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Figure 1: An overview of EXOVIP. The prediction after each step is verified by the proposed “Ex-
oskeleton” verification modules, which contain a mix of three sub-verifiers. The verified scores help
correct the errors in the vision module predictions or refine the reasoning programs planned by LLM.

ABSTRACT

Compositional visual reasoning methods, which translate a complex query into
a structured composition of feasible visual tasks, have exhibited a strong poten-
tial in complicated multimodal tasks like visual question answering, language-
guided image editing, etc. Empowered by recent advances in large language mod-
els (LLMs), this multimodal challenge has been brought to a new stage by treating
LLMs as few-shot/zero-shot planners, i.e., visual-language programming (Gupta
& Kembhavi, 2023). Such methods, despite their numerous merits, suffer from
challenges due to LLM planning mistakes or inaccuracy of visual execution mod-
ules, lagging behind the non-compositional models. In this work, we devise a
“plug-and-play” method, EXOVIP, to correct the errors at both the planning and
execution stages through introspective verification. We employ verification mod-
ules as “exoskeletons” to enhance current vision-language programming schemes.
Specifically, our proposed verification module utilizes a mixture of three sub-
verifiers to validate predictions after each reasoning step, subsequently calibrating
the visual module predictions and refining the reasoning trace planned by LLMs.
Experimental results on two representative vision-language programming meth-
ods showcase consistent improvements on five compositional reasoning tasks on
standard benchmarks. In light of this, we believe EXOVIP can foster better per-
formance and generalization on open-domain multimodal challenges.
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1 INTRODUCTION

Compositional visual reasoning tasks, such as visual question answering or image editing follow-
ing language instructions, are challenging multimodal tasks that require complex multi-step visual
reasoning based on the language instruction. Compositional methods like neural modular networks
(Andreas et al., 2015; Hu et al., 2017; Johnson et al., 2017; Hu et al., 2018; Le et al., 2022; Qian
et al., 2022), which translate the complex language instruction into feasible individual visual tasks,
has been successful in this task. However, traditional compositional methods require well-designed
neural modules for specific datasets, thus struggle in generalization to open domains. In addition,
the intermedia embedding and attention among the neural modules can not be improved by introduc-
ing supervision signals or feedback, so the performance of these works is limited to the end-to-end
training mechanism. Recently, empowered by the advances in large language models (LLMs) such
as in-context learning and train-of-thought reasoning (Radford & Narasimhan, 2018; Radford et al.,
2019; Brown et al., 2020; OpenAI, 2023; Chowdhery et al., 2022). recent methods like VISPROG
(Gupta & Kembhavi, 2023) and ViperGPT (Dı́dac et al., 2023) apply LLMs as zero-shot/few-shot
planners to solve visual reasoning tasks, i.e. visual language programming. These visual language
programming methods leverage off-the-shelf pretrained vision models and compose them step by
step according to the reasoning trace planned by LLMs, yielding interpretable intermediate results
and highly generalizable reasoning ability.

However, despite their merits, current visual programming methods still suffer from challenges
due to the failure of the LLM planning or the visual modules, lagging behind the performance
of non-compositional models. To analyze the drawbacks, we manually checked 100 randomly sam-
pled failure cases of VISPROG (Gupta & Kembhavi, 2023) on the visual question answering GQA
dataset (Hudson & Manning, 2019). We find that most of the failures can be classified into two cat-
egories: (1) around 30% of the failures are due to planning errors: LLM can not parse the language
query into a correct solvable program; (2) more than 40% of the failures are due to module error: the
visual modules are not able to correctly execute the program. The others (less than 30%) are caused
by synonyms (e.g. “woman” vs “lady”) or ambiguity in the questions. More details, including statis-
tics and examples of the failure cases, can be found in Appendix C.

Motivated by these failure modes, in this work, we introduce EXOVIP, a “plug-and-play” method
that uses “exoskeleton” verification modules to verify the reasoning results step by step, thus correct-
ing the module errors and refining the LLM planning traces. In Fig. 1, we demonstrate how EXOVIP
helps correct the two types of errors. Specifically, the verification module contains a mixture of three
sub-verifiers, including an image-text matching verifier, an image captioning verifier, and a visual
question answering verifier. The verification module validates the correctness of the predictions of
the vision modules step by step and calibrates them to correct the module errors. Furthermore, to
refine the planning traces, we build a reasoning trace tree based on the verification scores as well as
the self-correctness score from LLMs (Pan et al., 2023), and search through the tree to find the best
trace that has the highest score.

