of training such large mod-
els from scratch were soon recognized. Garg et al. (2023)
zoomed in on the core issue of in-context learning and pro-
posed using very simple function classes (where we can
often hand-craft optimal approaches to compare against)
to study things without having to use very large models or
tokenization. However, prior examples of simple function
classes like linear regression, sparse linear regression, de-
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cision trees, and multi-layer-perceptrons1 (MLPs) are too
unstructured to be able to naturally capture ideas related
to alignment or jailbreaking, or to systematically explore
fine-tuning. To remedy this, we introduce a toy based on
univariate polynomial regression — this is like linear regres-
sion, but we implicitly lift via the Chebyshev polynomials.

Univariate polynomials are easily visualizable, but for a
toy problem to be useful as an object of study, it should
exhibit at least some of the interesting behaviors of reality.
Specifically we look at the following questions:

• Can polynomials be learned in-context? Yes.

• How does LoRA perform compared to soft prompt-
ing for such functions? Does this match what we
see in LLMs? Just as for LLMs, LoRA is better with
a comparable amount of parameters.

• Can we capture the idea of alignment, refusal, and
jailbreaking using univariate functions? Yes!

• How does adding jailbroken examples to the context
window affect model alignment? Increasing the num-
ber of jailbroken examples leads to worse alignment,
matching the behavior of LLMs.

1.1. Parameter efficient fine tuning

Soft prompting is the concept of adding learnable task-
specific embeddings to the start of the embedded input-
sequence (Lester et al., 2021). Because the complement of
the input data’s embedding image is significant, the added
flexibility can give an advantage over normal hard prompt-
ing. Another method is LoRA (Low-Rank Adaptation of
Large Language Models) which “freezes the pre-trained
model weights and injects trainable low-rank decomposi-
tion matrices into each layer of the Transformer architecture”
(Hu et al., 2021). For h = W0x, the modified pass yields:

h = W0x+∆Wx = W0x+BAx

1Interestingly, MLPs are a very natural way to study chain-of-
thought (CoT) prompting (Li et al., 2024). But this actually helps
us understand how CoT is different from “instruction-following”
style prompting.
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Where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≤ min(d, k).
We apply LoRA to the attention matrices.

1.2. Alignment

Within language contexts, there are many different moti-
vations for wanting to align a model’s outputs. In LLMs,
alignment can be understood as the process of fine-tuning
to have the model produce more desirable outputs. When
the alignment goal is understood in terms of refusing to
engage in certain behavior, the concept of jailbreaking cap-
tures when that refusal goal is foiled. We study how a model
pretrained to in-context learn a functional class can have
its behavior aligned to a new but related task that models
refusal. The goal is to both showcase that a model could
be aligned within this toy domain as well as make the case
that studying alignment in this context is reasonable and can
give us a better understanding of alignment.

2. Related Works
Prompting: There is a large literature of relevant work re-
garding phenomena in PEFT. In Xu et al. (2023) LoRA is
seen to perform better than prefix-tuning (and soft prompt-
ing) on all GLUE metrics. We also observe that LoRA per-
forms better than soft prompting on our polynomial tasks.
Petrov et al. (2024) looks at the toy problem of sorting num-
bers in increasing order, then finetuning using prefix-tuning
for learning to sort in descending order. Prefix-tuning strug-
gles to complete this task, which shows the power of toy
problems for more crisply highlighting the limitations of
finetuning methods, and our work fits in this broad vein.

Alignment: While there has been a lot of research done
in alignment for LLMs, the capabilities of transformers in
learning function classes when constraints are introduced
remains unclear. Scaling laws for LLMs have been studied
and have revealed that models show a clear power-law scal-
ing behavior with respect to context lengths (Xiong et al.,
2023). ICL performance improves with increased number
of demonstrations as well as increased length of instructions
(Li et al., 2023).

3. Methodology
3.1. Models and Training Configurations

Following Garg et al. (2023), the model used is a GPT2-
style model, with 6 layers, 4 heads, and an embedding
dimension of 128. The model has a total of about 1.2 million
parameters. See appendix A.3 for details.

3.2. Univariate Chebyshev Polynomials

The constructed tasks follow the in-context learning struc-
ture as in Garg et al. (2023), which is of the form:

(x1, y1, x2, y2, ..., xquery)

where x-values are scalars sampled from U(−1, 1) and the
y-values are also scalars.

