
Your Theory Is Wrong: Using Linguistic Frameworks
for LLM Probing

Victoria Firsanova∗

Department of Mathematical Linguistics
St Petersburg State University
St Petersburg, Russia 199034
st085687@student.spbu.ru

Abstract

The paper introduces a novel probing tool that uses linguistic frameworks, such as
Lexical-Functional Grammar (LFG), Categorial Grammar (CG), and Head-Driven
Phrase Structure Grammar (HPSG), to explore the correspondence between large
language model (LLM) embeddings and formal language descriptions. The method
uses LLM embeddings to construct a graph and compare it to representations
generated from a linguistic framework description based on the Backus-Naur Form
(BNF). By identifying intersections between the graphs, the method allows for as-
sessing the similarity between LLM internal structure and formal linguistic theories.
The findings suggest that while LLM representations do not fully correspond to any
linguistic framework, they offer insights into the language structures that exceed tra-
ditional theories because LLMs’ knowledge is derived from the real-world language
data they are trained on. This idea questions existing linguistic theories providing
new methods for verifying and refining linguistic hypotheses. The codebase for
this paper is available at https://github.com/vifirsanova/llm-dmt/.

1 Introduction

Existing research on large language model (LLM) probing has largely focused on surface-level
structures derived from syntax or word similarity [1, 2, 3]. Still, it remains unclear whether the
internal representations of large language models (LLMs) align with linguistic categories described by
established language theories, such as Lexical-Functional Grammar (LFG) [4], Categorial Grammar
(CG) [5], and Head-Driven Phrase Structure Grammar (HPSG) [6]. Understanding the relationship
between LLM internal structures and linguistic categories and rules declared by formal language
theories could provide insights into language modeling and foundational linguistics.

The paper aims to introduce a novel tool for LLM probing based on formal linguistic frameworks.
The proposed method compares the LLM embeddings with the structures described by linguistic
theories, such as LFG, CG, and HPSG. To address this, the study proposes constructing two graphs:
the LLM graph from the LLM embeddings and a framework-based graph from a Backus-Naur Form
(BNF) description of a linguistic framework. Calculating the intersections between these graphs
allows for assessing the extent to which the model’s representations align with the formal structure of
the theory. The approach implementation steps are as follows:

• Extract LLM embeddings
• Construct the LLM graph from LLM embeddings
• Obtain BNF description of a linguistic framework

∗Alternative email address: vifirsanova@gmail.com

Interpretable AI: Past, Present and Future Workshop at NeurIPS 2024

https://github.com/vifirsanova/llm-dmt/

• Convert BNF to graph representation
• Search for intersections between two graphs
• Calculate metric scores to measure similarity between two graphs

The research addresses the following questions:

• What are the criteria for choosing formal descriptions for linguistic theory modeling?
• Which formal descriptions other than BNF can be used to represent linguistic theories?
• Is it possible to describe all linguistic frameworks using formal rules?
• How to define and label edges and nodes of the graph representing LLM internal structure?

This study is a work in progress and would not answer some research questions. Further work is
planned to obtain more explanations for the stated questions.

The paper describes a new method to evaluate the extent to which LLMs encode linguistic categories
and structures as defined by formal language theories LFG, CG, and HPSG. The method is tested
using a novel synthetic dataset introduced in this paper. This dataset is designed for LLM linguistic
competence assessment, and its structure is inspired by the grammaticality judgment tests.

The study findings suggest that while LLM embeddings do not fully align with linguistic frameworks,
they can provide additional insights into natural language structures. The reason for this finding
is that most foundational linguistic frameworks are based on limited observational data because
the humans’ ability to observe and analyze data is limited and their judgments are subjective. The
LLM observations are drawn from the real-world data on which they are trained. The study suggests
integrating LLMs into foundational linguistic research and questions the adequacy of existing theories.
In perspective, the proposed tools can be adapted to develop a novel approach to verifying and refining
linguistic hypotheses through LLMs.

The paper contributions are the following:

• A novel synthetic dataset for the LLM linguistic competence assessment2

• A new LLM probing approach3

• A new tool for linguistic hypothesis verification

The study limitation is the limited scope of language phenomena; the proposed method focuses
on syntactic structures and might not capture semantics, pragmatics, or discourse-level features.
Another limitation is the method scalability since constructing and comparing large graphs using
LLMs can be computationally expensive. Also, the provided approach does not answer why certain
aspects of language are or are not captured by LLMs, focusing on the similarities between graph
representations instead of their cause. The limitations highlight the prospects for future work to
address these challenges.