To demonstrate the effectiveness of EXOVIP, we apply our method to two recent visual program-
ming methods: self-defined programs, i.e., VISPROG (Gupta & Kembhavi, 2023) and Python code
programs, i.e., ViperGPT (Dı́dac et al., 2023). We run experiments on five compositional visual
reasoning tasks: compositional image question answering on GQA Hudson & Manning (2019); re-
ferring expression understanding on RefCOCO and RefCOCO+ (Yu et al., 2016; Kazemzadeh et al.,
2014), natural language for visual reasoning on NLVR (Suhr et al., 2019), visual abstract reasoning
on KILOGRAM (Ji et al., 2022), and language-guided image editing on MagicBrush (Zhang et al.,
2023a). Experiment results show consistent improvements with the two models on the five tasks.
In light of this, we believe EXOVIP can foster better performance on open-world compositional
reasoning tasks. To summarize, our main contributions are as follows:

• We introduce the “exoskeleton” verification modules for compositional visual reasoning, which
verifies the correctness of vision module predictions step by step.

• We show how the verification modules are leveraged to correct the module errors by calibrating
the module predictions, and to correct the planning errors by tree searching considering both
verification scores and LLM self-correctness.

• We apply our method on two models and show consistent improvements over five tasks, showing
the effectiveness of EXOVIP.
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2 RELATED WORK

LLMs in multimodal tasks. LLMs brought great convenience to multimodal tasks with their gen-
eralizability and knowledgeability. Generally, there are three ways researchers use LLMs to solve
multimodal tasks. Some researchers incorporate additional parameters to adjust LLMs for use in
multimodal domains, then fine-tune the model with the LLMs either frozen (Tsimpoukelli et al.,
2021; Alayrac et al., 2022; Li et al., 2023b; Gao et al., 2023; Li et al., 2023a; Dai et al., 2023; Zhang
et al., 2023d) or unfrozen (Hao et al., 2022; Huang et al., 2023; Peng et al., 2023). Others take lan-
guage model as an expert, and mixture it with experts from other modalities, such as vision, speech
to collaborate on various kinds of multimodal tasks (Zeng et al., 2023; Zhang et al., 2023c; Liu
et al., 2023b). In this work, we mainly focus on the third way which adopts LLM’s planning ability
in parsing complex queries. VISPROG (Gupta & Kembhavi, 2023) takes LLM to compose models
for queries by generating programs. The strong zero-shot performance of VISPROG on a range of
vision-language tasks demonstrates its potential in multimodal tasks involving complex reasoning.
ViperGPT (Dı́dac et al., 2023) leverages LLMs to generate Python code, which composes a set of
available modules. MM-REACT (Yang et al., 2023) builds a multi-round, dialogue-based system to
call a set of vision experts by designing the prompt of LLMs. However, the performances of these
works are hindered by both the parsed planning chain and the visual experts. Inspired by the excel-
lent performance gain from the step-by-step verification (Lightman et al., 2023), we improve this
train of work with additional verification strategies.

Compositional multimodal methods. Compositional methods have long been explored to improve
neural models’ interpretability and reasoning ability. At an early stage, neural module networks
(NMN) (Andreas et al., 2015; Hu et al., 2017; Johnson et al., 2017; Hu et al., 2018; Le et al., 2022;
Qian et al., 2022) compose neural models to end-to-end differentiable networks. However, the pre-
defined neural modules have limited applications on open-domain challenges, and the intermedia
embedding and attention makes it difficult to construct intermedia supervision signals. Recently, the
presence of LLMs has made it possible to automatically compose various kinds of finetuned neural
models (Zeng et al., 2023; Gupta & Kembhavi, 2023; Dı́dac et al., 2023; Yang et al., 2023; Liu et al.,
2023b) or external tools (Parisi et al., 2022; Khot et al., 2023; Schick et al., 2023; Shen et al., 2023;
Lu et al., 2023; Qin et al., 2023). These works allow us to diagnose the intermedia rationales of
the reasoning process. However, human annotation of these intermedia results can be rather time-
consuming. In this work, we make ways to correct errors in the intermedia results without any human
intervention.

