
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Anonymous Authors1

Abstract

Spiking Neural Networks (SNNs) aim to mimic
the spiking behavior of biological neurons and
are expected to play a key role in neural com-
puting and artificial intelligence. Converting
Artificial Neural Networks (ANNs) to SNNs is
a widely used approach to achieve comparable
performance on large-scale datasets, with effi-
ciency determined by acitivation encoding. Cur-
rent schemes, which typically rely on spike count
or timing, exhibit a linear relationship between
encoding precision and the number of required
timesteps. To enhance encoding capacity with re-
duced timesteps, we propose the Canonic Signed
Spike (CSS) coding scheme. Spikes are assigned
different weights during the neuron’s decoding
stage, maintaining a single-bit spike representa-
tion. We analyze the residual errors during en-
coding and introduce the Over-Fire-and-Correct
(OFC) method to enable efficient computation
with weighted spikes. The optimal threshold
derived from our method can also be applied
to integrate-and-fire (IF) neurons and improve
accuracy in rate coding. We evaluate the pro-
posed methods on the CIFAR-10 and ImageNet
datasets. The experimental results demonstrate
that the CSS coding scheme significantly com-
presses timesteps with minimal conversion loss
and offers an energy efficiency advantage for the
resulting SNNs.

1. Introduction
Spiking Neural Networks (SNNs), recognized as the third
generation of neural network models, are inspired by
the biological structure and functionality of the brain
(Maass, 1997). Unlike traditional Artificial Neural Net-
works (ANNs), which rely on continuous activation func-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tions, SNNs utilize discrete spiking events. This enables
SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activ-
ity (Taherkhani et al., 2020). The event-driven nature of
SNNs aligns with the brain’s energy-efficient computational
paradigm, offering potential for more efficient and low-
power computing systems (Yamazaki et al., 2022).

The two primary learning algorithms for SNNs are gradient-
based optimization and ANN-SNN conversion. Directly
training using supervised backpropagation is challenging
due to the non-differentiable nature of spike generation
(Neftci et al., 2019; Lee et al., 2016; Wu et al., 2018; Bellec
et al., 2019). The conversion-based method, however, offers
a practical approach to overcome this difficulty and has
produced the best-performing SNNs (Ding et al., 2021; Bu
et al., 2022; Deng & Gu, 2021).

The core principle of ANN-SNN conversion is the encoding
of ANN activations into spike train representations. Specif-
ically, by maintaining identical weight parameters, spik-
ing neuron models are designed to generate spike patterns
that correspond directly to the ANN activations. Various
coding schemes, such as rate coding and temporal coding,
have been proposed to describe neural activity (Johansson
& Birznieks, 2004; Thorpe & Gautrais, 1998; Gollisch &
Meister, 2008). Rate coding maps the number of spikes
to the activation values (Rueckauer et al., 2017; Cao et al.,
2015). In contrast, temporal coding focuses on the precise
timing or patterns of spikes (Yang et al., 2023; Han & Roy,
2020). For example, Time-to-First-Spike (TTFS) coding
maps the the ANN activation to the time elapsed before the
first spike (Stanojevic et al., 2022).

However, using spike counts or temporal duration for encod-
ing establishes a linear relationship between encoding preci-
sion and the number of timesteps. This inherently limits the
performance of converted SNNs under low timestep condi-
tions. Recent works have proposed alleviating this problem
by quantizing the ANN before conversion (Hu et al., 2023;
Bu et al., 2023; Hao et al., 2023). This simplifies the acti-
vation encoding but introduces additional quantizing and
training overhead. Our goal is to develop a novel encoding
paradigm that enables direct conversion of full-precision
ANNs while maintaining high performance at low timesteps.
Notably, the proposed encoding scheme can also convert

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

(b)

larger bit width

varing more info.

stepwise weighting

constant (c)

single bit width

more info.(a) limited info.constant

single bit width

Figure 1. Comparison of different neural coding schemes. C denotes the information encoded in a spike, u represents the membrane
potential, and vth is the threshold. (a) Rate coding: The encoding capacity is limited, requiring more timesteps to improve precision. (b)
Directly transmitting weighted spikes: This approach requires a larger bit width to represent weight information, with neurons adjusting
thresholds based on the weights, which increases network complexity. (c) Weighting stepwise during the decoding process: Our method
enhances the encoding capacity of the spike train while preserving network simplicity.

quantized ANNs and further reduce the required number of
timesteps.

Information theory provides a principled approach to quan-
tify differences between encoding schemes in neural coding
analysis. For instance, the encoding capacity can be mea-
sured by the number of bits that can be encoded within given
timesteps (Borst & Theunissen, 1999; Panzeri et al., 2007).
To enhance the expressiveness of spike trains, we introduce a
temporally structured weight pattern with exponential decay.
For a spike train of T timesteps, rate coding or TTFS coding
achieves ⌊log2(T + 1)⌋ bits of encoding capacity. In con-
trast, our method enhances this to

⌊
log2

(∑T
t=1 ωt + 1

)⌋
bits through the application of weights ωt, as illustrated in
Figure 1 (a) and (c). We refer to these spikes as canonical
due to the fixed weight pattern.