Random linear combinations of Chebyshev polynomials
provide an effective way to sample well-behaved polynomi-
als that do not have extreme y-values. Some properties of
Chebyshev polynomials are:

• For x ∈ [−1, 1] we have y ∈ [−1, 1].

• All roots are on the interval xroot ∈ [−1, 1]

3.3. Chebyshev Linear Combinations

The base-models are trained on a linear combinations of
our Chebyshev polynomials. Chebychev polynomials of the
first kind can be recursively defined by:

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

We sample weights from a standard normal distribution,
which gives:

p(x) =

b∑
i=0

ciTi(x), ci ∼ N (0, 1) (1)

For pretraining, we sample a maximum degree b uniformly
from [0, 11] and create a normal random linear combination
of Chebyshev polynomials of degree at most b. The value of
y is approximately marginally independent of x, as sampling
many points from many different polynomials generated
from this method leads to a distribution that does not vary
much with x, as shown in Figure 1a.

3.4. Specific Degree and Fixed Coefficients

For parameter-efficient finetuning, we only sample weighted
combinations of Chebyshev polynomials of degrees at most
5. We choose 5 since it is in the middle of our pretraining
degree range of 0 to 11. We also fix between 0 to 5 of the
coefficients ci to be 1. This leads to a marginal distribu-
tion that does vary with x (see Figure 1b). This creates
a task which occupies a subspace of the original training
distribution, providing more clear room for improvement.
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Figure 1: Sampled density heatmap of joint (x, y) distribu-
tion for uniformly random x-values and linear combinations
of Chebyshev polynomials. See appendix for a more de-
tailed explanation (section A.1). (a) Polynomials of random
degree up to 11. The distribution of y is approximately in-
dependent of x. (b) Polynomials of degree 5 (specifically),
but the first 3 linear coefficients are fixed. The distribution
of y is not independent of x.

3.5. Refusal as a Toy Model of Alignment

For testing refusal-style alignment, a task based on the linear
combination of Chebyshev polynomials (see section 3.3) is
edited to have the y-values clamped at a certain threshold.
Instead of predicting the polynomial p(x), the model should
now predict min(p(x), T ).

This task was chosen at it allows our model to leverage what
it already knows while also learning a new behavior, and
it resembles many real world alignment objectives such as
answering questions so long as the desired result does not
exceed some level of toxicity or offensiveness.

4. Results
4.1. Learning Polynomials In-context

As seen in Figure 2, it is possible for a GPT2-style model as
described in section 3.1, to learn to do regression for linear
combinations of Chebyshev polynomials. As the context in-
creases, the predictions get better. We use linear regression
in the basis formed by Chebyshev polynomials of up to de-
gree 11, with and without ridge regularization, as baselines
(polynomial regression and ridge-regularized polynomial
regression) (See section A.4). The model performs better
than the baselines in low sample regime, indicating better
conditioning. In high data regime, the analytical baseline
polynomial regression is better, as perfectly zero error is
difficult to achieve with function approximation.

4.2. LoRA vs Soft Prompting

In Figure 3, the performance of LoRA and soft prompting
is compared on the task from section 3.4. As the number
of fixed coefficients is increased, the sampled polynomi-
als become less random, and the distribution of y becomes
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Figure 2: Performance of pretrained model on normal ran-
dom linear combinations of Chebyshev polynomials of a
random degree between 0 and 11. Polynomial regression
and ridge-regularized polynomial regression are used as
baselines (See section A.4). Using polynomial regression,
12 examples are theoretically needed to achieve 0 ≈ 10−∞

error for a degree 11 polynomial. Shaded areas represent
the 95% bootstrap confidence interval (A.5). See Appendix
A.9 for plot using linear y-scale.

more dependent on x (see section 3.4). As the distribution
becomes less random, 50-pair soft prompting performs
better. Surprisingly, with zero fixed coefficients, 50-pair
soft prompting performs significantly worse than the un-
trained baseline. Since this task distribution is only slightly
more narrow than the mixed degree training distribution, the
model may need to learn to ignore the randomly initialized
prompts, leading to worse performance. (See Appendix A.8
for a learning rate ablation to isolate effect of LR selection
as a possible explanation). 50-pair soft prompting per-
forms the best with 5 shared coefficients, where there are
five fixed points for the soft prompts to learn, which sup-
ports that soft prompting benefits from more predictable
distributions (See Appendix A.2).

