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Abstract

We study the capabilities of large language001
models (LLMs) in detecting fine-grained002
anomalies in tabular data. Specifically, we ex-003
amine: (1) how well LLMs can identify di-004
verse anomaly types—including factual, logi-005
cal, temporal, and value-based errors; (2) the006
impact of prompt design and prompting strate-007
gies; and (3) the effect of table structure and008
anomaly type on detection accuracy. To this009
end, we introduce TABARD, a new benchmark010
constructed by perturbing tables from WikiTQ,011
FeTaQA, Spider, and BEAVER. The dataset012
spans multiple domains and eight anomaly cat-013
egories, including paired clean and corrupted014
tables. We evaluate LLMs using direct, indirect,015
and Chain-of-Thought (CoT) prompting. Our016
results reveal notable limitations in standard017
prompting, especially for complex reasoning018
tasks and longer tables. To overcome these019
issues, we propose a unified framework com-020
bining multi-step prompting, self-verification,021
and constraint-based rule execution. Our ap-022
proach significantly improves precision and re-023
call, offering a promising direction for robust024
and interpretable anomaly detection in tables.025

1 Introduction026

Tables are a core data format across domains such027

as finance, healthcare, scientific research, and gov-028

ernment reporting. They have gained increasing at-029

tention in machine learning (ML), natural language030

processing (NLP), and broader AI research, sup-031

porting tasks like question answering, table-to-text032

generation, schema understanding, and data inte-033

gration. However, real-world tables is often noisy,034

incomplete, or inconsistent (Figure 1)—issues that035

can severely impact model performance as LLMs036

and analytics systems rely on such data. Even sub-037

tle anomalies can cascade into downstream errors,038

affecting outputs and decisions. Tables are espe-039

cially prone to a variety of anomalies, including040

incorrect values, logical inconsistencies, tempo-041

ral misalignments, arithmetic errors, and security 042

flaws, all of which compromise data reliability. 043

As LLMs increasingly move to reasoning over 044

tabular data (e.g., TableQA, fact verification), their 045

reliability depends on the ability to detect subtle 046

inconsistencies. However, anomaly detection in 047

tables remains underexplored compared to text 048

and vision, with limited benchmarks, tools, and 049

systematic evaluation. Prior work has largely fo- 050

cused on unstructured or semi-structured data, with 051

minimal attention to relational tables (Li et al., 052

2024). The absence of standardized benchmarks 053

has contributed to the limited exploration of tabular 054

anomaly detection, emphasizing the need for a sys- 055

tematic framework to evaluate model performance 056

across diverse anomaly types. 057

To bridge this gap, we introduce TABARD, a 058

comprehensive benchmark for evaluating anomaly 059

detection in tabular data. TABARD is constructed 060

by aggregating and perturbing tables from widely- 061

used sources such as WikiTQ (Pasupat and Liang, 062

2015), FeTaQA (Nan et al., 2021), Spider (Yu, 063

2018), and BEAVER (Chen et al., 2024). TABARD 064

features tables with systematically injected anoma- 065

lies—including value, factual, logical, temporal, 066

arithmetic, security, normalization, and consistency 067

violations—while preserving clean counterparts to 068

support supervised evaluation. 069

We evaluate large language models (LLMs) 070

using a four-tier prompting framework—ranging 071

from zero-shot to few-shot settings, with and with- 072

out chain-of-thought (CoT) reasoning. This com- 073

prehensive analysis exposes key limitations in the 074

models’ ability to detect and explain anomalies in 075

tabular data. To address these challenges, we pro- 076

pose three novel methods: (1) a multi-reasoning 077

self-verification strategy that uses CoT to iteratively 078

refine outputs; (2) a CoT-based approach enhanced 079

with recursive attention prompting to improve con- 080

textual coherence and consistency; and (3) a neuro- 081

symbolic, constraint-driven technique that trans- 082
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Figure 1: A comprehensive table containing instances of all anomaly types. Each arrow highlights an anomalous
cell, annotated with the anomaly category and a brief explanation of its cause.

lates structured constraints into executable Python083

code, enabling robust factual validation through084

external knowledge integration. Our main contri-085

butions are as follows:086

• We define the novel task of fine-grained087

anomaly detection in tabular data and propose088

a taxonomy of eight anomaly types: value, fac-089

tual, logical, temporal, calculation, security,090

normalization, and consistency violations.091

• We introduce TABARD, a human-verified092

benchmark constructed via controlled pertur-093

bations using large language models to simu-094

late diverse anomaly types.095

• We conduct a systematic evaluation of LLMs096

under various prompting strategies—zero-097

shot, few-shot, and Chain-of-Thought098

(CoT)—across different levels of prompt099

specificity.100

• We propose three novel detection meth-101

ods: MUSEVE, SEVCOT, and NSCM, a102

neuro-symbolic approach that converts LLM-103

generated constraints into executable Python104

code, improving anomaly coverage and detec-105

tion accuracy.106

Our benchmark and methods lay the ground-107

work for robust, interpretable LLM-based anomaly108

detection in structured data. We will release the109

dataset, code, and evaluation tools to support future110

research.111

2 Table Anomaly Detection112

Given a table T = {Ti,j} with m rows and n113

columns, where each cell Ti,j can take values114

from a mixed-type domain D (e.g., text, num-115

ber, date), the goal is to learn a binary function116

f(Ti,j) ∈ {0, 1} indicating whether the cell is 117

anomalous. For each cell Ti,j , the model predicts a 118

binary label yi,j ∈ {0, 1}, where: 119

yi,j =

{
1, if Ti,j is anomalous
0, otherwise

120

This can be framed as a binary classification 121

task over each cell Ti,j , where the model learns a 122

function: 123
f : Ti,j → {0, 1} 124

that maps each table cell to an anomaly label, op- 125

tionally leveraging full table context, row/column 126

metadata, and external knowledge. The objective 127

is to maximize the recall of the anomaly detection 128

function f by correctly identifying true anomalies 129

while minimizing false negatives. 130

3 Our TABARD Dataset 131

We introduce TABARD, a benchmark for anomaly 132

detection, analysis, and reasoning in tabular data, 133

specifically designed to evaluate the capabilities of 134

large language models (LLMs). TABARD is con- 135

structed by selecting and cleaning tables from four 136

widely-used datasets: WikiTQ (Pasupat and Liang, 137

2015), FeTaQA (Nan et al., 2021), Spider (Yu, 138

2018), and BEAVER (Chen et al., 2024). The 139

benchmark covers eight distinct types of anoma- 140

lies: 141

• Value Anomaly: Deviation from valid cell-level 142

values based on domain constraints. 143

• Factual Anomaly: Conflicts with established 144

real-world knowledge. 145

• Logical Anomaly: Violations of logical relation- 146

ships between columns in the same row. 147

• Temporal Anomaly: Inconsistencies or impos- 148

sibilities in temporal data or sequences. 149
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• Calculation-Based Anomaly: Errors in values150

derived from arithmetic computations.151

• Security Anomaly: Leakage or improper han-152

dling of sensitive or restricted information.153

• Normalization Anomaly: Structural issues that154

violate database normalization principles.155

• Data Consistency Anomaly: Irregularities in156

formatting, structure, or representation across157

similar entries.158

As illustrated in Figure 1, the benchmark includes159

diverse examples: a duplicate Order ID in the sec-160

ond row reflects a data consistency anomaly; the161

year 1600 in the Date (Order/Ship) column is tem-162

porally implausible; an Order Date occurring af-163

ter the Ship Date indicates a logical anomaly. A164

negative quantity in the Qty column represents a165

value anomaly, while a miscalculated Total in the166

first row exemplifies a calculation-based anomaly.167

Exposure of unencrypted card details denotes a168

security anomaly, and assigning "Atlantis" as the169

Locale illustrates a factual anomaly.170

TABARD Generation TABARD is constructed171

by perturbing original tables from multiple sources172

using large language models (LLMs) to introduce173

diverse types of anomalies as defined earlier. We174

use numeric and mixed-type tables from public175

datasets such as WikiTQ, Spider, BEAVER, and176

FeTaQA as our table sources. Tables are filtered177

based on column-level metadata—such as data type178

histograms, keyword matches, and composite-key179

heuristics—to guide downstream anomaly gener-180

ation. We retain only those tables that contain at181

least a few numeric columns and have no missing182

cells.183

Each selected table, along with its original184

schema, is passed to an LLM using specialized185

prompts designed to induce different anomaly186

types. We employ eight distinct perturbation187

prompts, each corresponding to a specific anomaly188

category. To generate ground truth labels, we track189

all cells modified by the LLM and label them as190

anomalous. Additionally, we store metadata includ-191

ing the anomaly type (i.e., the prompt used) and the192

LLM’s explanation for the perturbation, which aids193

in subsequent data verification. Since TABARD194

preserves the original schema of the tables, all SQL195

and analytic queries valid on the clean version re-196

main executable on its perturbed counterpart. This197

ensures structural robustness, with anomalies that198

survive downstream processes such as type casting199

and serialization.200

TABARD Verification. We perform human veri- 201

fication to assess the validity of anomalies gener- 202

ated by the LLM (GPT-4o). A random 15% subset 203

of the perturbed tables is sampled for manual re- 204

view.

Sample Cohen Kappa Jaccard Coef.

α1 94.48 92.67
α2 94.23 93.56

Table 1: Human validation of LLM-generated anomalies
based on agreement scores. Samples α1 and α2 corre-
spond to 7.5% random, disjoint subsets of the TABARD
dataset.

205

Two annotators evaluate the anomalies us- 206

ing both the perturbed table and its log (LLM- 207

generated reasoning for the pertubed data), deter- 208

mining whether the injected anomaly is contextu- 209

ally justified. We report human-LLM agreement as 210

shown in Table 1 scores as a measure of alignment 211

between model-generated anomalies and human 212

judgement. The high agreement scores indicate 213

that the anomalies produced by the LLM are accu- 214

rate and of high quality. 215

Dataset Statistics. The tables in TABARD are 216

categorized into two types based on their length. 217

Short tables are sourced from the WikiTQ and Fe- 218

TaQA datasets and long tables are drawn from the 219

Spider and BEAVER datasets which can be seen in 220

Table 2. In each table, an average of ⌈0.5 |rows|⌉

Statistic Wiki+FeTa Spi+BEA Combined

Total tables 4,840 455 5,295
Avg (17, 5) (349, 7) (33, 5)
Median (13, 6) (51, 7) (14, 6)
Std Dev (20, 1) (2011, 6) (443, 2)
Min (2, 3) (11, 2) (2, 2)
Max (479, 21) (30000, 37) (30000, 37)

Table 2: Dataset statistics for TABARD. For the
metrics Average, Median, Standard Deviation, Mini-
mum, and Maximum, values are reported in the format
(⌈rows⌉, ⌈columns⌉), representing the per-table statis-
tics for the number of rows and columns, respectively.