2 Background

The study utilizes syntactic frameworks for linguistic research widely used in computational lin-
guistics. The frameworks are Lexical-Functional Grammar (LFG), Categorial Grammar (CG), and
Head-Driven Phrase Structure Grammar (HPSG). This section explains how LFG, CG, and HPSG can
provide structural insights into how LLMs process language by constructing graphs for interpretability
studies.

LFG represents language through two primary structures: Constituent Structure (c-structure) and
Functional Structure (f-structure) [4]. To construct a graph, the c-structure can be represented as a
parse tree. The tree nodes should correspond to syntactic categories, such as a noun phrase (NP)
or a verb phrase (VP). The edges should denote the hierarchical relationships between them. The
f-structure can be represented as a feature graph, where nodes represent grammatical functions (e.g.,

2The dataset is open and freely available at https://huggingface.co/datasets/missvector/
multi-wiki-grammar/

3The repository with the source code is avaliable at https://github.com/vifirsanova/llm-dmt/

2

https://huggingface.co/datasets/missvector/multi-wiki-grammar/
https://huggingface.co/datasets/missvector/multi-wiki-grammar/
https://github.com/vifirsanova/llm-dmt/

Table 1: Dataset sample

Language Title Grammatical Sentence Non-Grammatical Sentence

English School Most countries have systems The countries {most}{Word Order Error}
of formal education. have systems of formal education.

subject, object) and their values, while edges indicate dependencies or relationships between these
functions. By comparing the LFG graph with the LLM-based graph, it might be possible to indicate
errors in how the model handles grammatical functions (e.g., misassigning the subject or object).

CG represents both syntax and semantics through category assignments. Each lexical item is assigned
a category which determines how it can combine with other categories to form valid sentences. Each
category can be a function that takes other categories as arguments [5]. In graph form, nodes can
represent lexical items with their categories (e.g., N for nouns, S/N for sentence-forming elements),
and edges can represent how one category applies to another to form a valid expression. Comparing
the CG graph with the LLM-based graph can reveal errors in how the model handles grammatical
functions (e.g., misassigning the subject or object).

HPSG represents syntactic structures through feature structures emphasizing the head of the phrase
with its arguments and adjuncts [6]. The feature structures can be represented as directed acyclic
graphs, where the nodes correspond to syntactic categories with associated features (e.g., number,
tense, case), and edges denote the relationships between features and categories. Comparing the
LFG-graph to the HPSG-graph allows for the detection and correction of grammar violations, where
the LLM violates constraints, such as incorrect feature unification (e.g., mismatched subject-verb
agreement).

One of the study research questions is whether it is possible to describe various linguistic frameworks
using formal rules since rules allow for straightforward graph construction. For example, early
transformational grammar used explicit phrase structure rules for generating deep language structures
and transformational rules to map the underlying language structures onto surface structures. However,
starting with the Principles and Parameters theory there were less explicit rules, which continued into
the current Chomskyan minimalist framework [7, 8, 9].

While some frameworks can be represented with rules, others might use systems of constraints to
describe language. Since LFG, CG, and HPSG can be described by a set of explicit rules, such
approaches often find applications in computational linguistics. That is why this study focuses on
these approaches and defines them in terms of graph theory for the implementation of the proposed
method.

3 Data

The paper presents a novel synthetically annotated dataset. Table 1 shows the dataset sample.
The dataset is available on Hugging Face at https://huggingface.co/datasets/missvector/
multi-wiki-grammar. The dataset is designed to evaluate LLMs’ sensitivity to grammatical errors
across different languages. The dataset provides a resource for testing linguistic hypotheses and can
be used for educational purposes. The dataset is multilingual and provides information in English,
Chinese, and Russian. The dataset contains the following components:

• Language: The represented languages.

• Title: Titles of the source articles.

• Grammatical Sentence: Cleaned and truncated sentence-level segments of the source articles.

• Non-Grammatical Sentence: One or more non-grammatical variations of each grammatical
sentence. The variations are generated synthetically through LLMs. The variations target
specific grammatical errors. Each error is annotated with its type and position in the sentence.

The non-grammatical variations of sentences targets the following grammar violations:

• Agreement Errors: Errors in subject-verb or noun-adjective agreement.