4.3. Alignment Through Eval-Time Context Clamping

The first set of alignment experiments uses the task from
section 3.5, and are shown in figure 4. The model has
never seen clamped y values during train time, but is able to
learn this clamping behavior quite well. However, from our
regression baseline, we see that alignment behavior is fairly
natural to our task provided we have enough example points.
That being said, when our model tries to predict the function
in regions that lack in-context examples (such as near the
edges), it can revert to unaligned behavior. This shows that
the model is in some sense being bounded in-context, but is
not truly learning the new aligned behavior. These results
coincide with previous work done on larger models and may
help explain why many-shot in-context learning works so
well (Agarwal et al., 2024).

See appendix A.11 for a comparison between performance
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Figure 3: Performance of finetuning methods for normal
random linear combinations of Chebyshev polynomials of
degree at most 5, and with the first n first linear combina-
tion coefficients fixed. As the number of fixed coefficients
increases, y becomes more dependent on x. Polynomial re-
gression and ridge-regularized polynomial regression are
used as baselines (See section A.4). Shaded areas represent
the 95% bootstrap confidence interval (A.5). See Appendix
A.9 for plot using linear y-scale.

on our toy problem alignment and tasks solved by LLMs,
as well as the effects of model size.
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Figure 4: (4a) Increased context length increases perfor-
mance for clamped polynomials, although the model were
not trained to do this. Note that on points above the thresh-
old loss increases, whereas the same is not true for points
below the threshold. (4b) Adding in a clamped context leads
to good predictions in which our predicted polynomial looks
like a smoothed version of the actual clamped polynomial.
This example is a degree 4 polynomial with 25 in-context
examples of which 9 are clamped.

4.4. Alignment Through Finetuning and Jailbreaking

Following our examination of alignment in-context, we fine-
tuned a model to complete our established alignment task
as shown in Figure 5a. We then decided to examine the
potential for our model to be jailbroken and compare the
behavior of our model with the behavior observed in LLMs.

We query our model with a context window of malicious
(unclamped) examples, and ask it to provide the y value for
the last point, whose ground truth y value lies above the
threshold. In Figure 5b, we examine the effect of context
length on the model’s susceptibility to being jailbroken. As
the context length increases, we see the model is more likely
to output unaligned responses. These results match those
from previous work examining the effect of jailbreaking in
LLMs (Wei et al., 2024; Anil et al., 2024).
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Figure 5: (5a) The transformer model is able to perform the
task of clamping values in-context after being additionally
finetuned. (5b) As the context length increases, so does the
number of jailbroken examples. Similar to language models,
as the number of jailbroken examples increases, it becomes
more likely for alignment to be broken.

5. Limitations
Just as in Garg et al. (2023), a core limitation is establishing
relevance between our results and LLMs beyond parallel
and similar behavior.

6. Conclusion
In this paper, the toy problem of learning linear combina-
tions of Chebyshev polynomials is demonstrated to be useful
for exploring LLM-relevant phenomena like alignment and
prompting, while using dramatically less compute.

For PEFT, we see that performs better than soft prompts in
general, as seen in language tasks in LLMs. Additionally,
the performance of soft prompting seems to vary with
the prompt dimension and benefit from a narrower task
distribution.

Alignment experiments show that we were able to align
our base model in context with a sufficiently large number
of aligned examples. We could also jailbreak our aligned
model with enough jailbroken examples. These results
match those found in LLM domains in (Agarwal et al.,
2024) and (Anil et al., 2024). This combined with our other
results suggest that the simple task of polynomial regression
could be useful gaining understanding of in-context learning
in large language models.
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A. Appendix
A.1. Distribution of linear combination of Chebyshev polynomials

In this section, we analyze the distribution of a random polynomial of the following form:

p(x) =

b∑
i=a

ciTi(x), ci ∼ N (0, σ2), b ∼ Unif{a, a+ 1, . . . , c}

Let f(w) be the PDF of p. Then we can write:

f(w) =

c∑
b=a

f(w | b)P (b) =
1

c− a+ 1

c∑
b=a

f(w | b)

If b is given, p is a sum of normal variables with E [p | b] = 0 and Var [p | b] = σ2
∑b

i=a T
2
i , and we get:

f(w|b) = 1√
2πσ2

∑b
i=a T

2
i

exp

(
− w2

2σ2
∑b

i=a T
2
i

)