Self-correctness in LLMs. Although LLMs achieve great success in various tasks, there are many
errors in LLM-based natural systems (Pan et al., 2023): hallucination (Li et al., 2023c; Zhang et al.,
2023b), unfaithful reasoning (Golovneva et al., 2022; Ribeiro et al., 2023; LYU et al., 2023), toxic,
biased, and harmful contents (Shaikh et al., 2022), flawed code. One popular way to fix these er-
rors is to use the LLMs themselves (Madaan et al., 2023; Shinn et al., 2023; Ye et al., 2023; Yan
et al., 2023) to obtain feedback, which can be adopted to correct the errors. Motivated by the self-
correction capability of LLMs in addressing mistakes from LLM-powered natural language systems,
some researchers introduce the self-correcting strategy to reduce the reasoning chain in multimodal
frameworks. IPVR (Chen et al., 2023) additionally utilizes LLMs to generate the rationale support-
ing the answer, checks the generated rationale with a cross-modality classifier, and makes sure that
the rationale can consistently infer the predicted output. IdeaGPT (You et al., 2023) takes another
LLM as a reasoner to get the final answer by summarizing the intermedia results from visual experts.
Additionally, the reasoner helps to improve the results iteratively through self-consistency. However,
it’s intuitive that LLM’s self-correction ability would be limited by the LLM itself. In our work, we
combine the feedback from LLM and other visual experts to verify the intermedia results and the
planned reasoning chain.

3 PRELIMINARIES

Task Definition. Our work focuses on a set of Visual Compositional Reasoning (VCR) tasks, such
as visual question answering, referring expression understanding, visual reasoning using natural lan-
guage, abstract reasoning, language-guided image editing. These VCR tasks require compositional
reasoning about an image input I and a text input T , and predict the output, e.g. answer to a given
question, edited images given a language instruction, etc.
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Visual-Language Programming (VISPROG). VISPROG (Gupta & Kembhavi, 2023) is a zero-shot
model for the VCR tasks, utilizing LLMs and pretrained vision models. VISPROG first uses LLMs
to decompose the complex text description into a sequence of individual operations, then executes
each operation by calling various pretrained visual operation models, including object detectors,
image captioners, VQA models, image generators, etc. In other words, different vision models are
composed in a way that is specified by the LLM to get the prediction. Given the input text T ,
an LLM transforms it into an executable program P containing a sequence of operations: P =
{o

1
, . . . , o

n}, where n is the number of operations. Each operation o
i can be executed by some

symbolic operations (e.g., “crop”, “and”, “or”), or by calling some pretrained visual models (e.g.
CLIP (Radford et al., 2021), BLIP (Li et al., 2022b)). The output of operation o

i is denoted as
ai. The final prediction is derived after we execute all the operations. However, this perspective
highlights two key shortcomings of existing approaches: i) module error, the operation models can
not predict the answer correctly; ii) planning error, the LLM might generate unfaithful reasoning.

4 EXOVIP: EXOSKELETONS WITH VERIFICATION AND EXPLORATION

To address the aforementioned shortcomings, we propose EXOVIP, a framework that adopts ex-
oskeleton verification modules to calibrate the prediction of the execution modules and refine the
reasoning path with tree searching. Fig. 1 depicts the overall framework.

For each operation o
i, we get a set of candidate answers {a

i
1, . . . , a

i
k}, with confidence scores

{p
i
1, . . . , p

i
k}. Unlike VISPROG, which directly takes the top answer, we use additional verifica-

tion modules to verify each candidate answer, thus producing verification scores {s
i
1, . . . , s

i
k}. Then

the verification scores s are used to calibrate the original scores, so the errors made by the execution
modules can be corrected. Additionally, we use the verification scores to search for a program with
high verification scores, in order to refine the execution program P by tree-searching.

In this section, we will first introduce the verification modules, and then describe how the verification
results are applied to correct the results of execution modules, and to search for the reasoning trace.