Weighting is implemented progressively during the neuron’s
decoding process. Specifically, at each timestep, neurons
amplify the residual membrane potential by a fixed coeffi-
cient before integrating new inputs. Compared to directly
integrating weighted inputs (Stöckl & Maass, 2021; Rueck-
auer & Liu, 2021), this approach reduces information flow
and maintains a constant firing threshold, as shown in Fig-
ure 1 (b) and (c).

While the decaying weight pattern enables fast informa-
tion transmission, it results in residual information accu-
mulation in the membrane potential, which we refer to as
residual errors in encoding. To address this, we propose
an Over-Fire-and-Correct (OFC) mechanism: the neuron’s
firing threshold is reduced, while negative spikes are intro-
duced to compensate for information overflow. Moreover,
the optimal threshold we proposed can also be applied to
Integrate-and-Fire (IF) neurons, reducing encoding loss in
rate coding scenarios.

Based on these characteristics, we term the proposed method
Canonic Signed Spike (CSS) coding scheme and the cor-
responding neuron model Ternary Self-Amplifying (TSA)
neuron. The main contributions of this paper can be sum-

marized as follows:

• We compress the timesteps to logarithmic scale by
weighting the spikes. We propose that the neurons
stepwise amplify the membrane potential by a fixed
coefficient to perform the weighting. This results in a
more hardware-friendly network architecture.

• We systematically analyze the residual errors during
conversion and propose the OFC method for efficient
neural computation. Compared to previous implemen-
tations of weighted spikes, we reduce the network out-
put latency by a factor of T , where T denotes the
requried timesteps per layer.

• We demonstrate the effectiveness of the CSS coding
scheme on the CIFAR-10 and ImageNet datasets. The
results show that the proposed method reduces both
the number of timesteps and conversion loss. Addition-
ally, the CSS coding scheme offers energy efficiency
advantages over both rate coding and temporal coding.

2. Preliminaries
In this section, we provide a concise overview of the princi-
ples for ANN-SNN conversion and demonstrate the impact
of encoding schemes on its performance.

ANN-SNN conversion typically involves the following two
key steps: 1) designing an encoding method to map ANN
activations to spike trains, and 2) designing a suitable neuron
model to ensure the generated spike train accurately encode
the activation value. The most widely used and State-Of-
The-Art (SOTA) approaches (Rueckauer et al., 2017; Hu
et al., 2023; Hao et al., 2023) employ (signed) soft-reset IF
neurons and interprets their output through spike rates.

2.1. Spiking Neurons

Spiking neurons communicate through spike trains and are
interconnected via synaptic weights. Each incoming spike

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Table 1. Common symbols in this paper.

Symbol Definition Symbol Definition Symbol Definition

l layer index θl spike amplitude oli[t] membrane potential before reset
i, j neuron index Sl

i[t] spike sequence zli[t] integrated inputs (PSP)1

T timesteps for encoding vlth firing threshold wl
ij , b

l
i SNN weight and bias

β amplification coefficient ul
i[t] membrane potential after reset ŵl

ij , b̂
l
i ANN weight and bias

1 Postsynaptic potential

contributes to the postsynaptic neuron’s membrane poten-
tial, and a spike is generated when the potential reaches a
predefined threshold. Generally, a spike sequence Sl

i[t] can
be expressed as follows:

Sl
i[t] =

∑
τ∈Fl

i

θlδ[t− τ] (1)

where i is the neuron index, l is the layer index, θl is the
spike amplitude, δ[·] denotes an unit impulse1, f is the spike
index, and Fl

i denotes a set of spike times which satisfies
the firing condition:

τ : oli[τ] ≥ vlth (2)

where oli[t] denotes the membrane potential before reset and
vlth denotes the threshold. For soft-reset IF neuron model,
the membrane potential is subtracted by an amount equal to
the spike amplitude for reset. Its dynamics can be expressed
as follows:

ul
i[t] = ul

i[t− 1] + zli[t]− Sl
i[t] (3)

where ul
i[t] denotes the membrane potential after reset and is

referred to as the residual membrane potential. zli[t] denotes
the integrated inputs:

zli[t] =
∑
j

wl
ijS

l−1
j [t] + bli (4)

where wl
ij is the synaptic weight and bli is the bias. For

clarity, the definitions of common symbols are provided in
Table 1.

