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Abstract
Data plays a fundamental role in the training001
of Large Language Models (LLMs). While002
attention has been paid to the collection and003
composition of datasets, determining the data004
sampling strategy in training remains an open005
question. Most LLMs are trained with a sim-006
ple strategy, random sampling. However, this007
sampling strategy ignores the unbalanced na-008
ture of training data distribution, which can be009
sub-optimal. In this paper, we propose Clus-010
terClip Sampling to balance the text distribu-011
tion of training data for better model training.012
Specifically, ClusterClip Sampling utilizes data013
clustering to reflect the data distribution of the014
training set and balances the common samples015
and rare samples during training based on the016
cluster results. A repetition clip operation is017
introduced to mitigate the overfitting issue led018
by samples from certain clusters. Extensive019
experiments validate the effectiveness of Clus-020
terClip Sampling, which outperforms random021
sampling and other cluster-based sampling vari-022
ants under various training datasets and large023
language models.024

1 Introduction025

Large Language Models (LLMs) have opened new026

frontiers in understanding and generating human027

languages (Brown et al., 2020; Touvron et al.,028

2023a; OpenAI, 2023). A critical aspect of train-029

ing these models lies in the acquisition and or-030

ganization of training data (Wang et al., 2023).031

Some works focus on selecting high-quality data.032

These works usually perform data filtering or data033

cleaning from a large corpus, based on either rule-034

based (Gao et al., 2021; Computer, 2023) or model-035

based algorithms (Abbas et al., 2023; Tirumala036

et al., 2023; Marion et al., 2023). On the other hand,037

several approaches concentrate on optimizing the038

composition weights of the collected data. These039

methods typically focus on optimizing the domain040

weights either using heuristics (Du et al., 2022; Tou-041

vron et al., 2023a) or model statistics (Xie et al.,042

2023a; Fan et al., 2023). While much attention has 043

been given to the collection and composition of di- 044

verse datasets for training LLMs (Gao et al., 2021; 045

Computer, 2023; Touvron et al., 2023b; Mukher- 046

jee et al., 2023), it is still unclear how the training 047

data sampling affects the optimization of language 048

models. 049

The sampling methods of existing works are 050

coarse-grained, which determines the sampling 051

weights or sampling order of each domain. The 052

domain is usually defined based on the data source 053

or other metadata during the dataset collection, 054

which is coarse-grained and inaccurate. For in- 055

stance, the Llama models (Touvron et al., 2023a) as- 056

sign domain mixture weights heuristically, includ- 057

ing 67% CommonCrawl web data, 4.5% Github 058

code, 4.5% Wikipedia documents, etc. And Roz- 059

ière et al. (2023); Azerbayev et al. (2023) improve 060

certain abilities of LLMs by tuning the model on 061

specific domains, like code or mathematical texts. 062

However, the texts are sampled randomly in each 063

domain, which ignores the unbalanced distribu- 064

tion of the expressed meanings and topics. Due 065

to the nature of the data corpus, texts with simi- 066

lar meanings have a long tail distribution in the 067

training set (Zipf, 1949; Chan et al., 2022; Abbas 068

et al., 2023). When using random sampling, LLMs 069

can underfit rare documents and overfit common 070

samples. It is straightforward to utilize a uniform 071

sampling strategy that samples texts with differ- 072

ent meanings evenly, which up-samples rare docu- 073

ments and down-samples common texts. However, 074

uniform sampling will up-weight rare documents 075

and repeat them so many times in the training, re- 076

sulting in severe overfitting of trained LLMs on 077

these training samples. 078

To address the above challenges, we propose 079

ClusterClip, a cluster-based sampling strategy 080

with clip operation to mitigate overfitting. This 081

sampling strategy has two steps. Firstly, we lever- 082

age data clustering to reflect the data distribution. 083
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Figure 1: Illustration of ClusterClip Sampling. The algorithm utilizes data clustering to describe the training
data distribution. Then, it balances the sampling probabilities of samples in different clusters during the training.
Moreover, a clip operation is introduced to knock out samples with too many repetitions.