221
anomalies are injected (but varies a lot depending 222

upon the table), with at least one anomaly per table. 223

To evaluate robustness, a subset of tables is left 224

unperturbed to test LLM performance on clean in- 225

puts. Notably, the standard deviation of row counts 226

in long tables is significantly higher, reflecting a 227

much broader variance in structure and complexity. 228

This diversity enables robust evaluation of models 229
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across all scales (small or large) table scenarios.230

4 Modeling Approaches231

We introduce three categories of methods (prob-232

lem modeling approaches) with increasing com-233

plexity. The first category consists of Direct and234

Indirect prompts, each organized into four lev-235

els, with and without Chain-of-Thought reasoning.236

Then we have a multi-reasoning self-verification237

method that leverages CoT, a self-verifying CoT238

method augmented with recursive attention prompt-239

ing technique, and a neuro symbolic constraint240

based method.241

4.1 Direct and Indirect Prompts242

We design four levels of prompts for both direct and243

indirect evaluation methods, where Levels 1 and244

2 follow an indirect approach, while Levels 3 and245

4 adopt a more direct evaluation strategy. As the246

prompt level increases, more task-specific informa-247

tion is provided, making the prompts progressively248

more fine-tuned and targeted.249

1. Just ‘Problem’ Mentioned - "L1",(w/ and250

w/o CoT): There may be some problems251

present in the table, without mentioning252

anomalies or examples.253

2. Anomalies Mentioned - "L2", (w/ and w/o254

CoT): This prompt replaces "problems" with255

the explicit term "anomalies", providing256

clearer task framing without examples.257

3. ‘X’ type of Anomaly Mentioned - "L3", (w/258

and w/o CoT): Here prompt specifies the exact259

anomaly type (e.g., "factual anomaly", "value260

anomaly") while still omitting examples.261

4. ‘X’ type of Anomaly with Example Men-262

tioned - "L4", (w/ and w/o CoT): these263

prompts enhance specificity further by includ-264

ing both the anomaly type and an illustrative265

few-shot example.266

Note: From this point onward, we refer to these267

prompting configurations using the shorthand ter-268

minology: L1–L4 (with and without CoT). This269

notation is consistently used in the results, figures,270

and discussions throughout the paper.271

Each level is tested both with and without272

Chain-of-Thought (CoT) reasoning. In all con-273

figurations, anomalies are flagged using the274

(index,column_name) format. Then task is275

framed as binary classification—determining 276

whether a given table cell contains an anomaly or 277

not and compare it with the ground truth data. 278

4.2 Multi-Reasoning & Self-Verify Prompts 279

We have developed two new tailor made prompting 280

techniques for this problem which includes many 281

commonly used prompting techniques which are 282

weaved in an intricate way to tackle this problem. 283

MUSEVE (Multi-Reasoning Self Verification) and 284

SEVCOT (Self Verification Chain of Thoughts) en- 285

hance anomaly detection performance. MUSEVE 286

first employs self-consistency prompting by gener- 287

ating multiple independent reasoning paths, each 288

using distinct logical frameworks to flag anomalous 289

cells. Each path applies chain-of-thought (CoT) 290

reasoning, performs self-verification, and outputs 291

anomalies (index,column_name) format. A major- 292

ity voting mechanism consolidates consistent flags, 293

followed by a re-reading phase for final CoT-based 294

refinement. 295

SEVCOT follows a similar structure but omits 296

the self-consistency step. It performs a single CoT- 297

based reasoning pass, followed by self-verification 298

and a final re-reading stage. The key difference 299

lies in the absence of multiple independent rea- 300

soning paths in SEVCOT. In both methods, we 301

generate the Yes/No tables following the procedure 302

described in the previous section and compare them 303

with the ground truth Yes/No tables to compute the 304

evaluation metrics. For all Direct and Indirect meth- 305

ods, as well as MUSEVE and SEVCOT, we apply 306

dynamic chunking on long tables from the Spider 307

and BEAVER datasets, since the large number of 308

rows often causes the combined input and output 309

tokens to exceed the model’s context window. 310

4.3 Neuro-Symbolic Constraint Method 311

We propose NSCM a Neuro Symbolic Constraint 312

based method deterministic data validation pipeline 313

that leverages the generative capabilities of large 314

language models (LLMs) while maintaining strict 315

structural and logical control. A carefully engi- 316

neered prompt, enriched with schema and repre- 317

sentative values, is used to elicit a structured val- 318

idation dictionary per table. This dictionary con- 319

tains constraints across multiple categories such as 320

domain, logical, temporal, calculation-based, etc. 321

along with an external_knowledge_validation 322

list for factual verification. 323

We begin by providing the schema and up to 324

twenty unique cell values per column as input to 325
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the LLM to generate constraints for the respective326

columns. So, let the schema used be S and the327

unique value set U = {U1, U2, . . . , Un}. Let.328

V = {C1, C2, . . . , Ck} ∪ {E1, E2, . . . , Ej},329

where Ci are the intrinsic constraints and Ej is330

the set of external knowledge constraints. Both331

constraint sets may be empty, i.e.,332

{C1, C2, . . . , Ck} = ∅ or333

{E1, E2, . . . , Ej} = ∅334

depending on the table structure and prompt output.335

Let e ∈ Ej denote a tuple extracted by the LLM336

using its internal knowledge and web-based re-337

trieval capabilities. Here, e is defined as:338

e = (X ,K, y, ϕ, k),339

denoting context columns X , knowledge columns340

K, target column y, constraint function ϕ, and341

knowledge specification k.342

For each unique combination x ∈ Domain(X ),343

we extract external knowledge kx → K(x), and344

augment the original dataset D to obtain:345

D′ = D ∪ {K(x)}.346

Then, all constraints V are passed to a statement347

generation agent, which maps each constraint ϕ ∈348

V to a Python if statement:349

ϕ : (r ∈ D′) 7→ bool.350

Here, Φ is defined as a programmatic rule set:351

Φ = {ϕ1, ϕ2, . . . , ϕm},352

executable over the data.353

Each rule ϕi ∈ Φ is embedded into a script P ,354

which is executed over the augmented dataset D′355

to yield the set of anomalies:356

A = {(i, j) | ¬ϕk(ri), ri[j] violates ϕk}.357

This unified execution framework handles both in-358

trinsic and factual validations over the enriched359

data. Final outputs are grouped by constraint cate-360

gory and evaluated against ground truth labels G,361

allowing computation of precision, recall, and rule362

coverage. The pipeline can be summarized as:363

(V,D, S, U)
LLM−−−→ Φ

P(D′)−−−−→ A.364

Illustrative Example: Temporal Constraint on 365

Dates Column 366

We illustrate our constraint-based pipeline using 367

the Dates (Order / Ship) column from Figure 1. 368

The second row contains a temporal anomaly: 369

1600-01-01/1600-01-15, which lies far outside a 370

plausible e-commerce date range. 371

• Input Preparation: The table schema S and up 372

to 20 representative values per column U = 373

{U1, . . . , Un} are provided to the LLM. 374

• Constraint Generation: The LLM returns a 375

validation dictionary: 376

V = {C1, C2, . . . } ∪ {E1, E2, . . . }, 377

where a temporal constraint Ci may state: 378

“Dates must lie in [2000, 2030] and order date 379

≤ ship date.” 380

• Code Synthesis: Each constraint ϕ ∈ V is 381

translated into an executable if statement, 382

forming a rule set Φ. 383

• Execution: The rules Φ are embedded in a 384

script P , run over the table D, and produce 385

anomalies: 386
A = {(1, "Dates")}. 387

• Evaluation: Predicted anomalies A are com- 388

pared to ground truth G to compute metrics 389

such as precision and recall. 390

This example highlights how our approach en- 391

ables LLM-generated constraints to be determin- 392

istically executed for anomaly detection, even in 393

temporally structured data. 394

5 Experimental Evaluation 395

Through our experiments, we aim to investigate 396

the following research questions: (a) How chal- 397

lenging is our benchmark dataset, TABARD, for 398

current state-of-the-art models? (b) To what extent 399

do various prompting strategies—such as few-shot 400

learning, Chain-of-Thought (CoT), and Self Verifi- 401

cation—improve anomaly detection performance? 402

(c) How do different language models perform on 403

the specific task of fine-grained anomaly detection 404

in tables? 405

Evaluation: Our primary task is binary predic- 406

tion, so we evaluate model performance using Pre- 407

cision (P) and Recall (R). F1 scores are also com- 408

puted and reported in the appendix for complete- 409

ness. All evaluations assume the current month and 410

year to be May 2025. 411
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
w/o CoT

L1 38.5 55.7 43.8 43.3 50.1 52.6 29.2 56.9 45.3 46.5 31.0 58.6
L2 39.9 54.4 43.9 42.6 50.2 52.0 32.8 56.1 38.9 47.1 40.0 57.4
L3 44.2 54.5 44.0 39.5 50.0 51.4 38.3 54.5 37.4 47.4 45.4 55.1
L4 43.2 55.1 46.7 40.9 48.0 50.9 40.6 55.3 44.0 46.3 49.1 53.5

with CoT
L1 36.6 56.1 42.7 42.7 48.2 58.4 32.1 56.4 43.6 47.1 35.1 58.9
L2 40.0 56.5 44.5 42.5 49.9 55.7 35.3 56.6 41.7 47.3 42.2 54.8
L3 43.6 54.9 44.9 41.9 50.5 53.1 38.9 53.2 34.8 46.1 43.4 53.6
L4 44.1 56.6 46.4 43.1 52.3 55.2 37.1 56.0 41.4 46.7 41.5 54.2

MUSEVE 48.9 50.2 44.0 39.0 52.9 44.0 35.1 44.8 42.2 44.9 46.2 53.1
SEVCOT 42.8 51.0 46.8 39.9 56.9 52.5 28.5 55.4 39.5 47.0 41.9 56.1
NSCM 18.1 63.6 21.7 52.6 30.8 66.6 39.3 71.3 52.4 59.6 51.2 60.0

Table 3: This table highlights average Precision (P) and Recall (R) across various anomaly categories on the
FeTaQA, Spider+BEAVER, and WikiTQ datasets, evaluated using four LLMs under different prompting strategies.
Li denotes the ith prompt level, with -w/ocot and -wcot indicating absence and presence of Chain-of-Thought
reasoning, respectively. MUSEVE and SEVCOT represent multi-reasoning and self-verification variants.

Models. We evaluate four advanced language412

models: ChatGPT-4o, Gemini 1.5 Pro, LLaMA 3.1413

70B Instruct, and DeepSeek-V3. Our constraint-414

based neuro-symbolic method is executed on415

ChatGPT-4o and Gemini 1.5 Pro. Due to limi-416

tations in external tool access, we were unable to417

deploy the constraint-based method on LLaMA and418

DeepSeek.419

5.1 Findings: Results & Analysis420

TABARD poses a significant challenge: Anomaly421

detection remains challenging across datasets, with422

both precision and recall falling short of expecta-423

tions.424

Do LLMs consistently benefit from Chain-of-425

Thought reasoning across prompt strategies?426

Across all prompt levels (L1–L4), adding Chain-427

of-Thought (CoT) reasoning consistently improves428

recall for ChatGPT-4o and Gemini-1.5-Pro. For ex-429

ample, on FeTaQA, ChatGPT-4o’s recall increases430

from 55.7% (L1 w/o CoT) to 56.1% (L1 with431

CoT), and from 55.1% to 56.6% at L4. Gem-432

ini shows similar gains, with recall rising from433

55.3% to 56.0% between L4 w/o CoT and with434

CoT (Table 3). While precision occasionally dips435

slightly with CoT (e.g., ChatGPT-4o L1 drops from436

38.5% to 36.6%), the overall trend shows that CoT437

enhances reasoning depth, particularly for recall-438

sensitive tasks.439

Do enhanced prompting techniques440

(MUSEVE, SEVCOT, NSCM) outperform441

standard CoT-based methods? Our enhanced442

prompting strategies demonstrate diverse strengths,443

as shown in Table 3. MUSEVE yields the444

highest precision on FeTaQA for ChatGPT-4o 445

(48.9%), outperforming even the CoT-enhanced 446

L4. SEVCOT leads in precision on Spider+BEA 447

(46.8%) and WikiTQ (56.9%) for ChatGPT-4o. 448

Meanwhile, NSCM dominates recall across all 449

datasets and models. For instance, reaching 66.6% 450

recall on WikiTQ for ChatGPT-4o and 71.3% on 451

FeTaQA for Gemini. These results show that while 452

CoT improves baseline prompting, our targeted 453

strategies provide specialized improvements in 454

either precision (MUSEVE, SEVCOT) or recall 455

(NSCM). 456

Do certain prompting strategies work better 457

on specific datasets? Performance trends differ 458

across datasets. FeTaQA and WikiTQ, which con- 459

tain shorter and more regular tables, show consis- 460

tent gains from CoT and enhanced prompts. For 461

example, NSCM reaches 66.6% recall on WikiTQ 462

and 63.6% on FeTaQA with ChatGPT-4o, as shown 463

in Table 3. In contrast, Spider+BEA—comprising 464

longer and more heterogeneous tables—shows 465

smaller gains from CoT and larger improvements 466

from SEVCOT and NSCM. These results suggest 467

that structured prompting is effective for simpler 468

tables, while more complex tables require symbolic 469

or constraint-based reasoning to achieve reliable 470

performance. 471

Do prompting strategies generalize equally 472

well across models and datasets? As shown in 473

Table 3 Gemini-1.5-Pro consistently outperforms 474

ChatGPT-4o in recall on complex datasets and CoT- 475

enhanced prompts. For instance, under L4 with 476

CoT, Gemini achieves 56.0% recall on FeTaQA, 477

matching or exceeding ChatGPT-4o’s 56.6%. On 478
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
MUSEVE

Calculation 41.4 41.6 46.3 30.3 76.0 63.0 33.6 35.6 60.5 50.5 90.0 90.0
Factual 40.9 37.9 43.7 37.0 42.0 30.0 25.8 28.3 35.1 41.9 32.0 36.0
Normalization 80.0 66.7 41.7 19.9 75.0 47.0 37.2 74.5 46.4 30.9 74.0 69.0
Logical 36.5 52.8 44.6 45.7 39.0 37.0 22.1 49.3 37.6 46.7 26.0 42.0
Temporal 51.5 51.3 25.4 31.1 40.0 42.0 51.1 57.3 21.9 41.2 29.0 56.0
Security 46.2 43.2 36.7 43.4 39.0 51.0 35.5 28.4 33.7 51.9 24.0 40.0
Consistency 42.5 29.2 50.8 33.6 48.0 29.0 28.9 16.8 43.3 29.0 39.0 32.0
Value 51.9 79.3 62.6 70.7 64.0 53.0 47.0 68.2 58.9 67.2 56.0 60.0