2.2. Activation Encoding

Let T denote the number of timesteps, with the initial con-
dition ul

i[0] = 0, we can iteratively update the membrane
potential using Equation (3) until t = T . Then substitute
zli[t] with Equation (4), and we can write:∑

t S
l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T]

T
(5)

1δ[t] takes the value 1 at t = 0, and 0 otherwise

See Appendix A.1 for a detailed derivation. Note that both
sides of the equation are divided by T to better highlight
the interpretation of

∑T
t=1 Sl

i[t]/T as “rate”. Equation (5)
defines the relationship between neuron’s input rate and
output rate and can be directly related to the forward pass in
a ReLU-activated ANN:

ali = max

∑
j

ŵl
ija

l−1
j + b̂li, 0

 (6)

where ali denotes the ANN activation, ŵl
ij and b̂li denote the

weight and bias, respectively. Note that in Equation (5) we
have: 1)

∑
t S

l
i[t]/T > 0, and 2) ul

i[T]/T becomes negligible
as T increases. These observations suggest that mapping
ANN activations to SNN spike rates can be achieved by
simply setting wl

ij = ŵl
ij and bli = T b̂li.

However, with fewer time steps, the spike rate
∑

Sl
i[t]/T can

only encode a limited number of activations, leading to a
rapid increase in conversion loss. This issue stems from
the linear scaling of spike count

∑
t S

l
i[t] with timesteps,

where each additional timestep provides only a constant
information gain. Therefore, our goal is to incorporate
nonlinearity into the encoding to enhance the expressiveness
of spike trains.

3. Methods
3.1. Assigning Weights to Spikes

We apply a specific weight pattern to the spike train to en-
hance information encoding. The weights decay over time,
facilitating rapid transmission of the majority of information,
while the minimum weight is constrained to 1 to maintain
encoding precision. Specifically, we map the spike train to
ANN activation using the following approach:

ali ≈
∑

t β
T−tSl

i[t]

T
=

∑
τ∈Fl

i
βT−τθlδ[t− τ]

T
:= r̄li (7)

where β > 1 represents the amplification coefficient for
weighting. β is fixed at 2 in our implementation, resulting
in a uniform encoding of ali. The approximation symbol
indicates that a finite number of timesteps introduces quan-
tization errors. Stöckl & Maass (2021) directly transmits

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

residual information

missing one
high-weight spike

Figure 2. The decaying weight pattern causes information to remain in the membrane potential. For clarity, weights are directly applied in
this illustration. From left to right, the figure shows the neuron’s input, the membrane potential before and after reset, and the emitted
spike train. The blue dashed line represents the firing threshold. The residual membrane potential from the previous step is represented by
the red bar, which can be identified as the primary contributor to the increase in ul

i[T]. Better control of the residual membrane potential
can be achieved by reducing the threshold to promote spike firing.

weighted spike signals across the network, which requires a
larger bitwidth for spike representation. Additionally, neu-
rons must adjust their thresholds based on different weights,
increasing model complexity. To address this, we integrate
the weighting process into the neural computation by incor-
porating the amplification coefficient β into the soft-reset IF
model:

ul
i[t] = βul

i[t− 1] + zli[t]− Sl
i[t] (8)

Proposition 3.1. The stepwise weighting process described
by Equation (8) is equivalent to directly transmitting
weighted spikes. Furthermore, the input and output spike
trains satisfy the following relationship:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T]

T
, 0

 (9)

Equation (9) serves as the core equation for ANN-SNN
conversion and the detailed derivation can be found in Ap-
pendix A.2. By comparing it with Equation (6), we can
conclude:

Corollary 3.2. Let wl
ij = ŵl

ij and bli = b̂li · T∑
t β

T−t . As-

sume the input r̄l−1
j encodes al−1

j . To reduce encoding
errors for ali, the residual membrane potential ul

i[T] should
be minimized.

Since T typically takes large values in rate coding, previous
works often neglect the ul

i[T]/T term (Rueckauer et al., 2017).
However, it is necessary to account for this term when T
goes small. Furthermore, we observe that the decaying
weight pattern hinders the reduction of ul

i[T]. To address
this, we propose the OFC method in the next section to
effectively control ul

i[T].

3.2. Reducing Residual Errors

Under a decaying weight pattern, the residual information
from previous high-weight inputs often exceeds the encod-
ing capacity of subsequent spikes, leading to an increase

Algorithm 1 Forward method of the TSA neuron
Input: input X of shape [TB, C, H, W], length of silent
period P , spike amplitude θ
Output: output spike train S of shape [BT, C, H, W]
Pad X with zeros and reshape to [T+P, B, C, H, W].
Membrane potential U ← zeros like (X[0])
Threshold v ← βPαθ
/ ∗ silent period ∗ /
for i = 0 to P − 1 do

M ← βM +X[i] / ∗ stepwise weighting ∗ /
end for
for i = 0 to T − 1 do

M ← βM+X[i+P] / ∗ stepwise weighting ∗ /
/ ∗ fire ternary spikes ∗ /
S[i]← (M ≥ v).float()− (M ≤ −v).float()
/ ∗ soft reset ∗ /
M ←M − βP θS[i]

end for
S ← θS

in ul
i[T]. We term this phenomenon residual errors, as il-

lustrated in Figure 2. It can be proven that controlling the
residual membrane potential at each step is key to minimiz-
ing ul

i[T]:

Proposition 3.3. ∀ϵ > 0, ul
i[T] < ϵ if and only if for

all timestep τ ∈ {0, 1, . . . , T − 1}:

ul
i[τ] <

ϵ

βT−τ
+

1

βT−τ

T∑
t=τ+1

θlβT−t

− 1

βT−τ

T∑
t=τ+1

βT−tzli[t]

(10)

Ignoring the coefficient 1/βT−τ on the right-hand side, the
first summation term represents the maximum value a spike
train after τ can encode, while the second term corresponds
to future inputs. These two terms and the given ϵ impose
constraints on the residual membrane potential ul

i[τ].

