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ABSTRACT

Recent studies have demonstrated that noise in stochastic gradient descent (SGD)
is closely related to generalization: A larger SGD noise, if not too large, results
in better generalization. Since the covariance of the SGD noise is proportional
to η2/B, where η is the learning rate and B is the minibatch size of SGD, the
SGD noise has so far been controlled by changing η and/or B. However, too
large η results in instability in the training dynamics and a small B prevents scal-
able parallel computation. It is thus desirable to develop a method of controlling
the SGD noise without changing η and B. In this paper, we propose a method
that achieves this goal using “noise enhancement”, which is easily implemented
in practice. We expound the underlying theoretical idea and demonstrate that the
noise enhancement actually improves generalization for real datasets. It turns out
that large-batch training with the noise enhancement even shows better general-
ization compared with small-batch training.

1 INTRODUCTION

It is a big theoretical challenge in deep learning studies to understand why networks trained via
stochastic gradient descent (SGD) and its variants generalize so well in the overparameterized
regime, in which the number of network parameters greatly exceeds that of the training data sam-
ples (Zhang et al., 2017). This fundamental problem has been tackled from different points of
view (Dziugaite & Roy, 2017; Nagarajan & Kolter, 2017; Neyshabur et al., 2017; 2019; Arora et al.,
2018; Pérez et al., 2019; Jacot et al., 2018; Arora et al., 2019; D’Ascoli et al., 2020). Among
them, some recent studies have pointed out the importance of an implicit regularization effect of
SGD (Zhu et al., 2019; Wu et al., 2019; Smith et al., 2020). Indeed, it is empirically known that
the SGD noise strength is strongly correlated with generalization of the trained network (Li et al.,
2017; Jastrzȩbski et al., 2017; Goyal et al., 2017; Smith & Le, 2018; Hoffer et al., 2017; 2019). It
has also been argued that the SGD noise prefers wide flat minima, which are considered to indicate
good generalization (Keskar et al., 2017; Hoffer et al., 2017; Wu et al., 2018). From this viewpoint,
not only its strength, but also the structure of the SGD noise is considered to be important since it
is theoretically shown that the network can efficiently escape from bad local minima with the help
of the SGD noise but not of an isotropic Gaussian noise with the same strength (Zhu et al., 2019;
Wu et al., 2019).

The covariance of the SGD noise is proportional to η2/B, where η andB denote the learning rate and
the minibatch size, respectively, and hence, the SGD noise strength can be controlled by changing η
and/or B. To realize good generalization, we want to increase the SGD noise strength by increasing
η and/or decreasing B. However, when η becomes too large, the training dynamics often becomes
unstable and the training fails. On the other hand, decreasing B prevents an efficient parallelization
using multiple GPUs or TPUs.1 It is therefore desirable to control the SGD noise without changing
these hyperparameters.

The main contribution of the present paper is to show that the SGD noise can be controlled without
changing η and B by a simple yet efficient method that we call noise enhancement. In this method,
the gradient of the loss function is evaluated by using two independent minibatches. We will ex-
plain our theoretical idea in Sec. 2. We will also demonstrate that the noise enhancement improves

1However, it is not at all trivial whether the large-batch training is really efficient even with an ideal paral-
lelization. See Golmant et al. (2018); Hoffer et al. (2019) for scalability of large-batch training.
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generalization in Sec. 3. In particular, it is empirically shown that the large-batch training using the
noise enhancement even outperforms the small-batch training. This result gives us some insights
into the relation between the SGD noise and generalization, which is discussed in Sec. 4. Because
of its simplicity in implementation, this method would also be useful in practice.

2 NOISE ENHANCEMENT

We shall consider a classification problem. The training dataset D = {(x(µ), y(µ))}µ=1,2,...,N con-

sists of pairs of the input data vector x(µ) and its label y(µ). The set of all the network parameters
is simply denoted by w. Then the output of the network for a given input x is denoted by f(x;w).
The loss function is defined as

L(w) =
1

N

N
∑

µ=1

ℓ
(

f(x(µ);w), y(µ)
)

≡
1

N

N
∑

µ=1

ℓµ(w), (1)

where the function ℓ(·, ·) specifies the loss (in this paper we employ the cross-entropy loss).

