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Abstract

Contextual bandit algorithms have many applicants in a variety of scenarios. In order to
develop trustworthy contextual bandit systems, understanding the impacts of various adver-
sarial attacks on contextual bandit algorithms is essential. In this paper, we propose a new
class of attacks: action poisoning attacks, where an adversary can change the action signal
selected by the agent. We design action poisoning attack schemes against linear contextual
bandit algorithms in both white-box and black-box settings. We further analyze the cost of
the proposed attack strategies for a very popular and widely used bandit algorithm: Lin-
UCB. We show that, in both white-box and black-box settings, the proposed attack schemes
can force the LinUCB agent to pull a target arm very frequently by spending only logarithm
cost. We also extend the proposed attack strategies to generalized linear models and show
the effectiveness of the proposed strategies.

1 Introduction

Multiple armed bandits(MABs), a popular framework of sequential decision making model, has been widely
investigated and has many applicants in a variety of scenarios (Chapelle et al.} |2014; Lai et al., |2011; [Kveton
et all2015). The contextual bandits model is an extension of the multi-armed bandits model with contextual
information. At each round, the reward is associated with both the arm (a.k.a, action) and the context.
Contextual bandits algorithms have a broad range of applications, such as recommender systems (Li et al.,
2010), wireless networks (Saxena et al.l 2019)), etc.

In the modern industry-scale applications of bandit algorithms, action decisions, reward signal collection,
and policy iterations are normally implemented in a distributed network. Action decisions and reward
signals may need to be transmitted over communication links. For example, in recommendation systems, the
transitions of the decisions and the reward signal rely on a feedback loop between the recommendation system
and the user. When data packets containing the reward signals and action decisions etc are transmitted
through the network, the adversary can implement adversarial attacks by intercepting and modifying these
data packets. As the result, poisoning attacks on contextual bandits could possibly happen. In many
applications of contextual bandits, an adversary may have an incentive to force the contextual bandits system
to learn a specific policy. For example, a restaurant may attack the bandit systems to force the systems into
increasing the restaurant’s exposure. Thus, understanding the risks of different kinds of adversarial attacks
on contextual bandits is essential for the safe applications of the contextual bandit model and designing
robust contextual bandit systems.

Depending on the target of the poisoning attacks, the poisoning attacks against contextual linear bandits
can be categorized into four types: reward poisoning attack, action poisoning attack, context poisoning
attack and the mix of them. In this paper, we aim to investigate the impact of action poisoning attacks
on contextual bandit models. To our best knowledge, this paper is the first work to analyze the impact
of action poisoning attacks on contextual bandit models. Detailed comparisons of various types of attacks
against contextual bandits will be provided in Section We note that the goal of this paper is not to
promote any particular type of poisoning attack. Rather, our goal is to understand the potential risks of
action poisoning attacks. We note that for the safe applications and design of robust contextual bandit
algorithms, it is essential to address all possible weaknesses of the models and understanding the risks of
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different kinds of adversarial attacks. Our hope is that the understanding of the potential risks of action
poisoning attacks could motivate follow up research to design algorithms that are robust to such attacks.

In this paper, we study the action poisoning attack against linear contextual bandit in both white-box and
black-box settings. In the white-box setting, we assume that the attacker knows the coefficient vectors
associated with arms. Thus, at each round, the attacker knows the mean rewards of all arms. While it is
often unrealistic to exactly know the coefficient vectors, the understanding of the white-box attacks could
provide valuable insights on how to design the more practical black-box attacks. In the black-box setting, we
assume that the attacker has no prior information about the arms and does not know the agent’s algorithm.
The limited information that the attacker has are the context information, the action signal chosen by the
agent, and the reward signal generated from the environment. In both white-box and black-box settings,
the attacker aims to manipulate the agent into frequently pulling a target arm chosen by the attacker with a
minimum cost. The cost is measured by the number of rounds that the attacker changes the actions selected
by the agent. The contributions of this paper are:

(1) We propose a new online action poisoning attack against contextual bandit in which the attacker aims to
force the agent to frequently pull a target arm chosen by the attacker via strategically changing the agent’s
actions.

(2) We introduce a white-box attack strategy that can manipulate any sublinear-regret linear contextual
bandit agent into pulling a target arm T — o(T) rounds over a horizon of T rounds, while incurring a cost
that is sublinear dependent on 7.

(3) We design a black-box attack strategy whose performance nearly matches that of the white-box attack
strategy. We apply the black-box attack strategy against a very popular and widely used bandit algorithm:
LinUCB . We show that our proposed attack scheme can force the LinUCB agent into pulling
a target arm T — O(log® T)) times with attack cost scaling as O(log® T).

(4) We extend the proposed attack strategies to generalized linear contextual bandits. We further analyze
the cost of the proposed attack strategies for a generalized linear contextual bandit algorithm: UCB-GLM

ot al} 2017,

(5) We evaluate our attack strategies using both synthetic and real datasets. We observe empirically that
the total cost of our black-box attack is sublinear for a variety of contextual bandit algorithms.

2 Related Work

In this section, we discuss related works on two parts: attacks that cause standard bandit algorithms to fail
and robust bandit algorithms that can defend attacks.

Attacks Models. While there are many existing works addressing adversarial attacks on supervised learning
models (Szegedy et al., [2014; Moosavi-Dezfooli et al.,[2017; |Cohen et al.,2019; |Dohmatobl 2019; [Wang et al.,
[2019; Dasgupta et al., |2019; [Cicalese et al. 2020), the understanding of adversarial attacks on contextual
bandit models is less complete. Of particular relevance to our work is a line of interesting recent work
on adversarial attacks on MABs (Jun et al) 2018 Liu & Shroff, |2019; Liu & Lail [2020b) and on linear
contextual bandits (Ma et all, 2018} |Garcelon et all 2020). In recent works in MABs setting, the types of
attacks include both reward poisoning attacks and action poisoning attacks. In the reward poisoning attacks,
there is an adversary who can manipulate the reward signal received by the agent (Jun et al., 2018; [Liu &
. In the action poisoning attacks, the adversary can manipulate the action signal chosen by the
agent before the environment receives it (Liu & Lail 2020b). Existing works on adversarial attacks against
linear contextual bandits focus on the reward (Ma et all 2018} |Garcelon et al., [2020) or context poisoning
attacks (Garcelon et al. 2020). In the context poisoning attacks, the adversary can modify the context
observed by the agent without changing the reward associated with the context. (Wang et al.| 2022)) defines
the concept of attackability of linear stochastic bandits and introduces the sufficient and necessary conditions
on attackability. There are also some recent interesting work on adversarial attacks against reinforcement
learning (RL) algorithms under various setting (Behzadan & Munir} 2017} Huang & Zhul |2019; Ma et al.
[2019} |Zhang et al.l [2020} |Sun et al.| [2021} [Rakhsha et al.l [2020}; 2021} Liu & Lail [2021} Rangi et al., 2022).
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Although there are some recent works on the action poisoning attacks against MABs and RL, the action
poisoning attack on contextual linear bandit is not a simple extension of the case of MAB or RL. Firstly,
in the MAB settings the rewards only depend on the arm (action), while in the contextual bandit setting,
the rewards depend on both the arm and the context (state). Secondly, (Liu & Lai [2021) discusses the
action poisoning attack in the tabular RL case where the number of states is finite. In the linear contextual
bandit problem, the number of contexts is infinite. These factors make the design of attack strategies and
performance analysis for the contextual linear bandit problems much more challenging.

Robust algorithms. Lots of efforts have been made to design robust bandit algorithms to defend adversarial
attacks. In the MABs setting, (Lykouris et al.| |2018]) introduces a bandit algorithm, called Multilayer Active
Arm Elimination Race algorithm, that is robust to reward poisoning attacks. (Gupta et all 2019) presents
an algorithm named BARBAR that is robust to reward poisoning attacks and the regret of the proposed
algorithm is nearly optimal. (Guan et all 2020) proposes algorithms that are robust to a reward poisoning
attack model where an adversary attacks with a certain probability at each round. (Feng et al.l 2020)
proves that Thompson Sampling, UCB, and e-greedy can be modified to be robust to self-interested reward
poisoning attacks. (Liu & Lai,|[2020al) introduce a bandit algorithm, called MOUCB, that is robust to action
poisoning attacks. The algorithms for the context-free stochastic multi-armed bandit (MAB) settings are
not suited for our settings. In the linear contextual bandit setting, (Bogunovic et al., |2021)) proposes two
variants of stochastic linear bandit algorithm that is robust to reward poisoning attacks, which separately
work on known attack budget case and agnostic attack budget case. (Ding et al., [2022)) provides a robust
linear contextual bandit algorithm that works under both the reward poisoning attacks and context poisoning
attacks.

3 Problem Setup

3.1 Review of Linear Contextual Bandit

Consider the standard contextual linear bandit model in which the environment consists of K arms. In each
round t = 1,2,3,...,T, the agent observes a context z; € D where D C R?, pulls an arm I; and receives a
reward r; 7,. Each arm i is associated with an unknown but fixed coefficient vector 6; € © where © C R<.
In each round ¢, the reward satisfies

e, 1, = <‘rta 01t> + N, (1)

where 7, is a conditionally independent zero-mean R-subgaussian noise and (-, -) denotes the inner product.
Hence, the expected reward of arm ¢ under context x; follows the linear setting

Elre ] = (24, 0) (2)

for all ¢t and all arm i. If we consider the o-algebra F; = o(z1,...,2¢11,M1,...,7), Tt becomes Fy_q
measurable and 7; becomes F; measurable. The agent aims to minimize the cumulative pseudo-regret

T
Ry = Z (w4, 01:) — (24,01,))

where I} = arg max; (zy, 6;).

In this paper, we assume that there exist L > 0 and S > 0, such that for all round ¢ and arm i, ||at||s < L
and ||6;|]2 < S, where || - ||z denotes the fo-norm. We assume that there exist D C R? such that for all ¢,
x¢ € D and, for all z € D and all arm ¢, (x,6;) > 0.

3.2 Action Poisoning Attack Model

In this paper, we introduce a novel adversary setting, in which the attacker can manipulate the action chosen
by the agent. In particular, at each round ¢, after the agent chooses an arm I;, the attacker can manipulate
the agent’s action by changing I; to another IY € {1,..., K}. If the attacker decides not to attack, I = I.
The environment generates a random reward r; 10 based on the post-attack arm I and the context ;.
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Then the agent and the attacker receive reward 7, 10 from the environment. Since the agent does not know
the attacker’s manipulations and the presence of the attacker, the agent will still view r; 10 as the reward
corresponding to the arm I;. The action poisoning attack model is summarized in Algorithm [1f .

Algorithm 1 Action poisoning attacks on contextual linear bandit agent

1: fort=1,2,...,T do

2:  Agent chooses arm I; after observing the context .

3:  Attacker observes the agent’s action I;. If the attacker decides to attack, it manipulates the action to
IY. Tf the attacker does not attack, IY = I;.

4: The environment generates reward , jo according to arm I} and context ;.

5. The agent and attacker receive reward 7 ro.

6: end for

The goal of the attacker is to design attack strategy to manipulate the agent into pulling a target arm very
frequently but by making attacks as rarely as possible. Without loss of generality, we assume arm K is
the “attack target' arm or target arm. Define the set of rounds when the attacker decides to attack as
C:={t:t<T,I? # I}. The cumulative attack cost is the total number of rounds where the attacker
decides to attack, i.e., |C|. The attacker can monitor the contexts, the actions of the agent and the reward
signals from the environment.

Mean Reward(<x,6>)

Context(x)
Figure 1: An example of one dimension linear contextual bandit model.

As the action poisoning attack only changes the actions, it can impact but does not have direct control of
the agent’s observations. Furthermore, when the action space is discrete and finite, the ability of the action
poisoning attacker is severely limited. It is reasonable to limit the choice of the target policy. Here we
introduce an important assumption that the target arm is not the worst arm:

Assumption 1 For all x € D, the mean reward of the target arm satisfies (x,0r) > min;c(x)(z, ;).

If the target arm is the worst arm in most contexts, the attacker should change the target arm to a better
arm or the optimal arm so that the agent learns that the target set is optimal for almost every context. In
this case, the cost of attack may be up to O(T). Assumption does not imply that the target arm is optimal
at some contexts. The target arm could be sub-optimal for all contexts. Fig. [I] shows an example of one
dimension linear contextual bandit model, where the xz-axis represents the contexts and the y-axis represents
the mean rewards of arms under different contexts. As shown in Fig. [T} arms 3 and 4 satisfy Assumption [I]
In addition, arm 3 is not optimal at any context.