SEVCOT
Calculation 37.2 43.1 52.8 33.1 81.0 79.0 20.0 55.1 61.5 59.9 85.0 89.0
Factual 36.0 43.5 43.6 35.4 48.0 39.0 21.8 40.6 31.0 41.1 31.0 36.0
Normalization 69.7 69.3 45.9 20.4 79.0 58.0 36.2 72.5 40.8 31.4 61.0 76.0
Logical 29.2 56.5 49.4 47.7 38.0 43.0 17.0 54.5 31.5 47.7 24.0 47.0
Temporal 53.9 53.7 23.1 31.2 64.0 50.0 44.8 71.6 20.8 43.3 39.0 58.0
Security 38.2 36.2 39.7 45.6 32.0 42.0 28.4 39.5 35.7 56.9 18.0 39.0
Consistency 32.3 27.3 50.7 32.8 48.0 39.0 29.0 33.4 40.2 30.6 26.0 42.0
Value 46.2 78.4 65.2 72.7 65.0 70.0 31.2 76.0 54.7 64.9 51.0 62.0

NSCM
Calculation 10.3 57.9 6.5 22.9 35.3 67.3 30.0 70.6 55.1 72.4 75.6 85.6
Factual 10.0 51.5 21.5 29.6 12.3 46.1 20.7 36.9 38.4 30.5 31.1 20.3
Normalization 15.4 69.0 12.5 51.5 36.7 64.2 19.6 84.0 44.8 47.5 51.2 62.5
Logical 16.7 67.1 19.9 54.8 18.1 61.4 42.4 75.0 59.8 62.1 39.5 55.6
Temporal 9.4 33.0 21.4 50.8 9.9 49.0 74.6 94.6 25.1 46.7 18.2 21.6
Security 19.1 68.2 23.1 60.8 33.1 81.2 21.5 37.1 55.6 58.5 57.0 76.9
Consistency 23.4 54.8 33.2 50.3 26.7 53.4 36.2 42.3 58.4 51.5 32.8 29.7
Value 32.8 95.0 35.0 77.0 43.3 84.2 50.5 95.2 68.2 78.1 72.2 83.8

Table 4: This table summarizes the average precision (P) and Recall (R) achieved by ChatGPT-4o and Gemini-1.5-
Pro across eight anomaly categories in the FeTaQA, Spider+BEAVER, and WikiTQ datasets., evaluated using four
LLMs under different prompting strategies. Li denotes the ith prompt level, with -w/ocot and -wcot indicating
absence and presence of Chain-of-Thought reasoning, respectively. MUSEVE and SEVCOT represent multi-
reasoning and self-verification variants.

WikiTQ, Gemini under NSCM reaches 60.0% re-479

call versus ChatGPT-4o’s 66.6%. While ChatGPT-480

4o shows more substantial precision under MU-481

SEVE and SEVCOT, Gemini excels in leverag-482

ing deeper prompt levels for recall. Such results483

demonstrate that multi-step reasoning is processed484

differently across models, reinforcing the impor-485

tance of architecture-aware prompt design.486

Are LLMs equally effective across all487

anomaly categories? We examine performance488

trends across different anomaly types in Table 4.489

Value anomalies consistently yield the highest re-490

call for ChatGPT-4o and Gemini-1.5-Pro, regard-491

less of the prompting strategy. Under NSCM,492

ChatGPT-4o achieves a recall of 95.0% on Fe-493

TaQA and 84.2% on WikiTQ, while Gemini-1.5-494

Pro reaches 95.2% and 83.8%, respectively. These495

high scores suggest that value-based outliers are496

easier for models to identify, likely due to their497

more distinguishable statistical or formatting irreg-498

ularities.499

Are certain categories systematically more dif-500

ficult? Table 4 also reveals that Factual and Tempo-501

ral anomalies remain consistently challenging, for 502

example, under MUSEVE, factual recall falls below 503

38% for ChatGPT-4o across all datasets, and under 504

SEVCOT, Gemini’s factual recall is limited to 36% 505

on WikiTQ and 41.1% on Spider+BEA. These cat- 506

egories likely require external world knowledge 507

or nuanced temporal interpretation, both known 508

limitations for current LLMs. 509

Which methods and datasets show the 510

strongest category-specific performance? As 511

shown in Table 4,NSCM stands out in recall 512

across many categories. For instance, on temporal 513

anomalies, Gemini reaches 94.6% recall on Fe- 514

TaQA under NSCM, while on logical anomalies 515

it scores 75.0%—substantially higher than with 516

MUSEVE or SEVCOT. Similarly, ChatGPT-4o 517

achieves 81.2% recall on security in WikiTQ with 518

NSCM, compared to 51.0% with MUSEVE or 519

42.0% with SEVCOT. These improvements show 520

that incorporating constraints into prompts signifi- 521

cantly improves the model’s ability to reason me- 522

thodically over structured inputs. 523

Do models behave differently depending on 524

7



the dataset characteristics? Model performance525

varies significantly with the structural properties526

of each dataset, as shown in Table 4. FeTaQA527

and WikiTQ, which consist of shorter and more528

uniformly structured tables, produce higher perfor-529

mance in most categories of anomalies. In contrast,530

Spider+BEA contains longer and more heteroge-531

neous tables that challenge the models’ ability to532

maintain contextual coherence. For example, in533

the logical category under SEVCOT, ChatGPT-4o534

achieves a recall of 56.5% on FeTaQA, but this535

drops to 47.7% on Spider+BEA. This pattern holds536

across categories and methods, highlighting the ad-537

verse effect of table length and schema complexity538

on anomaly detection accuracy.539

Overall, the results from Table 3 and Table 4540

reinforce the trends observed earlier: while CoT541

and enhanced prompting help, dataset characteris-542

tics such as table length and schema complexity543

strongly influence performance. Our constraint-544

based NSCM method demonstrates clear advan-545

tages in handling false negatives and identifying546

true Positives in these challenges, particularly when547

standard prompting strategies fail.548

6 Related Works549

To the best of our knowledge, this work is the first550

to investigate fine-grained, cell-level anomaly de-551

tection in tabular data using LLMs, extending prior552

anomaly detection efforts beyond unstructured and553

coarse-grained settings.554

In the visual domain, vision-language models555

have improved anomaly detection in images and556

videos (Cao et al., 2023; Gu et al., 2023; Zhu et al.,557

2024; Yang et al., 2024). In multimodal settings,558

these models have also been employed to detect559

fake news by integrating textual and visual infor-560

mation (Jin et al., 2024; Liu et al., 2024). In the561

domain of log data, LLMs have been fine-tuned562

to identify anomalies in system logs, effectively563

handling both structured and unstructured formats564

(Han et al., 2023; Yamanaka et al., 2024; Lee et al.,565

2023; Hadadi et al., 2024).566

Within tabular data, Li et al., 2024 demonstrated567

the potential of LLMs as zero-shot batch-level568

anomaly detectors and proposed synthetic data569

generation and fine-tuning strategies to enhance570

performance, achieving results on par with state-571

of-the-art methods. ANOLLM (Tsai et al., 2025)572

introduced a framework for unsupervised tabular573

anomaly detection that operates directly on raw tex-574

tual features and showed competitive performance 575

on several datasets. 576

Despite recent progress, fine-grained cell-level 577

anomaly detection in tables remains underexplored. 578

To address this, we introduce TABARD, a bench- 579

mark spanning eight anomaly types, and evaluate 580

LLMs across diverse prompting strategies. We 581

also propose three detection methods—including 582

two prompting-based and one constraint-based ap- 583

proach—that outperform baselines and improve 584

explainability in tabular anomaly detection. 585

7 Conclusion and Future Work 586

This work introduces TABARD, a comprehen- 587

sive benchmark and evaluation framework for 588

fine-grained anomaly detection in tabular data 589

using large language models (LLMs). By per- 590

turbing real-world tables with diverse anomaly 591

types and evaluating multiple prompting strate- 592

gies—including multi-reasoning, self-verification, 593

and a novel neuro-symbolic constraint-based 594

method—the study reveals fundamental strengths 595

and limitations of current LLMs. While traditional 596

prompting with CoT enhances recall, especially on 597

simpler datasets, our advanced methods like MU- 598

SEVE, SEVCOT, and NSCM achieve substantial 599

improvements in precision, recall, and explainabil- 600

ity across more complex settings. TABARD estab- 601

lishes a principled foundation for future research 602

on robust, interpretable, and scalable anomaly de- 603

tection systems in structured data. 604

We identify several promising directions for fu- 605

ture research. We aim to detect mixed and task- 606

driven anomalies, address incomplete or missing 607

table data, and extend anomaly detection to mul- 608

timodal tables with visual elements. Additionally, 609

we plan to strengthen our constraint-based frame- 610

work by incorporating feedback-guided refinement 611

and meta-level modeling for more reliable con- 612

straint generation. We provide a detailed discussion 613

of these directions in the Appendix Section-B. 614

Limitations 615

While our work makes significant strides in fine- 616

grained, cell-level anomaly detection in tabular 617

data using LLMs, it has certain limitations. First, 618

our benchmark and methods are restricted to 619

anomalies within individual tables. We do not 620

address multi-table settings, such as anomalies 621

arising from relationships across multiple tables, 622

inconsistencies between linked tables, or anoma- 623
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lies requiring inter-table reasoning, which are com-624

mon in many real-world tabular datasets. Further-625

more, our work assumes access to full and com-626

plete tables, whereas real-world tabular data of-627

ten contains missing or incomplete entries, which628

can significantly affect anomaly detection perfor-629

mance. Additionally, our study primarily focuses630

on prompting strategies without exploring fine-631

tuning LLMs specifically for tabular anomaly de-632

tection, which presents an opportunity for further633

enhancing model performance.634

Also, the higher false positive rate in our635

constraint-based method primarily stems from the636

conservative design of the constraint generation637

phase. The LLM, given limited contextual informa-638

tion (i.e., only the schema and up to 20 unique val-639

ues), may over-generalize certain validation rules.640

This can lead to constraints that are syntactically641

or statistically reasonable, but overly strict when642

applied to edge-case values in the full dataset. For643

example, a domain constraint inferred from a par-644

tial value distribution may reject rare-but-valid en-645

tries, flagging them incorrectly as anomalous. Ad-646

ditionally, logical or calculation-based constraints647

derived from sparse patterns may fail to capture648

all valid relational variants, further contributing649

to false positives. To address this issue, we have650

outlined two potential approaches for future work.651

Ethics Statement652

This research complies with the ethical guide-653

lines of the Association for Computational Linguis-654

tics (ACL) and EMNLP. Our benchmark dataset,655

TABARD, is constructed by perturbing publicly656

available, anonymized tabular datasets (WikiTQ,657

FeTaQA, Spider, and BEAVER) intended for aca-658

demic use. No personally identifiable information659

(PII) or sensitive user data is included, ensuring no660

direct privacy risks.661

All anomalies were synthetically generated us-662

ing controlled prompts to large language models663

(LLMs), simulating realistic yet artificial data in-664

consistencies across domains such as finance and665

education. Sensitive-looking values (e.g., credit666

card numbers) are entirely fabricated. TABARD667

contains no human subject data, no private infor-668

mation, and no harm-inducing content. It is built669

exclusively from publicly available sources and is670

designed to be harmless and ethically sound. A671

subset of the data was verified by independent an-672

notators to ensure contextual correctness; annota-673

tors were compensated fairly and exposed to no 674

sensitive content. The authors have done human 675

annotation with detailed instruction given. 676

To mitigate risks associated with automation 677

and misuse, our methods are fully transparent and 678

reproducible. TABARD is released with a com- 679

prehensive datasheet specifying its use strictly for 680

research and benchmarking. We discourage its 681

use for training deployed systems without addi- 682

tional safeguards. Our neuro-symbolic method fur- 683

ther enhances interpretability by translating LLM- 684

generated constraints into executable rules. 685

Additionally, AI assistance—including language 686

models—was used to support parts of the paper 687

writing and research process (e.g., prompt devel- 688

opment and explanation formatting). All outputs 689

were carefully reviewed by human authors. 690

In conclusion, we prioritize data privacy, model 691

transparency, annotator welfare, and responsible 692

AI use in all aspects of this work. 693
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Appendix769