3

https://huggingface.co/datasets/missvector/multi-wiki-grammar
https://huggingface.co/datasets/missvector/multi-wiki-grammar

• Word Order Errors: Incorrect word sequencing.
• Missing Articles/Particles: Omissions of articles or particles.
• Incorrect Case Usage: Mistakes in case marking.
• Improper Verb Tense: Errors in verb tense usage.

The dataset contains multilingual text data sourced from Wikipedia and academic papers shared under
the Creative Commons Attribution license. The dataset statistics are the following:

• The dataset size: 5.3 GB.
• The number of source articles: around 350,000.
• The average number of grammatical sentences in each article: 100.
• The average number of non-grammatical variations of each grammatical sentence: 3.
• The sentence length range: from 50 to 100 characters.

The dataset collection process started with scraping Wikipedia articles and academic papers from
online services for aggregating academic sources distributed through Creative Commons license.
Each article was segmented on a sentence level. The sentences were filtered by length. The minimum
sequence length was set to 50 characters, and the maximum sequence length was set to 100 characters.
This simple filtering allowed for cleaning the data from noise, as well as simplify the syntax annotation
task so that the model would not have to parse complex sentence with several clauses. Each sentence
was fed to an LLM with the instructions to generate non-grammatical versions of the provided
sentences according to a set of pre-defined error types. The annotation results were transformed to
JSON objects and appended to the data frame into a specified column.

The raw texts of source articles from Wikipedia and academic sources were normalized using Unicode
Normalization Form KD (NFKD). Wikipedia-specific artifacts, such as soft hyphens, accents, and
bracketed content, were removed. Each processed text from the source articles was segmented at the
sentence level. Sentences shorter than 50 characters and longer than 100 characters were removed
to ensure manageable sentence lengths. The processed sentences were stored in the Grammatical
Sentence dataset column.

For each grammatical sentence, a set of non-grammatical variations was generated using Llama 3 [10]
with 8 billion parameters quantized to a 4-bit format through GGUF for efficiency. This type of the
dataset annotation was inspired by grammaticality judgment tests, a type of linguistic experiments.
The procedure involved generating non-grammatical versions of sentences by applying specific
grammatical errors. The prompt template used in this annotation process is the following:

Generate Non-Grammatical sentence for the following example: <sentence>.
Consider the following set of errors: Agreement Errors, Word Order Errors,
Missing Articles/Particles, Incorrect Case Usage, Improper Verb Tense

Given the sentence "Most countries have systems of formal education, which is sometimes compul-
sory", the LLM produced its non-grammatical variation "The countries most have systems of formal
education, which sometimes is compulsory for them." and the following judgments:

- Agreement Errors: "The countries" is a plural noun, but "have" and "is"
should be in the plural form ("have" -> "have" and "is" -> "are").

- Word Order Errors: "Most" is incorrectly placed after the subject "the
countries."

- Missing Articles/Particles: No error in the sentence.
- Incorrect Case Usage: The subject "the countries" is in the nominative

case, but "them" is the objective form (used as the indirect object).
- Improper Verb Tense: The sentence is in the correct tense.

The generated non-grammatical sentences were added to the Non-Grammatical Sentence column
of the dataset. The LLM judgments were used to annotate the synthetic sentences with generated
error types and their positions in the text, for example: "The countries {most}{Word Order Error}
have systems of formal education...". This annotation highlights the word "most" to indicate the error
position, and marks "Word Order Error" as the error type.

4

Figure 1: Sample graph structure.

The dataset limitation is that it relies on synthetically generated grammaticality judgments. For
example, in the given judgment, the system indicates the Agreement Error between "The countries"
and "is", which, according to the generated judgment, should be in plural. However, in the original
sentence "is" is related to "which" and thus should be singular. To address this limitations, a manual
review was conducted on a subset of the generated non-grammatical sentences. The review was
conducted by 15 experts in linguistics and native speakers of the languages represented in the dataset.

4 Method

The proposed method compares the internal representations of an LLM with a linguistic framework
described using BNF. The study uses BNF because it is a widespread solution for setting a formalism
in LLM-based solutions. For example, BNF is widely used as a tool for describing a JSON struc-
ture [11]. The goal is to evaluate how well the LLM’s representations align with the formal structure
of the linguistic framework. The pseudocode is given in the Appendix A.