4.1 VERIFICATION MODULES

The verification modules aims to verify the candidate answers {a
i
1, . . . , a

i
k} given an operation o

i.
For example, the LOC(nightstand) operation returns a set of candidate bounding boxes contain-
ing a nightstand, then the verification module verifies whether each of the returned boxes contains a
nightstand and produces verification scores.

Our verification module is a mixture of three sub-verifiers, including an image-text matching verifier,
an image captioning verifier, and a visual question answering verifier. Each verifier is a pretrained
vision-and-language model that is taken off the shelf. The outputs of the three verifiers are combined
as the final verification score. Note the verification model does not introduce additional pretrained
models, as these verifiers are from the execution modules of VISPROG.

Image-text matching verifier calculates the similarity between the whole images and all candidate
sentences, which returns the semantic representation of the image-sentence pair. We construct the
candidate sentences Tans by filling the template “a photo of” with candidate answers. In this work,
we select CLIP (Radford et al., 2021) to calculate the similarity between images and sentences.

s
itm
ans = ITM(Tans, img) (1)

Image captioning verifier leverages natural language to describe the visual details of the image.
We first get the caption of the image Cimg by BLIP (Li et al., 2022b). We then construct the descrip-
tions of candidate answers Cans with the template ”the image describe”. Specifically, for candidate
question-answer pairs, we initially transform the pair into a sentence before inserting it into the tem-
plate. After that, we calculate the sentence semantic similarity (Reimers & Gurevych, 2019) between
the captions and the constructed descriptions as the verification score.

s
cap
ans = Sim(Cans, Cimg) (2)

Visual question-answering (VQA) verifier is more flexible than others, which offers us more op-
portunities to evaluate the advanced relationships between image and language, such as entailment
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and factual consistency. Slightly different from the other two types of models, for VQA verifier, we
design templates w.r.t. the neural modules. For example, we use “Is there any object in the image
?” for the object detection model, and use “Does this part looks like object ?” for the classification
model used in the abstract reasoning task. We determine the verification score by BLIP (Li et al.,
2022b) by calculating the difference in answer probabilities Qans between ”yes” and ”no”.

s
vqa
ans = VQA(Qans, T rue) � VQA(Qans, False) (3)

Verification score Having the scores from each individual verification module, we compute their
average to get the verification score for each given answer.

sans = avg(sitmans, s
cap
ans, s

vqa
ans) (4)

Negative sampling. Empirically, we find that directly applying this verification score does not work
well, because the score scales for different kinds of candidates are not well-calibrated. Motivated by
recent works in truthfulness (Li et al., 2022a), commonsense (Ye et al., 2022), and bias (Ruggeri &
Nozza, 2023), we propose to take the difference of a candidate answer aj with its antonym nj as the
final verification score. More specifically, the antonym nj is selected based on the text embeddings
from CLIP Radford et al. (2021), i.e. the word of lowest embedding similarity is selected. For exam-
ple, the antonym of “nightstand” is “stocking”. We then compute the difference of the verification
scores of the candidate answer and its antonym, and get the final verification score. Mathematically,
given a candidate answer a

j , the final verification score is
sj = saj � snj (5)

Calibration using verification scores After obtaining the verification scores of all candidate an-
swers S = {s1, . . . , sk}, we normalize them as weights and calibrate the candidate predictions.

p
0
j = wj ⇤ pj , (6)

where wj is the normalized verification score. More specifically, the verification score
sj is re-scaled to wj = sj�smin

smax�smin
· (⌧ � 1

⌧ ) + 1
⌧ , where ⌧ is a hyper-parameter

Figure 2: Search of the reasoning trace.
We beam search through the program
tree, based on the verification scores as
well as the LLM self-correctness.

controlling the scaling factor (smin, smax are the mini-
mum or maximum of all the candidate scores.

4.2 EXPLORATION WITH REASONING TRACE

To correct the second type of reasoning errors, i.e. plan-
ning errors, we further apply the verification scores to re-
fine the reasoning trace predicted by LLMs. Motivated by
the recent works showing that searching through a com-
binatorial problem space can greatly improve the perfor-
mance of LLMs for complex tasks (Yao et al., 2023; Khal-
ifa et al., 2023; Hao et al., 2023), we introduce our dy-
namic reasoning trace searching procedure, which takes
advantage of both the LLM self-correctness potential and
our verification modules.

