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Abstract

Spiking Neural Networks (SNNs) aim to mimic
the spiking behavior of biological neurons and
are expected to play a key role in neural com-
puting and artificial intelligence. Converting
Artificial Neural Networks (ANNs) to SNNs is
a widely used approach to achieve comparable
performance on large-scale datasets, with effi-
ciency determined by acitivation encoding. Cur-
rent schemes, which typically rely on spike count
or timing, exhibit a linear relationship between
encoding precision and the number of required
timesteps. To enhance encoding capacity with re-
duced timesteps, we propose the Canonic Signed
Spike (CSS) coding scheme. Spikes are assigned
different weights during the neuron’s decoding
stage, maintaining a single-bit spike representa-
tion. We analyze the residual errors during en-
coding and introduce the Over-Fire-and-Correct
(OFC) method to enable efficient computation
with weighted spikes. The optimal threshold
derived from our method can also be applied
to integrate-and-fire (IF) neurons and improve
accuracy in rate coding. We evaluate the pro-
posed methods on the CIFAR-10 and ImageNet
datasets. The experimental results demonstrate
that the CSS coding scheme significantly com-
presses timesteps with minimal conversion loss
and offers an energy efficiency advantage for the
resulting SNNs.

1. Introduction
Spiking Neural Networks (SNNs), recognized as the third
generation of neural network models, are inspired by
the biological structure and functionality of the brain
(Maass, 1997). Unlike traditional Artificial Neural Net-
works (ANNs), which rely on continuous activation func-
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tions, SNNs utilize discrete spiking events. This enables
SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activ-
ity (Taherkhani et al., 2020). The event-driven nature of
SNNs aligns with the brain’s energy-efficient computational
paradigm, offering potential for more efficient and low-
power computing systems (Yamazaki et al., 2022).

The two primary learning algorithms for SNNs are gradient-
based optimization and ANN-SNN conversion. Directly
training using supervised backpropagation is challenging
due to the non-differentiable nature of spike generation
(Neftci et al., 2019; Lee et al., 2016; Wu et al., 2018; Bellec
et al., 2019). The conversion-based method, however, offers
a practical approach to overcome this difficulty and has
produced the best-performing SNNs (Ding et al., 2021; Bu
et al., 2022; Deng & Gu, 2021).

The core principle of ANN-SNN conversion is the encoding
of ANN activations into spike train representations. Specif-
ically, by maintaining identical weight parameters, spik-
ing neuron models are designed to generate spike patterns
that correspond directly to the ANN activations. Various
coding schemes, such as rate coding and temporal coding,
have been proposed to describe neural activity (Johansson
& Birznieks, 2004; Thorpe & Gautrais, 1998; Gollisch &
Meister, 2008). Rate coding maps the number of spikes
to the activation values (Rueckauer et al., 2017; Cao et al.,
2015). In contrast, temporal coding focuses on the precise
timing or patterns of spikes (Yang et al., 2023; Han & Roy,
2020). For example, Time-to-First-Spike (TTFS) coding
maps the the ANN activation to the time elapsed before the
first spike (Stanojevic et al., 2022).

However, using spike counts or temporal duration for encod-
ing establishes a linear relationship between encoding preci-
sion and the number of timesteps. This inherently limits the
performance of converted SNNs under low timestep condi-
tions. Recent works have proposed alleviating this problem
by quantizing the ANN before conversion (Hu et al., 2023;
Bu et al., 2023; Hao et al., 2023). This simplifies the acti-
vation encoding but introduces additional quantizing and
training overhead. Our goal is to develop a novel encoding
paradigm that enables direct conversion of full-precision
ANNs while maintaining high performance at low timesteps.
Notably, the proposed encoding scheme can also convert
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Figure 1. Comparison of different neural coding schemes. C denotes the information encoded in a spike, u represents the membrane
potential, and vth is the threshold. (a) Rate coding: The encoding capacity is limited, requiring more timesteps to improve precision. (b)
Directly transmitting weighted spikes: This approach requires a larger bit width to represent weight information, with neurons adjusting
thresholds based on the weights, which increases network complexity. (c) Weighting stepwise during the decoding process: Our method
enhances the encoding capacity of the spike train while preserving network simplicity.

quantized ANNs and further reduce the required number of
timesteps.

Information theory provides a principled approach to quan-
tify differences between encoding schemes in neural coding
analysis. For instance, the encoding capacity can be mea-
sured by the number of bits that can be encoded within given
timesteps (Borst & Theunissen, 1999; Panzeri et al., 2007).
To enhance the expressiveness of spike trains, we introduce a
temporally structured weight pattern with exponential decay.
For a spike train of T timesteps, rate coding or TTFS coding
achieves ⌊log2(T + 1)⌋ bits of encoding capacity. In con-
trast, our method enhances this to

⌊
log2

(∑T
t=1 ωt + 1

)⌋
bits through the application of weights ωt, as illustrated in
Figure 1 (a) and (c). We refer to these spikes as canonical
due to the fixed weight pattern.

Weighting is implemented progressively during the neuron’s
decoding process. Specifically, at each timestep, neurons
amplify the residual membrane potential by a fixed coeffi-
cient before integrating new inputs. Compared to directly
integrating weighted inputs (Stöckl & Maass, 2021; Rueck-
auer & Liu, 2021), this approach reduces information flow
and maintains a constant firing threshold, as shown in Fig-
ure 1 (b) and (c).