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

The converted SNN theoretically achieves equivalent per-
formance when ul

i[T] < θl, where only quantization error
remains. To achieve this, previous works have proposed
delaying the output in the temporal domain: first integrating
inputs over all timesteps, and then firing spikes continuously
(Rueckauer & Liu, 2021; Stöckl & Maass, 2021).

Remark 3.4. Proposition 3.3 explains the feasibility of de-
laying the output: for all τ ∈ {0, 1, . . . , T − 1}, the max-
imum encodable value (i.e. the second constraint term) is
amplified to

∑T
t=1 θ

lβT−t as no spikes are fired before τ .

However, this method significantly increases inference la-
tency. Based on Proposition 3.3, we propose constraining
ul
i[τ] at each step to limit the size of ul

i[T] with minimal
latency overhead.

Specifically, the firing threshold is reduced to vlth = αθl

with α < 1. Negative spikes are introduced to correct over-
fired information, i.e. (1− α)θl. The negative threshold is
set symmetrically to −αθl, which triggers a negative spike
when oli[t] falls below this value. Given these characteristics,
we refer to the neuron model as the TSA neuron and the
encoding scheme as the CSS coding scheme.

Theorem 3.5. Let the integrated input zli[t] at each timestep
be independent and follow a uniform distribution, U(0, θl).
When α = 1

2 , for all t ∈ {1, 2, . . . , T}, we have:

E(ul
i[t]) = 0 and E(ul

i[t]
2) is minimized.

Remark 3.6. Considering that θl can reflect the maximum
potential input at each timestep, i.e. θl ≈ max

(
zli[t]

)
, the

input assumption in Theorem 3.5 is reasonable.

Theorem 3.5 demonstrates that setting α = 1/2 most effec-
tively confines the residual membrane potential near zero,
with the detailed derivation provided in Appendix A.4. The
optimality of α = 1/2 has also been experimentally verified
in Section 5.4.

Notably, the optimal threshold in Theorem 3.5 also applies
to IF neurons, offering a simple yet effective method to re-
duce encoding errors in rate coding. We present preliminary
experimental validation in Appendix B.

However, we find that with decaying weight patterns, ul
i[T]

can exceed θl even with optimal α. Therefore, to achieve
lossless conversion, we keep a one-step output delay. We
refer to this as the silent period: neurons integrate input
and perform stepwise weighting but are prohibited from
firing. The forward method of the TSA neurons is provided
in Algorithm 1. After the silent period, the membrane po-
tential is amplified by β, which leads to a corresponding
amplification of both the threshold and the reset amount.

3.3. ANN-SNN conversion

The proposed method eliminates the need for directly apply-
ing weights to input pixel values, as weighting is integrated
during neural computation. Therefore, we adopt the widely
used direct coding for input static images (Rueckauer et al.,
2017; Li et al., 2021; Hao et al., 2023; Hu et al., 2023): the
analog input activations of the first hidden layer are inter-
preted as constant currents, with spiking outputs starting
from this layer.

We replace the ReLU activation function with the TSA neu-
ron to encode the hidden layer activations. Note that since
TSA neurons can encode negative activations, additional
logic is required to zero out sequences encoding negative
values. For β ≥ 2, this logic simplifies to detecting se-
quences where the first spike is positive, which can be easily
implemented.

To determine the spike amplitude θl for each layer, we use
the strategy proposed by Rueckauer et al. (2017): after
observing ANN activations over a portion of the training set,
we calculate the 99.99th percentile pl of the activation dis-
tribution, and then set θl to pl2. This approach improves the
network’s robustness to outlier activations. The pseudocode
for the conversion process is provided in Appendix C

4. Related Works
4.1. Spike Coding Schemes

Current mainstream coding schemes in converted SNNs
include rate coding and TTFS coding.

Rate coding represents activity by the number of spikes
within a time window. Early methods aimed at reducing
conversion loss, such as weight normalization (Diehl et al.,
2015), threshold rescaling (Sengupta et al., 2019), and soft-
reset neurons (Han et al., 2020). More recent work focuses
on reducing timesteps by optimizing neuron parameters:
Meng et al. (2022) introduced the threshold tuning method,
while Bu et al. (2022) proposed optimizing the initial mem-
brane potential. Additionally, recent works have explored
quantizing the ANNs before conversion (Bu et al., 2023;
Hao et al., 2023; Hu et al., 2023). This approach directly
reduces the number of activations that need to be mapped,
providing an alternative way to minimize timesteps.