Combining the two above expressions, we get:

f(w) =
1

c− a+ 1

c∑
b=a

1√
2πσ2

∑b
i=a Ti(x)2

exp

(
− w2

2σ2
∑b

i=a Ti(x)2

)

We can also explicity find the expected value and variance:

E [p] =

c∑
b=a

E [p | b]P (b) = 0

The law of total variance states:

Var[X] = E[Var(X | Y )] + Var[E(X | Y )]

By using this, we get:

Var[p] = E

[
σ2

b∑
i=a

T 2
i

]
+Var[0] = σ2

c∑
j=a

E

[
j∑

i=a

T 2
i

]
P (b = j) =

σ2

c− a+ 1

c∑
j=a

j∑
i=a

Ti(x)
2

Var[p] =
σ2

c− a+ 1

c∑
i=a

Ti(x)
2(c− i+ 1)

The standard deviation and PDF as a function of x, is plotted in figure 6.

We would like to thank Ovidiu-Neculai Avadanei, PhD student at the Berkeley Department of Mathematics, for some inputs
in these analysis.
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Figure 6: (6a) The standard deviation as a function of x for normal random linear combination of Chebyshev polynomials
between degree 0 and a uniformly random degree from 0 to 11. (6b) The corresponding distribution of y, dependent on the
choice of x. Since x is uniformly sampled, this distribution is the same as the sampled joint x, y distribution in Figure 1.
Although the intensity values are scaled up in this example as the probability needs to ”sum” to 1 for every given x, instead
of for all combinations of x, y.

A.2. Shared Points in 5 Shared Coefficients Function Class

When using a linear combination of Chebyshev polynoials of degree 5, with the 5 first linear coefficients fixed, there will
be 5 fixed points, independent of the choise of the last coefficient. This is visualized in Figure 7. By fixing the first 5
coefficients to 1 in equation 1 (ci = 1) we get that the difference between any of the sampled functions are l · T5(x), and
therefore 0 in 5 points (as T5(x) has 5 zeros). This can be shown:

p(x) = c5T5(x) +

4∑
i=0

Ti(x), c5 ∼ N (0, 1)

Let h(x) be any function, then we have:

f(x) = chk(x) +

b∑
i=a

hi(x)

For f̂(x) = ĉhk(x) +
∑b

i=a hi(x) and f(x) = f̂(x):

f(x)− f̂(x) = (c− ĉ)hk(x) = 0

hk(x) = 0

In our case this gives T5(x) = 0, meaning that p(x) has fixed points in the five x-values where T5(x) have roots.

A.3. Model and training information

This is a supplement to information given in section 3.1.

Overview of model and training configurations:
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Figure 7: Examples of linear combinations of Chebyshev polynmoials of degree 5, with 5 of 6 linear coefficients fixed.

• For toy problems with soft prompting and LoRA as given in sections: 4.1, A.10.1, 4.2, and A.10.2 we have:

– The standard model as described in section 3.1 were used.
– The base model were trained on a context length of 81 input-output pairs, giving the possibility to use 50 soft

prompt pairs plus a context length of 31 for finetuning.
– Mean Squared Loss was the loss function for all runs.
– A Learning rate of 5.0e-05 was used for the base model and LoRA. For soft prompting, we found that a learning

rate of 5e-02 performed better.
– Pretrained model were trained for 3 million steps, using curriculum learning as described in appendix section

A.3.1.
– Finetuning were done for about 1 million steps for all methods, though strong performance was often achieved

much earlier.
– The LoRA models used rank 4 LoRA on the attention matrices, giving 12288 trainable parameters.
– The soft prompting model with 50 soft prompt pairs had 12800 trainable parameters.
– The soft prompting model with 2 soft prompt pairs had 512 trainable parameters.
– Evaluations were done on 12800 examples, and 31 input-output pairs.
– The model pretrained on noisy data (see Appendix A.10.2) was trained for 2 million steps, reaching convergence.

• For toy problems with alignment as given in sections: 4.3 and 4.4 we have:

– Learning rate of 5.0e-05 were used in all runs.
– Our pre-trained base model trained exactly as described in soft prompting and LoRA section as described above.
– Our large model was trained with an embedding dimension of 256, twelve attention heads, and eight layers. The

medium model was trained with an embedding dimension of 128, six attention heads and four layers. Lastly, our
small model was trained with an embedding dimension of 64, four attention heads, and two layers.