The LLM for probing extracts embeddings for a given grammatical or non-grammatical sentence
from the proposed dataset. In this study, the embeddings from LLMs were extracted through loading a
pre-trained AnglE model [13], encoding the input text into embeddings with a prompt "Represent this
sentence for searching relevant passages: text’", and visualizing the embeddings using t-SNE [14].
The t-SNE mapping was used to construct a directed syntactic graph. This procedure follows a
structural probing procedure described in [1], however, the approach described in [1] is proposed for
encoder language models, while the proposed method is adapted to decoder models through applying
AnglE to obtain embeddings from LLMs. Figure 1 shows a simplified graph visualization.

A linguistic framework, for example, LFG, CG, or HPSG, is described using BNF. Consider describing
the LFG framework with BNF. A sentence (S) in LFG typically consists of a subject and a predicate:

<S> ::= <NP> <VP>

A verb phrase can consist of a verb followed by optional noun phrases or prepositional phrases:

<VP> ::= <V> | <V> <NP> | <V> <NP> <PP>

These rules capture the c-structure (constituency structure) in LFG. To include the f-structure (func-
tional structure), the relationships between syntactic categories and their grammatical functions (e.g.,
subject, object, etc.) should be added. The sentence in c-structure consists of a subject (NP) and a
predicate (VP). In f-structure, the NP corresponds to the subject (SUBJ), and the VP corresponds to
the predicate (PRED):

<S> ::= <NP> <VP> { (↑ SUBJ) = ↓, (↑ PRED) = ↓ }

Here, ↑ refers to the root in the graph, and ↓ refers to the current node. The f-structure annotations
(↑ SUBJ) = ↓ mean that the subject function (SUBJ) of the sentence is filled by the noun phrase (NP),
and (↑ PRED) = ↓ means that the verb phrase (VP) corresponds to the predicate function.

5

Figure 2: Sample graph structure.

The BNF description is used to construct LLM guardrails. In this study, by guardrails we mean a set
of rules controling the LLM behaviour. The guardrails control the LLM output structure so that it
strictly follows the BNF rules, for example, the LFG rules. In the LFG example, the guardrail should
describe rules defining f-structure and c-structure according to BNF desription, validate the syntactic
structure and populate the syntax graph given lexical items from the dataset. The lexical items are
represented by word-level tokens of grammatical and non-grammatical sentences from the proposed
dataset.

To automate the process of creating BNF descriptions, a formal description of each of the framework
chosen for this study was generated through Qwen 2.5 with 72 billion parameters using prompt-
engineering techniques. The prompting resulted in a list of rules generated with the model. The rules
was converted into BNF using another prompt, and subsequently written to a reproducible file.

The guardrail XML schema for the LFG framework is given in the Appendix B. This guardrail
outlines the rules and constraints for f-structure and c-structure in LFG including definitions and
validations for syntactic rules, lexical entries, and functional mappings. Using the guardrails, the
LLM populates the syntax structures defined by the framework with lexical entries from sentences
from the dataset, for example:

<Det> ::= "the" { (↑ DET) = "the" }
<N> ::= "dog" { (↑ OBJ) = "school" }

The BNF structure was loaded to an LLM with a system prompt to construct a framework-based
graph. For example, to visualize the LFG-based graph, the LLM was tasked to populate a graph with
nodes and edges denoting the elements of the c-structure and f-structure of a given sentence. The
graph was used to generate graphical representations of syntactic and functional components of a
sentence for interpretability. Figure 2 shows an example of the generated visualization.

The algorithm checks for matching nodes between the LLM graph and the BNF graph. If a match
is found (i.e., the nodes from both graphs represent similar concepts or structures), the intersection
is recorded. The node ratio is calculated by comparing the number of intersections with the total
number of nodes in both graphs. Similarly, the edge ratio is calculated by comparing the number
of intersections with the total number of edges in both graphs. The overall similarity score is the
average of the node and edge ratios, representing how closely the LLM’s representations align with
the BNF framework.

6

Table 2: The results obtained on grammatical and non-grammatical sentences using Llama 3 after
quantization

Framework Intersection score (grammatical) Intersection score (non-grammatical)

LFG 0.78 0.44
CG 0.71 0.39
HPSG 0.67 0.38

5 Results and Discussion

The method was tested with Llama 3 quantized to 4-bit format through GGUF for efficiency, since
the experiments were conducted in a low-resource computational setting. Both grammatical and non-
grammatical sentences from the proposed dataset were used to build and compare graphs using the
proposed method. Table 2 shows the evaluation results based on the average graph intersection score,
where 1 indicates perfect alignment (full intersection) and 0 indicates no alignment (no intersection).
These scores are based on the expected alignment between the LLM-graphs and the framework-based
graphs as described in the previous section. Appendix C shows the BNF rules constructed for each
framework to perform the evaluation.