Based on off-the-shelf NLP tools, the semantic-084

related texts could be grouped into the same cluster.085

By calculating the size of each semantic cluster, we086

can evaluate the data rarity. Secondly, we perform087

the data sampling using the cluster information.088

The documents from different clusters are sampled089

evenly at the beginning of the training, thus en-090

couraging the model to learn from rare documents091

instead of wasting computation on common texts.092

As the training progresses, a clip operation is ap-093

plied. If certain documents are sampled too many094

times, these documents are clipped and no longer095

sampled from the dataset. Thus, ClusterClip re-096

balances the data distribution, which facilitates the097

model to learn rare documents but avoids severe098

overfitting of repeated texts by clipping.099

Our approach is distinguished by its ability to100

improve model learning efficiency and generaliza-101

tion without relying on dataset-specific metadata102

or complicated optimizations. Extensive experi-103

ments demonstrate the versatility and effectiveness104

of our proposed ClusterClip Sampling. We show105

that it consistently enhances the performance of106

representative LLMs, Llama2-7B (Touvron et al.,107

2023b) and Mistral-7B (Jiang et al., 2023), in both108

pre-training and supervised fine-tuning scenarios,109

indicating its broad applicability. Moreover, we110

further evaluate several variants of cluster-based111

sampling methods and demonstrate that: (1) All the112

cluster-based sampling method variants outperform113

random sampling, indicating the effectiveness of114

sampling based on semantic distribution; (2) The115

Clip operation effectively mitigates the overfitting116

of repeated documents, leading to large improve-117

ments in diverse tasks. (3) Specializing data train-118

ing order (e.g. General-to-Specific or Specific-to-119

General) can affect the performance of LLMs on120

various downstream tasks, showing the promise of121

progressive learning on LLMs; 122

To sum up, our contributions are as follows: 123

• We propose ClusterClip Sampling, which re- 124

balances the occurrence of common or rare 125

documents with a clip operation to avoid se- 126

vere overfitting. 127

• We validate the effectiveness of ClusterClip 128

Sampling on multiple datasets and LLMs, 129

demonstrating the broad applicability and sta- 130

ble improvements across pre-training and fine- 131

tuning. 132

• We present representative variant cluster- 133

based sampling methods to show where the 134

improvements of ClusterClip come from and 135

provide interesting results for future design of 136

sampling strategies. 137

2 Related Works 138

Data Clustering for LLMs Clustering methods 139

are widely applied in data curation of LLM pre- 140

training. A line of work incorporates clustering for 141

data deduplication. Semdedup (Abbas et al., 2023) 142

aims to eliminate semantic duplicates from the pre- 143

training corpus and use clustering in the sentence 144

embedding space to reduce the computational cost. 145

D4 (Tirumala et al., 2023) further aggressively re- 146

moves duplicate documents by combining multiple 147

clustering-based deduplication methods. Moreover, 148

clustering also has been used to improve data qual- 149

ity. Existing works perform quality filtering using a 150

classifier to find data samples that are close to high- 151

quality texts (Brown et al., 2020; Gao et al., 2021; 152

Du et al., 2022; Touvron et al., 2023a),. And MiniP- 153

ile (Kaddour, 2023) is constructed by filtering out 154

low-quality clusters based on semantic embeddings. 155
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Different from previous works, we explore the ef-156