A Data Generation and Preprocessing770

We initiated our data generation process using771

ChatGPT-4o with a temperature setting of 0.7 and772

a maximum token limit of 1000. To ensure flexi-773

bility across varying table lengths and structures,774

we applied dynamic chunking to segment tables775

contextually.776

Our dataset construction is based on aggregat-777

ing and perturbing tables from four established778

benchmarks: WikiTQ (Pasupat and Liang, 2015),779

FeTaQA (Nan et al., 2021), Spider (Yu, 2018), and780

BEAVER (Chen et al., 2024). This aggregated re-781

source, which we refer to as TABARD, introduces782

diverse types of anomalies while retaining realistic783

table semantics.784

Perturbations were applied at the cell level to785

simulate factual, logical, temporal, and consistency-786

based errors. To enable precise anomaly localiza-787

tion during evaluation, we inserted a marker to-788

ken (‘@@@_‘) at the beginning of each modified789

cell. This annotation allows systematic tracking of790

anomalous content during both training and infer-791

ence.792

For each table, a binary yes/no table is gener-793

ated using the (index, column_name) pairs pre-794

dicted by the LLMs. This table mirrors the struc-795

ture and schema of the original table, but each796

cell is replaced with either "Yes" (indicating an797

anomaly) or "No" (indicating normal data). During798

the data generation phase, anomalies are introduced799

by prepending a unique identifier token (@@@_) to800

the corresponding cells. Using this information,801

ground truth yes/no tables are constructed in the802

same format. The predicted and ground truth tables803

are then compared to compute evaluation metrics804

including Precision, Recall, and F1 score. The805

counts for true positives, false positives, and false806

negatives are determined as follows:807

if prediction[prediction_key] == "Yes" and808
label[label_key] == "Yes":809
true_positives += 1810

elif prediction[prediction_key] == "Yes" and811
label[label_key] == "No":812
false_positives += 1813

elif prediction[prediction_key] == "No" and814
label[label_key] == "Yes":815
false_negatives += 1816

Overall, this pipeline supports the generation of817

fine-grained anomaly instances aligned with real-818

world scenarios over structured data.819

Note: Anomalies are often misunderstood as820

outright errors, but this is not always the case. An 821

anomaly refers to a data point that is rare, mislead- 822

ing, or inconsistent with the rest of the dataset—not 823

necessarily incorrect. Its interpretation can be sub- 824

jective and context-dependent. For instance, if most 825

dates in a column follow the MM/DD/YYYY format 826

but one entry uses DD/MM/YYYY, the value may still 827

be valid, yet inconsistent with the column’s format. 828

This illustrates a data consistency anomaly, where 829

the deviation disrupts structural uniformity rather 830

than factual correctness. 831

B Future Works 832

Our study opens several promising directions for 833

future research. One avenue is exploring mixed 834

anomalies, where a single cell may contain mul- 835

tiple anomaly types simultaneously (e.g., factual 836

and logical errors), as well as scenarios where mul- 837

tiple types of anomalies appear across different 838

cells within the same table. Another important 839

extension is handling incomplete tables with miss- 840

ing or empty cells. Future work could investigate 841

task-driven anomaly detection, where anomalies 842

are identified indirectly through the performance 843

of downstream tasks, such as answering questions 844

or summarizing. Detecting performance drops or 845

inconsistencies in such tasks when operating on 846

corrupted versus clean tables could offer practical, 847

interpretable signals of anomalies. We have also 848

planned to make some future advancements in our 849

NSCM to address some of our methods limitations 850

which includes: 851

a) Pre-Trained Meta Model: Use feedback 852

from prior executions to evaluate each constraint’s 853

precision and recall on held-out data, ranking them 854

by F1 to identify weak patterns. This information 855

can then guide a lightweight meta-model or prompt- 856

tuning setup that learns to prefer high-quality con- 857

straint patterns (e.g., robust range checks over brit- 858

tle list matches), allowing the LLM to progres- 859

sively refine its generation toward more reliable 860

and dataset-aligned rules. 861

b) Feedback-Guided Refinement: Use his- 862

torical execution feedback (e.g., common false- 863

positive patterns or constraint violation frequencies 864

across clean data) to iteratively fine-tune the con- 865

straint generation prompt. This enables the system 866

to learn which constraint types are too aggressive 867

and adapt generation accordingly. 868

Finally, extending anomaly detection to multi- 869

modal tables that include visual elements—such 870
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as images embedded in cells—presents an exciting871

direction, requiring models to jointly reason over872

both textual and visual information.873

C Prompts Used in Experiments874

We present the prompt formulations used during875

experimentation. We designed each prompt to876

evaluate the performance of the model in various877

anomaly detection settings.878

C.1 Just ‘Problem’ Mentioned- L1 Prompts879

L1-w CoT

Here is the JSON data: {json_string} which
might have some problems in its cells.
Analyze the data and identify anomalies
in the data. Follow a structured step-by-
step Chain-of-Thought (CoT) approach be-
fore returning the final output. Identify
and return them in the format [(index, col-
umn_name), (index, column_name)] where
index corresponds to the index in the list and
column_name is the name of the column
you think there is a problem. Just generate
the list format output so I can easily parse
it.

880

L1-w/o CoT

Here is the JSON data: {json_string}
which might have some problems. Iden-
tify and return them in the format
[(index, column_name), (index,
column_name)] where index corresponds
to the index in the list and column_name
is the name of the column you think there
is a problem. Just generate the list format
output so I can easily parse it.

881

C.2 Anomalies Mentioned- L2 Prompts882

L2-w/o CoT

Here is the JSON data: {json_string}.
Can you identify the anomalous
cells and return them in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think there is
an anomaly in. Just generate the list format
output so I can easily parse it.

883

L2-w CoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify anomalies in
the data. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and read the table very
carefully to find anomalies in it.

Step 2: Generate the Anomalous Cells
- Identify the anomalous cells with anoma-
lies present in them.
- Return the output in the format
[(index, column_name), (index,
column_name)] where index corresponds
to the index in the list and column_name is
the name of the column you think there is
an anomaly. Just generate the list format
output so I can easily parse it.

884

C.3 ‘X’ type of Anomaly Mentioned- L3 885

Prompts 886

L3-w/o CoT

Here is the JSON data: {json_string}.
Can you identify the cells with {anomaly}
anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think there is
a {anomaly} anomaly. Just generate the list
format output so I can easily parse it.

887

L3-w CoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify {anomaly}
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to {anomaly} anomalies.

888
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Step 2: Generate the Anomalous Cells
- Identify the anomalous cells with
{anomaly} anomaly present in them.
- Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains
a {anomaly} anomaly. Just generate the list
format output so I can easily parse it.

889

C.4 ‘X’ type of Anomaly with Example890

Mentioned - L4 Prompts891

L4-w CoT (Data Consistency)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify data consis-
tency anomalies. Follow a structured step-
by-step Chain-of-Thought (CoT) approach
before returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to data consistency anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of data con-
sistency anomalies:
1. Inconsistent Formats: A "phone
number" column where values use dif-
ferent formats (e.g., +1-234-567-8901,
(123) 456-7890, or unformatted like
1234567890).
2. Mismatched Categories: Different nam-
ing conventions used for the same cate-
gory (e.g., "HR", "Human Resources", and
"H.R.").
3. Cross-Table Inconsistencies: Salary
or payment values that differ between
related tables (e.g., expected_pay vs.
exact_pay).

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name

892

is the name of the column where a data
consistency anomaly is present. Just
generate the list format output so I can
easily parse it.

893

L4-w/o CoT (Data Consistency)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
data consistency anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a data consistency
anomaly. Just generate the list format out-
put so I can easily parse it.
Here are a few examples of data consistency
anomalies to help you identify them:
1. Inconsistent Formats: A "phone
number" column where values use dif-
ferent formats (e.g., +1-234-567-8901,
(123) 456-7890, or unformatted like
1234567890).
2. Mismatched Categories: Different nam-
ing conventions used for the same cate-
gory (e.g., "HR", "Human Resources", and
"H.R.").
3. Cross-Table Inconsistencies: Salary
or payment values that differ between
related tables (e.g., expected_pay vs.
exact_pay).

894

L4-w CoT (Security)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify security
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to security anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of security
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anomalies:
1. Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a security risk if
the account is used maliciously.
2. Missing Audit Logs: Failed login
attempts with blank fields for "Browser
Version" or "User-Agent".
3. Suspicious Activity: A user logs in from
a different country every time, whereas they
normally log in from a single region or of-
fice location.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column where a security
anomaly is present. Just generate the list
format output so I can easily parse it.
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L4-w/o CoT (Security)

Here is the JSON data: {json_string}. Ana-
lyze the data and identify the cells with se-
curity anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains
a security anomaly. Just generate the list
format output so I can easily parse it.
Here are a few examples of security anoma-
lies to help you identify them:
1. Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a security risk if
the account is used maliciously.
2. Missing Audit Logs: Failed login
attempts with blank fields for "Browser
Version" or "User-Agent".
3. Suspicious Activity: A user logs in from
a different country every time, whereas they
normally log in from a single region or of-
fice location.
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L4-w CoT (Value)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify value anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to value anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of value
anomalies:

• Missing or Null Values:

– A critical column like "Product
ID" or "Customer Name" con-
taining empty or null values
where such information is re-
quired.

– A numeric field like "Price" or
"Quantity" left blank in a sales
record.

• Illogical Negative Values:

– A "Price" column with negative
values, which is not possible for
most products.

– A "Salary" field showing a neg-
ative amount for an employee.

• Extreme Outlier Values:

– A house listed with a price of
$1 or $1 billion in a neighbor-
hood where the typical range is
$300,000 to $500,000.

– A recorded temperature of 150°C
in a location where temperatures
do not exceed 50°C.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
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is the name of the column where a value
anomaly is present. Just generate the list
format output so I can easily parse it.
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L4-w/o CoT (Value)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
value anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column you think contains a
value anomaly. Just generate the list format
output so I can easily parse it.
Here are a few examples of value anomalies
to help you identify them:

• Missing or Null Values:

– A critical column like "Product
ID" or "Customer Name" con-
taining empty or null values
where such information is re-
quired.

– A numeric field like "Price" or
"Quantity" left blank in a sales
record.

• Illogical Negative Values:

– A "Price" column with negative
values, which is not possible for
most products.

– A "Salary" field showing a neg-
ative amount for an employee.

• Extreme Outlier Values:

– A house listed with a price of
$1 or $1 billion in a neighbor-
hood where the typical range is
$300,000 to $500,000.

– A recorded temperature of 150°C
in a location where temperatures
do not exceed 50°C.
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L4-w CoT (Normalization)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify normalization

901

anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to normalization anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Below are examples of normal-
ization anomalies:

• Partial Dependencies (2NF Viola-
tion):
In an "Orders" table with OrderID
and ProductID as a compos-
ite key, some rows may include
CustomerName depending only on
CustomerID, violating 2NF.

• Transitive Dependencies (3NF
Violation):
In an "Employees" table,
OfficeLocation depends on
Department, which depends on
EmployeeID, causing a transitive
dependency.

• Denormalization:
A column like TotalSalary stores
the sum of BaseSalary and Bonus di-
rectly, potentially leading to inconsis-
tencies.

• Combined Attributes:
A single field storing values like "West
Bengal, India, 721306" instead of
separating into City, Country, and Zip.

• Repeating Groups (1NF Violation):
A "Skills" column containing
"MongoDB, C++, C" instead of being
split into individual entries.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
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the name of the column where a normaliza-
tion anomaly is present. Just generate the
list format output so I can easily parse it.
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L4-w/o CoT (Normalization)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
normalization anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a normalization anomaly.
Just generate the list format output so I can
easily parse it.
Here are a few examples of normalization
anomalies to help you identify them:

• Partial Dependencies (2NF Viola-
tion):
In an "Orders" table with OrderID
and ProductID as a compos-
ite key, some rows may include
CustomerName depending only on
CustomerID, violating 2NF.

• Transitive Dependencies (3NF
Violation):
In an "Employees" table,
OfficeLocation depends on
Department, which depends on
EmployeeID, causing a transitive
dependency.

• Denormalization:
A column like TotalSalary stores
the sum of BaseSalary and Bonus di-
rectly, potentially leading to inconsis-
tencies.

• Combined Attributes:
A single field storing values like "West
Bengal, India, 721306" instead of
separating into City, Country, and Zip.

• Repeating Groups (1NF Violation):
A "Skills" column containing
"MongoDB, C++, C" instead of being
split into individual entries.
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L4-w CoT (Factual)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify factual anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to factual anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Examples include:

• Contradictions:

– An "assistant" with a higher
salary than a "senior manager".

– A "student" listed with a profes-
sional title like "Professor".

• Unrealistic Values:

– A product price of $1 for a high-
end smartphone or $10,000 for a
notebook.

– A building height of 5000 meters
for a residential structure.