:::::::::::::::::::::::::::::::::::::
Tree-based reasoning trace searching (TRS) The reasoning trace searching procedure is repre-
sented as a tree structure, where each node of the tree is a reasoning operation. To get the best
reasoning trace, we search from the tree using the beam search algorithm (Graves, 2012; Boulanger-
Lewandowski et al., 2013; Sutskever et al., 2014), which has long been proven to be effective in
sequence-to-sequence problems. In each step of searching, we consider both the verification scores
and the LLM self-correctness scores. More specifically, our trace searching procedure contains

::
two

three steps. First, in order to generate more diverse reasoning traces to search from, we randomly
perturb the in-context examples (i.e. change the order or remove some samples of examples) in
the prompt for LLM. Second, after we get the result of candidate neural modules, we sort them
according to the

:::::::::::
accumulative verification scores and select the top K candidate reasoning traces.

::::::::::::::::::::::::::
Post-hoc self-correction (PSC) Third, b

:
Because the verification scores can be very close for the

selected K traces, we further use the self-correctness ability of LLMs to reorder the K traces and
select the top P from them (P < K). More details of the prompts used for LLM self-correction are
included in Sec. E.2. If the verification score is zero at some step, we re-plan the search trace.
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5 EXPERIMENTS

We set up experiments on the following five tasks. Refer to Appendix E for implementation details.

5.1 SETUP

We set up experiments on the following five tasks. Refer to Appendix E for implementation details.

Compositional image question answering on GQA. GQA (Hudson & Manning, 2019) is a
large-scale dataset containing complex reasoning questions about real-world images in MSCOCO-
style (Lin et al., 2014). Considering the large size of the dataset, in order to balance the cost of LLM
API and the diversity of evaluation dataset, we follow the setting of VISPROG Gupta & Kembhavi
(2023) and sample a subset from GQA for evaluation. We randomly sample 5 samples from the
balanced val set and 20 samples from testdev set of each question type. e.g. “weatherVerify” for
judging the weather, “twoCmomon” for judging common attributions of two objects. In summary,
there are 102 question types and 2327 questions in our test set.

Referring expression understanding on RefCOCO and RefCOCO+. Given a natural language
query describing a region in a given image, the referring expression understanding task requires iden-
tifying the bounding box of the object in the image being referred to. RefCOCO and RefCOCO+ (Yu
et al., 2016; Kazemzadeh et al., 2014) are two standard datasets for this task. We randomly sample
2 samples per type from the test set from RefCOCO dataset and RefCOCO+ dataset. In summary,
our test set includes 66 types, e.g. “bicycle”, “backpack”, and 261 queries.

Natural language for visual reasoning on NLVR2. In NLVR2 (Suhr et al., 2019), given a de-
scription of a collection of images, the model needs to justify whether the description is correct or
not (binary classification). The task requires dealing with various kinds of linguistic phenomena,
like numerical expressions, quantifiers, coreference, negation, etc. In this work, we use the NLVR2
balanced test set for evaluation, which includes 2316 questions and corresponding image pairs.

Visual abstract reasoning on KILOGRAM. KILOGRAM (Ji et al., 2022) contains richly anno-
tated tangram puzzles and requires the model to understand the abstract tangram shapes (e.g. dog,
bird) and classify them. Specifically, given a textual description and a set of images, the task is to se-
lect the image corresponding to the description. This task evaluates the ability to generalize through
abstraction, using visually ambiguous stimuli. We conduct experiments using the test set, where the
textual descriptions solely contain the whole-shape description, and the images include parts with
different colors. The test set contains 1,251 descriptions, with each one paired with 10 images.

Language-guided image editing on MagicBrush. This task requires editing an image according to
a natural language instruction, keeping the other area of the image unrelated to the instruction un-
changed. The MagicBrush dataset (Zhang et al., 2023a) supports various editing scenarios including
single-/multi-turn. Considering the accuracy of automatic evaluation metrics and the costs of human
evaluation, in our experiments, we only choose the samples involving single-turn image editing to
evaluate our method. In total, there are 100 examples in the test set. Following (Zhang et al., 2023a),
we select the CLIP-I and DINO, which measure the image quality with the cosine similarity between
the generated image and reference ground truth image using their CLIP (Radford et al., 2021) and
DINO (Caron et al., 2021) embeddings.