fectiveness of clustering for learning strategies in-157

stead of data curation for LLM training.158

Data Composition for LLM Pre-Training The159

composition of pre-training data is a determinant160

of LLM performance. Efforts are made to collect161

and utilize domain mixtures of pre-training data to162

improve LLM performance (Longpre et al., 2023;163

Shen et al., 2023; Nijkamp et al., 2023). Brown164

et al. (2020); Chung et al. (2022); Du et al. (2022);165

Azerbayev et al. (2023); Touvron et al. (2023a,b)166

exploit manually designed domain composition167

weights by small-scale pre-training experiments.168

However, we focus on cluster-based data sampling169

approaches, which do not rely on manual selection170

of data composition. In addition, existing works171

also explore the algorithms for searching optimal172

domain weights. Several methods involve training173

auxiliary models, either proxy models or reference174

models to determine the composition weights (Xie175

et al., 2023a; Fan et al., 2023; Mindermann et al.,176

2022). Furthermore, some works concentrate on177

sample-level data selection by introducing model-178

based metrics to measure sample weights, which in-179

clude importance score (Xie et al., 2023b), perplex-180

ity (Xia et al., 2023), and gradients (Marion et al.,181

2023). Different from these works, the cluster-182

based sampling strategies utilize off-the-shelf em-183

bedding models and semantic-based cluster-level184

data sampling.185

3 Methodology186

We propose ClusterClip Sampling, a cluster-based187

sampling strategy to rebalance the data distribution188

of the training corpus to facilitate model learning189

and mitigate overfitting. In this section, we delve190

into the detailed process of data clustering and the191

sampling strategy using cluster information to bal-192

ance the sampling probabilities of common and193

rare documents.194

3.1 Data Clustering195

Aiming to describe and manipulate the distribu-196

tion of texts in the training set, we introduce data197

clustering to group samples into semantic clus-198

ters. We choose not to rely on metadata from the199

dataset itself, as such information is often absent200

or fuzzy (Gao et al., 2021; Azerbayev et al., 2023).201

Instead, data clustering can automatically discover202

semantic similar documents and group these data203

points into clusters. Specifically, we first utilize204

off-the-shelf transformer-based models to generate 205

text representations for each data sample. Then we 206

conduct a K-Means clustering on these generated 207

data embeddings to group samples into clusters. 208

By clustering, we classify data with similar topics 209

into the same subset. Thus, we can analyze the 210

data distribution and rebalance the data distribution 211

when sampling the training data. 212

We choose out-of-the-box transformer-based em- 213

bedding models and the K-Means method in the 214

experiments as these methods are well-established, 215

efficient at scale, and can produce semantic-related 216

data clusters. Other embedding functions, includ- 217

ing rule-based or model-based, could also be uti- 218

lized for more accurate clustering. Comparing the 219

impact of different embedding or clustering meth- 220

ods on the data sampling strategies would be a 221

valuable topic and is our future work. 222

3.2 ClusterClip Sampling 223

After data clustering, the clusters can describe the 224

long tail distribution of the training set. Based on 225

the cluster information, ClusterClip Sampling in- 226

creases the sampling weights of rare documents 227

and decreases the weights of common texts. More- 228

over, a clip operation is introduced to mitigate over- 229

fitting. Thus, ClusterClip Sampling balances the 230

learning on both very common texts and extremely 231

rare documents. 232

Uniform Sampling At the beginning of training, 233

ClusterClip Sampling performs a Uniform Sam- 234

pling from the clusters, which aims to up-sample 235

rare data points and down-sample common texts. 236

We ensure that each cluster has the same proba- 237

bility of being sampled. After sampling the clus- 238

ter, amount of tokens in each cluster. This also 239

improves the data diversity within the batch as it 240

balances the occurrence of samples in each cluster 241

in a batch. 242

Clip Operation When uniformly sampling the 243

data, documents from small clusters can be sam- 244

pled a huge number of times. In this case, the 245

model will suffer from overfitting on these small 246

semantic clusters and not learn well on the whole 247

training set. To solve this issue, we further propose 248

a clip operation to add a maximum repetition of 249

each sample. When different clusters are uniformly 250

sampled, small clusters can be consumed multiple 251

times. The ClusterClip will record the repeated 252

times of each cluster. When one cluster has been 253

consumed a certain number of times, the cluster 254
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will be knocked out and will not be sampled in255