While the decaying weight pattern enables fast informa-
tion transmission, it results in residual information accu-
mulation in the membrane potential, which we refer to as
residual errors in encoding. To address this, we propose
an Over-Fire-and-Correct (OFC) mechanism: the neuron’s
firing threshold is reduced, while negative spikes are intro-
duced to compensate for information overflow. Moreover,
the optimal threshold we proposed can also be applied to
Integrate-and-Fire (IF) neurons, reducing encoding loss in
rate coding scenarios.

Based on these characteristics, we term the proposed method
Canonic Signed Spike (CSS) coding scheme and the cor-
responding neuron model Ternary Self-Amplifying (TSA)
neuron. The main contributions of this paper can be sum-

marized as follows:

• We compress the timesteps to logarithmic scale by
weighting the spikes. We propose that the neurons
stepwise amplify the membrane potential by a fixed
coefficient to perform the weighting. This results in a
more hardware-friendly network architecture.

• We systematically analyze the residual errors during
conversion and propose the OFC method for efficient
neural computation. Compared to previous implemen-
tations of weighted spikes, we reduce the network out-
put latency by a factor of T , where T denotes the
requried timesteps per layer.

• We demonstrate the effectiveness of the CSS coding
scheme on the CIFAR-10 and ImageNet datasets. The
results show that the proposed method reduces both
the number of timesteps and conversion loss. Addition-
ally, the CSS coding scheme offers energy efficiency
advantages over both rate coding and temporal coding.

2. Preliminaries
In this section, we provide a concise overview of the princi-
ples for ANN-SNN conversion and demonstrate the impact
of encoding schemes on its performance.

ANN-SNN conversion typically involves the following two
key steps: 1) designing an encoding method to map ANN
activations to spike trains, and 2) designing a suitable neuron
model to ensure the generated spike train accurately encode
the activation value. The most widely used and State-Of-
The-Art (SOTA) approaches (Rueckauer et al., 2017; Hu
et al., 2023; Hao et al., 2023) employ (signed) soft-reset IF
neurons and interprets their output through spike rates.

2.1. Spiking Neurons

Spiking neurons communicate through spike trains and are
interconnected via synaptic weights. Each incoming spike

2
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Table 1. Common symbols in this paper.

Symbol Definition Symbol Definition Symbol Definition

l layer index θl spike amplitude oli[t] membrane potential before reset
i, j neuron index Sl

i[t] spike sequence zli[t] integrated inputs (PSP)1

T timesteps for encoding vlth firing threshold wl
ij , b

l
i SNN weight and bias

β amplification coefficient ul
i[t] membrane potential after reset ŵl

ij , b̂
l
i ANN weight and bias

1 Postsynaptic potential

contributes to the postsynaptic neuron’s membrane poten-
tial, and a spike is generated when the potential reaches a
predefined threshold. Generally, a spike sequence Sl

i[t] can
be expressed as follows:

Sl
i[t] =

∑
τ∈Fl

i

θlδ[t− τ ] (1)

where i is the neuron index, l is the layer index, θl is the
spike amplitude, δ[·] denotes an unit impulse1, f is the spike
index, and Fl

i denotes a set of spike times which satisfies
the firing condition:

τ : oli[τ ] ≥ vlth (2)

where oli[t] denotes the membrane potential before reset and
vlth denotes the threshold. For soft-reset IF neuron model,
the membrane potential is subtracted by an amount equal to
the spike amplitude for reset. Its dynamics can be expressed
as follows:

ul
i[t] = ul

i[t− 1] + zli[t]− Sl
i[t] (3)

where ul
i[t] denotes the membrane potential after reset and is

referred to as the residual membrane potential. zli[t] denotes
the integrated inputs:

zli[t] =
∑
j

wl
ijS

l−1
j [t] + bli (4)

where wl
ij is the synaptic weight and bli is the bias. For

clarity, the definitions of common symbols are provided in
Table 1.

2.2. Activation Encoding

Let T denote the number of timesteps, with the initial con-
dition ul

i[0] = 0, we can iteratively update the membrane
potential using Equation (3) until t = T . Then substitute
zli[t] with Equation (4), and we can write:∑

t S
l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T ]

T
(5)

1δ[t] takes the value 1 at t = 0, and 0 otherwise

See Appendix A.1 for a detailed derivation. Note that both
sides of the equation are divided by T to better highlight
the interpretation of

∑T
t=1 Sl

i[t]/T as “rate”. Equation (5)
defines the relationship between neuron’s input rate and
output rate and can be directly related to the forward pass in
a ReLU-activated ANN:

ali = max

∑
j

ŵl
ija

l−1
j + b̂li, 0

 (6)

where ali denotes the ANN activation, ŵl
ij and b̂li denote the

weight and bias, respectively. Note that in Equation (5) we
have: 1)

∑
t S

l
i[t]/T > 0, and 2) ul

i[T ]/T becomes negligible
as T increases. These observations suggest that mapping
ANN activations to SNN spike rates can be achieved by
simply setting wl

ij = ŵl
ij and bli = T b̂li.

However, with fewer time steps, the spike rate
∑

Sl
i[t]/T can

only encode a limited number of activations, leading to a
rapid increase in conversion loss. This issue stems from
the linear scaling of spike count

∑
t S

l
i[t] with timesteps,

where each additional timestep provides only a constant
information gain. Therefore, our goal is to incorporate
nonlinearity into the encoding to enhance the expressiveness
of spike trains.