In the SGD, the training data is divided into minibatches of size B, and the parameter update is done
by using one of them. Let Bt ⊂ {1, 2, . . . , N} with |Bt| = B be a random minibatch chosen at the
t-th step, the network parameter wt is updated as

wt+1 = wt − η∇wLBt
(wt), LBt

(w) =
1

B

∑

µ∈Bt

ℓµ(wt) (2)

in vanilla SGD, where η > 0 is the learning rate. It is also expressed as

wt+1 = wt − η∇wL(wt)− η [∇wLBt
(wt)−∇wL(wt)] ≡ wt − η∇wL(wt)− ξt(wt). (3)

Here, ξt corresponds to the SGD noise since its average over samplings of random minibatches is
zero: EBt

[ξt] = 0. Its covariance is also calculated straightforwardly (Zhu et al., 2019):

EBt

[

ξtξ
T
t

]

=
η2

B

N −B

N − 1
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N
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∇wℓµ∇wℓ
T
µ −∇wL∇wL

T

)

≈
η2

B

(

1

N

N
∑

µ=1

∇wℓµ∇wℓ
T
µ −∇wL∇wL

T

)

, (4)

where we assume N ≫ B in obtaining the last expression. This expression2 shows that the SGD
noise strength is controlled by η and B.

We want to enhance the SGD noise without changing η and B. Naively, it is possible just by
replacing ξt by αξt with a new parameter α > 1. Equation (3) is then written as

wt+1 = wt − η∇wL(wt)− αξt(wt)

= wt − η [α∇wLBt
(wt) + (1− α)∇wL(wt)] . (5)

Practically, Eq. (5) would be useless because the computation of ∇wL(wt), i.e. the gradient of
the loss function over the entire training data, is required for each iteration.3 Instead, we propose
replacing ∇wL(wt) in Eq. (5) by ∇wLB′

t
(wt), where B′

t is another minibatch of the same size B
that is independent of Bt. We thus obtain the following update rule of the noise-enhanced SGD:

wt+1 = wt − η
[

α∇wLBt
(wt) + (1 − α)∇wLB′

t
(wt)

]

. (6)

2From Eq. (4), some authors (Krizhevsky, 2014; Hoffer et al., 2017) argue that the SGD noise strength is

proportional to η/
√
B, while others (Li et al., 2017; Jastrzȩbski et al., 2017; Smith et al., 2018) argue that it is

rather proportional to
√

η/B on the basis of the stochastic differential equation obtained for an infinitesimal
η → +0. Thus the learning-rate dependence of the noise strength is rather complicated.

3If we have computational resources large enough to realize ideal parallelization for full training dataset,
this naive noise enhancement would work. However, with limited computational resources, it is not desirable
that we have to evaluate ∇wL(wt) for each iteration.
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Table 1: Network configurations.

Name Network type Dataset L∗ L∗∗

F1 Fully connected Fashion-MNIST 0.01 0.001
C1 Convolutional Cifar-10 0.01 0.001
C2 Convolutional Cifar-100 0.02 0.001

By defining the SGD noise ξ′t associated with B′
t as

ξ′t(wt) = η
[

∇wLB′

t
(wt)−∇wL(wt)

]

, (7)

Eq. (6) is rewritten as

wt+1 = wt − η∇wL(wt)− ξNE
t (wt), (8)

where the noise ξNE
t in the noise-enhanced SGD is given by

ξNE
t = αξt + (1− α)ξ′t. (9)

Its mean is obviously zero, i.e. EBt,B
′

t
[ξNE

t ] = 0, and its covariance is given by

EBt,B
′

t

[

ξNE
t

(

ξNE
t

)T
]

= α2
EBt

[

ξtξ
T
t

]

+ (1− α2)EB′

t

[

ξ′t(ξ
′
t)

T
]

=
[

α2 + (1− α)2
]

EBt

[

ξtξ
T
t

]

, (10)

where we have used the fact that two noises ξt and ξ′t are i.i.d. random variables. In this way, the
SGD-noise covariance is enhanced by a factor of α2 + (1 − α)2 > 1 for α > 1. Since the size of
the new minibatch B′

t is same as that of the original minibatch Bt, the noise enhancement does not
suffer from any serious computational cost.

If we assume N ≫ B, Eq. (10) is equivalent to Eq. (4) with an effective minibatch size

Beff =
B

α2 + (1− α)2
. (11)

If the SGD noise were Gaussian, it would mean that the noise-enhanced SGD is equivalent to the
normal SGD with the effective minibatch size Beff . However, the SGD noise is actually far from
Gaussian during training (Panigrahi et al., 2019), at least for not too large minibatch size. The noise
enhancement is therefore not equivalent to reducing the minibatch size unless Beff is too large.

The procedure of the noise enhancement is summarized as the follows: (i) prepare two independent
minibatches Bt and B′

t, and (ii) replace the minibatch gradient ∇wLBt
(wt) by α∇wLBt

(wt)+ (1−
α)∇wLB′

t
(wt). The numerical implementation is quite simple. It should be noted that the noise

enhancement is also applicable to other variants of SGD like Adam.

3 EXPERIMENT

We shall demonstrate the efficiency of the method of the noise enhancement (NE) for several net-
work configurations with a real dataset as listed in Table 1.