Under Assumption [1] there exists o € (0, §) such that
min; (z, 0;)

AL T < (1 = 24).
Ia?eal))( <$,9K> - (1 20[)
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Equivalently, Assumption [1|implies that there exists a € (0, %), such that for all ¢, we have

(1 =2a)(z,0k) > irél[ilr(l](xt, 0;). (3)

Assumption [I] is necessary in our analysis to prove a formal bound of the attack cost. In Appendix [A] we
show that this assumption is necessary in the sense that, if this assumption does not hold, there exist a
sequence of contexts {7 },c[r) such that no efficient action poisoning attack scheme can successfully attack
LinUCB. Certainly, these sequences of contexts are worst case scenarios for attacks. In practice, if these
worst case scenarios do not occur, the proposed algorithms in Sections and may still work even if the
target arm is the worst in a small portion of the contexts (as illustrated in the numerical example section).

3.3 Comparisons with Different Poisoning Attacks

We now compare the three types of poisoning attacks against contextual linear bandit: reward poisoning
attack, action poisoning attack and context poisoning attack. In the reward poisoning attack (Ma et al.)
2018; |Garcelon et al.l 2020), after the agent observes context z; and chooses arm I, the environment will
generate reward r¢ j, based on context z; and arm I;. Then, the attacker can change the reward r; j, to 7%
and feed 7} to the agent.

Compared with the reward poisoning attacks, the action poisoning attack considered in this paper is more
difficult to carry out. In particular, as the action poisoning attack only changes the action, it can impact
but does not have direct control of the reward signal. By changing the action I; to I, the reward received
by the agent is changed from 7y, to 7 10 which is a random variable drawn from a distribution based on
the action I and context z;. This is in contrast to reward poisoning attacks where an attacker has direct
control and can change the reward signal to any value 7, of his choice.

In the context poisoning attack (Garcelon et al.,[2020), the attacker changes the context shown to the agent.
The reward is generated based on the true context x; and the agent’s action I;. Nevertheless, the agent’s
action may be indirectly impacted by the manipulation of the context, and so as the reward. Since the
attacker attacks before the agent pulls an arm, the context poisoning attack is the most difficult to carry
out.

For numerical comparison, as our paper is the first paper that discusses the action poisoning attack against
contextual linear bandits, there is no existing action poisoning attack method to compare. One could run
simulations to compare with reward or context poisoning attacks, but the attack costs are defined differently,
due to the different nature of attacks. For example, for reward poisoning attacks, (Garcelon et al., 2020))
proposed a reward poisoning attack method whose attack cost scales as O(log(T)?). However, the definition
of the attack cost in (Garcelon et al.| |2020)) is different from that of our paper. The cost of the reward attack
is defined as the cumulative differences between the post-attack rewards and the pre-attack rewards. The
cost of the action attack is defined as the number of rounds that the attacker changes the actions selected by
the agent. Although the definition of the attack cost of these two different kinds of attacks are different, the
attack cost of our proposed white-box attack strategy scales on O(log(T)?), which is same with the results
in (Garcelon et al., |2020).

As mentioned in the introduction, the goal of this paper is not to promote any particular types of poisoning
attacks. Instead, our goal is to understand the potential risks of action poisoning attacks, as the safe
applications and design of robust contextual bandit algorithm relies on the addressing all possible weakness
of the models.

4 Attack Schemes and Cost Analysis

In this section, we introduce the proposed action poisoning attack schemes in the white-box setting and
black-box setting respectively. In order to demonstrate the significant security threat of action poisoning
attacks to linear contextual bandits, we investigate our attack strategies against a widely used algorithm:
LinUCB algorithm. Furthermore, we analyze the attack cost of our action poisoning attack schemes.
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4.1 Overview of LinUCB

For reader’s convenience, we first provide a brief overview of the LinUCB algorithm (Li et al. [2010). The
LinUCB algorithm is summarized in Algorithm [2 The main steps of LinUCB are to obtain estimates of the
unknown parameters 6; using past observations and then make decisions based on these estimates. Define
7i(t) :=={s: s <t,I; =i} as the set of rounds up to ¢ where the agent pulls arm i. Let N;(t) = |7;(¢)|. Then,
at round ¢, the fs-regularized least-squares estimate of ; with regularization parameter A > 0 is obtained
by (Li et al., [2010)

0 = Vt_ll Z T4 Tk, (4)

ker;(t—1)

where

Vii= Z ask:cg + Al

ker;(t—1)

with I being identity matrix.

After 6,’s are obtained, at each round, an upper confidence bound of the mean reward has to be calculated
for each arm (step 5 of Algorithm . Then, the LinUCB algorithm picks the arm with the largest upper
confidence bound (step 7 of Algorithm . By following the setup in "optimism in the face of uncertainty
linear algorithm" (OFUL) (Abbasi-Yadkori et al., 2011), we set

Bri = VAS 4+ Ry/2log K /6 + dlog (1 + L2N;(t)/(Ad)),

and

w(N) = Ry/2log K/ + dlog (1 + L2N/(Ad)) + V'AS.

It is easy to verify that w(IN) is a monotonically increasing function over N € (0, +00).

Algorithm 2 Contextual LinUCB (Li et al., [2010)
Require: A\, K, T, L, S. .
1: Initialize for every arm i, V; < AL, b; < 0, 0; < Vi_lbi.
2: fort=1,2,...,7T do
3:  Observe the context x;.
4 Compute the upper confidence bound: p;; + xtTQAZ + Bt’“/xtTVflxt for all arm i € [K].
5 Pull arm I; = arg max; p; ;.
6:  The environment generates reward r; according to arm I;. The agent receive r;.
7
8

T ) —1
: Vi, < Vi, + 2y, by, < by, + 12y, 05, < VIt by, .
: end for

4.2 White-box Attack

We first consider the white-box attack scenario, in which the attacker has knowledge of the environment.
In particular, in the white-box attack scenario, the attacker knows the coefficient vectors 6;’s for all . The
understanding of this scenario could provide useful insights for the more practical black-box attack scenario
to be discussed in Section E.3l

Our proposed attack strategy works as follows. When the agent chooses arm K, the attacker does not attack.
When the agent chooses arm I; # K, the attacker changes it to arm

K with probability €
1 ={ t (5)

I} with probability 1 — ¢

where ItT = arg min; (x4, 0;) and

(1 — a){x, 0x) — min;(zy, 0i>'

= (x4, 0k ) — ming (x4, 6;)
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We now explain the main idea behind the attack strategy specified in equation 5] and equation[6l Intuitively
speaking, using equation [5] and equation [6] the attacker can manipulate the agent into learning some par-
ticular coefficient vectors. In particular, for arm K (the target arm), the agent obtains the true coefficient
vector O . For any arm i # K, because of the attacks, the agent will obtain an estimate of arm ¢’s coefficient
vector to be close to (1 — a)fk. This can be seen as follows. Under Assumption [1| and the fact that the
mean rewards are positive, we have that 1/2 < ¢, < 1 — «. Under the white-box attack, when the agent
pulls a non-target arm I; # K, the mean reward received by the agent should satisfy

Elry po|Fi—1, It] = E[(z4, 070) | Fe—1, It] = €r(ze, 0k ) + (1 — €t) m}n(ajt, 0;) = (1 — a)(xs, OK). (7)

Because of the positive mean reward assumption and the fact that 0 < 1 — a < 1, the target arm K appears
to be the optimal arm for any context. Hence the proposed white-box attack strategy can easily mislead an
agent who employs a contextual bandit algorithm with sublinear pseudo-regret, as shown in the following
proposition.

Proposition 1 For§ > 0. Suppose the agent employs a linear contextual bandit algorithm whose cumulative
pseudo-regret is upper bounded by o(T) with probability at least 1 — 6. When using the proposed white-box
attack scheme, with probability at least 1 — 0, the attacker can force the agent to pull the target arm for
T — o(T) times, while the total attack cost |C| is upper bounded by o(T).

Proposition [1] applies to any contextual bandit algorithm whose cumulative pseudo-regret is upper bounded
by o(T). To further illustrate the proposed attack scheme, we now provide a finer analysis the impact of
this attack on LinUCB described in Algorithm [2 We first build a high probability bound for the estimate of
parameter at the agent, when the agent computes the estimate of §; by equation [ and the attacker employs
the white-box attack. Recall that w(N) = VAS + Ry/2log K/& + dlog (1 + L2N/()\d)).

Lemma 1 Under the proposed white-box attack, the estimate of 0; for each arm i obtained by LinUCB agent
as described in Algorithm[g satisfies

o7 01 = 2f (1 = @)0xc| < (w(Ni(®)) + LS/0.51og RKTS) ) ljailly, (8)

with probability 1 — 2(K — 1)§/K, for all arm i # K and all t > 0. Here, ||z||v = VaTVz is the weighted
norm of vector x for a positive definite matriz V.

Lemma [1| shows that, under our white-box attack, the agent’s estimate of the parameter of non-target arm,
i.e. 0;, will converge to (1 — a)fk. Thus, the agent is misled to believe that arm K is the optimal arm for
every context in most rounds. The following theorem provides an upper bound of the cumulative cost of the

attack.

Theorem 1 Define v = mingep(z,0x). Under the same assumptions as in Lemma for any § > 0 with
probability at least 1 — 2§, for all T > 0, the attacker can manipulate the LinUCB agent into pulling the
target arm in at least T — |C| rounds, using an attack cost

log (1+ TL2/(d))) (2w(T) + LS\/051og (2KT/6))

2(K — 1)
A=

2

9)

Theorem [I] shows that our white-box attack strategy can force LinUCB agent into pulling the target arm
T — O(log® T) times with attack cost scaled only as O(log® T).

4.3 Black-box Attack

We now focus on the more practical black-box setting, in which the attacker does not know any of arm’s
coefficient vector. The attacker knows the value of a (or a lower bound) in which the equation equation
holds for all ¢. Although the attacker does not know the coefficient vectors, the attacker can compute an
estimate of the unknown parameters by using past observations. On the other hand, there are multiple
challenges brought by the estimation errors that need to properly addressed.



Under review as submission to TMLR

The proposed black-box attack strategy works as follows. When the agent chooses arm K, the attacker does
not attack. When the agent chooses arm I; # K, the attacker changes it to arm

K with probability €
=3 t (10)
I; with probability 1— e
where ;
1} = argmin ({22, 00,) = Bullarll ) (1)
and
B, = ¢, ( ) + LS\/0.51og (2KT/3) )
¢; = 1/a when i # K and ¢x = 2, and
(1 — ) {4, 00 ) — (24,00 1)
1 ty t,K ty t IT
e =clip | =, = = o 1l-al, (12)
2 (1,07 k) — (s eﬂtf)
with clip(a, ,b) = min(b, max(x, a)) where a < b.
For notational convenience, we set IZ = K and ¢, = 1 when I; = K. We define that, if i # K,
T4) — fq- T—
T () ={s:s <t Il =1}
and N/ (t) = |7 ()|. We also define T}L{(t) :={s:s<t}and N}L((t) = IT;((t)‘
A -1
9?,1' = (Vt?i) Z Wi, 10Tk s (13)
kerf(t—1)
where
VtoZ = Z Tpry + NI
kerf(t-1)
and
1/e ifi=1"=K
wi=41/(1—¢) ifi=1I"=1I . (14)
0 if i # I

Here, é?l is the estimation of #; by the attacker, while ét,i in equation |4|is the estimation of 6; at the agent

side. We will show in Lemma |2/ and Lemma {4{ that é?l will be close to the true value of #; while ét,i will
be close to a sub-optimal value chosen by the attacker. This disparity gives the attacker the advantage for
carrying out the attack.