3. Methods
3.1. Assigning Weights to Spikes

We apply a specific weight pattern to the spike train to en-
hance information encoding. The weights decay over time,
facilitating rapid transmission of the majority of information,
while the minimum weight is constrained to 1 to maintain
encoding precision. Specifically, we map the spike train to
ANN activation using the following approach:

ali ≈
∑

t β
T−tSl

i[t]

T
=

∑
τ∈Fl

i
βT−τθlδ[t− τ ]

T
:= r̄li (7)

where β > 1 represents the amplification coefficient for
weighting. β is fixed at 2 in our implementation, resulting
in a uniform encoding of ali. The approximation symbol
indicates that a finite number of timesteps introduces quan-
tization errors. Stöckl & Maass (2021) directly transmits
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residual information

missing one
high-weight spike

Figure 2. The decaying weight pattern causes information to remain in the membrane potential. For clarity, weights are directly applied in
this illustration. From left to right, the figure shows the neuron’s input, the membrane potential before and after reset, and the emitted
spike train. The blue dashed line represents the firing threshold. The residual membrane potential from the previous step is represented by
the red bar, which can be identified as the primary contributor to the increase in ul

i[T ]. Better control of the residual membrane potential
can be achieved by reducing the threshold to promote spike firing.

weighted spike signals across the network, which requires a
larger bitwidth for spike representation. Additionally, neu-
rons must adjust their thresholds based on different weights,
increasing model complexity. To address this, we integrate
the weighting process into the neural computation by incor-
porating the amplification coefficient β into the soft-reset IF
model:

ul
i[t] = βul

i[t− 1] + zli[t]− Sl
i[t] (8)

Proposition 3.1. The stepwise weighting process described
by Equation (8) is equivalent to directly transmitting
weighted spikes. Furthermore, the input and output spike
trains satisfy the following relationship:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T ]

T
, 0

 (9)

Equation (9) serves as the core equation for ANN-SNN
conversion and the detailed derivation can be found in Ap-
pendix A.2. By comparing it with Equation (6), we can
conclude:

Corollary 3.2. Let wl
ij = ŵl

ij and bli = b̂li · T∑
t β

T−t . As-

sume the input r̄l−1
j encodes al−1

j . To reduce encoding
errors for ali, the residual membrane potential ul

i[T ] should
be minimized.

Since T typically takes large values in rate coding, previous
works often neglect the ul

i[T ]/T term (Rueckauer et al., 2017).
However, it is necessary to account for this term when T
goes small. Furthermore, we observe that the decaying
weight pattern hinders the reduction of ul

i[T ]. To address
this, we propose the OFC method in the next section to
effectively control ul

i[T ].

3.2. Reducing Residual Errors

Under a decaying weight pattern, the residual information
from previous high-weight inputs often exceeds the encod-
ing capacity of subsequent spikes, leading to an increase

Algorithm 1 Forward method of the TSA neuron
Input: input X of shape [TB, C, H, W], length of silent
period P , spike amplitude θ
Output: output spike train S of shape [BT, C, H, W]
Pad X with zeros and reshape to [T+P, B, C, H, W].
Membrane potential U ← zeros like (X[0])
Threshold v ← βPαθ
/ ∗ silent period ∗ /
for i = 0 to P − 1 do

M ← βM +X[i] / ∗ stepwise weighting ∗ /
end for
for i = 0 to T − 1 do

M ← βM+X[i+P ] / ∗ stepwise weighting ∗ /
/ ∗ fire ternary spikes ∗ /
S[i]← (M ≥ v).float()− (M ≤ −v).float()
/ ∗ soft reset ∗ /
M ←M − βP θS[i]

end for
S ← θS

in ul
i[T ]. We term this phenomenon residual errors, as il-

lustrated in Figure 2. It can be proven that controlling the
residual membrane potential at each step is key to minimiz-
ing ul

i[T ]:

Proposition 3.3. ∀ϵ > 0, ul
i[T ] < ϵ if and only if for

all timestep τ ∈ {0, 1, . . . , T − 1}:

ul
i[τ ] <

ϵ

βT−τ
+

1

βT−τ

T∑
t=τ+1

θlβT−t

− 1

βT−τ

T∑
t=τ+1

βT−tzli[t]

(10)

Ignoring the coefficient 1/βT−τ on the right-hand side, the
first summation term represents the maximum value a spike
train after τ can encode, while the second term corresponds
to future inputs. These two terms and the given ϵ impose
constraints on the residual membrane potential ul

i[τ ].
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The converted SNN theoretically achieves equivalent per-
formance when ul

i[T ] < θl, where only quantization error
remains. To achieve this, previous works have proposed
delaying the output in the temporal domain: first integrating
inputs over all timesteps, and then firing spikes continuously
(Rueckauer & Liu, 2021; Stöckl & Maass, 2021).

Remark 3.4. Proposition 3.3 explains the feasibility of de-
laying the output: for all τ ∈ {0, 1, . . . , T − 1}, the max-
imum encodable value (i.e. the second constraint term) is
amplified to

∑T
t=1 θ

lβT−t as no spikes are fired before τ .

However, this method significantly increases inference la-
tency. Based on Proposition 3.3, we propose constraining
ul
i[τ ] at each step to limit the size of ul

i[T ] with minimal
latency overhead.

Specifically, the firing threshold is reduced to vlth = αθl

with α < 1. Negative spikes are introduced to correct over-
fired information, i.e. (1− α)θl. The negative threshold is
set symmetrically to −αθl, which triggers a negative spike
when oli[t] falls below this value. Given these characteristics,
we refer to the neuron model as the TSA neuron and the
encoding scheme as the CSS coding scheme.

Theorem 3.5. Let the integrated input zli[t] at each timestep
be independent and follow a uniform distribution, U(0, θl).
When α = 1

2 , for all t ∈ {1, 2, . . . , T}, we have:

E(ul
i[t]) = 0 and E(ul

i[t]
2) is minimized.