We describe the details of the network architecture below:

• F1: A fully-connected feed-forward network with 7 hidden layers, each of which has 500
neurons with the ReLU activation. The output layer consists of 10 neurons with the softmax
activation.

• C1: A modified version of the VGG configuration (Simonyan & Zisserman, 2014). Fol-
lowing Keskar et al. (2017), let us denote a stack of n convolutional layers of a filters and
a kernel size of b × c with the stride length of d by n × [a, b, c, d]. The C1 network uses
the configuration: 3× [64, 3, 3, 1], 3× [128, 3, 3, 1], 3× [256, 3, 3, 1], where a MaxPool(2)
is applied after each stack. To all layers, the ghost-batch normalization of size 100 and
the ReLU activation are applied. Finally, an output layer consists of 10 neurons with the
softmax activation.
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Figure 1: Minibatch-size dependence of the test accuracy (left) and the convergence time (right) for
each fixed value of α in C1.

Table 2: Best test accuracy for each value of α.

Name α Bopt test accuracy (%) convergence time

C1 1 100 88.05± 0.18 24500± 2775
1.5 200 88.69± 0.11 20825± 2113
2.0 300 88.77± 0.30 15932± 1870
2.5 500 88.66± 0.22 10040± 1153

F1 1 900 90.17± 0.14 10934± 816
1.5 2000 90.39± 0.17 7914± 528

C2 1 600 61.40± 0.54 5292± 935
1.5 1000 61.75± 0.48 5175± 748

• C2: It is similar to but larger than C1. The C2 network uses the configuration: 3 ×
[64, 3, 3, 1], 3 × [128, 3, 3, 1], 3 × [256, 3, 3, 1], 2 × [512, 3, 3, 1], where a MaxPool(2) is
applied after each stack. To all layers above, the ghost-batch normalization of size 100 and
the ReLU activation are applied. The last stack above is followed by a 1024-dimensional
dense layer with the ReLU activation, and finally, an output layer consists of 10 neurons
with the softmax activation.

For all experiments, we used the cross-entropy loss and the Adam optimizer with the default hy-
perparameters. Neither data augmentation nor weight decay is applied in our experiment. To aid
the convergence, we halves the learning rate when the training loss reaches the value L∗. Training
finishes when the training loss becomes smaller than the value L∗∗. Our choices of L∗ and L∗∗ are
also described in Table 1. The convergence time is defined as the number of iteration steps until
the training finishes. Training is repeated 10 times starting from different random initializations (the
Glorot initizalization is used), and we measure the mean test accuracy and the mean convergence
time as well as their standard deviations.

3.1 EFFECT OF THE NOISE ENHANCEMENT

First we demonstrate how the noise enhancement affects the generalization and the convergence
time for C1 (similar results are obtained for F1 and C2 as we show later). For each fixed value of
α = 1, 1.5, 2.0, 2.5 (α = 1 means no NE applied) we calculated the mean test accuracy and the
mean convergence time for varying minibatch sizes B. The result is presented in Fig. 1. We can see
that the NE improves generalization for a not too large α. It is also observed that the generalization
gap between small-batch training and large-batch training diminishes by increasing α. The NE
with large α is therefore efficient for large-batch training. On the other hand, the convergence time
increases with α for a fixed B.

For each fixed α, there is an optimal minibatch size Bopt, which increases with α. In Table 2, we
list Bopt ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 5000} as well as the test
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(c) test accuracy for C2 (d) convergence time for C2
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Figure 2: Minibatch-size dependence of the test accuracy and the convergence time for each fixed
value of α in F1 and C2.

accuracy and the convergence time at B = Bopt. We see that the test accuracy at Bopt is improved
by the NE. Moreover, the NE shortens the convergence time at Bopt without hurting generalization

performance.4 This experimental observation shows practical efficiency of the method of the NE.

Although we have focused on C1, other configurations F1 and C2 also show similar results. For
F1 and C2, we compare the result for α = 1 with that for α = 1.5. In Fig. 2, the minibatch-size
dependences of the test accuracy and the convergence time are shown for F1 and C2. In Table 2, we
also show the test accuracy and the convergence time at B = Bopt for each α in F1 and C2. These
results are qualitatively same as those in C1 (Fig. 1 and Table 2).

3.2 COMPARISON BETWEEN THE NOISE ENHANCEMENT AND REDUCING THE MINIBATCH

SIZE

It is pointed out that reducing the minibatch size B with α = 1 has a similar effect as the NE with
a fixed B; it results in better generalization but a longer convergence time.5 We shall compare the
large-batch training with the NE to the small-batch training without the NE. First we calculate the
test accuracy and the convergence time for varying B and a fixed α = 1 (no NE). We then calculate
the test accuracy for varying α > 1 and a fixed B = 5000, which corresponds to large minibatch
training. In other words, we compare the effect of the NE with that of reducing B.