5.2 MAIN RESULTS

We first apply EXOVIP to VISPROG and show results on the five tasks. Then we apply it to the
python-code-based compositional reasoning method ViperGPT to demonstrate its generalizability.

5.2.1 COMPOSITIONAL VISUAL QUESTION ANSWERING

Baseline Model We set up the experiments following the settings in the official VISPROG imple-
mentation.1 Moreover, we select BLIP-flant5-xxl(Li et al., 2023b) and InstructBLIP-flan-t5-xl(Dai
et al., 2023) as additional baselines, which are strong vision-language models incorporating LLMs
and pretrained on large vision-language datasets. These baselines have shown strong zero-shot abil-
ity on various tasks like image caption and visual question answering.

1Becasue VISPROG doesn’t release their sampled evaluation subset, we do sampling following the VIS-
PROG paper and evaluate all the methods on our sampled evaluation set.
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Table 1: Results of compositional visual question answering
on GQA.

::::::::::::
Llava-1.5-13b*

::
is

:::::
tuned

::
on

:::::
GQA

:::::::
training

:::::::
corpora,

:::
and

::::::::
evaluated

::::
with

:::::::::
additional

::::::
prompt.

Methods Accuracy

BLIP2-xxl (Li et al., 2023b) 49.20
InstructBLIP-flant5-xl (Dai et al., 2023) 55.39
Llava-1.5-13b* (Liu et al., 2023a) 74.56

0 VISPROG (Gupta & Kembhavi, 2023) 57.41

1 EXOVIP w/o self-correctness & negative sam-
pling & search

57.11

2 EXOVIP w/o self-correctness & search 58.53
3 EXOVIP w/o self-correctness (TRS) 60.57
4 EXOVIP w/o verification (PSC) 60.16
5 EXOVIP 61.49
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Search Verification

Figure 3: Distribution of verification
scores w. and w/o trace searching.

Table 2: Analysis on the sub-verifiers.

Methods Accuracy

Base 58.14

ITM 59.26
Caption 59.22
VQA 59.35

All 60.03

Analysis We apply our method to VISPROG and report
the results on GQA in table 1. While VISPROG has al-
ready demonstrated good performance (57.41) compared
with BLIP2 and InstructBLIP, our method further im-
proves its performance to 61.49, showing a significant
performance boost. Note that our method does not intro-
duce extra modules or knowledge compared with VIS-
PROG, since the verification modules come from VIS-
PROG itself.

To verify the effectiveness of each component in our
method, we run a series of analysis experiments on our
method (also in Tab. 1). We have the following observations:

a. Negative sampling is key to verification modules. Naively adding the verification modules (line-
1) does not work, even making the performance worse. But when we introduce the negative
sampling strategy using antonyms to the verification modules (line-2), the performance boost
becomes significant.

b. Exploration with reasoning trace matters. In line-3, “whole search” means we use LLMs to
obtain a set of complete planning traces, then execute all the traces to get the final verification
scores, and select the best trace with the highest verification score. The “beam search” strategy
(line-4) means we select next step according to current verification scores. While “whole search”
helps, “beam search” can further improve the accuracy to 60.57 from 59.17, which indicates the
effectiveness of our tree-like step-by-step searching strategy.

c. Self-correctness does help but is less significant than verification mechanism. In line-5, We only
use LLM self-correctness during trace searching, without using the verification scores. While
the result shows an accuracy gain of 2.75 over the original VISPROG, applying both leads to
further better performance.

Analysis on the sub-verifers. We evaluate the effects of different types of verification modules
with the setting of the best demonstration setting. As is illustrated in Table 2, Different verification
modules share similar boost gain, but a mixture of these modules can benefit more.

Analysis on the trace-searching strategy. We calculate the verification scores among different
samples and plot the distribution of the verification scores in Tab. 2. We find two advances brought
by the searching strategy. First, the average of the verification scores significantly improved after
we applied our search strategy. Secondly, the variance gets larger after applying the search strat-
egy, which indicates our method can potentially make use of the verification scores to prompt the
effectiveness of the reasoning traces.