Remark 3.6. Considering that θl can reflect the maximum
potential input at each timestep, i.e. θl ≈ max

(
zli[t]

)
, the

input assumption in Theorem 3.5 is reasonable.

Theorem 3.5 demonstrates that setting α = 1/2 most effec-
tively confines the residual membrane potential near zero,
with the detailed derivation provided in Appendix A.4. The
optimality of α = 1/2 has also been experimentally verified
in Section 5.4.

Notably, the optimal threshold in Theorem 3.5 also applies
to IF neurons, offering a simple yet effective method to re-
duce encoding errors in rate coding. We present preliminary
experimental validation in Appendix B.

However, we find that with decaying weight patterns, ul
i[T ]

can exceed θl even with optimal α. Therefore, to achieve
lossless conversion, we keep a one-step output delay. We
refer to this as the silent period: neurons integrate input
and perform stepwise weighting but are prohibited from
firing. The forward method of the TSA neurons is provided
in Algorithm 1. After the silent period, the membrane po-
tential is amplified by β, which leads to a corresponding
amplification of both the threshold and the reset amount.

3.3. ANN-SNN conversion

The proposed method eliminates the need for directly apply-
ing weights to input pixel values, as weighting is integrated
during neural computation. Therefore, we adopt the widely
used direct coding for input static images (Rueckauer et al.,
2017; Li et al., 2021; Hao et al., 2023; Hu et al., 2023): the
analog input activations of the first hidden layer are inter-
preted as constant currents, with spiking outputs starting
from this layer.

We replace the ReLU activation function with the TSA neu-
ron to encode the hidden layer activations. Note that since
TSA neurons can encode negative activations, additional
logic is required to zero out sequences encoding negative
values. For β ≥ 2, this logic simplifies to detecting se-
quences where the first spike is positive, which can be easily
implemented.

To determine the spike amplitude θl for each layer, we use
the strategy proposed by Rueckauer et al. (2017): after
observing ANN activations over a portion of the training set,
we calculate the 99.99th percentile pl of the activation dis-
tribution, and then set θl to pl2. This approach improves the
network’s robustness to outlier activations. The pseudocode
for the conversion process is provided in Appendix C

4. Related Works
4.1. Spike Coding Schemes

Current mainstream coding schemes in converted SNNs
include rate coding and TTFS coding.

Rate coding represents activity by the number of spikes
within a time window. Early methods aimed at reducing
conversion loss, such as weight normalization (Diehl et al.,
2015), threshold rescaling (Sengupta et al., 2019), and soft-
reset neurons (Han et al., 2020). More recent work focuses
on reducing timesteps by optimizing neuron parameters:
Meng et al. (2022) introduced the threshold tuning method,
while Bu et al. (2022) proposed optimizing the initial mem-
brane potential. Additionally, recent works have explored
quantizing the ANNs before conversion (Bu et al., 2023;
Hao et al., 2023; Hu et al., 2023). This approach directly
reduces the number of activations that need to be mapped,
providing an alternative way to minimize timesteps.

Rueckauer & Liu (2018) were the first to attempt convert-
ing an ANN to a TTFS-based SNN, achieving increased
sparsity but with significant conversion errors. Stanojevic et
al. (2022) showed that exact mapping is feasible. Yang et
al. (2023) improved this by using dynamic neuron thresh-

2More precisely, θl = pl · T∑T
t=1 βT−t . Since scaling the spike

amplitude of each layer by the same value has no practical effect,
we directly set θl to pl for simplicity.
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Table 2. Number of timesteps under different neural coding schemes, evaluated on the CIFAR-10 and ImageNet datasets. “No Quant.”
column indicates whether quantization is required. “No Cal.” column marks whether post-conversion fine-tuning is required.

Method No
Quant.

No
Cal. Architecture ANN

Acc.
Coding
Scheme Timestep SNN

Acc.

C
IF

A
R

-1
0

OPI (Bu et al., 2022) ✔ ✔ ResNet-20 92.74% rate 64 92.57%
FS-Conversion (Stöckl & Maass, 2021) ✔ ✔ ResNet-20 91.58% FS 10 91.45%
SNN Calibration (Li et al., 2021) ✔ ✘ VGG-16 95.72% rate 128 95.65%
TSC (Han & Roy, 2020) ✔ ✔ VGG-16 93.63% TSC 512 93.57%
TTFS Mapping (Stanojevic et al., 2023) ✔ ✘ VGG-16 93.68% TTFS 64 93.69%
LC-TTFS (Yang et al., 2023) ✔ ✔ VGG-16 92.79% TTFS 50 92.72%

CSS-SNN†
✔ ✔ ResNet-20 93.83%

CSS
7 93.73%

✔ ✔ VGG-16 95.90% 8 95.92%
✔ ✔ ResNet-18 96.68% 6 96.62%

QFFS (Li et al., 2022)† ✘ ✔ ResNet-18 93.12% rate 4 93.13%
QCFS (Bu et al., 2023) ✘ ✔ ResNet-18 96.04% rate 16 95.92%
COS (Hao et al., 2023) ✘ ✔ ResNet-18 95.64% rate 4 95.46%
Fast-SNN (Hu et al., 2023)† ✘ ✘ ResNet-18 95.62% rate 7 95.57%