Rueckauer & Liu (2018) were the first to attempt convert-
ing an ANN to a TTFS-based SNN, achieving increased
sparsity but with significant conversion errors. Stanojevic et
al. (2022) showed that exact mapping is feasible. Yang et
al. (2023) improved this by using dynamic neuron thresh-

2More precisely, θl = pl · T∑T
t=1 βT−t . Since scaling the spike

amplitude of each layer by the same value has no practical effect,
we directly set θl to pl for simplicity.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Table 2. Number of timesteps under different neural coding schemes, evaluated on the CIFAR-10 and ImageNet datasets. “No Quant.”
column indicates whether quantization is required. “No Cal.” column marks whether post-conversion fine-tuning is required.

Method No
Quant.

No
Cal. Architecture ANN

Acc.
Coding
Scheme Timestep SNN

Acc.

C
IF

A
R

-1
0

OPI (Bu et al., 2022) ✔ ✔ ResNet-20 92.74% rate 64 92.57%
FS-Conversion (Stöckl & Maass, 2021) ✔ ✔ ResNet-20 91.58% FS 10 91.45%
SNN Calibration (Li et al., 2021) ✔ ✘ VGG-16 95.72% rate 128 95.65%
TSC (Han & Roy, 2020) ✔ ✔ VGG-16 93.63% TSC 512 93.57%
TTFS Mapping (Stanojevic et al., 2023) ✔ ✘ VGG-16 93.68% TTFS 64 93.69%
LC-TTFS (Yang et al., 2023) ✔ ✔ VGG-16 92.79% TTFS 50 92.72%

CSS-SNN†
✔ ✔ ResNet-20 93.83%

CSS
7 93.73%

✔ ✔ VGG-16 95.90% 8 95.92%
✔ ✔ ResNet-18 96.68% 6 96.62%

QFFS (Li et al., 2022)† ✘ ✔ ResNet-18 93.12% rate 4 93.13%
QCFS (Bu et al., 2023) ✘ ✔ ResNet-18 96.04% rate 16 95.92%
COS (Hao et al., 2023) ✘ ✔ ResNet-18 95.64% rate 4 95.46%
Fast-SNN (Hu et al., 2023)† ✘ ✘ ResNet-18 95.62% rate 7 95.57%

CSS-SNN† ✘ ✔ ResNet-18 96.32% CSS 3 96.34%

Im
ag

eN
et

TSC (Han & Roy, 2020) ✔ ✔ ResNet-34 70.64% TSC 4096 69.93%
SNN Calibration (Li et al., 2021) ✔ ✘ ResNet-34 75.66% rate 256 74.61%
TSC (Han & Roy, 2020) ✔ ✔ VGG-16 73.49% TSC 1024 73.33%
OPI (Bu et al., 2022) ✔ ✔ VGG-16 74.85% rate 256 74.62%

CSS-SNN† ✔ ✔ ResNet-34 76.42% CSS 8 76.10%
✔ ✔ VGG-16 75.34% 8 75.17%

QFFS (Li et al., 2022)† ✘ ✔ VGG-16 73.08% rate 8 73.10%
QCFS (Bu et al., 2023) ✘ ✔ VGG-16 74.29% rate 256 74.22%
COS (Hao et al., 2023) ✘ ✔ VGG-16 74.19% rate 16 74.09%
Fast-SNN (Hu et al., 2023)† ✘ ✘ VGG-16 73.02% rate 7 72.95%

CSS-SNN† ✘ ✔ VGG-16 74.33% CSS 5 74.32%
† Utilizing negtive spikes.

old and weight regularization and completed the conversion
with 50 timesteps per layer. Han & Roy (2020) introduced
the Temporal-Switch-Coding (TSC) scheme, where the time
interval between two spikes encodes activation. However,
in the above approaches, the improvement in encoding pre-
cision relies on a linear increase in the number of timesteps,
which limits the performance of the converted SNN at low
timesteps.

Using weighted spikes to represent activation values remains
an underexplored area. Stöckl & Maass (2021) and Rueck-
auer & Liu (2021) employed spikes to encode the “1”s in the
binary represented activations. However, both approaches
require neurons to wait for all input spikes before firing,
resulting in high output latency. Kim et al. (2018) sought to
reduce encoding errors by repeatedly applying inputs, which
requires thousands of timesteps. In contrast, by introducing
negative spikes and setting an optimal firing threshold, we
achieve fast and accurate computation. Additionally, we
propose stepwise weighting during the neuron’s decoding

process, enabling a more hardware-friendly architecture.

4.2. Negtive Spikes

The role of negative spikes in SNNs has been widely studied
in recent works. In rate-based ANN-SNN conversion (Li
et al., 2022; Wang et al., 2022; Hu et al., 2023), negative
spikes have been utilized to enhance neuron adaptability
to input fluctuations, which improves conversion accuracy.
Guo et al. (2023) proposed ternary SNNs to increase the
expressive capacity of spike sequences and trained them
directly using gradient descent. Unlike existing approaches,
we intentionally design neuron over-firing and employ nega-
tive spikes for correction. We demonstrate that this strategy
facilitates efficient computation with weighted spikes.