The comparison of alignment between grammatical and non-grammatical sentences is necessary
to assess the study significance. As expected, grammatical sentences align more closely with the
structure of linguistic frameworks, as they adhere to the rules defined by these theories, while non-
grammatical sentences deviating from standard linguistic rules result in a lower intersection score
between graphs. LFG captures syntactic structures that LLMs are likely to represent reasonably well,
leading to a high intersection. CG’s emphasis on compositional semantics aligns moderately well
with LLMs, so the score is slightly lower than LFG. Due to HPSG’s complexity the LLM captures
some aspects of it, the overall alignment is lower compared to LFG and CG.

The method evaluates how well an LLM’s internal representations captured in embeddings match
the formal structure of a linguistic theory. The limitation here is that different frameworks capture
different types of relationships, while LLM embeddings only encode relationships based on vector
similarity and those dependency classes that are pre-defined by the developer, for example, Universal
Dependencies [12] annotation captured in Figure 1.

Another limitation is that the population of lexical entities requires manual labeling or scaling with
LLM as described in this paper. Manual labeling requires expert work, is difficult to scale, and
requires specialists with the required level of linguistic competence. Labeling with LLM solves these
challenges, but the framework-based graph may be biased by LLM embeddings and the experimental
results will not be accurate. However, it will still be possible to compare LLM embeddings with
framework-based graphs and conduct an in-depth study of LLM interpretability.

6 Conclusion

The method presented in this study extracts embeddings from LLMs to construct and visualize a
syntax graph representing the internal linguistic structure of a language model using t-SNE. Next, the
method constructs directed graphs representing various linguistic frameworks through generating
rules and BNF descriptions allowing for building syntactic graphs automatically from their natural
language descriptions. The approach aims to capture common nodes and edges between LLM-based
and framework-based graphs.

The study findings indicate that while the internal representations of Large Language Models (LLMs)
do not align with established linguistic frameworks, they offer insights into language structures that
extend beyond the scope of traditional theories. LLMs capture patterns that linguistic theories may
not fully address due to the limitations of the data that an expert can observe to formulate the linguistic
theory. LLMs provide a novel perspective that challenges linguistic theories, offering new paths for
verifying and refining linguistic hypotheses. It is important to note that the presented work is still in
progress, and further research is required to deepen the understanding and address the limitations
identified. Future studies will focus on refining the methodologies and exploring additional linguistic
frameworks to better integrate LLM insights with theoretical models.

7

References

[1] John Hewitt and Christopher D. Manning. 2019. A Structural Probe for Finding Syntax in Word Rep-
resentations. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for Computational Linguistics.

[2] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What Does BERT Look
at? An Analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy. Association for Computational
Linguistics.

[3] Ethan A. Chi, John Hewitt, and Christopher D. Manning. 2020. Finding Universal Grammatical Relations in
Multilingual BERT. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 5564–5577, Online. Association for Computational Linguistics.

[4] Robert C. Berwick. 1981. Computational Complexity and Lexical Functional Grammar. In 19th Annual
Meeting of the Association for Computational Linguistics, pages 7–12, Stanford, California, USA. Association
for Computational Linguistics.

[5] Gosse Bouma and Gertjan van Noord. 1994. Constraint-Based Categorial Grammar. In 32nd Annual Meeting
of the Association for Computational Linguistics, pages 147–154, Las Cruces, New Mexico, USA. Association
for Computational Linguistics.

[6] Derek Proudian and Carl Pollard. 1985. Parsing Head-Driven Phrase Structure Grammar. In 23rd Annual
Meeting of the Association for Computational Linguistics, pages 167–171, Chicago, Illinois, USA. Association
for Computational Linguistics.

[7] Noam Chomsky. 1991. Some Notes on Economy of Derivation and Representation. In Principles and
Parameters in Comparative Grammar, ed. Robert Freidin, pages 417-454, Cambridge, MA: MIT Press.