further training. Thus, the model will see a sample256

at most a certain number of times, which mitigates257

the overfitting.258

4 Experimental Setups259

To validate the proposed ClusterClip Sampling, we260

conduct extensive experiments on multiple datasets261

and LLMs. In this section, we introduce the exper-262

imental setups of our experiments, including the263

baselines, training datasets, training hyperparame-264

ters, and evaluation setups.265

4.1 Baselines266

To demonstrate the effectiveness of ClusterClip267

Sampling, we introduce several representative sam-268

pling methods for comparison.269

Random The texts are sampled randomly, which270

is widely used in the pre-training and fine-tuning of271

many LLMs (Touvron et al., 2023a,b; Azerbayev272

et al., 2023; Mukherjee et al., 2023).273

Uniform The texts are uniformly sampled from274

each cluster, which is a simplified version of Clus-275

terClip without the clip operation.276

General-to-Specific (G2S) Inspired by recent277

practice of training domain-specific language mod-278

els (Rozière et al., 2023; Azerbayev et al., 2023),279

we want the model to learn general abilities before280

acquiring specific domain knowledge and skills.281

Thus, G2S initiates by uniform sampling from each282

cluster. If a particular cluster is exhausted, sam-283

pling from that cluster ceases until the entire dataset284

has been traversed. By doing so, the model learns285

diverse and general samples before concentrating286

on some specific clusters.287

Specific-to-General (S2G) The objective of S2G288

is to prioritize the model’s learning of rare sam-289

ples and can be viewed as the opposite of G2S.290

It involves initially training the model to acquire291

knowledge in some specific domains before learn-292

ing general capabilities. To achieve this, it employs293

the exactly reversed sampling order of the G2S294

strategy for training. This can be related to progres-295

sive training or curriculum learning (Bengio et al.,296

2009; Hacohen and Weinshall, 2019), in which297

the model first learns from easy samples and then298

transfers to hard ones.299

4.2 Training Datasets 300

To fully validate the effectiveness of ClusterClip 301

Sampling, we train the models with different sam- 302

pling methods, including the proposed method and 303

baselines, on both supervised fine-tuning and pre- 304

training setups. 305

Superivsed Fine-Tuning Dataset We choose 306

Open-Orca (Lian et al., 2023) to probe the sam- 307

pling strategies on supervised fine-tuning. It is 308

an open-source implementation of Orca (Mukher- 309

jee et al., 2023) that employs GPT-3.5 and GPT- 310

4 to generate detailed answers and intermediate 311

thoughts given a diverse set of NLP tasks. Follow- 312

ing the methodology of Orca, Open-Orca collects 1 313

million outputs from GPT-4 and 3.2 million outputs 314

from GPT-3.5 based on these inputs. The total size 315

of the training set is about 1B tokens. 316

Pre-Training Dataset We utilized the Proof- 317

Pile-2 dataset (Azerbayev et al., 2023) to inves- 318

tigate the influence of various sampling strategies 319

for continual pre-training on specific domains. The 320

Proof-Pile-2 dataset is motivated by enhancing 321

the mathematical reasoning capabilities of mod- 322

els and consists of three components: code files, 323

web pages, and scientific papers, leading to 55B 324

tokens in total. 325

Preprocessing and Clustering We use the base- 326

sized Jina Embeddings 21 (Günther et al., 2023) 327

with mean pooling to generate text embeddings. 328

For Open-Orca, we do not differentiate between 329

data generated by GPT-4 and GPT-3.5 and mix 330

them for clustering and training, which reflects the 331

results in a more realistic scenario with mixed in- 332

struction data quality. We concatenate the inputs 333

and outputs and truncate the result text into 1024 334

tokens for embedding computation. Then, we run 335

K-Means with cosine distance on generated embed- 336

dings over 300 iterations to obtain 2000 clusters. 337

For Proof-Pile-2, we combined and shuffled dif- 338

ferent sub-domains of the mixture together and 339

sampled 10B tokens as our training set. This ap- 340

proach allows us to explore the model behavior 341

when changing data sampling strategies in the con- 342

text of continual training on data mixtures with mul- 343

tiple domains. After obtain the document embed- 344

dings, we set the number of iterations and clusters 345

of K-Means to 300 and 100 to obtain the clusters, 346

respectively. 347

1https://huggingface.co/jinaai/
jina-embeddings-v2-base-en
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4.3 Training Setups348