5. Experiments
In this section, we convert ANNs to CSS-coded SNNs
and conduct experiments on the CIFAR-10 and ImageNet

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Table 3. Timesteps for coding vs. Classification accuracy. We conduct experiments with VGG-16 on CIFAR-10 and ImageNet. The
results for COS and Fast-SNN are obtained using their open-source code, ensuring the same pre-conversion ANN accuracy.

Method Coding
Scheme T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

C
IF

A
R

-1
0 COS (Hao et al., 2023) rate 89.61% 94.23% 95.10% 95.51% 95.46% 95.56% 95.56% 95.54%

Fast-SNN (Hu et al., 2023) rate 90.13% 94.50% 95.39% 95.53% 95.60% 95.59% 95.64% 95.63%

CSS-SNN CSS 89.75% 95.26% 95.65% 95.65% 95.65% 95.64% 95.67% 95.66%

Im
ag

eN
et COS (Hao et al., 2023) rate 0.67% 37.18% 66.12% 71.24% 72.75% 73.46% 73.69% 73.87%

Fast-SNN (Hu et al., 2023) rate 0.61% 22.52% 57.84% 68.71% 71.81% 72.75% 73.26% 73.54%

CSS-SNN CSS 0.66% 66.01% 73.72% 74.23% 74.32% 74.34% 74.34% 74.36%

datasets. For all experiments, we fix β = 2 and α = 1/2.
First, we compare the number of timesteps with other cod-
ing schemes. Then, we evaluate the energy consumption.
Finally, we conduct ablation studies to validate the effec-
tiveness of the OFC method in minimizing output latency,
as well as to verify the optimality of α = 1/2

5.1. Overall Performance

In Table 2, we compare the number of timesteps required
by different coding schemes. The “No Quant.” column indi-
cates whether a quantized ANN is required, while the “No
Cal.” column marks whether post-conversion fine-tuning is
applied. Works utilizing negative spikes are denoted with
the “†” symbol. Although the accuracy of the ANNs used
in each study is provided, conversion loss is a more critical
metric for evaluation.

When directly encoding full-precision activations, CSS cod-
ing demonstrates nearly lossless conversion with signif-
icantly fewer timesteps. For instance, on the ImageNet
dataset, Li et al. (Li et al., 2021) reported a conversion loss
exceeding 1% for ResNet-34 with 256 timesteps, whereas
our method achieved only 0.3% conversion loss with just 8
timesteps. Although FS coding (Stöckl & Maass, 2021) also
employs weighted spikes for activation encoding, it incurs
higher conversion loss even with more timesteps.

SOTA SNN performance (Hu et al., 2023; Hao et al., 2023)
is typically achieved by converting quantized ANNs while
still using rate coding. Notably, while rate coding achieves
competitive performance with reduced timesteps, it heavily
relies on low-bit quantization, which introduces additional
training overhead and often compromises accuracy.

Table 3 illustrates the relationship between timesteps and
accuracy when encoding quantized activations. The results,
based on our reproductions with consistent ANN accuracy,
demonstrate that our method integrates seamlessly with
quantized ANNs and achieves ANN-level accuracy with
fewer timesteps than rate coding, enabling the development
of higher-performance SNNs. For example, we achieved

74.23% accuracy on ImageNet with only 4 timesteps.

Furthermore, the CSS coding scheme provides an alternative
approach to achieving low-timestep SNNs without aggres-
sive quantization. For example, on CIFAR-10, our method
converted a full-precision ResNet-18 with only 6 timesteps
and a minimal conversion loss of 0.06%.

5.2. Energy Consumption Analysis

In this section, we estimate the energy consumption of our
methods3, with the results summarized in Table 4. To com-
pare with SOTA rate coding, we conduct experiments with
quantized ANNs. Notably, the TSA neuron amplifies the
membrane potential at each timestep, which can be effi-
ciently implemented via bit-shift operations when β = 2.
We assume shift operations consume the same energy as
an Accumulate (AC) operation, providing a conservative
overestimation.

TTFS coding (Stanojevic et al., 2023) demonstrates low
energy consumption due to its minimized spike count. Al-
though our method does not inherently exhibit sparsity, the
reduction in timesteps compensates for this limitation. By
further compressing the number of timesteps, our approach
achieves a 40% reduction in energy consumption compared
to TTFS coding. Additionally, we include Fast-SNN (Hu
et al., 2023) and COS (Hao et al., 2023) as strong base-
lines for (signed) rate coding. The results show that our
method outperforms both with a 10% reduction in energy
consumption while achieving higher accuracy.

5.3. Effect of OFC Method

We conduct an ablation study to demonstrate that the OFC
method achieves low-latency computation for weighted
spikes. Experiments were conducted using ResNet-34 on
ImageNet, where we restored vth to θl, removed the nega-
tive threshold and increased the length of the silent period.