Analysis on invalid programs. We calculate the percentage of failure cases that can not be correctly
executed by the program interpreter. We are delighted to find out that our method reduces the error
rate from 5.84% to 3.82%, which indicates our method can predict more executable plan routines
compared to the baseline VISPROG.
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Table 3: Results on RefCOCO and RefCOCO+.

Methods IoU

Qwen-vl-chat-7b (Bai et al., 2023) 32.54
VISPROG (Gupta & Kembhavi, 2023) 27.28
EXOVIP 31.50

Table 4: Visual reasoning on NLVR.

Methods Accuracy

OFA-large (Wang et al., 2022) 58.38
VISPROG (Gupta & Kembhavi, 2023) 67.66
EXOVIP 67.96

Table 5: Abstract reasoning on KILOGRAM.

Methods Accuracy

CLIP-large (Radford et al., 2021) 27.26
VISPROG (Gupta & Kembhavi, 2023) 24.46
EXOVIP 26.22

Table 6: Image editing on MagicBrush.

Methods CLIP-I DINO

InstructPix2Pix (Brooks et al., 2022) 84.19 69.60
VISPROG (Gupta & Kembhavi, 2023) 90.82 82.70
EXOVIP 91.27 83.40

5.2.2 VISUAL LANGUAGE GROUNDING

Baseline Model We adopt the Qwen-vl-chat-7b (Bai et al., 2023) as the baseline. Qwen-vl-chat-7b
is a pre-trained large vision-language model that uses Qwen-7B with further training with aligned
techniques. Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a
more comprehensive coverage in terms of capability range.

Analysis As demonstrated in Table 3, although our method can’t achieve SOTA (Qwen-VL) on the
RefCOCO dataset, it helps bridge the gap between VISPROG and the large vison-language model.
While Qwen-VL is built on a LLM with 7 billion parameters, which is trained on trillions of tokens
from the corpus, our method assembles a team of experts whose collective parameters total less than
1 billion. We believe our method can be improved with more advanced experts.

5.2.3 NATURAL LANGUAGE VISUAL REASONING

Baseline Model We take the OFA-large (Wang et al., 2022) as baseline. OFA unifies a diverse set
of cross-modal and unimodal tasks in a simple sequence-to-sequence learning framework.

Analysis Table 4 shows the results. Although VISPROG exhibits strong complex reasoning abil-
ity over the end-to-end model, our method can hardly further improve its performance. We believe
this is because we only take VQA modules to solve NLVR problems. The performance of decom-
posed VQA steps is hindered by the performance of VQA model, especially when there is error
accumulation among a sequence of VQA steps.

5.2.4 VISUAL ABSTRACT REASONING

Baseline Model We use the CLIP-large (Radford et al., 2021) as a baseline to test its performance
on the text-to-image retrieval task proposed by KILOGRAM.

Analysis For our method, given an object, we adopt the LLM to get its possible semantic parts. At
the same time, we segment the image into several visual parts. After that, we align the semantic parts
with the visual parts to enhance the matching process. In Table 5, we see the gap between VISPROG
and CLIP. Although our method decreases the performance gap, the compositional method still can
not achieve SOTA. Since part identification has already been demonstrated to play an important role
in human abstraction Tversky & Hemenway (1984). We believe our method can be enhanced by
introducing a better scene segmentation model.

5.2.5 TEXT-GUIDED IMAGE EDITING

Baseline Model We take InstructPix2Pix (Brooks et al., 2022) as a baseline. InstructPix2Pix is a
conditional diffusion model trained on GPT3 augmented datasets.

Analysis Table 6 and Fig. 4 show the results on MagicBrush.
:::::
These

::::::
results

:::::::
illustrate

:::
the

::::::::
capability

::
of

:::
our

::::::
method

::
to

:::::::
enhance

:::
the

::::::::
similarity

:::::::
between

:::
the

:::::
edited

:::::
image

::::
and

::
the

:::::
target

::::::
image,

:::::::::
signifying

::
the

:::::::
precision

::
of

:::
our

::::::
image

::::::
editing

::::::::
technique.