We adopt representative LLMs for training using349

the InternLM (Team, 2023). All models are trained350

on 64 A800 GPUs with bfloat16 mixed precision.351

Supervised Fine-Tuning Setups We choose352

Mistral-7B (Jiang et al., 2023) without aligning353

for chat as the backbone for supervised-fine-tuning.354

We fine-tuned the model with these sampling strate-355

gies separately, each for 20000 steps with a global356

batch size of 0.25 million tokens on Open-Orca,357

totaling 5B tokens. The context length is 4096 with358

packing. The learning rate is warmed up to 3e− 6359

over the first 200 steps and then cosine decayed360

to 3e− 7 at the end of training. Following Muen-361

nighoff et al. (2023), the threshold of clipping is set362

to 5 for all experiments unless specified. To train363

one model, it utilizes 384 GPU hours.364

Pre-Training Setups We initialize the backbone365

model from the Llama2-7B (Touvron et al., 2023b)366

base model for continual pre-training. We trained367

the model with each sampling method for 5000368

steps with a global batch size of 4 million tokens,369

which used 20B tokens in total. The context length370

is 4096 with packing, and the learning rate is first371

warmed up to 5e − 5 over 200 steps and then co-372

sine decayed to 1e− 5 at the end of training. The373

training utilizes 1216 GPU hours for each model.374

4.4 Evaluation Setups375

We introduce a diverse set of evaluation tasks and376

datasets to reflect the general and detailed model377

performance when incorporating different sam-378

pling methods.379

Evaluation Datasets The trained models are380

evaluated on a wide range of downstream381

tasks, including SuperGLUE (Wang et al., 2019),382

GSM8K (Cobbe et al., 2021), MATH (Hendrycks383

et al., 2021b), OpenBookQA (Mihaylov et al.,384

2018), MMLU (Hendrycks et al., 2021a),385

BBH (Suzgun et al., 2023) and MT-Bench (Zheng386

et al., 2023).387

Evaluation Methods Following Team (2023),388

we use perplexity-based evaluation for Super-389

GLUE, OpenBookQA, and MMLU. The few-shot390

chain-of-thought prompting (Wei et al., 2022) is391

used to evaluate the accuracy of reasoning tasks, in-392

cluding GSM8K, MATH and BBH. The MT-Bench393

is evaluated by GPT-4 with reference-based scoring394

prompts (Zheng et al., 2023).395

5 Experimental Results 396

In this section, we present the experimental results, 397

including the comparison of the proposed sampling 398

method with baselines (Sec 5.1), a detailed analy- 399

sis of multiple variants of cluster-based sampling 400

methods (Sec 5.2), and the ablation study of differ- 401

ent parts of ClusterClip (Sec 5.3). 402

5.1 Main Results 403

Supervised Fine-Tuning Experimental results 404

on Open-Orca show the effectiveness of Cluster- 405

Clip Sampling on the overall model performance 406

across multiple domains and capabilities. As 407

shown in Table 1, the model trained on Open-Orca 408

with ClusterClip Sampling outperforms Uniform 409

Sampling on SuperGLUE, OpenBookQA, and MT- 410

Bench, and beats the Random Baselines with a 411

large margin. The ClusterClip also achieves com- 412

parable performance when compared with the sam- 413

pling methods G2S and S2G on Open-Orca. It 414

demonstrates that the ClusterClip alleviates the 415

overfitting issue of Uniform Sampling and im- 416

proves the overall performance.

SuperGLUE GSM8K OpenBookQA MT-Bench

Mistral-7b 50.19 47.61 64.20 -

Random 62.11 61.49 79.80 6.60
Uniform 63.00 58.83 78.20 6.75
G2S 65.41 59.36 79.40 6.81
S2G 64.95 62.55 80.20 7.08

ClusterClip 64.30 58.68 81.40 6.90

Table 1: Comparison of different sampling strategies on
Open-Orca.