• Geographical Mismatches:

– A city listed as "New York" with
a postal code for Los Angeles.

– A 50°C temperature recorded in
the Arctic.

• Ambiguities:

– A currency field with "Dollar"
but no specification (USD or
CAD).

– A date like "5/7/22" that could
mean May 7 or July 5.

• Record-Breaking Claims:

– A 100-meter race time of 8 sec-
onds.

– A business reporting 200% profit
margins.

905

16



• Unlikely Proportions:

– 95% expenses relative to revenue
where 70% is the norm.

– A household using 100,000 kWh
in one month.

• Other Factual Anomalies:

– Any data that contradicts realistic
expectations based on context or
domain.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index refers to the
list index and column_name is the name of
the column you believe contains a factual
anomaly. Just generate the list format
output so I can easily parse it.
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L4-w/o CoT (Factual)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
factual anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column you think con-
tains a factual anomaly. Just generate the
list format output so I can easily parse it.
Here are a few examples of factual anoma-
lies to help you identify them:

• Contradictions:

– An "assistant" with a higher
salary than a "senior manager".

– A "student" listed with a profes-
sional title like "Professor".

• Unrealistic Values:

– A product price of $1 for a high-
end smartphone or $10,000 for a
notebook.

– A building height of 5000 meters
for a residential structure.

• Geographical Mismatches:
907

– A city listed as "New York" with
a postal code for Los Angeles.

– A 50°C temperature recorded in
the Arctic.

• Ambiguities:

– A currency field with "Dollar"
but no specification (USD or
CAD).

– A date like "5/7/22" that could
mean May 7 or July 5.

• Record-Breaking Claims:

– A 100-meter race time of 8 sec-
onds.

– A business reporting 200% profit
margins.

• Unlikely Proportions:

– 95% expenses relative to revenue
where 70% is the norm.

– A household using 100,000 kWh
in one month.

• Other Factual Anomalies:

– Any data that contradicts realistic
expectations based on context or
domain.

908

L4-w CoT (Temporal)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify temporal
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to temporal anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record, examine the following
types of temporal anomalies:

• Conflicting Schedules:

– A meeting that starts before the
909
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previous one has ended.
– A task scheduled to begin while

its prerequisite is still ongoing.

• Illogical Durations:

– A marathon listed as lasting 1 sec-
ond.

– A 24-hour flight for a 2-hour
route.

• Chronological Inconsistencies:

– A departure_time earlier than
the arrival_time.

– An event_end_time before the
event_start_time.

• Unrealistic Temporal Outliers:

– An international delivery marked
as complete 30 seconds after or-
dering.

– A task completed in negative time
(e.g., -2 minutes).

• Timezone Discrepancies:

– Misaligned start and end times
due to missing or incorrect time
zones.

– An event listed at 9:00 AM in
one timezone but 10:00 AM in
another.

• Invalid Temporal Sequences:

– A work shift ending before it be-
gins.

– A follow-up call scheduled before
the initial consultation.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the list index and column_name is the
name of the column with a temporal
anomaly. Just generate the list format
output so I can easily parse it.
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L4-w/o CoT (Temporal)

Here is the JSON data: {json_string}. Ana-
lyze the data and identify the cells with tem-
poral anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name
is the name of the column with the tempo-
ral anomaly. Just generate the list format
output so I can easily parse it.
Here are a few examples of temporal anoma-
lies to help you identify them:

• Conflicting Schedules:

– Meetings that overlap or start be-
fore the previous one ends.

– Tasks starting while prerequisite
tasks are still in progress.

• Illogical Durations:

– A 1-second marathon.
– A 24-hour flight on a 2-hour

route.

• Chronological Inconsistencies:

– departure_time earlier than
arrival_time.

– event_end_time before
event_start_time.

• Unrealistic Temporal Outliers:

– A delivery completed within 30
seconds of an international order.

– Tasks marked complete in nega-
tive time.

• Timezone Discrepancies:

– Event times misaligned across
timezones.

– A webinar incorrectly converted
between zones (e.g., 9:00 AM
shown as 10:00 AM).

• Invalid Temporal Sequences:

– A shift that ends before it starts.
– A follow-up event occurring be-

fore the initial one.
911
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L4-w CoT (Calculation)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify calculation
anomalies. Follow a structured step-by-step
Chain-of-Thought (CoT) approach before
returning the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to calculation anomalies.

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for the
following types of calculation anomalies:

• Incorrect Totals:
A "grand total" field that does not
match the sum of individual transac-
tion amounts.

• Incorrect Formula:
Use of inaccurate or logically invalid
formulas (e.g., calculating body fat per-
centage as waist circumference /
height).

• Missing Dependencies:
A "discounted price" column
referring to missing or undefined
"original price" values.

• Logical Violations:
Calculations yielding implausible re-
sults (e.g., an age of 200 or a negative
quantity in inventory).

• Rounding Errors:
Inconsistent rounding across financial
fields, such as tax being rounded in-
consistently across entries.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
column_name)], where index corresponds
to the index in the list and column_name is
the name of the column where a calculation
anomaly is found. Just generate the list
format output so I can easily parse it.
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L4-w/o CoT (Calculation)

Here is the JSON data: {json_string}.
Analyze the data and identify the cells
with calculation anomalies and return them
in the format [(index, column_name),
(index, column_name)], where index
corresponds to the index in the list and
column_name is the name of the column
you think contains a calculation anomaly.
Just generate the list format output so I can
easily parse it.
Here are a few examples of calculation
anomalies to help you identify them:

• Incorrect Totals:
A "grand total" field that does not
reflect the actual sum of transaction
components.

• Incorrect Formula:
Use of an incorrect expression, such
as body fat percentage = waist
circumference / height.

• Missing Dependencies:
Fields like "discounted price" that
rely on missing data in "original
price".

• Logical Violations:
Results that are outside a logical range
(e.g., negative age or quantity).

• Rounding Errors:
Financial fields rounded inconsistently,
leading to discrepancies in totals.
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L4-w CoT (Logical)

Here is the JSON data: {json_string}
Task:
Analyze the data and identify logical anoma-
lies. Follow a structured step-by-step Chain-
of-Thought (CoT) approach before return-
ing the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to logical anomalies.
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Step 2: Find Out the Anomalies Present
in the Table
For each record, check for the following
types of logical inconsistencies:

• Illogical Temporal Relationships:

– registration_date occurs af-
ter termination_date.

– delivery_date occurs before
order_date.

• Biological or Physical Impossibili-
ties:

– An age value of 180 years or
more.

– A speed exceeding 5000 km/h in
standard transport records.

• Inconsistent Financial Data:

– A discount greater than the
total_price.

– A refund_amount exceeding the
original transaction.

• Categorical Misclassifications:

– "CEO" as a job title for a per-
son with salary below minimum
wage.

– "Reptile" listed in a mammal
classification.

• Anachronisms or Technological Im-
possibilities:

– A device manufacture_date
predating its invention (e.g.,
smartphone from 1990).

– A passport_issued_date be-
fore the birth_date.

• Referential Inconsistencies:

– customer_id not found in the
customer registry.

– A state field with a nonexistent
or misspelled geographic entity.

Step 3: Generate the Anomalous Cells
Return the output in the format
[(index, column_name), (index,
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column_name)], where index is the record
index and column_name is the column
containing a logical anomaly. Just generate
the list format output so I can easily parse
it.
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L4-w/o CoT (Logical)

Here is the JSON data: {json_string}. An-
alyze the data and identify the cells with
logical anomalies and return them in the for-
mat [(index, column_name), (index,
column_name)], where index is the index
in the list and column_name is the column
with the logical anomaly. Just generate the
list format output so I can easily parse it.
Here are a few examples of logical anoma-
lies to help you identify them:

• Illogical Temporal Relationships:

– registration_date occurs af-
ter termination_date.

– delivery_date occurs before
order_date.

• Biological or Physical Impossibili-
ties:

– An age value of 180 years or
more.

– A speed value exceeding 5000
km/h in ground transport.

• Inconsistent Financial Data:

– A discount greater than the
total_price.

– A refund larger than the transac-
tion amount.

• Categorical Misclassifications:

– A "CEO" job title with an implau-
sibly low salary.

– A mammal labeled as a
"Reptile".

• Anachronisms or Technological Im-
possibilities:

– Devices with manufacture dates
before their invention.

– A passport issued before the per-
son’s birth.
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• Referential Inconsistencies:

– Invalid customer_ids not found
in master data.

– Misspelled or nonexistent
states/regions in the state
column.
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C.5 MuSeVe919

MuSeVe

prompt = f"{{json_string}}" will have
some anomalies in its cells.
Task: Structured Anomaly Detection in
Semi-Structured Tables
You are an advanced anomaly detection sys-
tem trained to analyze semi-structured ta-
bles. Your goal is to detect anomalies at the
cell level using a structured step-by-step ap-
proach that ensures high accuracy, logical
consistency, and explainability.

Step 1: Generate Multiple Independent
Reasoning Paths (Self-Consistency
Prompting)

• Perform multiple independent analy-
ses of the table, each using a unique
reasoning approach.

• Ensure that each reasoning path is
completely independent and may use
different logical frameworks.

• Each reasoning path should only flag
specific table cells as anomalies, not
entire rows or columns.

Step 2: Apply Chain-of-Thought (CoT)
for Each Reasoning Path
For each independent reasoning path, use
step-by-step logical reasoning:

1. Identify patterns in the data.

2. Compare against expected norms (his-
torical data, rules, domain-specific ex-
pectations).

3. Detect outliers or logical inconsisten-
cies in individual cells.
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4. Analyze cross-field relationships (e.g.,
role vs. status, date vs. event).

5. Conclude whether the flagged cells are
anomalous or valid.

Step 3: Anomaly Detection at the Cell
Level

• Flag only specific table cells that con-
tain anomalies.

• Use a structured output format
(index, column_name) where:

– index corresponds to the index in
the list.

– column_name corresponds to the
specific field with the anomaly.

Step 4: Self-Verification for Each
Anomaly (True/False Check)
Each reasoning path must verify its own
flagged anomalies:

1. Ask yourself: “Is this anomaly truly
incorrect?”

2. Cross-check with:

• Expected value distributions.
• Logical consistency.
• Historical data references.

3. Final Decision:

• True → The flagged cell is a con-
firmed anomaly.

• False → The flagged cell is valid
and should not be marked.

Step 5: Majority Voting

• Collect flagged anomalies from all rea-
soning paths.

• If more than 70% of reasoning paths
agree that a flagged cell is anomalous,
confirm the anomaly.
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• These majority-voted anomalies will
be the final anomalies reported.

Step 6: Re-Reading & Final Chain-of-
Thought Verification
Before finalizing results:

1. Re-read the table one last time.

2. Apply a final structured CoT reasoning
process.

3. Ensure no valid cells are incorrectly
flagged.

4. Make any necessary corrections to the
anomaly list.

Final Output: A refined, validated
anomaly list.

Final Output Format
Return only the structured list of con-
firmed anomalies. Use the format:
[(index, column_name), (index,
column_name)], where index refers to the
index in the list and column_name is the
column with the anomaly.
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C.6 SeVCoT923

SeVCoT

Here is the JSON data: {json_string}
Task:
Analyze the data and identify anomalies.
Follow a structured step-by-step Chain-of-
Thought (CoT) approach before returning
the final output.

Step 1: Understand the Data Structure
1. Parse the JSON and identify the key fields
relevant to .

Step 2: Find Out the Anomalies Present
in the Table
For each record in the dataset, check for
anomalies. Examples of anomalies include:

• Suspended Role Conflict: A user
marked as "inactive" still holds a
"manager" role, posing a risk if the
account is used maliciously.
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• Missing Audit Logs: Failed login at-
tempts with blank fields for "Browser
Version" or "User-Agent".

• Suspicious Activity: A user logs in
from a different country every time,
whereas they normally log in from a
single region or office location.

Step 3: Find the Anomalous Cells
Now, find the anomalous cells where you
believe a anomaly is present. Note down all
such cells.

Step 4: Self Verification (True/False
Check)
Verify the flagged anomalies:

1. Ask yourself: “Is the flagged cell truly
an anomaly?”

2. Cross-check with:

• Expected value distributions
• Logical consistency
• Historical data references

3. Final Decision:

• True – The flagged cell is a con-
firmed anomaly.

• False – The flagged cell is ac-
tually valid and should not be
marked.

4. Retain only True confirmed anomalies
for the final output.

Step 5: Re-reading and Final CoT Check-
ing
Before finalizing, re-read the table one last
time and apply structured CoT reasoning:

• Scan the flagged anomalies again.

• Ensure no valid cells are incorrectly
flagged.

• Make corrections to the list if neces-
sary.
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Final Output: A refined, validated anomaly
list.