– For each graph, we compute the MSE over 1000 polynomials for each context length, and the median is graphed
as an aggregate metric.

– For models that are finetuned to alignment, our model is trained for 150 thousand steps. For the graph displayed
in the paper, we use a medium-sized model, with an embedding dimension of 128, six attention heads, and four
layers.

8
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– We use a clamping threshold of 0.5 for all of our alignment tasks. When aligning via finetuning, we use hinge loss
with weight 100 for points above the clamping threshold.

– In order to help with our alignment process, we also chose to use hinge loss to disproportionately penalize points
misclassified above our alignment threshold.

A.3.1. CURRICULUM LEARNING

Training of the pretrained models were done using Curriculum training (Wu et al., 2021) by increasing the number of input
points to the model in steps. The purpose is to learn easier tasks first, and then increase the difficulty. Gradually increasing
the number of points was also done by Garg et al in the seminal work on simple function classes as a toy model for in
context learning.

A.3.2. HARDWARE AND TIME USAGE

The hardware configuration varied between different runs, which were run on several computers. Training the base model
for 3 million steps with 81 input-output pairs took about 21 hours on a GeForce RTX 3090. Finetuning with 2 soft-prompt
pairs and 50 soft-prompt pairs for 1 million steps both took about 6.2 hours. For LoRA rank 4, finetuning on 1 million
steps took 8.9 hours.

For parts of this work GNU Parallel (Tange, 2018) were used. This research also used the Savio computational cluster
resource provided by the Berkeley Research Computing program at the University of California, Berkeley (supported by the
UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer).

A.4. Baselines

For baselines linear regression in Chebyshev basis is done, both without and with some ridge regularization, which would
be the optimal estimator under Gaussian noise. We use a ridge parameter of 0.2 for our experiments. A ridge regression
parameter of λ is optimal if N (0, λ) Gaussian noise were added.

Using linear regression one would theoretically be able to predict the exact polynomial with n+ 1 examples for a degree n
polynomial. That is why the graphs in figure 2 and 3 are cut off, since the linear regression will be able to get 0 ≈ 10−∞

error.

A.5. Bootstrap confidence interval

Bootstrap confidence intervals were used for some of the graphs.

The mean is calculated as:

µi =
1

N

N∑
j=1

yij

where yij is the j-th data point of the i-th evaluation, and N is the total number of evaluations.

For the bootstrap method, we sample with replacement from the dataset, and calculate the mean of each sample to create a
sampling distribution of means. The lower and upper limits of this distribution provide an interval estimate of the true mean.
We use the the 5% and 95% percentiles.

Lower (Lboot) an Upper (Uboot) Bootstrap Limit

Lboot,i = sorted({µ(b)
i }Bb=1)[0.05×B], Uboot,i = sorted({µ(b)

i }Bb=1)[0.95×B]

where µ
(b)
i is the mean of the i-th evaluation in the b-th bootstrap sample, and B is the total number of bootstrap samples.

We use B = 1000.

9
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A.6. Code

Our code for training the base model, and doing soft prompting and LoRA can be found at https://github.com/
MSNetrom/in-context-poly-playground. This is a fork of code done by another group, which can be found
at https://github.com/in-context-learning-2024/in-context. The alignment code has not yet been
added, although this is a work in progress. Thanks to (Garg et al., 2023) for providing inspiration for our code on their GitHub:
https://github.com/dtsip/in-context-learning. Their code is published under the MIT License. Also
thanks to the Hugging Face team for providing code and infrastructure for the GPT2-model (Wolf et al., 2020).

A.7. Effect of Positional Encoding

Figure 8 shows that the difference in performance between using positional encodings and not using positional encodings
seems insignificant. This is not surprising given that the input data is invariant regarding position.
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Figure 8: Performance of pretrained models with and without positional encodings on the Chebyshev kernel linear regression
task with random degrees between 1 and 11. They are trained as described in section 3.1 and A.3. (Shaded areas) represent
the 95% bootstrap confidence interval. 1280 samples used.