417

Continual Pre-Training We also demonstrate 418

the effectiveness of ClusterClip Sampling in con- 419

tinual pre-training. As shown in Table 2, the model 420

trained on Proof-Pile-2 with ClusterClip obtains 421

strong overall performance, which achieves 7.90 422

on MATH and 51.05 on MMLU. This demonstrates 423

that the ClusterClip Sampling outperforms other 424

sampling methods on Proof-Pile-2. We also notice 425

that the ClusterClip Sampling consistently outper- 426

forms Uniform Sampling both on Proof-Pile-2 and 427

Open-Orca, which demonstrates that the overfitting 428

issue is significant for Uniform Sampling and the 429

Cutoff strategy alleviates this issue while still main- 430

taining the benefits of data diversity of Uniform 431

Sampling. Moreover, the G2S and S2G sampling 432

methods underperform the ClusterClip method on 433

all these downstream tasks, which are not consis- 434

tent compared with results from supervised fine- 435
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tuning. It indicates that the effect of changing the436

training order is unstable. And ClusterClip Sam-437

pling is effective in both continual pre-training and438

supervised fine-tuning, demonstrating the general-439

ization and board application.440

MATH GSM8K MMLU BBH

LLama2-7B 3.50 16.68 46.79 38.20

Random 6.52 25.55 48.84 41.81
Uniform 7.62 26.00 49.98 42.89
G2S 6.92 23.43 49.42 41.69
S2G 6.98 23.12 48.61 40.90

ClusterClip 7.90 24.79 51.05 42.78

Table 2: Comparison of different sampling strategies on
Proof-Pile-2.

Results on Different Domains We find that Clus-441

terClip can also boost the general performance of442

large language models on different domains. As443

shown in Figure 2, the model trained with Clus-444

terClip improves scores of all subsets of MMLU.445

The results on MMLU demonstrate that the model446

trained with ClusterClip can generalize across di-447

verse tasks and domains even though the training448

set Proof-Pile-2 mainly targets mathematical tasks.449

Besides, Uniform Sampling also improves the per-450

formance when compared with Random Sampling,451

but still underperforms ClusterClip in all the cat-452

egories of MMLU. Notably, the special cluster-453

based sampling methods (G2S and S2G Sampling)454

do not generalize well across different subsets of455

MMLU, which even underperform Random Sam-456

pling on humanities, stem, or social-science cate-457

gories.
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Figure 2: Accuracy of models trained with different
sampling methods on each subset of MMLU.

458

Results on Different Models We also investi-459

gate the effectiveness of the proposed methods460

under different models. We train Llama2-7B on461

Open-Orca and compare the results with the per- 462

formance of Mistral-7B. The training setups are 463

kept the same in the supervised fine-tuning setups 464

but the peak learning rate is set to 1e-5 to meet the 465

requirements of fine-tuning Llama2-7B. As shown 466

in Figure 3, ClusterClip consistently outperforms 467

Random and Uniform Sampling by a large margin 468

on both Llama2 and Mistral. However, the other 469

three cluster-based sampling variants only improve 470

marginal performance on different models, com- 471

pared with Random Sampling.
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Figure 3: The results of different sampling methods on
Llama2-7B and Mistral-7B, measured by MT-Bench
Score.

472

5.2 Analysis ClusterClip Sampling in 473

Training 474

To find out how the ClusterClip Sampling affect 475

the model performance as the training goes, we 476

massively evaluate the intermediate checkpoints of 477

models trained with different sampling strategies. 478

The supervised fine-tuning results are shown in 479

Figure 4 and the pre-training results are shown in 480

Figure 5. We also present the data distribution of 481

the training set in Figure 6 to see the connection 482

of the data distribution and the results of these 483

sampling methods. 484

Analysis on Supervised Fine-Tuning As shown 485

in Figure 4, all sampling strategies based on cluster- 486

ing outperform Random sampling, which demon- 487

strates that cluster information can provide insights 488

for sampling strategy design. Moreover, Random 489

sampling improves the instruction-following abil- 490

ity at first but is quickly saturated and even over- 491

fitting at the end of the training. This indicates 492

that Random sampling is unstable and sub-optimal 493

for Open-Orca fine-tuning. Comparing clustering- 494

based sampling methods, we surprisingly find that 495

all these methods consistently improve the MT- 496
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Figure 4: MT-Bench Scores of different sampling strate-
gies during the training on Open-Orca dataset.