Step 6: Final Output Generation
Return the final output in the format:
[(index, column_name), (index,
column_name)], where index refers to the
list index and column_name is the column
with a anomaly.
Only output the list in this format for easy
parsing.
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C.7 NSCM927

C.7.1 Constraint Prompt - NSCM928

Constraint Prompt

You are an expert in data validation. You
will be provided with a JSON table where
each column includes a subset of its unique
values, some of which may be anomalies.
You will also be given some examples of
the same table so that you can understand
any inter-column dependencies. Your task
is to analyze these unique values in combi-
nation with the column names and generate
generic, domain-informed constraints to ex-
clude anomalous values.
Critically important: You must not create
set-based constraints for numeric columns.
For example, do not write constraints like
if Year not in [1980, 1990, 2020]
— such constraints are strictly forbidden for
numeric data. Instead, derive range-based
or pattern-based rules based on plausible
domain logic.
For instance, if the values for Year are
[2001, 2002, 1980, 19890, 1900, 1500,
2026], then values like 1500, 2026, and
19890 are likely anomalies. A correct con-
straint would be:

if not (1900 <= Year <=
2025)

not a list-based check on specific values.
You must assume the provided unique val-
ues are examples, not the exhaustive set. Do
not assume the list of values is complete or
definitive.
Constraints must follow these principles:

• Be generalizable and not tied to spe-
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cific data points.

• Avoid value in [..] checks unless
absolutely necessary.

• For non-numeric columns, set-based
constraints may be used sparingly, and
only after filtering out null, None, or
empty string values.

• Always prioritize data type checks, log-
ical bounds, format patterns, or value
consistency rules over literal matches.

• Never include contradictory or logi-
cally inconsistent rules.

• Think carefully and analytically —
your goal is to identify what should
be valid, not just what has been seen.

These are examples of constraints you
should consider under each constraint
type:
1. Domain Constraints

• Uniqueness: transaction_id must
be unique.

• Code and Identifier Standards:
country_code must match ISO-3166-
1 alpha-2 format.

• Range Constraints: age must be be-
tween 0 and 120.

• Length and Format Constraints:
email must match standard email
format.

• Valid Categorical Values:
athletic_event must be from
{100m, 200m, 400m}.

2. Logical Constraints

• Cross-Column Logic: start_date ≤
end_date.

• Mathematical Relationships:
total_price = unit_price *
quantity.

• Value Interdependencies: 100m_time
< 200m_time for same athlete.

930

23



• Valid Ranges by Context:
score_percent must be between
0–100.

3. Temporal Constraints

• Realistic Time Values:
registration_date must not
be in the future.

• Sequence Validations: login_time <
logout_time.

• Unrealistic Time Gaps: Manual entries
should not occur in the same millisec-
ond.

4. External Knowledge Constraints

• Real-World Limits:
world_record_100m must not
be < 9.5 seconds.

• Contextual Validations: population
should not be 0 for an official country.

5. Security Constraints

• Sensitive Data Protection:
credit_card_number must be
encrypted or masked.

• Injection Checks: username,
comment fields must be free of
SQL/script tags.

6. Inter-Row Constraints

• Temporal Consistency Across Rows:
subscription start_date must fol-
low previous end_date.

• Grouped Aggregates: balance
= previous + deposits
withdrawals.

7. Data Consistency Constraints

• Detect anomalies in formats.
Example: Year = [1980,
1999, 2000, 2001,
Nineteen-hundred-and-twenty-two,
2023]
Expected pattern: YYYY, Anomaly:
Nineteen-hundred-and-twenty-two
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All constraints should be written as:

x = y + z, x < y, x != None,
unique(x), regex, etc.
Avoid data type constraints.

Step 2 – Identify Factual Constraints for
Validation
Identify all columns with factual info and
validate using external knowledge. For
each:

• column_requiring_validation

• context_columns

• external_knowledge_columns

• external_knowledge_constraint

• required_external_knowledge

Final JSON Output Structure:
{
"domain_constraints": ["constraint_1", ...],
"logical_constraints": ["constraint_1", ...],
"temporal_constraints": ["constraint_1", ...],
"calculation_based_constraints": ["constraint_1", ...],
"security_constraints": ["constraint_1", ...],
"inter_row_constraints": ["constraint_1", ...],
"other_constraints": ["constraint_1", ...],
"external_knowledge_validation": [
{
"context_columns": ["context_column_1",..],
"external_knowledge_columns": ["column_name_1.."],

"column_requiring_validation": "column name from original data",
"external_knowledge_constraint": "logical or mathematical rule",

"required_external_knowledge": "name of external fact"
}

]
}

932

C.7.2 Statement Generation Prompt 933

Statement Generation Prompt

I have a list of strings that describe valida-
tion rules for a JSON object. I want you
to convert each rule into a Python if state-
ment that validates a corresponding key in
a dictionary called data. The output should
be a Python list of if statements in string
format, such as:

["if not
isinstance(data.get(’Rating’),
float):", "if not
re.match(...):", ...]

Here are the rules (each line is one rule):

["constraints"]

Furthermore, you will also be given the
JSON object representing the table schema

934
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and the unique values each column has,
some of which might be anomalies. From
the combination of the column name and
the common values, you need to figure out
the anomalous values and write the if state-
ments. You need to use the rules to validate
the data in the JSON object. The output
should be a dictionary containing all viola-
tions found. The dictionary should have the
following structure:
Notes:

• Use re.match() for regex-based vali-
dations.

• For dates, assume that import
datetime is already included.

• Treat integer as int in Python.

• Uniqueness checks should be men-
tioned as comments (or optionally in-
clude sample logic to track uniqueness
across multiple records).

• The output should be a Python list of
stringified if statements.

• You may assume import re is already
included.

• For comparisons and calculations in-
volving numbers, if the value is a string
type, parse the numbers from the string
for comparison.

• Constraints should not be compli-
cated. They should not be followed by
try-except blocks or error raising.

The if statements should be simple and
straightforward, like:

• "if not re.match(...):"

• "if data[’column_name’] < 0:"

• "if data[’column_name’] > 100:"

• "if data[’column_name’] !=
None:"

• "if data[’column_name_1’]
!= data[’column_name_2’] +
data[’column_name_3’]:"

935

Please return only the list of if statements
as described.
Output schema:
{

"if_statements": [
"if not isinstance(data.get('column_name'), data_type):",
"if not re.match(...):",
... more if statements if applicable ...

]
}

936

D Prompt-Level Evaluation and Overlap 937

Analysis 938

This section presents extended experimental results 939

and analyses that complement the findings in the 940

main paper. These analyses aim to deepen our 941

understanding of model choice, and anomaly cat- 942

egory characteristics interact in complex anomaly 943

category tasks. Specifically, we include: 944

1. Category-wise Overlap Analysis: We com- 945

pute the percentage overlap between anomaly 946

categories within each dataset (FeTaQA, Spi- 947

der+BEA, and WikiTQ), showing how fre- 948

quently instances belong to multiple cate- 949

gories. This reveals inter-category dependen- 950

cies that highlight the compositional nature of 951

anomalies and motivates the design of prompt- 952

level evaluation. 953

2. Prompt-Level Model Performance: We 954

report precision and recall scores for mul- 955

tiple large language models (ChatGPT-4o, 956

Gemini-1.5-Pro, LLaMA-3.1-70B-Instruct, 957

and Deepseek-V3) across a range of prompt- 958

ing strategies. These include four baseline 959

prompt levels (L1–L4), each reflecting in- 960

creasing depth of reasoning, evaluated both 961

with and without Chain-of-Thought (CoT) 962

reasoning. We additionally evaluate two 963

advanced prompting variants: MUSEVE, a 964

multi-reasoning formulation, and SEVCOT, 965

which incorporates self-verification mecha- 966

nisms along with CoT. The results show that 967

model performance varies not only across 968

datasets and categories but also based on 969

prompt formulation, emphasizing the critical 970

role of prompt engineering in anomaly detec- 971

tion tasks. 972

These extended analyses provide a deeper view 973

of model behavior and highlight the importance 974

of structured prompting in anomaly detection. All 975

prompts are included in Section C for reproducibil- 976

ity. 977

25



D.1 Category Overlap Analysis.978

In Table 5, We observe high inter-category over-979

lap among factual, logical, consistency, and980

value anomalies—especially in FeTaQA and Spi-981

der+BEA—indicating that these anomalies often982

co-occur and may be semantically entangled. For983

instance, in Spider+BEA, over 87% of consis-984

tency instances also align with logical and value985

anomalies, while in FeTaQA, logical anomalies986

have nearly 100% overlap with factual ones. In987

contrast, normalization and calculation anoma-988

lies show more isolation, particularly in WikiTQ,989

where overlap with other types remains below 20%.990

These trends highlight that certain anomaly types991

are inherently multi-faceted, requiring models to992

disentangle overlapping error signals to achieve993

accurate detection.994

D.2 Trend Analysis (LLaMA-3.1-70B-Instruct995

vs. Deepseek-V3).996

In Table 6, across all datasets, Deepseek-V3 con-997

sistently outperforms LLaMA-3.1-70B-Instruct in998

both precision and recall, especially in lower999

prompt levels and without CoT. CoT reasoning1000

provides marginal recall improvements for LLaMA1001

but yields clearer gains for Deepseek, particularly1002

on FeTaQA and WikiTQ. Among prompt strategies,1003

performance peaks around L3–L4 with CoT, while1004

SEVCOT shows stronger overall recall compared1005

to MUSEVE. These trends suggest Deepseek is1006

better at leveraging prompt complexity and CoT,1007

whereas LLaMA benefits less from reasoning scaf-1008

folds.1009

D.3 Prompt-Level Trend Analysis1010

At L-4 in Table 7, both ChatGPT-4o and Gemini-1011

1.5-Pro show consistent improvements in recall1012

when Chain-of-Thought (CoT) reasoning is ap-1013

plied, particularly for value, temporal, and logi-1014

cal anomalies. CoT also boosts precision in sev-1015

eral cases, especially for normalization and calcu-1016

lation in FeTaQA and WikiTQ. However, factual1017

and security anomalies remain difficult across both1018

models, with only marginal gains even under CoT.1019

Gemini generally demonstrates stronger recall in1020

complex reasoning categories, while ChatGPT-4o1021

slightly edges ahead in security and consistency1022

precision. These results suggest that CoT helps1023

deepen model reasoning, but its effectiveness varies1024

significantly by anomaly type.1025

Extending this observation to earlier prompt lev-1026

els, Table 8 shows that prompting strategies at L2 1027

and L3 outperform L1 in both precision and re- 1028

call across datasets. These gains are more pro- 1029

nounced when paired with CoT, confirming that 1030

step-by-step prompting scaffolds model reasoning 1031

effectively. Categories such as value, calculation, 1032

and normalization benefit the most, especially for 1033

Gemini-1.5-Pro, which consistently shows stronger 1034

performance under enriched prompts. Conversely, 1035

anomaly types involving implicit semantics—such 1036

as factual and security—see little improvement 1037

even with deeper prompt formulations. This sug- 1038

gests that while CoT strengthens structural reason- 1039

ing, it alone is insufficient for addressing context- 1040

heavy or knowledge-dependent errors. 1041

The same trend continues in Table 9, where 1042

Deepseek-V3 clearly outperforms LLaMA-3.1- 1043

70B-Instruct across prompt levels and datasets. 1044

Deepseek achieves particularly strong recall in 1045

calculation and value anomalies—reaching up to 1046

90.0% recall at L-3 with CoT—demonstrating 1047

its superior scalability with prompt complexity. 1048

LLaMA, by contrast, exhibits weaker improve- 1049

ments from deeper prompts and CoT scaffolding, 1050

often plateauing in recall regardless of prompt de- 1051

sign. Notably, both models still struggle with fac- 1052

tual and security errors, revealing persistent chal- 1053

lenges in capturing external knowledge and com- 1054

plex policy violations. 1055

This pattern holds at L-4 as well (Table 10), 1056

where Deepseek continues to outperform LLaMA 1057

in most categories, particularly under the SEVCOT 1058

and MUSEVE strategies. CoT leads to moderate 1059

recall improvements for logical and temporal cat- 1060

egories in both models, but Deepseek again ben- 1061

efits more robustly. Even so, low recall on fac- 1062

tual and consistency anomalies persists, indicating 1063

that current models—even with rich prompts and 1064

structured verification—struggle with semantically 1065

subtle or context-heavy reasoning tasks. 1066

In conclusion, across all prompt levels and 1067

strategies, we find that CoT reasoning consistently 1068

enhances model performance in structurally clear 1069

anomaly types (e.g., value, calculation, normaliza- 1070

tion), particularly when paired with deeper prompt 1071

formulations. Deepseek-V3 demonstrates stronger 1072

generalization and better use of multi-step reason- 1073

ing compared to LLaMA and even state-of-the-art 1074

APIs like ChatGPT-4o and Gemini-1.5-Pro in many 1075

settings. However, all models exhibit persistent 1076

challenges in handling fact-based or policy-driven 1077
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FeTaQA
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 28.9 29.7 29.7 25.7 19.4 11.1 29.6
Consistency 28.9 100.0 98.8 98.8 8.5 56.6 54.4 98.6
Factual 29.7 98.8 100.0 100.0 8.7 56.4 54.7 99.7
Logical 29.7 98.8 100.0 100.0 8.7 56.4 54.7 99.7
Normalization 25.7 8.5 8.7 8.7 100.0 5.7 0.0 8.7
Security 19.4 56.6 56.4 56.4 5.7 100.0 45.2 56.2
Temporal 11.1 54.4 54.7 54.7 0.0 45.2 100.0 54.5
Value 29.6 98.6 99.7 99.7 8.7 56.2 54.5 100.0