We now highlight the main idea of why our black-box attack strategy works. As discussed in Section [4.2]
if the attacker knows the coefficient vectors of all arms, the proposed white-box attack scheme can mislead
the agent to believe that the coefficient vector of every non-target arm is (1 — )8k, hence the agent will
think the target arm is optimal. In the black-box setting, the attacker does not know the coefficient vector
for any arm. The attacker should estimate an coefficient vector of each arm. Then, the attacker will use
the estimated coefficient vector to replace the true coefficient vector in the white-box attack scheme. As the
attacker does not know the true values of ;’s, we need to design the estimator 9 , the attack choice I; I
and the probability €; carefully. In the followmg, we explain the main ideas behmd our design choices. 1)
Firstly, we explain why we design estimator Gm using the form equation in which the attacker employs
the importance sampling to obtain an estimate of #;. There are two reasons for this. The first reason
is that, for a successful attack, the number of observations in arm i # K will be limited. Hence if the
importance sampling is not used, the estimation variance of the mean reward (z, 6;) at the attacker side for
some contexts x may be large. The second reason is that the attacker’s action is stochastic when the agent
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pulls a non-target arm. Thus, the attacker uses the observations at round ¢ when the attacker pulls arm 4
with certain probability, i.e. when ¢t € 7';, to estimate 6;. Since the agent’s action is deterministic, the agent
uses the observations at round ¢ when the agent pulls arm 4, i.e. when ¢t € 7;, to estimate 6;. 2): Secondly,
we explain ideas behind the choice of ItT in equation Under our black-box attack, when the agent pulls
a non-target arm I; # K, the mean reward received by the agent satisfies

Elre rol v, It] = Bl (21, 010) | Fio1, It) = € (e, 0xc) + (1 — €) (w1, 01)- (15)

In white-box attack scheme, Ij is the worst arm at context x;. In the black-box setting, the attacker does not
know a priori which arm is the worst. In the proposed black-box attack scheme, as indicated in equation
we use the lower confidence bound (LCB) method to explore the worst arm and arm ItT has the smallest lower
confidence bound. 3): Finally, we provide reasons why we choose ¢; using equation In our white-box
attack scheme, we have that 1/2 < ¢, < 1 — . Thus, in our black-box attack scheme, we limit the choice
of € to [1/2,1 — a]. Furthermore, in equation |§| used for the white-box attack, €; is computed by the true
mean reward. Now, in the black-box attack, as the attacker does not know the true coefficient vector, the
attacker uses an estimation of 6 to compute the second term in the clip function in equation

In summary, our design of é?,i’ ItT and € can ensure that the attacker’s estimation é?z is close to 0;, while

the agent’s estimation ét,i will be close to (1 —«)fk. In the following, we make these statements precise, and
formally analyze the performance of the proposed black-box attack scheme. First, we analyze the estimation
07, at the attacker side. We establish a confidence ellipsoid of (2,67 ;) at the attacker.

Lemma 2 Assume the attacker performs the proposed black-box action poisoning attack. With probability
1— 26, we have
‘mtTag,i - thHi\ < ﬁ?,intH(Vtoi)—l

holds for all arm i and all t > 0.

Lemma [2| shows that é? lies in an ellipsoid with center at 6; with high probability, which implies that the
attacker has good estimate. We then analyze the estimation 6;; at the agent side. The following lemma
provides an upper bound on the difference between E[r, jo|F;—1, ;] and (1 — a)(z, Ok ).

Lemma 3 Under the black-box attack, the estimate obtained by an LinUCB agent satisfies

‘E[rt,I?|Ft—17[t] - (1= a)(z,0k)| < (1- a)ﬁﬁKllxtll(vtoK)—l +(1+ @)52]; ||33t||< >1~ (16)
i Vo

ot
simultaneously for all t > 0 when I # K, with probability 1 — 24.

The bound in Lemma |3| consists of the confidence ellipsoid of the estimate of arm ItT and that of arm K. As
mentioned above, for a successful attack, the number of pulls on arm IJ will be limited. Thus, in our proposed
algorithm, the attacker use the importance sampling to obtain the estimate of #;, which will increases the
number of observations that can be used to estimate the coeflicient vector of arm ItT . Using Lemma [3| we
have the following lemma regarding the estimation ét,i at the agent side.

BE-13 4,

Lemma 4 Consider the same assumption as in Lemma . With a probability at least 1 — ¢

estimate ét,i obtained by the LinUCB agent will satisfy

270,; — 2T (1 — a)fg| < (1 +4d/a/Klog (1 + tL2/(d)\))> (w(t) +LS/051og (2KT/5)) [EAe

(17)
simultaneously for all arm i # K and all t > 0.

Lemma [ shows that, under the proposed black-box attack scheme, the agent’s estimate of the parameter
of the non-target arm, i.e. éi7 will converge to (1 — ). Hence the agent will believe that the target arm
K is the optimal arm for any context in most rounds. Using these supporting lemmas, we can then analyze
the performance of the proposed black-box attack strategy.
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Theorem 2 Define v = mingep(x,0x). Under the same assumptions as in Lemma |4, with probability at
least 1 — 36, for all T > 0, the attacker can manipulate a LinUCB agent into pulling the target arm in at
least T — |C| rounds, using an attack cost

IC| < 2K 1) (2 + f\/Klog (1 + 7;5)) log (1+ TL*/(d)) (w(T) + LS+/0.51og (2KT/6))2.

(ay)?
(18)

Theorem [2| shows that our black-box attack strategy can manipulate a LinUCB agent into pulling a target
arm T — O(log® T') times with attack cost scaling as O(log® T'). Compared with the result for the white-box
attack, the black-box attack only brings an additional log T" factor.

4.4 Generalized Linear Models

We note that the proposed attack strategies can also be extended to generalized linear models. Detailed
analysis of the cost of the proposed attack strategies for the generalized linear contextual bandit model can
be found in Appendix

5 Numerical Experiments

In this section, we provide numerical examples to illustrate the impact of proposed action poisoning attack
schemes.

5.1 Attack Linear Contextual Bandit Algorithms

We first empirically evaluate the performance of the proposed action poisoning attack schemes on three
contextual bandit algorithms: LinUCB (Abbasi-Yadkori et al.l 2011)), LinTS (Agrawal & Goyall 2013]), and
e-Greedy. We run the experiments on three datasets:

Synthetic data: The dimension of contexts and the coefficient vectors is d = 6. We set the first entry
of every context and coefficient vector to 1. The other entries of every context and coefficient vector are
uniformly drawn from (f\/%, \/%) Thus, [|z]]2 < V2, ||8]]2 < V2 and mean rewards (z,6) > 0. The

reward noise 7; is drawn from a Gaussian distribution A/(0,0.01).

Jester dataset (Goldberg et al., [2001): Jester contains 4.1 million ratings of jokes in which the rating
values scale from —10.00 to +10.00. We normalize the rating to [0,1]. The dataset includes 100 jokes and
the ratings were collected from 73,421 users between April 1999 - May 2003. We consider a subset of 10 jokes
and 38432 users. Every jokes are rated by each user. We perform a low-rank matrix factorization (d = 6) on
the ratings data and obtain the features for both users and jokes. At each round, the environment randomly
select a user as the context and the reward noise is drawn from a Gaussian distribution N(0,0.01).

MovieLens 25M dataset: (Harper & Konstan) 2015) MovieLens 25M dataset contains 25 million
5-star ratings of 62,000 movies by 162,000 users. The preprocessing of this data is almost the same as the
Jester dataset, except that we consider a subset of 10 movies and 7344 users. At each round, the environment
randomly select a user as the context and the reward noise is drawn from A(0,0.01).

We set § = 0.1 and A = 2. For all the experiments, we set the total number of rounds 7 = 10% and the
number of arms K = 10. We independently run ten repeated experiments. Results reported are averaged
over the ten experiments. We set « to 0.2 for the two proposed attack strategies, hence the target arm may
be the worst arm in some rounds. Each of the individual experimental runs costs up to 10 minutes on one

physical CPU core. The type of CPU is Intel Core i7-8700.

The results are shown in Table |I] and Figure |2l These experiments show that the action poisoning attacks
can force the three agents to pull the target arm very frequently, while the agents rarely pull the target arm
under no attack. Under the attacks, the true regret of the agent becomes linear as the target arm is not

10
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Cost
Cost
Cost

Figure 2: The cumulative cost of the attacks for the synthetic (Left), Jester (Center) and MovieLens (Right)
datasets.

Synthetic | Jester MovieLens
e-Greeedy without attacks 2124.6 5908.7 3273.5
White-box attack on e-Greeedy | 982122.5 | 971650.9 | 980065.6
Black-box attack on e-Greeedy | 973378.5 | 939090.2 | 935293.8
LinUCB without attacks 8680.9 16927.2 13303.4
White-box attack on LinUCB 981018.7 | 911676.9 | 969118.6
Black-box attack on LinUCB 916140.8 | 875284.7 | 887373.1

LinTS without attacks 5046.9 18038.0 9759.0
White-box attack on LinTS 981112.8 | 908488.3 | 956821.1
Black-box attack on LinTS 918403.8 | 862556.8 | 825034.8

Table 1: Average number of rounds when the agent pulls the target arm over 7' = 10% rounds.

optimal for most context. Table [1] show the number of rounds the agent pulls the target arm among 10°
total rounds. In the synthetic dataset, under the proposed white-box attacks, the target arm is pulled more
than 98.1% of the times by the three agent (see Table . The target arm is pulled more than 91.6% of the
times in the worst case (the black-box attacks on LinUCB). Fig [2| shows the cumulative cost of the attacks
on three agents for the three datasets. The results show that the attack cost |C| of every attack scheme
on every agent for every dataset scales sublinearly, which exposes a significant security threat of the action
poisoning attacks on linear contextual bandits.

5.2  Attack Robust Algorithms

We now discuss existing robust linear bandit algorithms (Ding et al.l 2022; Bogunovic et al., |2021)) and
evaluate the performance of the proposed attack strategy on these algorithms.

In particular, (Bogunovic et al.|[2021)) focuses on a special case in which the context and coefficient vectors are
assumed to be fixed over rounds, and developed Robust Phased Elimination (RPE) algorithm. In contrast,
our paper focuses on the general setting where the contexts are different for each round and coefficients are
different for each arm. Hence the RPE algorithm will not work for the contextual bandit setting considered
in our paper.

(Ding et al., [2022) provides a linear contextual bandit algorithm that is robust to rewards attacks and context
attacks. The scheme in (Ding et al.,|2022) could be used to defend against the action attacks. However, our
numerical results show that the proposed attack strategy can successfully defeat the scheme in (Ding et al.|
2022). In the following, we empirically evaluate the performance of the proposed action poisoning attack
schemes on RobustBandit algorithm in (Ding et al., [2022).

We use the same synthetic data setting in Section We set § = 0.1 and A = 2. For all the experiments,
we set the total number of rounds 7' = 10° and the number of arms K = 10. We independently run ten
repeated experiments. Results reported are averaged over the ten experiments. We set « to 0.2 for the two
proposed attack strategies.

11
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Figure 3: The cumulative cost of the attacks against RobustBandit algorithm for the synthetic datasets.

The simulation results in Figure 3]show that our proposed action poisoning attack can force the RobustBandit
agent to pull the target arm with 7' — o(T') times. The attack cost also scales sublinearly on 7T'. The reason
why the RobustBandit agent cannot defend against the action attacks is that its regret scales on O(C\/T).
If the attack cost C' = O(\/T ), the regret will be linear and the agent will be fooled.

5.3  The Attack Performance When the Assumption [T] Violates

x10°

~
N

White-box attack on e-Greeedy
Black-box attack on e-Greeedy
—White-box attack on LinUCB
***** Black-box attack on LinUCB
—White-box attack on LinTS
***** Black-box attack on LinTS

(2]

(6]

Total Attack Costs
w >

N

0 ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5
The proportion of contexts when the target arm is the worst

Figure 4: The total costs of the attacks for the synthetic datasets when the Assumption [I] violates.

We now evaluate the sensitivity of the proposed algorithms on Assumption We empirically evaluate
the performance of the proposed action poisoning attack schemes on three contextual bandit algorithms:
LinUCB, LinTS, and e-greedy, when the target arm is the worst for some contexts.

We use the same synthetic data setting in Section We set § = 0.1 and A = 2. For all the experiments,
we set the total number of rounds 7" = 10° and the number of arms K = 10. We independently run ten
repeated experiments. Results reported are averaged over the ten experiments. We set o to 0.2 for the two
proposed attack strategies. We manipulate the simulation environments so that the proportions of contexts,
at which the target arm is the worst, are separately controlled around: 0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.

The results in Figure [f] show the total costs under different proportions of contexts when the target arm is
the worst. The x-axis represents the proportions of context when the target arm is the worst. The y-axis
represents the total cost over 106 rounds. The results shows that the total attack costs scale linearly on the
proportions of contexts when the target arm is the worst. When the proportions of contexts when the target
arm is the worst is small, our proposed attack strategies can still efficiently attacks.

12
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5.4 The Attack Performance When the Rewards Are Normalized in [-1,1]

Here, we would like to note that we make the positive reward assumption for the formal analysis, our results
actually can be generalized to the case with negative rewards. If the positive reward assumption does not
hold, for the case with negative rewards, the attacker can preprocess the reward by adding a positive constant
to all rewards such that all rewards become positive. As long as Assumption 1 holds, the proposed attack
strategy can mislead the agent to believe that the target arm is optimal regardless of the positive reward
assumption.