CSS-SNN† ✘ ✔ ResNet-18 96.32% CSS 3 96.34%

Im
ag

eN
et

TSC (Han & Roy, 2020) ✔ ✔ ResNet-34 70.64% TSC 4096 69.93%
SNN Calibration (Li et al., 2021) ✔ ✘ ResNet-34 75.66% rate 256 74.61%
TSC (Han & Roy, 2020) ✔ ✔ VGG-16 73.49% TSC 1024 73.33%
OPI (Bu et al., 2022) ✔ ✔ VGG-16 74.85% rate 256 74.62%

CSS-SNN† ✔ ✔ ResNet-34 76.42% CSS 8 76.10%
✔ ✔ VGG-16 75.34% 8 75.17%

QFFS (Li et al., 2022)† ✘ ✔ VGG-16 73.08% rate 8 73.10%
QCFS (Bu et al., 2023) ✘ ✔ VGG-16 74.29% rate 256 74.22%
COS (Hao et al., 2023) ✘ ✔ VGG-16 74.19% rate 16 74.09%
Fast-SNN (Hu et al., 2023)† ✘ ✘ VGG-16 73.02% rate 7 72.95%

CSS-SNN† ✘ ✔ VGG-16 74.33% CSS 5 74.32%
† Utilizing negtive spikes.

old and weight regularization and completed the conversion
with 50 timesteps per layer. Han & Roy (2020) introduced
the Temporal-Switch-Coding (TSC) scheme, where the time
interval between two spikes encodes activation. However,
in the above approaches, the improvement in encoding pre-
cision relies on a linear increase in the number of timesteps,
which limits the performance of the converted SNN at low
timesteps.

Using weighted spikes to represent activation values remains
an underexplored area. Stöckl & Maass (2021) and Rueck-
auer & Liu (2021) employed spikes to encode the “1”s in the
binary represented activations. However, both approaches
require neurons to wait for all input spikes before firing,
resulting in high output latency. Kim et al. (2018) sought to
reduce encoding errors by repeatedly applying inputs, which
requires thousands of timesteps. In contrast, by introducing
negative spikes and setting an optimal firing threshold, we
achieve fast and accurate computation. Additionally, we
propose stepwise weighting during the neuron’s decoding

process, enabling a more hardware-friendly architecture.

4.2. Negtive Spikes

The role of negative spikes in SNNs has been widely studied
in recent works. In rate-based ANN-SNN conversion (Li
et al., 2022; Wang et al., 2022; Hu et al., 2023), negative
spikes have been utilized to enhance neuron adaptability
to input fluctuations, which improves conversion accuracy.
Guo et al. (2023) proposed ternary SNNs to increase the
expressive capacity of spike sequences and trained them
directly using gradient descent. Unlike existing approaches,
we intentionally design neuron over-firing and employ nega-
tive spikes for correction. We demonstrate that this strategy
facilitates efficient computation with weighted spikes.

5. Experiments
In this section, we convert ANNs to CSS-coded SNNs
and conduct experiments on the CIFAR-10 and ImageNet

6
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Table 3. Timesteps for coding vs. Classification accuracy. We conduct experiments with VGG-16 on CIFAR-10 and ImageNet. The
results for COS and Fast-SNN are obtained using their open-source code, ensuring the same pre-conversion ANN accuracy.

Method Coding
Scheme T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

C
IF

A
R

-1
0 COS (Hao et al., 2023) rate 89.61% 94.23% 95.10% 95.51% 95.46% 95.56% 95.56% 95.54%

Fast-SNN (Hu et al., 2023) rate 90.13% 94.50% 95.39% 95.53% 95.60% 95.59% 95.64% 95.63%

CSS-SNN CSS 89.75% 95.26% 95.65% 95.65% 95.65% 95.64% 95.67% 95.66%

Im
ag

eN
et COS (Hao et al., 2023) rate 0.67% 37.18% 66.12% 71.24% 72.75% 73.46% 73.69% 73.87%

Fast-SNN (Hu et al., 2023) rate 0.61% 22.52% 57.84% 68.71% 71.81% 72.75% 73.26% 73.54%

CSS-SNN CSS 0.66% 66.01% 73.72% 74.23% 74.32% 74.34% 74.34% 74.36%

datasets. For all experiments, we fix β = 2 and α = 1/2.
First, we compare the number of timesteps with other cod-
ing schemes. Then, we evaluate the energy consumption.
Finally, we conduct ablation studies to validate the effec-
tiveness of the OFC method in minimizing output latency,
as well as to verify the optimality of α = 1/2

5.1. Overall Performance

In Table 2, we compare the number of timesteps required
by different coding schemes. The “No Quant.” column indi-
cates whether a quantized ANN is required, while the “No
Cal.” column marks whether post-conversion fine-tuning is
applied. Works utilizing negative spikes are denoted with
the “†” symbol. Although the accuracy of the ANNs used
in each study is provided, conversion loss is a more critical
metric for evaluation.

When directly encoding full-precision activations, CSS cod-
ing demonstrates nearly lossless conversion with signif-
icantly fewer timesteps. For instance, on the ImageNet
dataset, Li et al. (Li et al., 2021) reported a conversion loss
exceeding 1% for ResNet-34 with 256 timesteps, whereas
our method achieved only 0.3% conversion loss with just 8
timesteps. Although FS coding (Stöckl & Maass, 2021) also
employs weighted spikes for activation encoding, it incurs
higher conversion loss even with more timesteps.

SOTA SNN performance (Hu et al., 2023; Hao et al., 2023)
is typically achieved by converting quantized ANNs while
still using rate coding. Notably, while rate coding achieves
competitive performance with reduced timesteps, it heavily
relies on low-bit quantization, which introduces additional
training overhead and often compromises accuracy.