Spi+BEA
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 80.6 67.8 71.0 38.2 69.8 31.6 76.9
Consistency 80.6 100.0 76.2 87.3 39.7 88.9 38.1 95.4
Factual 67.8 76.2 100.0 75.0 27.1 68.3 39.6 75.4
Logical 71.0 87.3 75.0 100.0 34.4 79.4 30.6 86.2
Normalization 38.2 39.7 27.1 34.4 100.0 43.1 50.0 40.0
Security 69.8 88.9 68.3 79.4 43.1 100.0 39.0 87.7
Temporal 31.6 38.1 39.6 30.6 50.0 39.0 100.0 38.5
Value 76.9 95.4 75.4 86.2 40.0 87.7 38.5 100.0

WikiTQ
Category(%) Calculation Consistency Factual Logical Normalization Security Temporal Value
Calculation 100.0 15.9 15.8 15.8 89.5 15.2 0.0 7.7
Consistency 15.9 100.0 95.7 95.7 17.5 59.8 42.8 47.0
Factual 15.8 95.7 100.0 98.8 17.6 58.5 40.6 48.5
Logical 15.8 95.7 98.8 100.0 17.6 58.5 41.5 48.5
Normalization 89.5 17.5 17.6 17.6 100.0 15.8 1.1 8.6
Security 15.2 59.8 58.5 58.5 15.8 100.0 31.5 28.8
Temporal 0.0 42.8 40.6 41.5 1.1 31.5 100.0 20.1
Value 7.7 47.0 48.5 48.5 8.6 28.8 20.1 100.0

Table 5: Category-wise percentage overlap across the FeTaQA, Spider+BEA, and WikiTQ datasets. Each cell
reports the proportion of instances in a given source category (row) that also appear in a target category (column),
revealing the extent of semantic and structural co-occurrence among anomaly types. This supplementary analysis
provides insights into category interdependence relevant to the anomaly detection methodology discussed in the
main text.

FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Prompt P R P R P R P R P R P R

LLaMA-3.1-70B-Instruct Deepseek-V3
w/o CoT

L1 26.2 41.5 23.9 28.5 40.8 22.9 42.0 56.6 49.7 43.6 47.0 50.9
L2 26.0 40.4 23.2 28.3 42.8 21.8 44.2 55.5 50.0 42.6 49.9 48.8
L3 28.4 39.8 24.2 28.6 45.1 15.5 47.5 51.3 50.1 40.6 50.6 48.2
L4 27.0 44.0 23.3 27.7 41.4 22.1 45.9 53.5 49.2 42.3 50.6 47.8

with CoT
L1 24.8 42.5 23.6 28.7 34.2 24.5 41.2 56.5 50.2 42.3 49.2 52.1
L2 24.6 41.9 24.4 29.9 36.9 27.2 43.2 54.0 51.8 42.3 53.2 48.4
L3 27.9 41.5 24.4 29.4 37.5 24.4 45.0 50.5 51.1 41.4 56.5 45.2
L4 27.2 44.1 24.1 30.4 36.4 24.5 47.5 53.6 52.5 42.0 53.4 46.0

MUSEVE 23.7 38.9 22.0 26.8 35.6 21.4 42.3 52.4 47.9 40.6 49.0 44.5
SEVCOT 24.6 37.9 23.3 27.5 43.9 27.9 41.0 51.1 50.6 40.6 52.6 48.0

Table 6: This table highlights average Precision (P) and Recall (R) across the FeTaQA, Spider+BEA, and WikiTQ
datasets for LLaMA-3.1-70B-Instruct and Deepseek-V3 under various prompting strategies. Prompt levels Li
correspond to increasing levels of reasoning complexity, evaluated both with (-wcot) and without (-w/ocot) Chain-
of-Thought (CoT) reasoning. MUSEVE and SEVCOT denote multi-reasoning and self-verification prompting
variants, respectively. This table summarizes model performance trends across datasets and reasoning strategies in
the context of anomaly detection.
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
L-4-W/O COT

Calculation 41.5 50.6 54.9 34.8 69.2 71.3 40.2 50.2 66.0 40.0 90.0 90.0
Factual 33.6 41.9 42.8 33.0 38.5 34.9 27.8 41.5 39.5 39.0 37.0 34.0
Normalization 57.5 68.0 48.7 30.2 54.3 67.2 58.5 74.5 41.0 43.8 65.0 75.0
Logical 27.7 54.3 47.4 45.7 34.0 42.4 26.3 55.8 42.9 46.5 22.0 36.0
Temporal 70.1 67.7 24.3 31.8 60.1 51.4 71.4 67.4 28.9 42.4 64.0 57.0
Security 34.2 30.6 38.1 38.9 27.9 30.0 33.9 32.7 27.0 50.4 21.0 31.0
Consistency 39.0 41.0 52.2 40.2 45.0 40.5 31.7 40.4 49.8 39.1 32.0 40.0
Value 41.9 86.9 65.0 72.3 55.3 69.3 35.4 79.6 56.9 68.8 62.0 65.0

L-4-W COT
Calculation 40.0 50.9 57.6 35.6 75.0 84.0 37.7 52.1 67.8 47.2 85.0 90.0
Factual 31.9 41.4 43.5 35.8 41.0 41.0 26.7 42.1 35.7 41.1 35.0 36.0
Normalization 65.3 73.9 46.2 32.6 55.0 66.0 42.5 76.5 38.2 45.5 40.0 70.0
Logical 28.5 59.0 44.0 49.1 41.0 44.0 24.2 53.4 44.3 37.3 26.0 36.0
Temporal 66.4 65.8 25.0 33.7 65.0 56.0 70.1 70.4 25.9 40.8 48.0 56.0
Security 40.2 30.6 39.6 42.7 38.0 31.0 33.3 32.9 27.6 53.3 20.0 35.0
Consistency 39.7 43.6 52.9 40.8 46.2 46.6 27.3 40.3 38.9 37.2 29.0 43.0
Value 40.9 87.6 62.5 74.5 57.0 73.0 35.1 80.1 53.0 70.9 49.0 68.0

Table 7: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the FeTaQA,
Spider+BEA, and WikiTQ datasets, evaluated using ChatGPT-4o and Gemini-1.5-Pro under various prompting
strategies. The MUSEVE and SEVCOT configurations represent multi-reasoning and self-verification prompting
variants.

anomalies, suggesting the need for external knowl-1078

edge integration.1079
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

ChatGPT-4o Gemini-1.5-Pro
L-1-W/O COT

Calculation 25.5 48.3 46.7 36.4 75.9 78.3 18.8 56.2 70.1 62.2 76.0 92.0
Factual 32.7 49.7 42.8 39.8 42.0 39.6 19.1 39.2 36.7 41.3 14.0 39.0
Normalization 59.6 69.3 43.6 22.7 70.1 56.3 48.3 75.8 54.6 24.8 52.0 75.0
Logical 25.6 59.3 44.3 50.1 29.4 41.9 20.1 58.6 39.0 48.4 13.0 47.0
Temporal 49.9 61.2 26.1 35.2 44.2 57.8 49.6 76.8 28.1 44.2 17.0 65.0
Security 38.0 40.1 35.5 49.8 27.0 42.6 24.8 37.7 33.7 50.8 13.0 47.0
Consistency 36.5 34.9 53.1 38.2 49.0 35.8 24.9 34.1 46.7 32.6 26.0 39.0
Value 39.8 82.6 58.2 74.6 62.9 68.4 27.7 77.0 53.6 67.9 37.0 65.0

L-1-W COT
Calculation 27.6 50.9 46.7 35.7 81.0 83.0 21.4 51.3 62.9 61.4 84.0 92.0
Factual 31.8 49.6 42.0 39.2 33.0 42.0 20.9 42.9 35.9 41.3 17.0 39.0
Normalization 55.0 68.6 45.0 22.8 67.0 61.0 60.4 71.9 49.3 27.7 62.0 74.0
Logical 25.1 61.6 41.3 49.9 32.0 49.0 18.9 60.7 39.4 48.9 15.0 50.0
Temporal 46.1 60.1 25.0 35.6 41.0 60.0 52.3 74.1 24.8 42.3 20.0 60.0
Security 34.7 41.6 33.4 46.9 23.0 57.0 27.4 41.2 36.1 53.2 15.0 51.0
Consistency 34.2 34.4 49.9 37.0 49.9 42.8 24.9 34.1 45.5 33.5 25.0 41.0
Value 38.3 82.2 58.1 74.5 59.0 72.0 30.5 75.2 54.6 68.5 43.0 64.0

L-2-W/O COT
Calculation 30.8 51.7 49.7 37.5 74.1 73.3 21.7 52.1 45.1 57.7 84.0 92.0
Factual 33.4 49.1 43.3 38.7 43.1 41.3 20.6 40.7 40.9 42.4 20.0 35.0
Normalization 60.3 59.5 42.6 22.5 71.2 56.0 60.4 79.7 45.9 29.1 65.0 75.0
Logical 26.7 61.0 45.6 49.0 30.6 45.5 20.8 56.1 31.4 48.5 21.0 52.0
Temporal 53.9 61.7 25.4 34.7 44.2 57.8 50.4 73.2 22.9 43.0 28.0 59.0
Security 37.3 38.8 36.1 47.0 26.9 40.2 27.0 37.2 32.3 55.6 18.0 46.0
Consistency 36.6 33.3 50.5 37.3 47.9 35.4 28.9 35.5 44.5 33.0 29.0 37.0
Value 40.0 80.5 58.2 73.6 63.7 66.5 32.8 74.2 48.5 67.4 55.0 63.0

L-2-W COT
Calculation 30.1 48.3 49.7 35.8 84.0 81.0 26.8 51.3 53.2 57.3 90.0 91.0
Factual 31.6 45.1 40.9 38.0 41.0 43.0 22.2 39.5 37.6 40.8 27.0 38.0
Normalization 57.7 66.0 46.1 23.0 73.0 53.0 63.7 79.1 49.0 31.1 66.0 67.0
Logical 27.9 62.8 46.1 48.1 33.0 48.0 21.0 56.1 36.2 49.3 23.0 42.0
Temporal 58.2 71.1 25.2 37.6 39.0 61.0 52.7 74.5 26.9 42.2 28.0 57.0
Security 35.4 39.2 35.7 46.4 22.0 48.0 30.9 42.2 33.0 56.9 22.0 47.0
Consistency 39.2 35.9 53.4 36.9 49.6 39.3 29.6 33.8 47.3 32.7 31.0 34.0
Value 39.6 83.7 59.2 74.6 58.0 72.0 35.3 76.2 50.5 68.2 51.0 62.0

L-3-W/O COT
Calculation 38.1 46.1 47.2 30.6 57.1 66.7 35.2 52.1 56.9 55.3 88.0 88.0
Factual 33.1 40.4 41.6 34.2 40.4 37.1 25.0 41.3 32.5 39.4 28.0 36.0
Normalization 67.9 74.5 49.6 22.6 70.1 66.4 64.0 77.8 41.4 40.9 67.0 74.0
Logical 28.9 57.1 40.3 45.5 28.1 44.2 22.9 52.7 28.9 46.0 20.0 46.0
Temporal 72.8 71.3 27.0 34.0 64.3 59.9 68.9 75.2 27.9 49.3 56.0 60.0
Security 35.4 30.3 33.9 43.5 23.7 31.7 28.0 28.8 20.4 47.8 14.0 35.0
Consistency 38.8 36.2 52.4 36.0 49.6 39.5 29.3 34.1 42.9 35.8 35.0 40.0
Value 38.7 80.5 59.7 70.0 66.8 65.6 33.0 74.0 48.8 64.4 55.0 62.0