15 x10*
LT ——White-box attack on LinTS
10f o T Black-box attack on LinTS
3 e —White-box attack on LinUCB
© S I e Black-box attack on LinUCB
5t/ ' White-box attack on e-Greeedy
{ Black-box attack on e-Greeedy
0 /
0 2 4 6 8 10
Time(t) x10°

Figure 5: The cumulative cost of the attacks when the rewards are normalized in [-1,1].

To illustrate this, we evaluate the performance of the proposed algorithms when negative rewards exist. We
use the same synthetic data setting in Section We set 6 = 0.1 and A = 2. For all the experiments, we set
the total number of rounds T' = 10° and the number of arms K = 10. We independently run ten repeated
experiments. Results reported are averaged over the ten experiments. We set « to 0.2 for the two proposed
attack strategies. We normalize the rewards in [-1,1]. The attacker preprocesses the rewards by adding a
constant ¢ = 3 to the rewards in his algorithms. In the white-box attack setting, the attacker adds ¢ = 3
to every (x,6) and use the preprocessed (z,0) to compute €;. In the black-box attack setting, the attacker
adds ¢ = 3 to every reward r, and use the preprocessed r; to compute 0 and e,.

The results in Figure [p]show that our proposed attack strategies still work for the case with negative rewards.

6 Conclusion

In this paper, we have proposed a class of action poisoning attacks on linear contextual bandits. We have
shown that our white-box attack strategy is able to force any linear contextual bandit agent, whose regret
scales sublinearly with the total number of rounds, into pulling a target arm chosen by the attacker. We
have also shown that our white-box attack strategy can force LinUCB agent into pulling a target arm
T — O(log® T') times with attack cost scaled as O(log? T'). We have further shown that the proposed black-
box attack strategy can force LinUCB agent into pulling a target arm 7' — O(log3 T) times with attack cost
scaled as O(log3 T). Our results expose a significant security threat to contextual bandit algorithms. In the
future, we will investigate the defense strategy to mitigate the effects of this attack.
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A Necessity of Assumption [1]

In the main paper, we show that, if Assumption [I]holds, our proposed attack schemes can successfully attack
LinUCB regardless the context.

Here, we highlight the necessity of Assumption [I]in the sense that, if Assumption [I] does not hold, for some
sequence of context {x };er), there is no efficient action poisoning attack scheme that can successfully attack
LinUCB. If the Assumption [I] does not hold, we set

Dk :={x € D|{z,0k) = min (z,6;)}
1€[K]

as the set of context where the target arm is the worst. We consider such sequence of contexts {x;}+c[7] that
x; € Dk for all t < T, and 7 linearly depends on T'.

If the attacker does not attack the target arm, the target arm is the worst in Dg. No matter how we change
the non-target arms to another arm, the cost and loss will linearly depend on Tk and therefore linearly
depend on T'.

If the attacker attacks the target arm when x; € Dk and changes the target arm to a better arm or the
optimal arm so that the agent learns that the target set is optimal even in the context set Dk, the cost of
attack may be up to O(Tk) and hence scales as O(T). We define

T r—1(t) = {s:s <t,I,=K but I # K}

as the set of rounds up to ¢ where the attacker attacks arm K and Ck(t) = |7k [x—1](t)| as the attack cost
of attacking arm K. We can show that if we attack the target arm, for any attack scheme,

10s,5 = Oxcllvise < IVig D LSmllvi

SETR, [K—1](t)

< Z LS\/:U;FV;;QCS

SETK, [K—1](t)

(19)
<18 \/cw) > e

sETK, Kk —1)(t)

2
< 18 facxtnon (14 X502,

where the last inequality is obtained by the Lemma 11 from (Abbasi-Yadkori et al.,[2011). Then, the average
estimation error of the mean reward of arm K is bounded by

Tk
VTx Y |2:(0r,x — 0rc)]
t=1
Tk
<UYTi > 00 = Oxcllvi e el (20)
t=1 '

2
<2dLS log (1 + NK(;IK()L) Cr(Tk)/Tk.

If the attacker tries to let the post-attack arm K be A-optimal than the original arm K, we have Cx (Tk) =
O(Tk), where O ignores the logarithm dependency.

In summary, without the prior information of the context distribution or the context sequence, there is no
action poisoning attack scheme that can always efficiently attack without Assumption [Il However, in some
situations, some action poisoning attack scheme may still work even if the target arm is the worst in a small
portion of the contexts, as shown in the numerical result session.
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B Attack Cost Analysis of White-box Setting

B.1 Proof of Proposition [1]
When the agent pulls a non-target arm I, # K, the mean reward received by the agent should satisfy
Elry o Fi-1, 1] = (1 — a){@, Ok).

In the observation of the agent, the target arm becomes optimal and the non-target arms are associated with
the coefficient vector (1 — )8k . In addition, the cumulative pseudo-regret should satisfy

T T
Rp = 1y, zxypaln, 0k) > Z {LAK}Y-
=1 =1

We define ¥ = mingep(z,0x). If Ry is upper bounded by o(T), Zle 1y7,2K} is also upper bounded by
o(T).

B.2 Proof of Lemmalil

If the agent computes an estimate of §; by equation 4 and V; ; = (Zke”(t_l) xk:cg + )\I), we have
2l — 2T (1 - )ik

=z Vy! Z repowk | = Vi Vei(l — a)fx

ker; (t—1)
(21)
:xith;l Z Tk (Tt,Ig -(1- a)mf@K) — )\xithTil(l —a)fk
ker; (t—1)
= Z xtTVt;lxk (xf@lg +n—(1— a)x{HK) - )\xtTVt;l(l — a)fg,
keri(t—1)
and by triangle inequality,
jof 0 — 2f (1 — a)0k|
(22)

< Z w?%ﬁlxk (folg —(1- a)x{@K) + Z x?Vt;lxknk + ‘Ax?%;l(l — )bk .
keri(t—1) keri(t—1)

Now we separately bound the three items in the RHS of equation 22

(1) In our model, the mean reward is bounded by 0 < (x,6;) < ||2¢]|3]|6:]|3 = LS. Since the mean rewards

are bounded and the rewards are generated independently, we have 0 < ’:ck 0 = (1- a)xk Ox| < LS and

E[z] 010 |Fi— 1] = (1—a)zi 0. Thus, {x?Vt;lxk (xf&lg —(1- a)foK) }k - is a bounded martingale
’ eri(t—
difference sequence w.r.t the filtration {Fy}rer,¢—1)-

Then, by Azuma’s inequality,

P Y. afviitaw (o — (1 - a)elox) | = B)

keTi(t—1)

<26 —2B2 (23)
X
N P Zkefri(tq)(wgvt?ilxk[/sy

:Pt,ia
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where B represents confidence bound. In order to ensure the confidence bounds hold for all arms and all

round ¢ simultaneously, we set P, ; = % SO
1 2KT 1 1 2KT
515 |10 (25T 3 elvitnpsis (25 el (24)

where the last inequality is obtained from the fact that

th”%/t_il = fot;l Z rpry + A Vtglzt

keTi(t—1)
> x?‘ft,_ll Z xkxf Vt;lzt (25)
keTi(t—1)
= > (Vg w)
keri(t—1)
In other words, with probability 1 — J, we have
_ 1 2KT
S eVt (ot - (- )afon)| < 25y g1ox (25 ol (20)

ker;i(t—1)
for all arms and all ¢.

(2) Note that Vi; = 3 e -1 zrzi + Al is positive definite. We define (z,y)y = 27 Vy as the weighted
inner-product. According to Cauchy-Schwarz inequality, we have

Z x?m;lxknk < Hﬂft||vt—11 Z TNk . (27)

keri(t—1) " ||keri(t—1) V-1
t,i

Assume that A > L. From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al., 2011)), we know that for any
0 > 0, with probability at least 1 — §
2

K det(V;,;)'/? det(AI)~1/2
D T §23210g( et(Vz,)'/? det(AT) )

4]
keT;(t—1) thil (28)

K L2N;(t)
<R? — :
<R (2log 5 +dlog<1—|— d )),
for all arms and all ¢ > 0.

or the third part of the right hand side of equation
3) For the third f the right hand side of ion |22
|/\$3Vt;1(1 —a)fk| < (1 - O‘))‘eKHVt;_l ”mt“Vt;l : (29)

Since V;; = AL, the maximum eigenvalue of Vt_l1 is smaller or equal to 1/\. Thus,
1
11— a)>\9z<||2vt? <5 ha- M|l < (1 - a)*AS>.

In summary,

|$t0tz_ 1—0&9[(‘

<(1a \/75+LS1/*10g 2KT +R\/210g+dlog( Li\;()>>||xt||v”1 (30
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B.3 Proof of Theorem [1]

For round ¢ and context z;, if LinUCB pulls arm i # K, we have

T Ty —1 TpH Ty —1
Ty at,K + Bt,K \/ Tt ‘/tnyt <z et,i + ﬁt,i \/ Lt V;g,i Tt

Recall ,Btz—\FS—l—R\/ﬂog 5 +dlog <1+ (t)>

Since the attacker does not attack the target arm, the conﬁdence bound of arm K does not change and

rl 0k < 2] Gt K+ Bt Ky /fot ¢ holds with probability 1 — 2
Then, by Lemma [T}

a0 <al0, r + 5t,K\/m
TA —1
<wx; 0y + 5@1\/% (31)

Diog (2K5T> +w (N,-(t))) el -

By multiplying both sides 147,—;; and summing over rounds, we have

Sl'f(l — 04)9[{ + Bt’intHVt_il + (LS

t
Z ]].{[k:i}axgef(
k=1

(32)
t
2KT K L2N;(k
l{lk =i} <Bk1 + \fSJrLS\/ < 5 > + R\/210g5 + dlog <1 + )wd()>> kaHVk-_l.
Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011) and obtain
Ni t)L?
5" 1yl < 21051+ 0
k=1 (33)
<2dlog |1+ ﬁ
=< g ax
According to >F_, ]I{Ik:i}‘lkaVk*il < \/Ni(t) Sy ]l{lk:i}ka”%/k—_lv we have
¢ 12
> Lin—llzxlly-1 < 4/ Ni(t)2dlog <1 + CM) (34)
k=1
Thus, we have
Z ]l{Ik:i}cwcgﬁK
k=1 (35)
tL? 1 2KT K tL?
< ) i t il i
_\/Nl(t)leog (1+ dA) <LS 5 log( 5 ) +2f5+2R\/210g 5 +dlog (1+ Ad))
and
Z]l{fk ~i}
(36)

tL 1 2KT K tL2
<7 R — — R
\/ 2dlog 1+ dA)(LS 2log( 5 >+2fs+2R\/210g5 +dlog<1+ Ad))
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where y = mingep (, 0k ). Since N;(t) = 3 p_, Ly7,—), we have

2
2d tL? 1 2KT K tL2
Nt < ——log |14+ —) (2 LSy /=log | =—— ) +2Ry/2log — +dlog [ 1+ =] . (37
l(t)_(m)2 og( +dA)<ﬁS+ S,/Qog( ; )+ R\/ 0g5+dog( +/\d)> (37)

C Attack Cost Analysis of Black-box Setting

C.1 Proof of Lemma

Since the estimate of 6; obtained by the agent satisfies
A -1
9?,1' = (Vt(,)i) Z Wk,iTk, 19Tk | (38)
kel (t-1)

we have
T 50 T
Xy Ht,i —x; 0;

_ T (y/0\~1 T (1,0~ 11,0
=Ty (Vtz) E W,iTk, 10Tk | — Ty (Vm) Vt,iei
ker] (t—1)

1 1

=z{ (V%)™ Z (Wh,iTk,10 — wi0)ze | — Azl (V) 6
ker] (t-1)
=zf (V2)™ > (waf0p -zl 0z,

ker](t-1)

+af (Vt(,)i)_l Z Wik | — Axf (Vt?i)_l 0;.
ket (t—1)

Now we separately bound the three items in the RHS of equation

(1) We have 0 < ‘wangIg—m{Gi < wg,;LS and E[wk7ix{912|Fk_1] = 210, In addition, by

the definition of wg;, we have that wg; < 1/a if i # K, and wg; < 2 if ¢ = K. Thus,

{xtT(VtOi)—l ZkeTT(t_l)(waszIg - xf@i)mk}k o is also a bounded martingale difference sequence w.r.t
’ i eri(t—1

the filtration {F}rer,t—1). By following the steps in Section we have, with probability 1 — %5, for
any arm ¢ # K and any round t,

-1
zf (V) > (wkari b0 —af6)ay || <
kerf(t-1)

and with probability 1 — %5 , for arm K and any round ¢,

. 1 2KT
F V)T Y (wnaloy — o) || <208 21°g<5 )”zt”<vsx>1'
kETL(t_l)
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(2) The confidence bound of the second item of the right side hand of equation [39|can be obtained from equa-
tion With probability, 1 — %(5 , for any arm i # K and any round ¢,

—1 R K L2N}(t)
ai (Vi) Z Wik || < o 2log 5T dlog (1 TTd ”xtH(Vtgi)*l' (39)
ker] (t—1) '

With probability, 1 — %5, for arm K and any round ¢,

-1 K L2N(t)
af (V%) Z wi KTk || < 2R, | 2log — + dlog (1 + )\72( ||CL‘t||(V£K)—1. (40)
kerl (t-1)
(3) For the third part of the right hand side of equation
-1
T (V2) ™ 01 < 1060l )+ el )+ < VAS el )+ (a1)
In summary,
o 07 ; — 2 0|
1 2KT K L2N1(t) (42)
<¢; - — — — -
<¢; | VAS+ LS 2log< 3 )+R 2log 5 + dlog <1+ N ||37t||(VtOK) 1,

where ¢; = 1/a when ¢ # K and ¢ = 2.