[8] Noam Chomsky and Howard Lasnik. 1993. Principles and Parameters Theory. In Syntax: An International
Handbook of Contemporary Research, eds. Joachim Jacobs, Arnim v. Stechow, Wolfgang Sternefeld and Theo
Vennemann, pages 506-569. Berlin: de Gruyter.

[9] Barbara H. Partee, Alice G. ter Meulen, and Robert Wall. 2012. Mathematical methods in linguistics. Vol.
30. Springer Science & Business Media.

[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783.

[11] Jiaye Wang. 2024. Constraining Large Language Model for Generating Computer-Parsable Content. arXiv
preprint arXiv:2404.05499.

[12] Marie-Catherine De Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman. 2021. Universal
dependencies. Computational linguistics 47, no. 2, pages 255-308.

[13] Xianming Li, and Li Jing. 2023. Angle-optimized text embeddings. arXiv preprint arXiv:2309.12871.

[14] Laurens Van der Maaten, & Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine
learning research, 9(11).

A Appendix / supplemental material

The high-level pseudocode to implement the proposed method:

Step 1: Extract LLM embeddings and construct the graph
Input: text - input sentence to be processed
Output: llm_graph - graph representation of the embeddings

embeddings = llm_model.get_embeddings(text)
llm_graph = Graph(embeddings)

Step 2: Obtain BNF description of a linguistic framework
Input: linguistic_framework - object representing a linguistic framework
Output: bnf_description - BNF description of the framework

bnf_description = linguistic_framework.get_bnf_description

8

Step 3: Convert BNF to graph representation
Input: bnf_description - BNF description of the linguistic framework
Output: bnf_graph - graph representation of the BNF description

bnf_graph = Graph(bnf_description)

Step 4: Search for intersections between graphs
Input: llm_graph - graph from embeddings, bnf_graph - graph from BNF
Output: intersections - list of matching nodes between the graphs

if match_nodes(llm_graph, bnf_graph):
intersections.append(llm_node.id, bnf_node.id)

Step 5: Calculate metrics to assess similarity
Input: intersections - list of matching nodes, llm_graph, bnf_graph
Output: similarity_score - final similarity score between the two graphs

node_ratio = intersections / (llm_graph.node_count, bnf_graph.node_count)
edge_ratio = intersections / (llm_graph.edge_count, bnf_graph.edge_count)

similarity_score = (node_ratio + edge_ratio) / 2

B Appendix / supplemental material

The proposed guardrails for the LFG-graph construction.

<GrammarGuardrails>

<!-- C-Structure Guardrails -->
<CStructure>

<!-- Rule Enforcement -->
<RuleEnforcement>

<Description>Ensure all sentences follow the c-structure
rules defined in BNF.</Description>
<Validation>

<Check>Validate that the c-structure tree adheres to
the rule: S ::= NP VP</Check>
<Check>Ensure each node is consistent with allowed
phrase structures.</Check>

</Validation>
</RuleEnforcement>

<!-- Lexicon Integrity -->
<LexiconIntegrity>

<Description>Ensure all terminal symbols are correctly
mapped to syntactic categories.</Description>
<Validation>

<Check>Verify that every lexical entry in the tree
corresponds to a valid syntactic category (e.g.,
Det, N, V).</Check>
<Check>Ensure no lexical entry is missing from the
lexicon.</Check>

</Validation>
</LexiconIntegrity>

<!-- Tree Validity -->
<TreeValidity>

<Description>Ensure the c-structure forms a valid
syntactic tree.</Description>
<Validation>

<Check>Ensure the tree has a single root node.</Check>
<Check>Check for disconnected nodes or cycles
in the tree.</Check>

</Validation>

9

</TreeValidity>
</CStructure>

<!-- F-Structure Guardrails -->
<FStructure>

<!-- Functional Annotation Consistency -->
<FunctionalAnnotationConsistency>

<Description>Ensure that every c-structure node has a
corresponding functional annotation.</Description>
<Validation>

<Check>Verify that every NP has the correct functional
role (SUBJ, OBJ).</Check>
<Check>Ensure that every VP is properly linked to the
predicate (PRED).</Check>

</Validation>
</FunctionalAnnotationConsistency>

<!-- Functional Equation Validation -->
<FunctionalEquationValidation>

<Description>Ensure functional equations in f-structure
are consistent and free of contradictions.</Description>
<Validation>