L-3-W COT
Calculation 42.7 51.7 48.7 38.5 77.0 76.0 37.0 53.6 55.7 52.7 90.0 89.0
Factual 33.1 43.0 40.2 34.8 40.0 41.0 24.4 39.4 29.9 39.5 29.0 36.0
Normalization 62.0 66.0 51.8 24.1 55.0 59.0 65.3 72.5 38.4 41.7 60.0 76.0
Logical 28.4 58.3 43.2 48.0 30.0 44.0 21.2 49.8 30.3 42.3 24.0 41.0
Temporal 68.1 68.1 29.4 37.6 61.0 58.0 69.4 73.4 23.1 44.7 50.0 60.0
Security 36.1 32.3 32.9 42.2 28.0 38.0 31.7 30.9 19.7 49.9 14.0 33.0
Consistency 37.6 37.6 52.4 37.0 48.1 40.6 29.2 36.4 39.8 35.6 29.0 36.0
Value 41.2 82.4 60.7 73.2 65.0 68.0 33.1 69.9 41.2 62.3 51.0 58.0

Table 8: This table summarizes the Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using ChatGPT-4o and Gemini-1.5-Pro under various
prompting strategies. Each prompt level L1 - L3 corresponds to a different depth of reasoning, with -w/ocot and -w
CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively.
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

llama-3.1-70B-Instruct Deepseek-V3
L-1-W/O COT

Calculation 13.9 36.7 33.6 37.6 60.0 37.0 29.2 50.9 57.5 44.7 77.0 79.0
Factual 17.8 32.1 20.8 26.0 29.0 14.0 27.2 39.9 41.7 31.8 28.0 35.0
Normalization 34.5 44.4 28.8 21.6 50.0 28.0 75.3 71.9 49.3 25.0 76.0 61.0
Logical 20.7 49.5 19.1 27.7 30.0 19.0 25.1 57.5 49.2 47.5 25.0 37.0
Temporal 42.1 44.5 11.8 24.3 35.0 26.0 66.6 79.1 24.9 37.1 45.0 54.0
Security 25.9 28.2 17.6 30.3 29.0 20.0 37.1 39.7 43.4 50.7 27.0 43.0
Consistency 23.9 25.9 25.9 22.4 37.0 16.0 37.6 32.3 50.6 28.5 45.0 33.0
Value 30.5 71.0 33.9 38.5 56.0 23.0 38.0 81.3 80.6 83.2 53.0 65.0

L-1-W COT
Calculation 14.0 37.1 33.0 35.4 48.0 41.0 28.5 50.6 56.0 42.3 83.0 79.0
Factual 17.6 32.6 20.8 27.4 29.0 16.0 27.7 40.1 35.8 31.0 27.0 34.0
Normalization 30.6 45.8 28.9 22.9 50.0 25.0 70.8 71.2 51.7 24.3 78.0 60.0
Logical 19.5 47.5 16.6 27.6 27.0 22.0 26.2 59.6 46.4 47.4 30.0 46.0
Temporal 38.4 46.6 11.5 24.2 19.0 21.0 62.8 76.1 30.1 35.7 46.0 57.0
Security 25.1 31.1 19.8 31.6 21.0 23.0 38.3 41.0 47.2 48.3 25.0 43.0
Consistency 22.9 27.4 25.3 22.1 32.0 16.0 37.6 33.0 53.0 27.9 45.0 34.0
Value 30.7 72.2 33.0 38.1 48.0 32.0 37.6 80.1 80.9 81.7 60.0 64.0

L-2-W/O COT
Calculation 15.6 38.2 28.1 32.0 61.0 33.0 31.8 52.8 52.3 39.6 81.0 77.0
Factual 19.7 31.7 20.7 29.5 37.0 17.0 28.1 39.9 42.6 31.5 35.0 33.0
Normalization 36.9 45.1 31.6 23.6 55.0 26.0 84.3 66.7 49.0 24.6 65.0 57.0
Logical 20.2 44.5 17.1 27.5 31.0 20.0 27.9 58.4 44.4 49.6 26.0 37.0
Temporal 37.2 44.0 11.7 23.2 31.0 28.0 66.3 76.8 31.5 34.3 49.0 56.0
Security 25.5 29.1 17.7 31.5 34.0 18.0 38.6 38.2 49.0 51.6 26.0 40.0
Consistency 23.0 23.1 25.8 21.4 37.0 13.0 37.2 31.9 51.9 28.4 49.0 30.0
Value 29.5 67.3 32.9 37.3 56.0 19.0 39.0 79.3 79.6 81.3 68.0 60.0

L-2-W COT
Calculation 13.6 36.0 31.9 36.9 45.0 40.0 31.2 49.4 54.5 39.1 89.0 79.0
Factual 14.3 30.0 22.7 27.6 30.0 19.0 28.3 39.7 40.0 30.1 29.0 31.0
Normalization 33.0 48.4 33.0 24.0 57.0 31.0 79.7 61.4 53.5 23.0 82.0 57.0
Logical 19.0 47.0 16.9 28.8 26.0 23.0 26.5 59.5 48.5 48.5 26.0 37.0
Temporal 43.9 50.7 13.7 27.4 25.0 28.0 66.9 74.5 31.9 38.2 53.0 52.0
Security 20.3 26.7 18.4 33.1 24.0 22.0 37.5 38.6 49.9 51.2 32.0 44.0
Consistency 23.0 27.1 25.5 22.8 33.0 17.0 36.8 30.2 54.9 27.1 48.0 29.0
Value 30.0 69.5 32.9 38.7 55.0 38.0 39.1 78.7 80.9 80.8 67.0 58.0

L-3-W/O COT
Calculation 20.1 37.8 35.5 38.1 62.0 17.0 38.3 54.7 58.2 37.9 76.0 76.0
Factual 19.4 27.8 22.5 26.7 31.0 12.0 35.1 36.9 40.4 28.4 27.0 31.0
Normalization 36.3 45.1 29.8 25.0 55.0 19.0 75.6 58.8 43.1 24.4 74.0 58.0
Logical 20.4 42.5 18.1 26.3 39.0 20.0 31.4 51.9 49.7 45.5 25.0 38.0
Temporal 50.8 44.3 10.8 25.7 49.0 14.0 80.3 75.7 29.7 38.0 65.0 56.0
Security 27.3 27.9 18.1 28.7 33.0 16.0 43.5 31.5 43.5 46.0 26.0 36.0
Consistency 23.3 24.6 25.9 21.3 34.0 14.0 40.8 29.9 54.9 27.7 50.0 31.0
Value 29.9 68.7 32.6 37.0 58.0 12.0 35.2 70.8 81.3 77.0 62.0 60.0

L-3-W COT
Calculation 18.2 39.3 37.5 38.4 71.0 19.0 43.8 54.7 65.2 43.3 90.0 66.0
Factual 16.0 28.3 24.0 27.5 26.0 17.0 33.9 36.6 44.3 30.4 34.0 30.0
Normalization 37.1 53.6 26.1 25.4 53.0 33.0 48.6 56.2 44.3 24.7 79.0 67.0
Logical 17.6 43.1 17.4 27.5 20.0 22.0 28.7 55.5 45.5 46.1 26.0 36.0
Temporal 59.7 50.2 13.6 27.0 39.0 27.0 80.6 71.6 30.0 38.9 66.0 48.0
Security 23.2 23.1 19.7 30.1 18.0 17.0 45.6 27.6 42.4 45.6 34.0 31.0
Consistency 23.2 28.2 24.8 21.9 31.0 18.0 40.8 30.6 56.2 26.4 51.0 30.0
Value 27.9 66.3 32.6 37.4 42.0 42.0 38.1 71.1 81.1 76.1 72.0 54.0

Table 9: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using llama-3.1-70B-Instruct and Deepseek-V3 under
various prompting strategies. Each prompt level Li corresponds to a different depth of reasoning, with -w/ocot and
-w CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively.
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FeTaQA Spi+BEA WikiTQ FeTaQA Spi+BEA WikiTQ

Category P R P R P R P R P R P R

llama-3.1-70B-Instruct Deepseek-V3
L-4-W/O COT

Calculation 17.3 41.2 35.6 37.1 67.0 16.0 46.2 52.4 62.2 39.6 77.0 71.0
Factual 16.7 30.3 18.5 22.8 31.0 20.0 34.6 39.8 39.4 30.6 29.0 32.0
Normalization 37.7 52.3 29.1 28.6 53.0 32.0 50.6 59.5 42.7 27.2 77.0 66.0
Logical 18.2 44.6 16.4 22.4 27.0 18.0 29.1 55.1 47.9 44.5 20.0 35.0
Temporal 47.8 48.9 8.7 20.9 45.0 33.0 79.1 72.0 25.8 35.9 60.0 47.0
Security 24.2 25.5 20.0 28.9 27.0 21.0 47.2 33.6 45.8 48.1 33.0 33.0
Consistency 24.8 37.6 23.3 23.1 31.0 14.0 40.0 33.7 48.4 30.9 47.0 34.0
Value 29.2 71.4 34.7 37.8 50.0 23.0 40.6 81.5 81.4 81.3 62.0 64.0

L-4-W COT
Calculation 19.3 40.5 35.4 38.3 70.0 33.0 45.0 52.1 65.6 40.2 80.0 65.0
Factual 16.1 30.6 21.9 26.0 31.0 20.0 34.0 36.6 36.0 29.3 30.0 32.0
Normalization 36.6 53.6 31.4 33.3 39.0 23.0 68.1 71.2 40.5 28.4 76.0 66.0
Logical 18.1 42.2 17.3 26.3 25.0 22.0 33.8 56.5 55.4 43.1 28.0 38.0
Temporal 45.9 50.0 10.0 25.1 35.0 27.0 75.7 65.8 32.8 35.4 63.0 48.0
Security 27.2 27.9 18.0 29.4 24.0 23.0 43.3 29.4 53.3 46.5 36.0 28.0
Consistency 24.2 35.6 24.6 25.1 28.0 20.0 40.8 33.8 50.1 31.6 49.0 33.0
Value 29.9 72.3 33.8 40.0 39.0 28.0 39.6 83.8 86.0 81.8 65.0 58.0

MUSEVE
Calculation 12.4 33.0 31.1 35.0 47.0 22.0 30.9 48.3 55.7 38.3 70.0 56.0
Factual 16.1 28.5 15.2 28.6 29.0 17.0 29.0 39.3 39.6 30.3 36.0 30.0
Normalization 40.9 47.1 33.1 25.6 51.0 23.0 72.6 53.6 45.8 22.9 73.0 57.0
Logical 18.5 42.5 16.0 25.7 25.0 22.0 27.3 58.1 46.4 47.3 34.0 35.0
Temporal 32.8 43.1 7.1 14.7 24.0 20.0 65.7 72.5 26.0 35.5 39.0 49.0
Security 24.6 30.2 16.3 29.2 25.0 22.0 38.6 40.4 41.8 46.8 38.0 43.0
Consistency 18.9 24.1 23.7 20.1 32.0 12.0 37.1 30.6 49.1 25.7 45.0 30.0
Value 25.2 63.0 33.3 35.5 52.0 33.0 37.3 76.4 78.6 77.7 57.0 56.0

SEVCOT
Calculation 16.2 31.8 35.0 38.3 69.0 31.0 30.6 43.8 55.0 36.5 84.0 68.0
Factual 16.7 27.6 19.2 25.9 38.0 18.0 28.4 38.1 37.4 30.7 35.0 34.0
Normalization 35.3 42.5 30.4 22.4 57.0 47.0 61.2 53.6 53.3 22.9 76.0 66.0
Logical 18.8 43.4 16.3 26.5 32.0 19.0 27.5 57.5 50.5 47.3 26.0 39.0
Temporal 35.1 42.0 11.4 24.3 43.0 29.0 66.7 72.2 27.9 37.6 60.0 53.0
Security 25.1 28.5 17.4 28.2 22.0 21.0 38.5 37.9 50.3 46.9 33.0 34.0
Consistency 20.1 22.9 23.4 19.1 32.0 19.0 35.4 28.5 48.7 24.2 41.0 31.0
Value 29.1 64.9 33.6 35.6 58.0 39.0 39.3 76.9 81.6 78.7 66.0 59.0

Table 10: This table summarizes Average Precision (P) and Recall (R) across eight anomaly categories in the
FeTaQA, Spider+BEA, and WikiTQ datasets, evaluated using llama-3.1-70B-Instruct and Deepseek-V3 under
various prompting strategies. Each prompt level L4 corresponds to a different depth of reasoning, with -w/ocot and
-w CoT indicating the absence and presence of Chain-of-Thought (CoT) reasoning, respectively. The MUSEVE and
SEVCOT configurations represent multi-reasoning and self-verification prompting variants.
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