:::
For

::
a
::::
more

:::::::::::::
comprehensive

::::::::
evaluation

::
of

:::
the

::::::
editing

::::::
quality,

::
we

:::::
have

:::::::::
conducted

:
a
:::::

case
:::::
study. Fig. 4

::::::
exhibits

:::::
some

::::::::
instances

:::::
using

:::::::::::
MagicBrush. While non-

compositional methods are likely to change unrelated pixels, compositional methods are more con-
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Open the lid of a toilet

have a team of sled dogs pulling the snowboarder

Source Target InstructPix2Pix VisProg ExoViP

Query:

Query:

Figure 4: Qualitative results of text-guided image editing on MagicBrush.

trollable.
::::::::::
Furthermore,

:::::
when

::::::::
compared

::
to

:::::::::
VISPROG,

:::
our

:::::::
method

:::::
excels

::
in

:::
two

::::
key

:::::
areas:

::::::::
accurately

:::::::::
pinpointing

:::
the

::::::
region

:::
that

:::::::
requires

:::::::
editing,

:::
and

::::::::
adjusting

:::
the

::::::
image

::
to

:::
the

:::::::::
appropriate

::::::
extent.

::::
This

:::::::::::
demonstrates

::
the

::::::::::
superiority

::
of

:::
our

::::::
method

:::
in

::::
both

:::::::::
localization

::::
and

::::::::::
modification

:::
of

:::
the

:::::
image.

Table 7:
:::::
Results

:::
for

:::::
Open

:::::
LLM

::
on

::::::
GQA.

Methods Accuracy

VISPROG (Llama-2-13b-chat) 46.41
EXOVIP ((Llama-2-13b-chat)) 54.45

Table 8: Results for ViperGPT on GQA.

Methods Accuracy

ViperGPT (Dı́dac et al., 2023) 45.47
ViperGPT+ExoViP 46.84

5.3
::::::::
RESULTS

:::
ON

:::::
OPEN

::::::
LLMS

::
In

:::
this

:::::::
section,

::::
we

::::::
present

::::
the

::::::
results

::
of

::::::::
applying

::::
our

:::::::
method

::
to

:::
the

:::::
open

::::::
LLM.

::::::::::
Specifically,

::
we

::::::::::
substituted

::::::::::::
GPT-3.5-turbo

::::
with

:::::::::::::::
LLama2-chat-13b (Touvron et al., 2023).

::::
The

::::::::
outcome

::
of

:::
this

:::::::::
substitution

::
is
::::::::
displayed

:::
in Tab. 7

:
.
:::
We

:::
are

::::::
thrilled

::
to

:::::::
discover

::::
that

:::
our

:::::::
method

:::
can

:::::
yield

::::::::
significant

:::::::::::
improvements

::
in
:::::
open

:::::
LLM.

5.4 GENERALIZABILITY OF OUR METHOD

To demonstrate the generalizability of our method, we apply our method to another compositional
method, ViperGPT, which composes available modules by generating Python codes. We equip
ViperGPT with our method and test its performance on the GQA dataset. We show the results in
Table 8. We find the performance boost is less significant than which on VISPROG. We analyze this
due to ViperGPT provides a few examples in the demonstration and it turns the parameter of the
code-generation model to make it deterministic to generate subroutines. In other words, ViperGPT
benefits little from our reasoning trace-searching strategy.

6 CONCLUSION

In this work, we identify two key types of errors in existing compositional methods: planning er-
rors and module errors. To address these errors, we introduce an innovative verification framework
EXOVIP. This framework verifies the correctness of vision module predictions. It corrects module
errors by calibration and refines the planning process through tree searching. During this process,
it considers both verification scores and the self-correctness of LLM. Applying the EXOVIP to two
existing models, we achieve significant performance improvements across five different tasks. The
results reinforce the promise and potential of EXOVIP on various open-world compositional rea-
soning tasks, marking an important milestone in the realm of multimodal tasks involving complex
reasoning.
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REPRODUCIBILITY STATEMENT

In this work, we provide the details of implementation in Sec. E. In addition, we provide the anony-
mous link 2, which includes a demo of our framework on the GQA dataset. Since we use the OpenAI
API, i.e. gpt-3.5-turbo, people who would like to reimplement our work should get an API key first.
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