Bench score across the training phases. Uniform497

sampling achieves good performance in the early498

stage but improves slowly, which may result from499

cluster repetition as the training for a large number500

of iterations. ClusterClip Sampling outperforms501

Uniform Sampling by a large margin at the end502

of the training, which indicates the effectiveness503

of the clip operation as the training goes on. Sur-
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Figure 5: MATH Accuracy of different sampling strate-
gies as the training progresses on the Proof-Pile-2
dataset.

504
prisingly, both G2S and S2G outperform Uniform505

sampling at the end of training. S2G sampling even506

outperforms other sampling methods and shows a507

tendency to continue increasing the score for longer508

training. We assume that it benefits from the na-509

ture of Open-Orca, as the S2G sampling first learns510

large clusters followed by other clusters. These511

large clusters provide dense supervision in specific512

domains that helps the model quickly align to the513

instruction-following style in these domains and514

then transfer to more diverse domains and distribu-515

tions.516

Analysis on Pre-Training However, the results 517

of continual pre-training are different from the re- 518

sults of supervised fine-tuning. As shown in Fig- 519

ure 5, the random sampling under-performs com- 520

pared with these cluster-based sampling strategies. 521

Uniform sampling outperforms both G2S and S2G 522

sampling methods, which is inconsistent with the 523

results of supervised fine-tuning. It is the data dis- 524

tribution and the repetition rate of data samples in 525

different datasets that lead to the divergence. 526

Open-Orca Proof-Pile-2
Size per Cluster (Bytes)

104

105

106

107

108

109

D
at

as
et

Figure 6: Distribution of cluster size (the number of
bytes in each cluster) in different training sets. Clusters
of Open-Orca have many outliers, especially tiny clus-
ters, which could affect the sampling performance.

Connection to Data Distribution As the distri- 527

bution of cluster sizes of Open-Orca and Proof-Pile- 528

2 shown in Figure 6, both training sets have a bell 529

shape that indicates a nearly normal distribution 530

of document sizes, with a long tail of large-size 531

clusters. While Open-Orca has a lot of clusters 532

that have similar sizes, it contains some outlier 533

clusters, like several huge clusters and many tiny 534

clusters. We further calculate the repeated times 535

of samples in these datasets when using Uniform 536

Sampling and visualize the distribution of data repe- 537

tition in Figure 7. The repetition leads to the model 538

over-fitting on these clusters and side effects on the 539

overall performance of the model. The clusters in 540

Open-Orca have been trained up to more than 30 541

epochs while the clusters in Proof-Pile-2 have been 542

trained for at most 14 epochs. Thus the overfitting 543

of Uniform Sampling is not severe on Proof-Pile-2, 544

which makes the model generalize well on down- 545

stream mathematical tasks. However, the proposed 546

ClusterClip Sampling still outperforms Uniform 547

Sampling in Proof-Pile-2, indicating that the over- 548

fitting of rare documents still affects the model per- 549

7



formance. The clip operation of ClusterClip effec-550

tively mitigates the overfitting of these texts, lead-551

ing to performance gains on MATH and MMLU552

tasks.553

It is worth-noting that the training order of the554

samples may need to be carefully scheduled de-555

pending on different datasets, based on the re-556

sults of G2S and S2G Sampling. It can be related557

to domain-specific learning or curriculum learn-558

ing (Bengio et al., 2009; Hacohen and Weinshall,559

2019; Rozière et al., 2023), which can be investi-560

gated in future work. And the cluster-based sam-561

pling methods are worth further exploration in this562

area.563
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Figure 7: Distribution of sample repetition on different
clusters in Open-Orca and Proof-Pile-2 datasets.