<Check>Run checks to detect contradictions in
functional assignments.</Check>
<Check>Validate that all functional attributes are
correctly assigned without conflicting roles.</Check>

</Validation>
</FunctionalEquationValidation>

<!-- Mapping Completeness -->
<MappingCompleteness>

<Description>Ensure all relevant c-structure nodes are
properly annotated in f-structure.</Description>
<Validation>

<Check>Ensure every critical c-structure node has
a corresponding f-structure role assigned.</Check>
<Check>Review a checklist of required functional
roles to ensure no roles are omitted.</Check>

</Validation>
</MappingCompleteness>

</FStructure>

</GrammarGuardrails>

C Appendix / supplemental material

1.1. The examples of c-structure BNF rules for LFG

<S> ::= <NP> <VP>
<NP> ::= <Det> <N> | <N>
<VP> ::= <V> | <V> <NP> | <V> <NP> <PP>
<PP> ::= <P> <NP>

These rules define the sentence surface structure.

1.2. The examples of f-structure BNF rules for LFG

1.2.1. The sentence structure rule

<S> ::= <NP> <VP> { (↑ SUBJ) = ↓, (↑ PRED) = ↓ }

In this rule, the subject of the sentence (SUBJ) is associated with the NP (noun phrase), and the predicate (PRED)
is associated with the VP (verb phrase). The arrow "↑" refers to the higher-level structure (in this case, the
sentence), and "↓" refers to the current structure (the NP or VP).

10

1.2.2. The noun phrase rule

<NP> ::= <Det> <N> { (↑ SPEC) = ↓, (↑ PRED) = ↓ }
| <N> { (↑ PRED) = ↓ }

In the first option, the determiner (Det) is linked to the SPEC function (specifier), and the noun (N) is linked to
the PRED function. In the second option, the noun directly serves as the predicate of the noun phrase.

1.2.3. The verb phrase rule

<VP> ::= <V> { (↑ PRED) = ↓ }
| <V> <NP> { (↑ PRED) = ↓, (↑ OBJ) = ↓ }
| <V> <NP> <PP> { (↑ PRED) = ↓, (↑ OBJ) = ↓, (↑ OBL) = ↓ }

In the first option, the verb (V) is linked to the predicate function. In the second option, the verb is linked to
the predicate, and the noun phrase is linked to the object (OBJ). In the third option, in addition to the verb and
object, the prepositional phrase (PP) is linked to the oblique function (OBL).

1.2.4. The preposition phrase rule

<PP> ::= <P> <NP> { (↑ PRED) = ↓, (↑ OBJ) = ↓ }

The preposition (P) is linked to the predicate, and the noun phrase within the prepositional phrase is linked to the
object of the preposition.

2. The examples of BNF rules for CG

2.1. The sentence structure rule

<S> ::= <NP> <VP>

A sentence (S) is composed of a noun phrase (NP) followed by a verb phrase (VP).

2.2. The verb phrase rule

<VP> ::= <V_trans> <NP>
| <V_intrans>

A verb phrase can be a transitive verb (V_trans) followed by a noun phrase (NP), or an intransitive verb
(V_intrans).

3. The examples of BNF rules for HPSG

3.1. The sentence structure rule

<S> ::= <NP> <VP> { (HEAD verb), (SUBJ <NP>) }

A sentence consists of a noun phrase (subject) followed by a verb phrase. The features indicate that the head of
the sentence is a verb, and the subject is an NP.

3.2. The noun phrase rule

<NP> ::= <Det> <N> { (HEAD noun), (AGR <agreement features>) }
| <ProperNoun> { (HEAD noun), (AGR <agreement features>) }

A noun phrase can be a determiner followed by a noun or a proper noun. The feature structure includes the head
being a noun and agreement features like number and gender.

3.3. The verb phrase rule

<VP> ::= <V> <NP> { (HEAD verb), (SUBJ <NP>), (OBJ <NP>) }
| <V> { (HEAD verb), (SUBJ <NP>) }

A verb phrase consists of a verb and its complements (subject and object). The head of the VP is a verb, and it
may include subject and object features.

3.4. The determiner rule

<Det> ::= "the" | "a" { (HEAD det), (AGR <agreement features>) }

Determiners like "the" or "a" have agreement features.

11

	Introduction
	Background
	Data
	Method
	Results and Discussion
	Conclusion
	Appendix / supplemental material
	Appendix / supplemental material
	Appendix / supplemental material