A.8. Effect of Learning Rate on Performance for Many Soft Prompts

In Figure 3 in section 4.2, we see that soft prompting performs poorly when there is a low number of fixed coefficients, and
the distribution of y appears to be fairly independent of x. It is discussed if the model might need to learn to ignore the
randomly initialized prompts, since the task could be very similar to the original one, leaving little room for learning through
prefix-tuning. An alternative explanation is that there are problems with the learning rate. Because of this, a comparison
of learning rates are done in Figure 9. Here it is observed that changing the learning rate does have a significant impact,
however it does not solve the problem of bad performance. For experiments in this paper, the learning rate of 5e− 2 were
chosen based on Figure 9.

A.9. Linear Scale Prompting Performance Graphs

Figure 10 contains the same graph of pretrained model performance as Figure 2, but with a linear scale. Figure 11 shows the
same comparison of soft prompting and LoRA finetuning methods as Figure 3, but with a linear scale.
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Figure 9: Comparison of the effect of different learning rates on soft prompts, with 50 soft prompt pairs. This was done
on the task of predicting y-values on normal random linear combinations of Chebyshev polynomials of degree 5, and 0 fixed
coefficients. (a) Log-scale used (b) Linear scale used.
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Figure 10: Performance of pretrained model on normal random linear combinations of Chebyshev polynomials of a random
degree between 0 and 11. Polynomial regression and ridge-regularized polynomial regression are used as baselines (See
section A.4). For degree 5, 6 examples are theoretically needed to achieve 0 ≈ 10−∞. The plot is therefore cutoff below.
(Shaded areas) represent the 95% bootstrap confidence interval (A.5).

A.10. Extra Finetuning results

A.10.1. SOFT PROMPTS VS HARD PROMPTS

To see how the relationship between soft prompts and hard prompts transfers to the toy polynomial regression domain
(Figure 12), we did some analysis of the learned soft prompts for the task described in 3.4. That is polynomial of degree 5,
no noise, and 2 fixed linear coefficients. Only 2 pairs of soft prompts were used (x, y pairs). Our results match (Bailey
et al., 2023), where they observed that in language models, the closest hard prompt (in this case, projection from soft

11



ICML ICL Workshop 2024

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
a) 0 fixed coefficients, degree 5

0 5 10 15 20 25 30

b) 1 fixed coefficients, degree 5

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

c) 3 fixed coefficients, degree 5

0 5 10 15 20 25 30

d) 5 fixed coefficients, degree 5

In-context examples

Sq
ua

re
d 

Er
ro

r

Pretrained Model
Lora rank 4

Softp. pairs 2
Softp. pairs 50

Poly. Regr. Degree 5,
Poly. Regr. Degree 5, Ridge=0.2

Figure 11: Comparison of performance of finetuning methods on normal random linear combinations of Chebyshev
polynomials of degree 5, and with the n first linear combination coefficients fixed. y is more dependent on x with more
fixed coefficients. Polynomial regression, with and without ridge term, are used as baselines. (a) 0 fixed coefficients, (b) 1
fixed coefficient,(c) 3 fixed coefficients, (d) 5 fixed coefficients. (Shaded areas) represent the 95% bootstrap confidence
interval (A.5).

prompt space to hard prompt space since embedding layer in linear) does not preserve task efficacy at all. We also see
high difference magnitudes, where the magnitude of the soft prompt is about 40, but the magnitude of the closest hard
prompt (in the embedding space) is about 10. Finally, we also see that the prompt does seem a bit more sensitive to rotation
compared to scaling, matching (Bailey et al., 2023), as shown in Figure 12. We tried scaling of between 0.5 and 1.2, and
rotated between -0.8 and 0.8 radians towards/away from the closest hard prompt. Decreasing magnitude by as much a factor
of 2 led to only minimal performance degradation, while increasing magnitude was much worse for performance. This has
some agreement with (Bailey et al., 2023), although their language model seemed more robust, as a magnitude reduction
of 6 could lead to accuracy improvements. Potentially this difference relates to our much smaller model size and lack of
diversity in model training data.