5.3 Ablation of ClusterClip Sampling564

We conduct experiments on Proof-Pile-2 to demon-565

strate how different configuration of ClusterClip566

Samping affects the overall performance.567

Clip Threshold The number of maximum rep-568

etitions of one sample in ClusterClip Sampling is569

primarily manually set to 5, as suggested by Muen-570

nighoff et al. (2023). Nonetheless, we aim to ver-571

ify that our setup is effective in reducing the over-572

fitting on certain clusters. We train Llama2-7B573

on Proof-Pile-2 datasets with various clip thresh-574

olds of repeated samples and keep other setups the575

same. We provide the results in Figure 8, where576

the too-small (only one time) or too-large (more577

than 10 times to repeat) clip thresholds degenerate578

the performance. Moreover, as the clip threshold579

increases, the MMLU performance of the trained580

LLM slightly decreases, which indicates that the581

overfitting issue becomes worse when samples are582

repeated more times. Thus, the value of 5 is near583

optimal for the threshold of the clipping.584

The Number of Clusters We aim to investigate585

the impact of the number of clusters in the applica-586

tion of ClusterClip Sampling methods. We conduct587

training of Llama2-7B on Proof-Pile-2 datasets588

with different numbers of clusters, following other589

1 5 10 20
Clip Threshold

47

48

49

50

51

52

M
M

LU 49.42

51.05

50.29
49.98

Random Sampling

Figure 8: MMLU Accuracy of ClusterClip Sampling
when changing the number of clipping thresholds on
Proof-Pile-2.

setups in the main experiments. The results are 590

shown in Figure 9, in which the ClusterClip sam- 591

pling consistently outperforms Uniform sampling 592

by a large margin on the MMLU benchmarks, even 593

though the number of clusters is changing from 594

100 to 1000, respectively. Moreover, the number 595

of clusters does not affect the performance much 596

under the same cluster-based sampling methods. 597

Thus, the ClusterClip sampling is not sensitive to 598

the number of clusters. 599

100 1000
Number of Clusters

47

48

49

50

51

52

53

M
M

LU 49.98
49.63

51.05
50.74

Uniform
ClusterClip
Random Sampling

Figure 9: MMLU Accuracy of different sampling meth-
ods when changing the number of clusters on Proof-
Pile-2 dataset.

6 Conclusion 600

In this work, we propose ClusterClip Sampling 601

based on data clustering to balance the long-tail dis- 602

tribution of the training set of large language mod- 603

els. We compare the proposed method with Ran- 604

dom Sampling and other cluster-based sampling 605

method variants in both supervised fine-tuning and 606

pre-training. Extensive experimental results across 607

7 datasets across diverse tasks and domains demon- 608

strate the effectiveness of ClusterClip Sampling, 609

which outperforms baselines under different train- 610

ing sets and models. We hope this work can insti- 611

gate more research on data sampling approaches 612

for improving language model training. 613

8



Limitations614

The ClusterClip Sampling proposed in this work615

can improve the training of LLMs and mitigate616

overfitting on small clusters. However, there are617

limitations in our current work and we hope to en-618

hance the framework of data sampling in future619

research. Firstly, We use transformer-based sen-620

tence embedding to generate data representation621

and exploit K-Means for clustering. Nonetheless,622

other data representation or clustering methods can623

be incorporated. For example, using an LLM to624

process the texts to achieve better clustering accu-625

racy. Secondly, our current method samples data626

mainly based on cluster size. However, extra model627

information or dataset statistics can be incorporated628

for better sampling strategies. Future work should629

explore more sophisticated methods to determine630

the document-level or token-level sampling prob-631

abilities. Finally, this study concentrates on lan-632

guage models that only process texts. Training633

multi-modal generative models that can understand634

and generate images, videos, and audio poses its635

challenges. And it requires more sophisticated data636

processing and sampling techniques, which can be637

explored in the future.638

Ethics Statement639

We leveraged data clustering to find semantic clus-640

ters of training data and utilize the cluster infor-641

mation for data sampling. There is a risk that the642

cluster-based sampling aggregates the bias or toxic643

content in the dataset. However, in this work, we644

utilize open-sourced datasets to train the LLMs,645

including Open-Orca (Lian et al., 2023) and Proof-646

Pile-2 (Azerbayev et al., 2023). These datasets647

are specifically collected and filtered to avoid toxic648

and safety issues. When applying the cluster-based649

sampling strategies for new datasets, data cleaning650

and filtering methods can be used to remove the651

harmful content before clustering and training.652
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