C.2 Proof of Lemma[3

Recall the definition of €;:

A

(1— ) e, 00 ) — (2,0 ,)

1
e =clip | =, ~ ~ - 1—-al, (43)
2 B ) — (@ B0, )
and the definition of I;r :
1} = argmin (. 00,) = Blallarll v+ ) - (44)

By Lemma (x4, 910[0 - ﬁ?ﬂ |4 (vo ) < min;(x, ;) with probability 1 — 2.
1t Tt t,It

Because €; is bounded by [1/2,1 — al, we can analyze E[r; jo[F;_1, I] in four cases.

A A

Case 1: when (xt,OgK) < <xt795ﬂ> and €, = 1 — a, we have

E[Tt,[?|Ft—1a It] = (1 — Oé)<l‘t, 0K> + Oé<l‘t, 011> (45)
Then, by Lemma [2]

(1—a)x] 0k + ozxtTHIj —(1—a)z!

Vo
+
1]

<(1-a) (xtTé?K + ﬁ?’KIxtH(‘GUK)1> + mtTGA?J: + BSJ:H@}H( )1 —(1-a)r] 0k

(46)

<l 6]+ (1~ a)ﬁgKthH(Vt(?K)—l +app il ( ) — (1 — )zl 0k

<(1- O‘)rBS,KH:Ct”(VOK)*l +(1+ 04)5?13 93t|( )17
t, 7t Vo
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where the second inequality is obtained by the condition of Case 1 and the last inequality is obtained by

xtTé? o BS I IEA < )1 < min; (z¢, 6;) and Assumption
: , Vo

t IT

Tt

On the other side, we have

(1—a)zl o + ax?@ltf —(1—a)zl 0k = ax?@lz > 0. (47)

A N A

Case 2: when (:Et,02K> > <xt795ﬂ> > (1-— 2a)<xt,02K> and ¢ = 1/2, we have

1 1
Elry ol Fi—1,It] = §<$ta91<> + §<xt,913>- (48)

Then, by Lemma

—_

—(2T 0 + :1{9[:) — (1 —a)zlog

=N

=3 (:cf@lz -(1- 2a)xtT0K>

<

N |

Vo
+
t,It

xtTé?,Ij + 5,?1;||th|( )1 —(1—2a)zl 0k

Sﬁf,z; [EA| <v0 > -1

where the last inequality is obtained by xtTég o BS sillel] (
Tt "t

+
t’It

)1 < min; (x4, 6;) and Assumption

On the other side, by Lemma

1
i(x’f@K + x;f@[:) — (1 - )zl 0k

2

Vo

1
t,It

1 .
25 35;[9?’[; - ﬁﬁﬁ”“”(

1 A
)_1 _ 5(1 _ 2a) <{Ez—‘0tO’K + ﬁgK||‘rt||(\/toK)_l>

1
>~ 550 el (

Vo

+
t’It

1 0
)-1 = 5 (=208 el oy

where the last inequality is obtained by the conditions of Case 2.

Case 3: when 0 < (xt,égﬂ> <(1- 204)(1,5,@2}() and 1/2 < ¢ <1 — a, we have
iy

E[Tt,I?|Ft—1a It] = 6t<xt,91{> + (1 — €t)<.’1,‘t, 912> (50)
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We can find that

ex(xe, O ) + (1 — 6t)<$t79It]‘> — (1 = a){z,0k)
=et({xt,0k) — <xt,913>) + <xt’91f> — (1= a){z,0k)
=€ (w1, 07 1) — <xtaé?’[tf>) + @, 0p1) = (1= @) (s, 0k)

A A

+ 6t(<$t79212‘> - <xt79]j>) + 6t(<wtveK> - <$t79?,K>)

=(1 = a){@s, 0 ) = (1,0, ;1) + (w0, Opy) — (1 = @) {w, )

A A

+ Et(<$t79211> = (24,0;1)) + ee({xe, Oxc) — (@, 07 )

—(1—a—e) (00,00 ) = {@1,0)) + (1= ) ({0, 00 ) = (w0, 0p0)

which is equivalent to

N A

[Blre o] Fiea, 1) = (1= ) e, )|

<(l-a- Et)ﬂ?,Kthll(VoK)—l +(1- €t)5?[f ||33t|( )1~
t, 7t Vo

Case 4: when (x4, é?11> < 0and ¢ =1 — «, we have
Tt

Then, by Lemma [2]

E[Tt,INFt—la L] = (1 — a){zt, 0k ) + oz, 91j>~

(1—a)zl o + a:z:tTHI: —(1—a)zlx
zaxtTQIf

gaxtTngj —i—aﬂgUthH( )_1
; Vo

SO‘BEH”““”( )1a
V(J

ol

where the last inequality is obtained by the condition of Case 4. We also have

(1—a)zl 0k + ozxtTHU —(1—a)zlog = O‘xtTajj > 0.

Combining these four cases, we have

E[Tt,I?‘thhlt] - (1 - 04)<$t76.K>’

<(1- a)ﬂgK”mt”(VtoK)*l + 1+ a)ﬂfﬂ 2] ( >1'
5 d VO

24
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C.3 Proof of Lemma(dl
From Section [B:2] we have, for any arm i # K,

ot 010 — 2 (1 = )|

< Z xtTthlxk (:C{GIS —(1- a)xf@K) + Z thVt;lxknk + )\xtTVt;l(l - 04)9K|
ker;(t—1) keri(t—1)
< Z x?‘/zﬁlxk (;C{HIE —ep(Tr, O0x) — (1 — ex)(xk, 91£>)

keri(t—1) (57)

+ Z xtTVt;lxk <€k<$k,91{> +(1- 61@)(9%,9[]1) -(1- a)x{@K)

keTi(t—1)

1S aT v e + TV - a)bk ]
ker;i(t—1)

Now we separately bound the first item and second item in the RHS of equation The bounds of the third
item and fourth item in the RHS of equation [57] are provided in Section [B:2]

(1) Since the mean rewards are bounded and the rewards are generated independently, we have 0 <
‘x{@,}g — 6k<$k, Ok) —(1— 6k)<$k, 94)‘ < LS and E[Igejg‘Fk_l] = ex(xg, 9K> + (1 — ep) (g, 9I2>

Then {x?%‘llxk (:Ug&[g - E[z,{@lg |Fk_1]) }ker(til) is also a bounded martingale difference sequence w.r.t

the filtration {F}}rer, 1—1). By following the steps in Section we have, with probability 1 — ¢, for any
arm ¢ and any round ¢,

_ 1 2KT
Z x?‘/;,ilxk ({L‘ZGIS - E[$5912|Fk,1]) <LS 5 log (5> th”VtTil' (58)
ket (t—1)

(2) From equation [25|in Section we have

21> Y Vit 59)
keT;(t—1)

Then, the second item of the right hand side of equation [57] can be upper bounded by

Z xtTVt;la:k (6k<-73k791{> +(1- ek)<xt,91;> —(1- a)xf@K)

ker;i(t—1)
<! Y (Breglfont) - -aplog) [ Y @Vt
ker;(t—1) ker;(t—1) (60)
2 2
S T D R P R RPN ot PN (N B P s
ker;(t—1) ’ (VISIT) ’
Tk

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is obtained from
Lemma [3] and equation [25]

25



Under review as submission to TMLR

In addition, by the fact that (a + b)? < 2a? + 2b2 for any real number, we have

2

Z (1*01)513,1(“%“(‘/)?}()*1 +(1+a)5’2,fl|xk”( )1
Ty V()

keT;(t—1)

kI
9 (61)
2
0 0
< 5 o(a-amadalg) ¢ X 2|0l o
keri(t—1) ker;(t—1) Vk .
Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011]) and get, for any arm ¢,
N;(t)L? tL?
2 %
Z ||£L'k||(vkol)—1 S 2d10g (]. + T S 2d10g ]. + ﬁ . (62)

kerf(t—1)

By the fact that ), 7(t — 1) = TIT((t —1),and 3o, m(t—1) = 3k T;f(t — 1), we have, for any arm ¢,
Ti(t—1) C7h(t—1),and 7;(t — 1) € 3, 7 (t — 1). Thus,

tL?
> lalfy o5 X ol < 2dog (1450 )
ker;(t—1) e kerl (t-1) 7
and )
tL
Z k|| a1 < Z Z ||$k||%vlgi)—1 < 2(K —1)dlog <1 + d)\> ) (64)
keT;(t—1) (VkOIT> i#=K ke‘l';(t—l) s
Tk

By combining the definition of [32 ;» equation equation [63] and equation we have

2

keTi(t—1)

> <1—a>52,K||xk||(V£K)1+<1+a>ﬁg,,;||xk||< .

keTi(t—1) ket (t—1)
? 2
1 2KT tL
<16d> - - =
<16d (w(t)+LS1/2log( 5 >> log (1+ d)\)
2
16d2(K — 1) 1 2KT tL?
_ L -1 —_— 1 14+ —
+ 2 w(t) + LS 5 og( 5 > og< + dA)
2
16d*K 1 2KT tL?
< - —_ .
<=3 (w(t)—i—LS 2log( 5 )) log (1+ d)\)

In summary, we have

2
< ¥ 2(Bululypy) X 2 25,2,,;||xk|< )y
B VO

1
k.I)

2] 0, — o (1 — )0k |

i 12 1 [2KT (66)
< (1 + a\/Klog (1 + CM)) (w(t) + LSy [ 5 log <5)> l[2lly,--
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C.4 Proof of Theorem

For round ¢ and context z;, if LinUCB pulls arm i # K, we have

Th Ty, —1 ThH Ty —1
Ty et,K + ﬂt,K \/ Tt ‘/157}{1'26 < at,i + ﬁt,i \/ Lt V;g,i Tt

In this case, B;; = w(N;(t)) = VAS + R\/Q log & + dlog (1 + sz\vé(t)).

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
rl 0K < xtTét,K + Brxc /actTVt}%:ct holds with probability 1 — %.
Thus, by Lemma

T Th Ty —1
Ty Ok <z gt,i + Bt,i \/ Lt V;g’i Tt

<aT (1~ ) +w(Ni() ey,

(67)
4d tL? 2KT
+ (1 + a\/Klog (1 + d)\>> ( (t)+ LS flog ( 5 >> ||$Ct||vt;1.
By multiplying both sides by 1;7,—;; and summing over rounds, we have
t
Z ]l{lk:i}afoK
kjl 4d kL? 2KT (0%)
Sk:1 Lir,—i} <2+ a\/Klog (1 + dA)) ( (t)+ LS log ( 5 )) ||$1c||vkji1.
Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011) and get
Nl-(t)L2 tL?
Zn{,k z}H-TkHV_l < 2dlog ( dA) < 2dlog (1 + = (69)
k=1
According to Y;_, Lin=iyllzwlly -1 < \/Ni(t) Sy Lire=iyllzkll} -1, we have
e, k,i
+12
k=1
Thus, we have
t
Z l{Ikzi}aﬂfgeK
" (71)
tL? 4d tL? 2KT
<i/N;(t)2d1 1+ — ) [24+—4/K1 14— L ,
\/ (t) Og(+d/\)<+a\/ og(+d/\)><()+5 (5)>
and
t
=> L=y
k=1
2 2 (72)

2d tL? 4d tL? 1 2KT
< = = -
_(om)?lg(l_'_d)\><2+a\/K10g<l+d)\)> (w(t)—l—LS 210g< 5 )) ,

where v = mingep(z, 0k).
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D Attacks on Generalized Linear Contextual Bandits

In the generalized linear model (GLM), there is a fixed, strictly increasing link function p : R — R such that
the reward satisfies

Tt 1, = /’I’(<xt701t>) + Nt

where 7; is a conditionally independent zero-mean R-subgaussian noise and (-, -) denotes the inner product.
If we consider the o-algebra F; = o(21,..., &1, M1, -, M), £+ becomes Fy_; measurable and n; becomes F}
measurable.