Table 3 illustrates the relationship between timesteps and
accuracy when encoding quantized activations. The results,
based on our reproductions with consistent ANN accuracy,
demonstrate that our method integrates seamlessly with
quantized ANNs and achieves ANN-level accuracy with
fewer timesteps than rate coding, enabling the development
of higher-performance SNNs. For example, we achieved

74.23% accuracy on ImageNet with only 4 timesteps.

Furthermore, the CSS coding scheme provides an alternative
approach to achieving low-timestep SNNs without aggres-
sive quantization. For example, on CIFAR-10, our method
converted a full-precision ResNet-18 with only 6 timesteps
and a minimal conversion loss of 0.06%.

5.2. Energy Consumption Analysis

In this section, we estimate the energy consumption of our
methods3, with the results summarized in Table 4. To com-
pare with SOTA rate coding, we conduct experiments with
quantized ANNs. Notably, the TSA neuron amplifies the
membrane potential at each timestep, which can be effi-
ciently implemented via bit-shift operations when β = 2.
We assume shift operations consume the same energy as
an Accumulate (AC) operation, providing a conservative
overestimation.

TTFS coding (Stanojevic et al., 2023) demonstrates low
energy consumption due to its minimized spike count. Al-
though our method does not inherently exhibit sparsity, the
reduction in timesteps compensates for this limitation. By
further compressing the number of timesteps, our approach
achieves a 40% reduction in energy consumption compared
to TTFS coding. Additionally, we include Fast-SNN (Hu
et al., 2023) and COS (Hao et al., 2023) as strong base-
lines for (signed) rate coding. The results show that our
method outperforms both with a 10% reduction in energy
consumption while achieving higher accuracy.

5.3. Effect of OFC Method

We conduct an ablation study to demonstrate that the OFC
method achieves low-latency computation for weighted
spikes. Experiments were conducted using ResNet-34 on
ImageNet, where we restored vth to θl, removed the nega-
tive threshold and increased the length of the silent period.

3Energy consumption measurements were performed based on
https://github.com/iCGY96/syops-counter
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Table 4. Energy consumption of VGG-16 on CIFAR-10. The results for COS and Fast-SNN are obtained using their open-source code.

Method Coding
Scheme Timestep Accuracy SyOPs (ACs) MACs Energy

Consumption

ANN - - 95.61% 0 313.60M 1.4426mJ
TTFS Mapping (Stanojevic et al., 2023)⋆ TTFS 64 93.53% 120.53M 0 0.1085mJ
COS (Hao et al., 2023) rate 4 95.51% 42.28M 7.34M 0.0719mJ
Fast-SNN (Hu et al., 2023) rate 4 95.53% 47.55M 7.34M 0.0766mJ

CSS-SNN CSS 3 95.65% 44.39M 5.51M 0.0653mJ
⋆ Stanojevic et al. (2023) reported an average of 0.38 spikes per neuron on VGG-16, which we used to calculate the SyOPs and estimate the

energy consumption. The calculation method is the same as the one used in the code. See Appendix D for computation details.

0.4 0.5 0.6 0.7 0.8
50

60

70

80

90
Ac

c.
 (%

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
u[T]

Pr
ob

. d
en

sit
y

= 0.4
= 0.5
= 0.6
= 0.7

1 2 3 4 5 6 7 8
Length of the silent period

64

66

68

70

72

74

76

Ac
c.

 (%
)

(a)              ResNet-34 on ImageNet (b)     VGG-16 on CIFAR-10 (c)        VGG-16 on CIFAR-10

Figure 3. (a) Relationship between silent period length and accuracy. The blue bars represent the results obtained relying solely on
delaying output. The red baseline indicates the results obtained after applying the OFC method, with a silent period of 1 step. Without
using the OFC method, a longer silent period is required to achieve accurate weighted spike computation, which increases the network’s
output latency. (b) Accuracy variations with different α values. (c) Distribution of residual membrane potential for various α values.

Assuming the P -step silent period for each layer is pro-
cessed in a pipelined manner, its contribution to the output
latency of an L-layer network is P × L.

The experimental results shown in Figure 3 (a) indicate
that a silent period of five steps is required to match the
performance achieved by OFC at P = 1, which corresponds
to a 136-step latency reduction for ResNet-34. Compared
to previous works where P = T (Stöckl & Maass, 2021;
Rueckauer & Liu, 2021), with T denoting timesteps for
encoding, the OFC method reduces output latency by a
factor of T .

5.4. Threshold Setting

To validate the rationale for our threshold setting, we varied
α within [0.4, 0.8] with a precision of 0.01 and evaluated
the classification accuracy. Experiments were conducted on
CIFAR-10 using VGG-16. To better highlight the impact of
threshold adjustment, we disabled the silent period.

The experimental results, shown in Figure 3 (b), demon-
strate that network performance peaks when α is around
0.5. In Figure 3 (c), we plot the distribution of the aver-
age residual membrane potential u[T ] across all neurons

for different thresholds, revealing that α = 0.5 most ef-
fectively constrains u[T ]. We further validated this across
VGG architectures of varying depths. The results provided
in Appendix E consistently support this conclusion, which
demonstrate the robustness of the optimized α value.