3Energy consumption measurements were performed based on
https://github.com/iCGY96/syops-counter

7

https://github.com/iCGY96/syops-counter

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Table 4. Energy consumption of VGG-16 on CIFAR-10. The results for COS and Fast-SNN are obtained using their open-source code.

Method Coding
Scheme Timestep Accuracy SyOPs (ACs) MACs Energy

Consumption

ANN - - 95.61% 0 313.60M 1.4426mJ
TTFS Mapping (Stanojevic et al., 2023)⋆ TTFS 64 93.53% 120.53M 0 0.1085mJ
COS (Hao et al., 2023) rate 4 95.51% 42.28M 7.34M 0.0719mJ
Fast-SNN (Hu et al., 2023) rate 4 95.53% 47.55M 7.34M 0.0766mJ

CSS-SNN CSS 3 95.65% 44.39M 5.51M 0.0653mJ
⋆ Stanojevic et al. (2023) reported an average of 0.38 spikes per neuron on VGG-16, which we used to calculate the SyOPs and estimate the

energy consumption. The calculation method is the same as the one used in the code. See Appendix D for computation details.

0.4 0.5 0.6 0.7 0.8
50

60

70

80

90
Ac

c.
 (%

)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
u[T]

Pr
ob

. d
en

sit
y

= 0.4
= 0.5
= 0.6
= 0.7

1 2 3 4 5 6 7 8
Length of the silent period

64

66

68

70

72

74

76

Ac
c.

 (%
)

(a) ResNet-34 on ImageNet (b) VGG-16 on CIFAR-10 (c) VGG-16 on CIFAR-10

Figure 3. (a) Relationship between silent period length and accuracy. The blue bars represent the results obtained relying solely on
delaying output. The red baseline indicates the results obtained after applying the OFC method, with a silent period of 1 step. Without
using the OFC method, a longer silent period is required to achieve accurate weighted spike computation, which increases the network’s
output latency. (b) Accuracy variations with different α values. (c) Distribution of residual membrane potential for various α values.

Assuming the P -step silent period for each layer is pro-
cessed in a pipelined manner, its contribution to the output
latency of an L-layer network is P × L.

The experimental results shown in Figure 3 (a) indicate
that a silent period of five steps is required to match the
performance achieved by OFC at P = 1, which corresponds
to a 136-step latency reduction for ResNet-34. Compared
to previous works where P = T (Stöckl & Maass, 2021;
Rueckauer & Liu, 2021), with T denoting timesteps for
encoding, the OFC method reduces output latency by a
factor of T .

5.4. Threshold Setting

To validate the rationale for our threshold setting, we varied
α within [0.4, 0.8] with a precision of 0.01 and evaluated
the classification accuracy. Experiments were conducted on
CIFAR-10 using VGG-16. To better highlight the impact of
threshold adjustment, we disabled the silent period.

The experimental results, shown in Figure 3 (b), demon-
strate that network performance peaks when α is around
0.5. In Figure 3 (c), we plot the distribution of the aver-
age residual membrane potential u[T] across all neurons

for different thresholds, revealing that α = 0.5 most ef-
fectively constrains u[T]. We further validated this across
VGG architectures of varying depths. The results provided
in Appendix E consistently support this conclusion, which
demonstrate the robustness of the optimized α value.

6. Conclusion
In this work, we explore the use of weighted spike trains
to efficiently encode ANN activations. We propose step-
wise weighting during neural computation, resulting in a
simpler neuron model. Communication between neurons
does not require additional bit width for weight information.
We introduce the OFC method to enable fast and accurate
computation with weighted spikes. Experimental results
demonstrate that the CSS coding scheme significantly re-
duces the number of timesteps to encode activations while
maintaining minimal conversion loss. This approach of-
fers the potential to enable high-performance SNNs directly
from full-precision ANNs, reducing the reliance on quanti-
zation in current mainstream conversion frameworks. Fur-
thermore, the CSS coding scheme achieves lower energy
consumption in the converted SNNs.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bellec, G., Scherr, F., Subramoney, A., Hajek, E.,

Salaj, D., Legenstein, R., and Maass, W. A solu-
tion to the learning dilemma for recurrent networks
of spiking neurons. bioRxiv, 2019. doi: 10.
1101/738385. URL https://www.biorxiv.org/
content/early/2019/08/19/738385.

Borst, A. and Theunissen, F. E. Information theory
and neural coding. Nature Neuroscience, 2:947–957,
1999. URL https://api.semanticscholar.
org/CorpusID:7395421.

Bu, T., Ding, J., Yu, Z., and Huang, T. Optimized potential
initialization for low-latency spiking neural networks,
2022.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang,
T. Optimal ann-snn conversion for high-accuracy and
ultra-low-latency spiking neural networks, 2023.

Cao, Y., Chen, Y., and Khosla, D. Spiking deep convolu-
tional neural networks for energy-efficient object recog-
nition. International Journal of Computer Vision, 113
(1):54–66, May 2015. ISSN 1573-1405. doi: 10.1007/
s11263-014-0788-3. URL https://doi.org/10.
1007/s11263-014-0788-3.