Hence, the expected reward of arm ¢ under context z; follows the GLM setting: E[r; ;] = u({x,6;)) for all ¢
and all arm 4. One can verify that u(z) = x leads to the linear model and p(z) = exp(z)/(1 + exp(z)) leads
to the logistic model.

We assume that the link function p is continuously twice differentiable, Lipschitz with constant &, and such
that ¢, = infgpeo ep f1(zT0) > 0, where i denote the first derivatives of p. It can be verified that the link
function of the linear model is Lipschitz with constant k,, = 1 and which of the logistic model is Lipschitz
with constant k, = 1/4.

The agent is interested in minimizing the cumulative pseudo-regret, and the cumulative pseudo-regret for
the GLM can be formally written as

(e, 017)) — p((24,01,))) , (73)

HMH

where I' = argmax; u({x¢,0;)).

For the GLM considered here, p is a strictly increasing function and I = argmax; u({x¢,0;)) =
argmax; (s, 0;). As the link function p is strictly increasing, the target arm is not the worst arm under
Assumption [I]

D.1 Overview of UCB-GLM

For reader’s convenience, we first provide a brief overview of the UCB-GLM algorithm (Li et al.,[2017). The
UCB-GLM algorithm is summarized in Algorithm

The algorithm is simply initialized by play every arm j times to ensure a unique solution of 0, for each arm
i. We assume that after playing arm 4 J times, V; is invertible and the minimal eigenvalue of V; is greater
or equal to Ay for all arm i. We assume that z; is drawn iid from some distribution v with support in the
unit ball and set ¥ := E[z;x]|. Proposition 1 in (Li et al., [2017) shows that there exist positive, universal
constants D1 and Dy such that Ay (Vi) > g with probablhty at least 1 — 4, as long as

DivVd+ Do Jlog(1/5)). 2)
1 24/ 108 0
/ Z ( )\min(z) ) * )\min(z) ' (74)

By following the setup in (Li et al., 2017)), we set f;; =

Cu

2R\/log + dlog (1—!— L N(t)) for GLM.

D.2 White-box Attack Strategy

Similar to the white-box attack strategy for linear contextual bandits, the white-box attack strategy for
GLM works as follows. When the agent chooses arm K, the attacker does not attack. When the agent
chooses arm I, # K, the attacker changes it to arm

K with probability €
10 = { t (75)

I} with probability 1 — ¢
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Algorithm 3 UCB-GLM (Li et al., 2017)
Require:
number of arms K, number of rounds 7', number of initial rounds j.
1: Initialize for every arm i.
2: Play every arm J times. At each time, update Vlt Vi, + zzl.
3 fort=KJ+1,KJ+2,....,T do
4:  observe the context x;.

5 fori=1,2,...,K do
6: Calculate the maximum-likelihood estimator 6; by solving the equation
Z (rn — u(x,TLéz))xn =0.
neT;(t—1)

Compute the upper confidence bound: p;; < x?él + Bt’“/xtT‘_/[lxt.
end for
9:  Pull arm I; = argmax; py ;.
10:  The environment generates reward r; according to arm I.
11:  The agent receive r;.
12: ‘7It — V]t + xtm?.
13: end for

where ItT = arg min;(x, 0;) and

p(L — a){ee, O ) — plming(zy, 6:))

pu((4, ) — po(ming (e, 6;)) (76)

€ —

The attacker can manipulate the agent into learning some particular coefficient vectors. In particular, for
arm K (the target arm), the agent obtains the true coefficient vector 8. For any arm i # K, because of
the attacks, the agent will obtain an estimate of arm i’s coeflicient vector to be close to (1 — a)fx. Under
the white-box attack, when the agent pulls a non-target arm I; # K, the mean reward received by the agent
should satisfy

Elre rolFr—1, It] = p((1 — a) (24, 0k ).

Proposition 2 For§ > 0. Suppose the agent employs a generalized linear contextual bandit algorithm whose
cumulative pseudo-regret is upper bounded by o(T) over T with probability at least 1 — 6. When using the
proposed white-box attack scheme, with probability at least 1 — &, the attacker can force the agent to pull the
target arm for T — o(T') times, while the total attack cost |C| is upper bounded by o(T).

The proof of Proposition 2] is provided in Appendix [E-I] To further illustrate the proposed attack scheme,
we now provide a finer analysis the impact of this attack on UCB-GLM described in Algorithm

Lemma 5 Under the proposed white-boz attack, the estimate of 0; for each arm i # K obtained by UCB-
GLM agent as described in Algorithm[3 satisfies

- 2k, LS + 2R K L2N;(t
leT0;; — 2] (1 — )fk| < “\/1og5+dlog <1+ ())|athtv1. (77)

Cu /\0d

The proof of Lemma [5|is provided in Appendix

Theorem 3 Define v = min,ep(z,0k). Under the same assumptions as in Lemma @ for any § > 0 with
probability at least 1 — 26, for all T > 0, the attacker can manipulate the UCB-GLM agent into pulling the
target arm in at least T — |C| rounds, using an attack cost

4d(K —1 tL2\ [ 2k,LS +4R\?> K LT
n
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The proof of Theorem [3is provided in Appendix

D.3 Black-box Attack Strategy

The modified black-box attack strategy for GLM works as follows. When the agent chooses arm K, the
attacker does not attack. When the agent chooses arm I; # K, the attacker changes it to arm

K with probability e
=4 t (79)
I} with probability 1 — ¢
where .
1} = argmin ({22, 00,) = Bullaell v, ) (80)
and
k,LS+ R K L2N;(t
82 = 2007 log == + dlog (” ()>7 (81)
’ Cp ) )\od
¢i=%Wheni#Kand¢K=1+%,and
(1= )00 ) — p(a )
€ — Cllp — s+ T al ’ (82)

m
Gt b a0 — TR )
with clip(a, x,b) = min(b, max(x, a)) where a < b.

For notational convenience, we set ItT = K and ¢, = 1 when I, = K. We define that, if i # K, TZ»T (t) :={s:
s <t IT =i} and Nj (t) = |7} ()] ; 7). (t) == {s: s <t} and N} (t) = |7} (2)].

Calculate the maximum-likelihood estimator égl by solving the equation

Z (wy,irn — u(x,:cé“))xn =0.

ner; (t—1)7
where Vt?z - Zke‘rj(t—l) TTh
1/e ifi=1"=K
wi=41/(1—¢) ifi=1"=1I. (83)
0 if i # I

First, we analyze the estimation é?z at the attacker side. We establish a confidence ellipsoid of (x4, §?2> at
the attacker.

Lemma 6 Assume the attacker performs the proposed black-box action poisoning attack. With probability
1 — 24, we have

|thé?z —z{ 6] < ﬂ?,i”mtn(vtoi)fl- (84)
holds for all arm i and allt > 0 simultaneously.

The proof of Lemma [f] is provided in Appendix [E.4]

Lemma 7 Under the black-boz attack, with probability 1 — 26§, the estimate obtained by an UCB-GLM agent
satisfies

‘]E[Tt,Iﬂthla L] — p((1 = 04)95;[91()’ < 2ku5?,K”xt”(f/0K)—l + 2k, 8] 4 ||9Ct||< )-1
t, Lt 770
R

t
Tt

stmultaneously for all t > 0 when I, # K.
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Lemma 8 Assume the attacker performs the proposed black-box action poisoning attack. With a probability
at least 1 — 371(5, the estimate 0, ; obtained by the UCB-GLM agent will satisfy

{0, — 2 (1 — a)0k|

2k, LS + 2R 16k2d tL2 K L2t (85)
<2 1 L Klog (1 4+ —— log = +dlog [ 1+ == I
- Cu ( * cuoy ©8 ( * d)\0> 875 talbg < + )\Od) ||:c||V”

simultaneously for all arm i # K and all t > 0.

Theorem 4 Define v = mingep(z,0k). Assume the attacker performs the proposed black-box action poi-
soning attack. For any 6 > 0 with probability at least 1 — 26, for all T > 0, the attacker can manipulate the
UCB-GLM agent into pulling the target arm in at least T — |C| rounds, using an attack cost

4d(K —1) (2k,LS + 2R\ > TL?
< 1 14+ —
o <H e () e (14 T

2

K LT 16k2d T2

log ~ +dlog (1+ 2= ) ) (1 2 Klog (14 25
X<Og6+ Og(+Aod>)<+ cua\/ Og<+d>\o>)

The proof of Theorem [4] is provided in Appendix [E.7] Theorem [@] shows that our black-box attack strategy
can manipulate a UCB-GLM agent into pulling a target arm 7" — O(log3 T) times with attack cost scaling as
O(log3 T). Compared with the result for the white-box attack, the black-box attack only brings an additional
log T factor.

E Attack Cost Analysis of GLM

E.1 Proof of Proposition 2]

Let us consider a contextual bandit problem Pj, in which the arm K (the target arm) is associated with
a fixed coefficient vector 0k and all other arms are associated with the coefficient vector (1 — a)fk. For a
generalized linear contextual bandit algorithm .o/, we suppose that the cumulative pseudo-regret regret of
algorithm &7 for the problem P; is upper bounded with probability at least 1 — § by a function f (T) such
that for (T) = o(T).

Under the proposed white-box attack, when the agent pulls a non-target arm I, # K, the mean reward
received by the agent should satisfy E[r, jo|Fy—1,1¢] = pu((1 — a){2t,0k)). In the observation of the agent,
the target arm becomes optimal and the non-target arms are associated with the coefficient vector (1 —a)fk.
For the agent, the combination of the attacker and the environment form problem P;. The cumulative
pseudo-regret should satisfy

T
Rr =) Liziy (0 (20, 0x)) = p (20, (1 - a)fx)))

~
—

]1{It7£K}CM<xta OéoK>
t

1

]1{]5&[(}0“’}/,

t=1

which is equivalent to 23:1 Iir,2xy < Rr/(cyy). Since Rr is upper bounded by fu(T) = o(T), |C| =
ZtT:1 117, 4Ky is also upper bounded by o(T').
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E.2 Proof of Lemma

The maximum-likelihood estimation can be written as the solution to the following equation

Z (rn — u(xfém))xn = 0. (87)

neT;(t—1)

Define g, ;(6) = Znen(tfl) w(xlo))z,. gt’i(étﬂ») = Zneﬂ(til) Thy,. Since u is continuously twice differen-
tiable, Vg, ; is continuous, and for any 6 € ©, Vg, ,(0) = Zneﬂ(t 1) Tn® oL (210)). Vg;.:(0) denotes the
Jacobian matrix of g;; at 6. By the Fundamental Theorem of Calculus,

gt,i(ét,i) —g1i(1 —a)fk) = Gt,i(ét,i - (1—-a)fk), (88)

where

1
Gy = / Ve (80}71 +(1—9)(1- a)HK) ds. (89)
0

Note that Vgt ,i(0) =3, ¢, (1-1) TnZ zX1(z19)). According to the assumption that ¢, = infgeo zep 1(z70) >
0, we have Gy ; = ¢, Vi = ¢, Vi = Aol = 0, where in the last two step we used the assumption that the
minimal eigenvalue of V; is greater or equal to A\¢ after playing arm ¢ J times. Thus, G ; is positive definite
and non-singular. Therefore,

b= (1= )0k = G} (g1 (0) = 90i((1 — @)6x)) (90)

For arm K, g;4(0;) — g1.4(0) = D oneri(t—1) Mnn-

For all arm ¢ # K, the right hand side of equation [90|is equivalent to
90,:(0:) — g1.4((1 — )0