6. Conclusion
In this work, we explore the use of weighted spike trains
to efficiently encode ANN activations. We propose step-
wise weighting during neural computation, resulting in a
simpler neuron model. Communication between neurons
does not require additional bit width for weight information.
We introduce the OFC method to enable fast and accurate
computation with weighted spikes. Experimental results
demonstrate that the CSS coding scheme significantly re-
duces the number of timesteps to encode activations while
maintaining minimal conversion loss. This approach of-
fers the potential to enable high-performance SNNs directly
from full-precision ANNs, reducing the reliance on quanti-
zation in current mainstream conversion frameworks. Fur-
thermore, the CSS coding scheme achieves lower energy
consumption in the converted SNNs.
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A. Mathematical Proofs
A.1. Proof of Equation (5)

∑
t S

l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T ]

T

Proof. Starting with the initial condition ul
i[0] = 0 and Equation (3), we can write:

ul
i[1] = zli[1]− Sl

i[1] (A1)

Next, we derive the expression for ul
i[2] by substitute the above into Equation (3):

ul
i[2] = zli[1]− Sl

i[1] + zli[2]− Sl
i[2] (A2)

We can generalize this process to iteratively compute the membrane potential up to t = T :

ul
i[T ] =

T∑
t=1

zli[t]− Sl
i[t] (A3)

Substituting zli[t] with Equation (4) and rearranging the terms, we get:

Sl
i[t] =

T∑
t=1

∑
j

wl
ijS

l−1
j [t] + bli − ul

i[T ] (A4)

Exchange the order of summation and devide both sides by T , we can write:∑
t S

l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T ]

T
(A5)

A.2. Proof of Proposition 3.1

Proposition A.1. The stepwise weighting process described by Equation (8) is equivalent to directly transmitting weighted
spikes. Furthermore, the input and output spike trains satisfy the following relationship:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T ]

T
, 0


Proof. Following a similar derivation as in Appendix A.1, we can write:

ul
i[T ] =

T∑
t=1

βT−t(zli[t]− Sl
i[t]) (A6)

Substituting zli[t] with Equation (4) and reorganizing the terms, we get:

ul
i[T ] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (A7)

Based on Equation (A7), we can conclude that stepwise weighting is equivalent to directly receiving and firing weighted
spikes. Reorganize the terms and devide both sides by T , we have:∑T

t=1 β
T−tSl

i[t]

T
=
∑
j

wl
ij

∑T
t=1 β

T−tSl−1
j [t]

T
+

∑T
t=1 β

T−tbli
T

− ul
i[T ]

T
(A8)
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Following the definition of r̄li in Equation (7) and note that
∑

t β
T−tSl

i[t]

T ≥ 04, we can write:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T ]

T
, 0

 (A9)

A.3. Proof of Proposition 3.3

Proposition A.2. ∀ϵ > 0, ul
i[T ] < ϵ if and only if for all timestep τ ∈ {0, 1, . . . , T − 1}:

ul
i[τ ] <

ϵ

βT−τ
+

1

βT−τ

T∑
t=τ+1

θlβT−t − 1

βT−τ

T∑
t=τ+1

βT−tzli[t]

Proof. We first prove the forward direction. Given that ul
i[T ] < ϵ, we can express it using Equation (8) as follows:

βul
i[T − 1] + zli[T ] < ϵ+ Sl

i[T ] ≤ ϵ+ θl (A10)

Substitute ul
i[T − 1] with Equation (8) and we can write:

β2ul
i[T − 2] + βzli[T − 1] + zli[T ] < ϵ+ θl + βθl (A11)

For all timestep τ ∈ {1, 2, . . . , T}, the above process can be repeated until we obtain an equation involving ul
i[τ ]:

βT−τul
i[τ ] +

T∑
t=τ+1

βT−tzli[t] < ϵ+

T∑
t=τ+1

θlβT−t (A12)

Reorganizing Equation (A12) and dividing both sides by βT−τ , the validity of the forward reasoning is established.

Next, we proceed to prove the backward direction. For any τ ∈ {0, 1, . . . , T − 1}, by iteratively updating the membrane
potential using Equation (8) from t = τ + 1 until t = T and then substituting zli[t] with Equation (4), we can get:

ul
i[T ] = βT−τul

i[τ ] +

T∑
t=τ+1

βT−tzli[t]−
T∑

t=τ+1

βT−tSl
i[t] (A13)

Note that
∑

t β
T−tSl

i[t] ≤
∑

t θ
lβT−t. Then we can write:

ul
i[T ] ≤ βT−τul

i[τ ] +

T∑
t=τ+1

βT−tzli[t]−
T∑

t=τ+1

θlβT−t < ϵ (A14)

A.4. Proof of Theorem 3.5

Theorem A.3. Let the integrated input zli[t] at each timestep be independent and follow a uniform distribution, U(0, θl).
When α = 1

2 , for all t ∈ {1, 2, . . . , T}, we have:

E(ul
i[t]) = 0 and E(ul

i[t]
2) is minimized.

Proof. Let p(z) denote the probability density function of the input zli[t]. Define kli[t] = βul
i[t]. For simplicity, we will

4For the ternary neuron model, we ensure this condition by filtering out spike trains encoding negative values, as detailed in Section 3.3.