The comparison between reducing B with α = 1 and increasing α with B = 5000 is given in Fig. 3.
We see that both give similar curves; increasing the convergence time with a peaked test accuracy.

4The NE for a fixed B increases the convergence time, but Bopt also increases, which decreases the con-
vergence time.

5As was already mentioned, under the Gaussian noise approximation, increasing α is indeed equivalent to
reducing B to Beff given by Eq. (11).
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Figure 3: Comparison between the effects of reducing the minibatch size B with α = 1 and of in-
creasing α with B = 5000. The longitudinal axis and the horizontal axis represent the test accuracy
and the convergence time, respectively. Circle data points (reducing B with α = 1) correspond to
B = 5000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100 from left to right. Trian-
gle data points (increasing α with B = 5000) correspond to α = 1, 2, . . . , 11 for F1 and C1, and
α = 1, 2, . . . , 7 for C2, from left to right.

Table 3: Comparison of best test accuracies for varying B with α = 1 (without the noise enhance-
ment) and for varying α with B = 5000 (with the noise enhancement). The range of varying B and
α is the same as in Fig. 3.

Name B α Best test accuracy (%)

F1 without NE 900 1 90.17± 0.14
with NE 5000 3 90.35± 0.05

C1 without NE 100 1 88.05± 0.18
with NE 5000 10 88.26± 0.23

C2 without NE 600 1 61.40± 0.54
with NE 5000 5 61.53± 0.35

However, in every case of F1, C1, and C2, the NE (increasing α) results in better accuracy compared
with reducing B if α is properly chosen.

In Table 3, we compare the best test accuracies between varying B with α = 1 (without the NE)
and increasing α with B = 5000 (with the NE). In all cases, the large-batch training with the NE
outperforms the small-batch training without the NE.

4 DISCUSSION

We have shown that the method of the NE for gradient-based optimization algorithms improves
generalization. In particular, large-batch training with the NE even outperforms small-batch training
without the NE, which clearly shows that the NE is not equivalent to reducing the minibatch size B.

In this section, we shall discuss two fundamental questions raised here:

(i) Why does a stronger SGD noise result in a better generalization?

(ii) How is the inequivalence between the NE and reducing B theoretically understood?

We first consider (i). When the SGD noise strength is inhomogeneous in the parameter space,
network parameters will be likely to evolve to a minimum of the loss landscape with a weaker SGD
noise.6 That is, if the SGD noise is strong enough near a minimum, the network parameters will
easily escape from it with the help of the SGD noise. As a result, only minima around which the

6In physics, similar phenomena are known; Brownian particles in a medium with inhomogeneous tempera-
ture tend to gather in a colder region (Soret effect) (Duhr & Braun, 2006; Sancho, 2015).
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SGD noise is weak enough survive. Since the covariance of the SGD noise is given by Eq. (4), or
Eq. (10) for the NE, the strong SGD noise is considered to have an implicit regularization effect
toward minima with a small variance of {∇wℓµ}. Some previous studies have introduced various
measures which express an implicit regularization effect of SGD (Keskar et al., 2017; Yin et al.,
2018; Wu et al., 2018). Among them, the “gradient diversity” introduced by Yin et al. (2018) is
closely related to the above argument.

A small variance of the sample-dependent gradients {∇wℓµ} around a minimum of the loss function
implies that the loss landscape LB(w) for a minibatch B does not largely depend on B. Such a min-
imum would contain information on common features among training data samples, which would
be relevant for a given classification, but not contain information on sample-specific features which
lead to overfitting. This is our intuitive picture that explains why the strong SGD noise results in
good generalization performance.

The above consideration is solely based on Eq. (4), i.e., the covariance structure of the SGD noise,
and the effect of non-Gaussian noise has been ignored. However, when the SGD noise is strength-
ened by reducing B, the SGD noise deviates from Gaussian and the above argument should be
somehow modified. As we have already mentioned, the inequivalence between the NE and reducing
B results from the non-Gaussian nature of the SGD noise, which is therefore a key ingredient to
answer the question (ii). The method of the NE can increase the noise strength without changing B,
and hence it is considered to suppress the non-Gaussianity compared with the case of just reducing
B. The experimental result presented in Sec. 3 then indicates that the non-Gaussian nature of the
SGD noise has a negative impact on generalization. A possible interpretation is that sample-specific
features show up and are overestimated, which results in overfitting, when the central limit theorem
is strongly violated.7 However, the relation between the non-Gaussianity of the SGD noise and gen-
eralization remains unclear (Wu et al., 2019), and it would be an important future problem to make
this point clear.

In this way, we now have intuitive arguments which might be relevant to answer the questions (i) and
(ii), but theoretical solid explanations are still lacking. Our results will not only be useful in practice,
but also give theoretical insights into those fundamental questions, which merit further study.
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