= Z (1= a)zlox))z,

ne (91)
= Z (:U’(mz;alg) - M((l - 04)373;9[())1'“ + Z NnTp -
ner; (t—1) ner;(t—1)
We set Z; = Znen(t_l)(u(xfﬂfg) — (1 = )2l 0x))z,, and Z; = > neri(t—1) Tn-
We have gm(éi) —91i((1 —a)fg) = Z1 + Z3 and
Xy (9 —(1-a)fk) == Gt ; (21 + Z3). (92)

For any context € D and arm i # K, we have

2" (0, — (1 — a)bk)|
TG (7 + 20)] (93)
§|£ETG;Z-121| + \wTG;ilZQL

We first bound |xTG;Z-122|. Since Gy; is positive definite and G;il is also positive definite, |93TG;i1Z2| <
H$||G‘.1||Z2||G—.1‘

Since Gy = ¢, Vi, implies that G ; ! < c’1V75 ;, we have Hx||G 1< o= Hx||‘—,71 holds for any z € R?. Thus,
t,i

107G 2| Sa"””"Vt?il“Z?”Vt;“ (94)
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Note that V; ; = ‘7}1 + AL Hence, for all vector z € R?

s

2l = el + 2T (V5! = Vit (95)
Since (A+B)" ' =A"!' - A"'B(A+ B)™ 1,
Vi =V = AV vg (96)
The above implies that
0 <z™(Vii' = V;ih)z
=o' (\W'Viih)w
A2
<l
and o2 < (1+ )l

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al.,[2011)), we know that for any 6 > 0, with probability

at least 1 — ¢ )
K det(V; )/ det(AI) /2
Z TrMk <2R210g< ) 5 AL >
keT;(t—1) thil (98)
K L2N;(t)
<2R? (log — +dlog ( 1 :
_R(og§+dog(+ d )),
for all arms and all ¢ > 0.
Set A = Ag, we have
K L2N(t
| Za||y-1 < 2Ry /log — + dlog 1 + QAN (99)
i 5 Aod
Now we bound \xTthzl Z1|. Similarly,
_ 1
2771 21] < ey | Zillg - (100)
CM t,i t,i
In our model, we have 0 < (x,6;) < |lz||30;]|3 = LS. Further,
0 < |u(@fbrg) = (1 = a)af o)
<k, ‘m;‘fQIg -(1- a)x;‘g&K‘ (101)
<k,LS.
Since we have E[u(xfﬁfgﬂFk,l] = u((1 — a)zf oK), {u(mf@lg) —p((1- a)x{@K)}k ) is a bounded
. er;i(t—

martingale difference sequence w.r.t the filtration { Fy }er, t—1) and is also k, LS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al.,[2011)), we know that for any 6 > 0, with probability
at least 1 — %5

K L2N;(t
| Z1|ly-+ < 2k, LSy/log — +dlog | 1+ () , (102)
i 5 Aod
for any arm ¢ # K and all £ > 0.
In summary, for all arm ¢ # K,
A 2k, L 2 K L2N;(t
276 — (1 a)og)| < 2l I TR o Ky g (1 4 LN ))|1'||x71- (103)
Cu 0 Aod ti
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E.3 Proof of Theorem [3

For round ¢ and context z;, if UCB-GLM pulls arm i # K, we have

TA Tir—1 ThH Ty —1
Ty et,K + Bt,K \/ Tt ‘/tnyt < et,i + ﬁt,i \/ Lt V;g,i T,

Recall 8;,; = il%\/log £ +dlog (1 + %) in GLM.

n

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
2l 0k < :EtTét,K + Brxcy /mtTVt}%:ct holds with probability 1 — %.

Thus, by Lemma
af O <af Oy i + Bric\/ 2TV, g
<x{;+ Br.in/ ftTVf,lft
Sthét,i + w%ﬂt“/zfvt;lzt + ,Bt,“/xtTVt)_ilxt (104)

Cu
k,LS + 2R
<o (1= )0 + L2222l
By multiplying both sides ]l{ I=i} and summing over rounds, we have

t t
kuLS +2R
> Vg=poai 0 <D Lp—iy = Brillwlly (105)
k=1 k=1 "

Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011]) and obtain

t
N;(t)L? tL?
g ]l{Ik:i}kaH?/kal < 2dlog(1+ Ei))\ ) < 2dlog (1 + d)\) . (106)
k=1 "’

According to Y5 _, ]l{jkzi}Hﬂkavk—_l < \/Ni(t) Sy ]l{lkzi}kaH%/,l, we have
i k,i

: tL?
> Linmilonlly s < \/Niu)zdlog (1+5) (107)

k=1

Set A = Ao, we have H:E||%7t,‘1 <1+ %O)HxH%/,l = 2||(EH%/,1. Thus, we have
a t,i t,i

t
kLS + 2 2
Zn{,k:i}ax;{a,(gwﬁt,i 4Ni(t)dlog<1+tL>, (108)
e R dXo
and .
Ad tL?\ (kLS +2R , \*
Ni(t) = 1y < log (14— ) (=212, 1
© ;{’”—(av)zog(on)( R @’) (109)

where v = mingep(z, 0x).

E.4 Proof of Lemma [0

The attacker calculate the maximum-likelihood estimator égz by solving the equation

> (wnirn — plah )z, = 0. (110)

77167'7;(75—1)1-
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Note that g7,(6) = Znerj(tq) (@] 0))an. gg,i(égi) = Zne‘r;’(tfl) Wn,iTnTn-
For all arm i,
g?z(étoz) - 9?,1‘(01')
= Y (wair — (70

nG'r;r(tfl) (111)
= Z (wnﬂﬂ(xzelg) - :u(xggi))l'n + Z W, ;M Tn -
HGT;'(tfl) ’VLET; (t—1)

Similarly, we set Zs = ZHETT(FH WriMn Ty and Zy = Zneﬂ(tfl)(wn’iu(xzejg) —u((1 = )zl bk))x, .
We have ggl(égz) —9¢:(0;) = Zs + Z4 and
x?(égz —0;) = fUtT(Gg,i)_l(Z?) + Z4), (112)

where

1
Gii= / Vo (Sé?,i +01- 8)@‘) ds. (113)

0
For any context = € D, we have
™ (07, — 65)]
=|2(GL) "N (Zs + Zu)) (114)
<[e(GY:) "' Zs| + [T (GE) "' Zul.
We first bound |z (GY ;)™ Zs|. We have

_ 1
|2"(GY) ™" Zs| SZHJJH(V&)—I||Z3H(\’/gi)—17 (115)

where ‘71501 = Zneri(tﬂ)f Tpt, -
Note that ‘/;:1‘7;01 + AL Hence,
”Z?’H?Vfi)*l :||Z3H?vgi)—1 + Zg((vt?i)_l - (V;s(,)i)_l)zi%

<(1+ )12 (1)
<( +)\70)H 3“(‘/5,2)‘1'

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al.,[2011)), we know that for any é > 0, with probability
at least 1 — §

2
K det(V;;)'/2 det(\I)~1/2
Z TEMk <2R?log < eb(Ve) 5 M) >
keri(t—1) v (117)
<22 (1og X + dlog (1 + LENi(t)
= 08y Taloe Y ’
for all arms and all ¢ > 0.
Set A = A\g, we have
K L2NO(t)
HZ?’”?V&)’I < 2¢iR\/10g — tdlog (1 + >\od>. (118)
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Now we bound [z”(GY,;)~"Z,|. Similarly,

_ 1
(G 2l < el 1l g o (119)

In our model, we have 0 < (x,6;) < |lz||30:]|3 = LS. Further,

0 < |wran(af b1g) = p((1 = @)L 0x)| < Bik, LS. (120)

Since we have E[wk,iu(z,{ﬂlgﬂFk_l] = u(xT0,), {wkviu(:r{@%g) — p(zf6;) }k " is a bounded martingale
eri(t—1
difference sequence w.r.t the filtration {Fj}rer,¢—1) and is also ¢;k, LS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi-Yadkori et al.,|2011)), we know that for any § > 0, with probability
at least 1 — ¢

K L2NO(t
A 2¢ikuLs\/1og L (1 + M") (121)

for any arm i # K and all £ > 0.

In summary, for all arm i # K,

A k, LS+ R K L2N,(t
|27 (0; — (1 — a)bg)| < 2¢i#+\/log(S + dlog (1 + 3 d( )> [E R (122)
" 0 t,i

E.5 Proof of LemmalT]

Recall the definition of €;:

e M@ - uGER,
€ = clip o 70 70 JAd—a+ |, (123)
Cut Ry (w0 ) — @y 07 )

and the definition of ItT :

T . no 0 _
1} = argmin (. 0%:) = Blallell o+ ) (124)

By Lemmaﬁ (xt,ég

) BSIT |2/l o ) < min;(z, 0;) with probability 1 — 2. Thus, with probability
t Tt t)[t

126, p(ai 0 ) — min; p(af 0;) < kB il o -t
7t Tt f,,It

Cu
)
cu+tky

Because ¢; is bounded by [ 1 — ag*], we can analyze E[r, 10| Fi—1, 1] in four cases.
u :

A A

Case 1: when (4,07 ;) < (xtﬁ? ), we have e, = 1 — az—’: and u((xt,égK)) < u((mt,égﬁ>). Thus,

L

c c
E[Tt,lﬂFt—h L]=(1- a—k” )N(%TQK) + a—k“ ,u(xtTGIZ). (125)
m

m
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Then, by Lemma [6]

C C
(1= aZ)u(aT 0r) + ap(aT0,0) = (1 = )2 0)
u Iz

C N C N
<(1— o) (u(a{ 00 ) + kBt icleell o -1 )+ [ u(@d 0 1) + KBy il
k,, (Vi) ky, ] (

Vf,o,ﬁ> h
(1= )T o) (126)

N c
SM(J??Q?JT) + acuﬁtojt (e < >1 +(1- ak—“)kuﬁgKthH(WK)fl —u((1 =)zl bg)
t Tt Vo © -
t,1]

<(kn — acu)ﬁi’,Kllxtll(VoK)—l + (ku + ac)B) 1 ||$t||( )-h
t, "t Vo

¥
t,1]

where the second inequality is obtains by p({zs, ég x)) < p({ze, é? ;1)) and the last inequality is obtained by
u(xfé?ﬂ) —min; u(zl'6;) < kuﬁ?ﬂ el (o D and Assumption
i Tt t,I

t

On the other side, we have

& (&
(1= aZ)u(aT 0r) + ap(aT0,0) — (1 = )2 O)
u w

Cy, N Cy A
21 af) (Wl B30 = KBl g,y ) + a2 | ntef8,) - kuﬁfﬂutn(
1 K " oy Iy

— (1 = a)z{ k)

. c
2 (e 0 1) = (1 = )af 0r) —acBY llaell ;2 = (1= @ Bl oy (127)
] (vo > k,, i
il
c
>p(z} Ox) — (1 = @)z Ox) — acu By i e =2 Oéki)kﬂﬂtO,K”zt”((/o )
oLy 7o M t,K
(%22)
> — (2 — o) ol g+ 06l
i o (VO )
il
Case 2: when u(:z:tTé?K) > u(az?@?ltf) > (1+ ,%Z)M((l — oz):z:tTégK) — ’CCZ ,u(xtTégK) and € = c,ﬁs-i#k,u we have
c k
E F,_,,]=—2*" T K To 1), 128
[re. 10| Fe—1, 1] Py kuﬂ(xt K)+ ot k_ﬂ/‘(xt Ig) (128)

By Lemma [6] with probability 1 — 24,

A

p(a 80 ) — min (T 0) < kBl o
’ ? t’It
Since min; 7 §; < (1 — 2a)zl 0, we have

u(xféfﬁ) < (1= 20)a 0x) + KBy i1l o D71
A e o]

and then
oy 0p1) < p((1 = 2002 ) + 2k B sl o y-r
Tt t,ItT
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Thus,
T
cum(zl0k) k(i 9[3) T
+ — — p((1 = )y O)
cu + kg cu + kg
Cu T Cu T
= — 1 —
cu + K (@ Ox) ot kﬂﬂ(( a)zy Ox)
k
122 T +) — M 1— T
+ el 0y) = (- e B) (120)
c
<% (e 0rc) — (1 — @)af 0x)
iz Iz
ku T T 21@2 0
oy (O = 200000 — (= 0200 4 B el o

According to the definition of k, and ¢, and Lemma |§|,

cun(@f0x) | Run@l0p)

— (1~ a)ai Ox)

cu +ky e+ ky
k
<k (a0 — (1= @)l Ox) + —t e (1= 20)aT 0 — (1 = )T Oxc)
w W ” .
; (130)
L 20 B
+ CH+kuﬂt713||xt||(vfltf)_l
22