12
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Canonic Signed Spike Coding for Efficient Spiking Neural Networks

drop both neuron and layer index and denote z[t] and k[t] as z and k, respectively. According to Equation (8), we have:

E(u[t+ 1]) = Ek

(∫ ∞

−∞
(z + k)p(z)dz − θl

∫ ∞

αθl−k

p(z)dz

)
= Ek

(
E(z) + k − θl

∫ ∞

αθl−k

p(z)dz

)
= E(z) + E(k)− θlEk

(∫ ∞

αθl−k

p(z)dz

) (A15)

Let q(k) denote the probability density function of k. We can write:

Ek

(∫ ∞

αθl−k

p(z)dz

)
=

∫ (α−1)θl

−∞
q(k)

∫ ∞

αθl−k

p(z)dzdk

+

∫ αθl

(α−1)θl

q(k)

∫ ∞

αθl−k

p(z)dzdk +

∫ ∞

αθl

q(k)

∫ ∞

αθl−k

p(z)dzdk

=

∫ αθl

(α−1)θl

q(k)

∫ ∞

αθl−k

p(z)dzdk +

∫ ∞

αθl

q(k)dk

= Ek

(
Fz(∞)− Fz(αθ

l − k)
)
+ Fk(∞)− Fk(αθ

l)

(A16)

where Fz(·) and Fk(·) denote the cumulative distribution functions of z and k, respectively. Note that Z ∼ U(0, θl), so
Fz(·) is linear. We further assume that k is almost constrained within the threshold, i.e., Fk(αθ

l) ≈ 1. Therefore, we have:

Ek

(∫ ∞

αθl−k

p(z)dz

)
≈ 1− Fz(αθ

l − E(k)) (A17)

and
E(u[t+ 1]) = E(z) + E(k)− θl

(
1− Fz(αθ

l − E(k))
)

(A18)

Note that k[0] = 0 and Fz

(
1
2θ

l
)
= 1

2 . When α = 1
2 , we have:

E(u[1]) = E(z)− θl
(
1− Fz(

1

2
θl)

)
= 0 = E(k[1]) (11)

By repeatedly applying Equation (A18), we can conclude that for all t ∈ {1, 2, . . . , T}, E(ul
i[t]) = 0.

Similarily, we can write:

E(u[t+ 1]2) = Ek

(∫ αθl−k

−∞
(z + k)2p(z)dz +

∫ ∞

αθl−k

(z + k − θl)2p(z)dz

)

= Ek

(∫ αθl

−∞
z2p(z − k)dz +

∫ ∞

αθl

(z − θl)2p(z − k)dz

)

= Ek

(∫ ∞

−∞
z2p(z − k)dz − θl

∫ ∞

αθl

(2z − θl)p(z − k)dz

)
(A19)

Taking the derivative of the above equation with respect to α and exchanging the order of differentiation and integration (i.e.,
E(·)), we obtain:

∂E(u[t+ 1]2)

∂α
= −Ek

(
∂

∂α
θl
∫ ∞

αθl

(2z − θl)p(z − k)dz

)
= Ek

(
∂

∂α
θl
∫ αθl

∞
(2z − θl)p(z − k)dz

)
= (2α− 1)(θl)3Ek

(
p(αθl − k)

)
(A20)

Note that Ek

(
p(αθl − k)

)
> 0. The derivative is negative when α < 1

2 and positive when α > 1
2 . Therefore, when α = 1

2 ,
E(ul

i[t]
2) is minimized for all t ∈ {1, 2, . . . , T}.

13
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B. Applying optimal threshold to IF neurons

Table 5. Timesteps vs. Accuracy under rate coding with and w/o optimal threshold.

Use Opt.
threshold T=4 T=8 T=16 T=24 T=32 T=64 T=128

✘ 10.00% 10.00% 55.52% 91.05% 94.02% 95.32% 95.80%
✔ 33.55% 77.80% 90.40% 93.34% 94.40% 95.55% 95.83%

In this section, we use VGG-16 to conduct experiments on CIFAR-10 and compare two threshold settings for IF neurons:
vlth = 1

2θ
l and vlth = θl. Notably, since each spike carries equal weight, the over-fired information can be treated as

quantization error. The experimental results in Table 5 demonstrate that setting vlth = 1
2θ

l effectively reduces encoding
errors in rate coding. When T is relatively small (e.g., T ≤ 16), the last term in Equation (5), i.e. the residual error, can
no longer be ignored. In this case, the optimal threshold effectively controls the encoding error, leading to a significant
performance improvement.

C. Algorithm for ANN-SNN conversion

Algorithm 2 Algorithm for ANN-SNN conversion under CSS coding.

Input: ANN model fA(Ŵ , b̂), number of timesteps T , number of batches B, number of layers L.
Output: SNN models fS(W, b)
/ ∗ determine θl ∗ /
for l = 0 to L− 1 do
p̄l ← 0
for n = 0 to B − 1 do
pl ← 99.99th percentile of al distribution
/ ∗ average ∗ /
p̄l ← p̄l + pl

/B
end for
θl ← p̄l

end for
for l = 0 to L− 1 do

/ ∗ copy weight and bias ∗ /
W l ← Ŵ l

bl ← b̂l

Replace ReLU activation with TSA.
end for

D. Energy Consumption Analysis
The energy consumption of inferring a single image can be estimated by the following equation:

E = T × EAC ×
∑
l

FLOPs(l)×R(l) (A21)

where T denotes the number of timesteps, EAC denotes the energy consumption of an AC operation, R(l) denotes the firing
rate of the l-th layer. FLOPs(l) denotes the number of floating-point operations in l-th layer:

FLOPs(l) =

{
(Kl)2 ×W l ×H l × Cl

in × Cl
out, Conv layer

Cl
in × Cl

out, Linear layer
(A22)

14
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Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Stanojevic et al. (2023) reported an average of 0.38 spikes per neuron on VGG-16. Assuming similar neuronal activity
levels across layers, we estimate energy consumption for TTFS coding with the following equation:

E = 0.38× EAC ×
∑
l

FLOPs(l) (A23)

E. Additional Results for Section 5.4
Results from VGG-11:
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Results from VGG-13:
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