A.10.2. FINETUNING ON NOISY DATA

We also benchmarked our models on the same Chebyshev polynomials of degree 5 with fixed coefficients as seen in Figure
13, but this time added Gaussian noise sampled from a N (0, 0.5) distribution, in contrast with noiseless pretraining data. We
hypothesized that soft prompting might struggle with finetuning on noisy polynomials, since this is a form of task that does
not make any clear change in the distribution between x and y. However, it still managed to provide significant improvement
over the untrained model. We note that LoRA still does perform better though, astonishingly matching the performance of
the optimal ridge estimator in the zero fixed coefficients regime, and attaining near zero loss, while the soft prompt models
never beat the ridge regression estimator, despite additional information about fixed coefficients. This supports the notion
that it is harder for soft prompting to capture nuanced distributional differences.

A.11. Extra Alignment Results

In addition to comparing performance across varying context lengths, we additionally test how model size plays a role in the
ability to perform this clamping in-context (Figure 14). It seems that once our model crosses a threshold of certain size, it
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(a) (b)

Figure 12: Error on Chebyshev task with no noise and 2 fixed coefficients. 2 soft prompt pairs are used, and the soft
prompts are perturbed in terms of scale (12b) and rotated towards the closest hard prompt (12a) by the given amount of
radians, negative radians indicating rotation in the other direction. We see increased sensitivity to increasing the magnitude
compared to decreasing the magnitude, as well as greater sensitivity to changes in direction. (Shaded areas) represent the
95% bootstrap confidence interval (A.5). 1280 samples used.
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Figure 13: Performance of LoRA and soft prompting on data corrupted with N (0, 0.5) Gaussian noise on combinations of
Chebyshev polynomials up to degree 5, and with the n first linear combination coefficients fixed. Note that the loss plotted
is to the ground truth, so it is theoretically possible to attain zero loss. Chebyshev Ridge 5 is Least Squares Regression with
ridge regularization (See section A.4). (13a) 0 fixed coefficient (13b) 1 fixed coefficient (13c) 3 fixed coefficients (13d) 5
fixed coefficients (Shaded areas) represent the 95% bootstrap confidence interval (A.5). 1280 samples used.

becomes expressive enough to learn better features that are capable of learning from a shifted context.

One question to consider is why is it worth studying clamping of polynomials as a proxy for alignment in the first place?
One experiment that helps shape this is to compare the performance of polynomial clamping in-context with other LLM
tasks, and see how trends compare (Figure 15). To analyze this, we compare the performance of our polynomial clamping
in-context with other common LLM tasks, such as planning, summarization, and translation, all found in previous work, and
notice that the trends are similarly monotonically increasing.

In addition to the plot for degree eight provided in the main section of the paper, we include plots for eval-time context
clamping for degrees two and four, where we observe similar trends. We additionally include plots of polynomial
interpolations, where we visually see the clamped polynomial that our transformer learns via the context. Lastly, we include
a plot that validates the foundation of our findings above by confirming that our finetuned-aligned model indeed learns to
clamp polynomials above the threshold.
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Figure 14: Effect of Model Size on In-Context Alignment. The medium and large transformers perform much better than the
small transformer (see appendix section A.3 for model sizes). Each model size decreases in embedding dimension, layers,
and heads by a power of two. The results indicate that there is a certain threshold where the model becomes expressive
enough to be able to learn alignment behavior from just the context.

Figure 15: Why Polynomials? Comparing Trends Across Various ICL Tasks
This plot compares performance on translation, summarization, planning tasks from (Agarwal et al., 2024). For the
polynomial regression task, we add clamped values to the context as a proxy for alignment to a new task. Trends across very
different tasks which attempt to learn a task entirely from the context window (summarization, translation, planning), match
that of polynomial regression. To compare the trends across various tasks, the success rate of each task is normalized to its
min and max from zero to one.

Figure 16: Can Polynomials Be Aligned In-Context?
As the context length increases, the model’s performance on points above the threshold increases, whereas the same cannot
be said for points below the threshold. Additionally, the negative MSE for points below the threshold (no clamping) is
significantly worse than if no clamping is provided in the context window. This hints at the sensitivity to the model to its
context in impacting original performance.
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Figure 17: How Well Can We Align Polynomials Given A Clamped Context
Across all degrees, adding in a clamped context leads to good predictions in which values above a threshold of 0.5 are
clamped, while the rest of the polynomial shape remains in tact.

Figure 18: Clamped Alignment of Base Polynomial Regression Model
The transformer model is able to perform the task of clamping values in-context after being additionally finetuned. It
predictably outperforms the Chebyshev Ridge and zero predictor baselines, and this performance difference is especially
visible at higher degrees.
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