— 0 _ .
_Cp, +kﬂﬁt’ItTHth(Vt(?1tf) '

In addition, by Lemma [6]

cun(@l9x) | Funleifp)

= (1 = a)z{ bx)

cu+ kg cu+ky
T
:C#M(xgeK) k‘u'u(xt 012) _ /14((]- _ a)xTéO )
e+ ky e+ ky tohK

+ (1= @)af 0 ) = (1 = a)a Oxc)

131)
c k C N N (
> i Te 12 TH _ M T90 _ M T90
_Cu + k“p’(xt K) + i + kuu(wt I:) i + ku/'b(wt t,K) cu + kuu(xt t,I:)
+ (1= a)zf 02 ) — p((1 — )] Ox)
Cu 0 ky 0
z—(1-a+ m)kuﬂt,KHth(f/gK)*l Ttk kP«Bt,IZth” <\70 >1a
ot
where the first inequality is obtained by the condition of case 2:
A Cc A c ~
paT 8 1) > (L (10— )T 09 ) — (03 )
t Iz iz
which is equivalent to
A T §0
el B | FerCrilin) g
CM + kju C,u + ku u t Yt,K)*
Case 3: when the attacker’s estimates satisfy
k A k N
aiguﬂ((l - a)l“tT(’?,K) - (aici - 1)H(xtT9?,K)
SUCAGHY (132)
c A c N
<(1+ ki)ﬂ((l - Of)xtTeg,K) - k—”p(mf@?’K)
Iz I
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and hence <eg<1-— ak , we have

+k
Elr ol Fio1, It] = ep(af 0xc) + (1 = el 0,1). (133)
We can find that
@l 1) + (1= (@l ;) = (1 — a)a Orc)
=ec(p(ay Ox) — (e 0p1)) + p(x{ 0;1) — (1 — a)ai Ox)
=er(u(xf 03 ) — p(af 6 )+ €t(u($tT9AfJ;) — (] 0,0) + eplaf Ox) — p(x] 07 i)
+ et 0p) — (1 — a)z{ )
=p((1 - a)xtTo i) — (i 0 ) Teln (a7 6 )= plaf 0;1) + ee(plaf Ox) — EAT)

+ (et 0p) = (1 = a)z{ Ox)
—ul(1 = )l 07 1) = (1 = @)f 1) + ex(pu(af 0x) = p(aT 0 10)) + (1 = €0) (el 0,0) = u(af 871))
(134)
From Lemma [6]
Elr, g Foor, 1) = (1 — a)af 0|
<(1- k,B? o -
<=+ bl g, - .
+(1- et)kuﬁﬁ,; ||$t||< >1~
VO
t, IT
Case 4: when u(mTHO ) < o’fc w((1— a)xTHO ) — ((fé; - 1),u(a?tT9A?’K) and g =1 — oz;—’:, we have
¢ c
Elry g For. i = (1 - 0 2)u(al0x) + 0 p(al,). (136)
" "
Then, by Lemma [6]
c c
(1 el 0hc) + o p(ayy) — (1~ )aT0)
p p
u u
(0= 0T Or) (1~ )T 05) + o utel B )+ 0yl o
u A u
<1 = @ yue 01c) = (1~ @l 010) + (1 = @8 ) = (1= Pl B ) + el o -
p p 1]
<(kyu = Cu)ﬂ?,KthH(Vo ) acB pllzdlwe -
t,K it t,It
(137)
Since {60+ > 0, p(af Ok ) — p(xf0,1) < kyaf 0k. Hence, we also have
(1= o )ulef 0x0) +agulaf 0,) = (1 — )] O)
Ky k]
c
(2 0x) = p((1 = ) 0x) = a (wlaf 0xc) — pu(af0)) (138)
m
>c ari Ok — aZ—“k,@f@K =0.
"
Combining these four cases, we have
Blry sg | Fy1, 1] — (1 = o) 0rc)|
(139)

S%uﬂgK”th(VoK)fl + 2ku5?,tr||l’t||< >1~
t, ’ 7o

+
t,It
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E.6 Proof of Lemmal[8l

The agent’s maximum-likelihood estimation can be written as the solution to the following equation

S rn = pal0e))an =0. (140)

ner;(t—1)

As described in the section we have gtz(él) —9ti((1 —a)fg) = Z1 + Z3 and
o7 (0: — (1 — a)0k) = 2{ G} (Z1 + Z»). (141)

We set Z; = Zneq—i(t—l)(ﬂ(xgglg,) = (1 = @)y 0r))w, and Zo = Y oneri(t—1) nTn-

In the white-box attack case, we have E[u(mf%gﬂFk,l] = u((1—a)z} 0x) and hence E[Z;|F},_1] = 0. Under
the proposed black-box attack, E[Z;|F;—_1] # 0 but

Elu(e] 010)| Fi1, 1] = (1= @) (@, 0c)|

gzkuﬁgKnxtn(w ) + 26,80 ||zl -1 (142)
o )
ot
We set 21 = Z5 + Zg, where
Zs = Z (1, 019) — Elp(xf 070) | Fr1, i) )2
ner; (t—1)
and
Zs= Y (Blu@f0p)|Fi—1, L] = p((1 = @)z} 0k))n.
neT;(t—1)
For any context z € D and arm i # K, we have
7 (Bus = (1 = ) \
T -1 T -1 T -1 (143)
<|z Gt,i Zo| + |z Gt,i Zs| + |z Gt,i Zs|.
Since we have {u(x{@lg) - E[M(x{ejg)‘Fk_l, Ik]}k ) is a bounded martingale difference sequence w.r.t
er;(t—1

the filtration {F, It }rer,(t—1) and is also k, LS-sub-Gaussian-sub-Gaussian.

From Theorem 1 and Lemma 11 in (Abbasi- Yadkori et al.,|2011)), we know that for any § > 0, with probability
at least 1 — %5

K L2N(t
1Z5l5,-1 < QkHLS\/log — +dlog <1 + Aod( )), (144)

for any arm ¢ # K and all £ > 0.
We have the fact that

ol =TV | 3D el + 31| Virla

keri(t—1)

thTVt;l Z TRT Vt;lxt (145)
keri(t—1)

= > @V et

ker;(t—1)
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Hence,
thHG—l =Ty G Gt,iG;ilﬂft

>eprf Vit | DL mea | Vigte (146)
keT;(t—1)
= Cu Z (m?G;;x;&{
keri(t—1)

and hence e, - (o7 Gy tan)? <

Then, |xTG;i1 Zg| can be upper bounded by

|SCTG;Z-126|
<! > (E[Tk,zg\Fk—laIk] = p((1 = )z} 0K ) ) > @IG )
keTi(t—1) ker; (t—1) (147)
1
2\ 2
1
<| D | 2Bkl ) + kB gl | Sl
keri(t—1) h (V:IT) : |

where the first inequality is obtained from Cauchy-Schwarz inequality, the second inequality is obtained from
Lemma [7] and equation [T45]

In addition, by the fact that (a + b)? < 2a? + 2b? for any real number, we have

2

ker;i(t—1)

> | ZhuBlcleell g v+ 2k ,f|xk( )
Vo

ko1t
5 (148)
2
0 0
< Z 2 <2ku3k,xxk|(V£‘K)l> + Z 2 ZkNﬁk,I;;kaH SN
ker; (t—1) keTi(t—1) Vk i
Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011]) and get, for any arm ¢,
N;(t)L? tL?
2
Z ||l’k||(vk()1),1 S 2dlog ( + T S 2dlog 1+ ﬁ (149)

kerf(t—1)
Set A = Ag, we have HJEH%?;1 <1+ %O)HxH%/t,l < 2||:10H%/t,1
By the fact that ), 7(t — 1) = T (t — 1), and DTt —1) =3k 71 (t — 1), we have, for any arm i,

Ti(t—1) C7h(t—1),and 7;(t — 1) € 32, 7 (t — 1). Thus,

2 2 th
S Ml S X el < daog (14 7). (150

keri(t—1) ' kel (t-1)

and

ker;(t—1) i£K k)ET:(t—l)

, ) tL?

Sl (Vo ) <2 D el ) < 4K —1)dlog (1 ) (151)
kool
Tk
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By combining equation [148] equation [L50] and equation and when K > 3, we have

2

> | 2kuBulallyp g + 2ky/3271;||zk||( )
Sy V()

ker;(t—1) kJ,:

keTi(t—1) ket (t—1)

k,LS+ R\> K L2t t12
<[ 2¢p = log — +dlog [ 1+ =— k2 x 16d%log [ 1 + —
<¢K o ) (og6+ og(+/\0d>)x8#x6 og<+d)\o>

K, k,LS + R\? K L%t L2
p e e log — +d1 14— 8k% x 16d%(K — 1)1 14—
+(cﬂa cn ) (°g5+ Og(+A0d))x p X 1607 Jog ( 1+ 73

2k, LS + 2R\ > K L2t tL2 k> k
<128k2q% [ 22222 T2 ) (log = +dlog (14 =— ) Jlog (14 == ) [ (K — 1) =~ 14 )2
<128k, < > <0g5+ og<+)\0d)>og(+d>\0) ( )Ca2+(+CH)

2
< Z 2 (Qkuﬁg,K”xk”(VkoK)l) + Z 2 2kuﬁ27[£||xk||< )1
. ° Vo
ko1l
Tk

2
CM i

2k, LS + 2R\ > K L2t tL? k2
<128k2g? | == log = +dlog[1+=—) ] log 1+ — 2K K
cuosiga (IR (1og v atos (14 50 1o (14 (50) <200 22

(152)
In summary, we have

ot O — 2 (1 - )0 |

2k, LS + 2R 16k2d tL2 K L2t (153)
<2 1 r  Klog [ 1+ == log — +dlog [ 1+ == _—
=" e, ( T Og( * d/\()) 85+ Og( + A0d>||”3|vt,i1

E.7 Proof of Theorem [

For round ¢ and context z;, if UCB-GLM pulls arm i # K, we have
27 Ouxc + B \/aF Vi gwe < af i + Brar/ =TV, .

Recall fB;; = 4R\/Iog £+ dlog (1 + Lz/\l\gid(t))

Cu

Since the attacker does not attack the target arm, the confidence bound of arm K does not change and
rl 0K < xtTét,K + Bi.rcy/2f V, jpay holds with probability 1 — %.

Thus, by Lemma equation

T ThH [Ty —1
Ty Ok <z at,i + ﬂt,i Ty V;ﬁ,i Tt

2k, LS + 2R 16k2d t12 K L2t
<aT'(1-a)o a 1 L Klog (14 — log — +d1 14— _—
<z ( a)fx + o ( + e og 1+ " og 5 +dlog | 1+ od ||:L.||Vt,i1

(154)
By multiplying both sides 1;;,—;; and summing over rounds, we have
t
Z ]].{]k:i}OtI{eK
kjl 9 (155)
2k, LS + 2R 16k4d tL2 K 1.2t

< Ly p—& 1 LK1 14+ — log — + dl 1+ — 1.
=2 {I,=i} cn < + cna og < + d)\o) og 5 + dlog ( + Aod) Hx”v,
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Here, we use Lemma 11 from (Abbasi-Yadkori et al., [2011) and obtain

t
N;(t)L2 tL?
> n{fk:i}ukaQka; < 2dlog(1 + ED)\ ) < 2dlog (1 + dA) : (156)
k=1 "

According to Y;_; l{Ik:i}kaHVk—_l < \/Ni(t) S, Lire=iyllzkl[f -1, we have
¥ ki

: E
> Lin=ipllzglly-» < \/Ni(t)2d10g (1 + d)\) (157)

k=1

Set A = Ag, we have Hm||%t,‘1 <1+ %O)HxH%/t,l < 2||;vH%/t,_1. Thus, we have

t
Z ﬂ{lk:i}a‘%{e[(

k=1
2k, LS + 2R 16k2d t12 K L2t t12
< (1 P /Klog {14+ — ) |/log— +dlog |1+ —— |4/4N;(t)dlog [ 1+ —
= ( T Og( +d/\o> 8y T Og( +>\0d) ®) Og( +d>\0)’
(158)
and
t
Ni(t) = Z Lir=i
k=1
4d [ 2k,LS +2R\? L2
< B 1 1+ — 1
_(av)Q( e > Og( +dA0> (159)

2
K L2t 16k d tL
log — +dl 1+ — 1 L /K1 1+ —
x<0g6+ 0g<+)\od))<+ cl,,a\/ og(+d>\o)> )

where v = mingep(z, 0x).
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