Deng, S. and Gu, S. Optimal conversion of conventional ar-
tificial neural networks to spiking neural networks, 2021.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C.,
and Pfeiffer, M. Fast-classifying, high-accuracy spiking
deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2015. doi: 10.1109/IJCNN.
2015.7280696.

Ding, J., Yu, Z., Tian, Y., and Huang, T. Optimal ann-snn
conversion for fast and accurate inference in deep spiking
neural networks, 2021.

Gollisch, T. and Meister, M. Rapid neural coding
in the retina with relative spike latencies. Science,
319(5866):1108–1111, 2008. doi: 10.1126/science.
1149639. URL https://www.science.org/
doi/abs/10.1126/science.1149639.

Guo, Y., Chen, Y., Liu, X., Peng, W., Zhang, Y., Huang, X.,
and Ma, Z. Ternary spike: Learning ternary spikes for

spiking neural networks, 2023. URL https://arxiv.
org/abs/2312.06372.

Han, B. and Roy, K. Deep spiking neural network: Energy
efficiency through time based coding. In Vedaldi, A.,
Bischof, H., Brox, T., and Frahm, J.-M. (eds.), Computer
Vision – ECCV 2020, pp. 388–404, Cham, 2020. Springer
International Publishing.

Han, B., Srinivasan, G., and Roy, K. Rmp-snn: Residual
membrane potential neuron for enabling deeper high-
accuracy and low-latency spiking neural network, 2020.

Hao, Z., Ding, J., Bu, T., Huang, T., and Yu, Z. Bridging the
gap between anns and snns by calibrating offset spikes,
2023.

Hu, Y., Zheng, Q., Jiang, X., and Pan, G. Fast-snn:
Fast spiking neural network by converting quantized
ann. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(12):14546–14562, 2023. doi:
10.1109/TPAMI.2023.3275769.

Johansson, R. and Birznieks, I. First spikes in ensembles
of human tactile afferents code complex spatial fingertip
events. Nature neuroscience, 7:170–7, 03 2004. doi:
10.1038/nn1177.

Kim, J., Kim, H., Huh, S., Lee, J., and Choi,
K. Deep neural networks with weighted spikes.
Neurocomputing, 311:373–386, 2018. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2018.05.
087. URL https://www.sciencedirect.com/
science/article/pii/S0925231218306726.

Lee, J. H., Delbruck, T., and Pfeiffer, M. Training deep
spiking neural networks using backpropagation, 2016.
URL https://arxiv.org/abs/1608.08782.

Li, C., Ma, L., and Furber, S. Quantization frame-
work for fast spiking neural networks. Fron-
tiers in Neuroscience, 16, 2022. ISSN 1662-
453X. doi: 10.3389/fnins.2022.918793. URL
https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.
2022.918793.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free
lunch from ann: Towards efficient, accurate spiking neu-
ral networks calibration, 2021.

Maass, W. Networks of spiking neurons: The third
generation of neural network models. Neural Net-
works, 10(9):1659–1671, 1997. ISSN 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(97)00011-7.
URL https://www.sciencedirect.com/
science/article/pii/S0893608097000117.

9

https://www.biorxiv.org/content/early/2019/08/19/738385
https://www.biorxiv.org/content/early/2019/08/19/738385
https://api.semanticscholar.org/CorpusID:7395421
https://api.semanticscholar.org/CorpusID:7395421
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://www.science.org/doi/abs/10.1126/science.1149639
https://www.science.org/doi/abs/10.1126/science.1149639
https://arxiv.org/abs/2312.06372
https://arxiv.org/abs/2312.06372
https://www.sciencedirect.com/science/article/pii/S0925231218306726
https://www.sciencedirect.com/science/article/pii/S0925231218306726
https://arxiv.org/abs/1608.08782
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.918793
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.918793
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.918793
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Meng, Q., Yan, S., Xiao, M., Wang, Y., Lin, Z., and
Luo, Z.-Q. Training much deeper spiking neural
networks with a small number of time-steps. Neu-
ral Networks, 153:254–268, 2022. ISSN 0893-
6080. doi: https://doi.org/10.1016/j.neunet.2022.06.
001. URL https://www.sciencedirect.com/
science/article/pii/S0893608022002064.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks, 2019. URL https:
//arxiv.org/abs/1901.09948.

Panzeri, S., Senatore, R., Montemurro, M. A., and Pe-
tersen, R. S. Correcting for the sampling bias problem
in spike train information measures. Journal of Neuro-
physiology, 98(3):1064–1072, 2007. doi: 10.1152/jn.
00559.2007. URL https://doi.org/10.1152/
jn.00559.2007. PMID: 17615128.

Rueckauer, B. and Liu, S.-C. Conversion of analog to spik-
ing neural networks using sparse temporal coding. In
2018 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1–5, 2018. doi: 10.1109/ISCAS.2018.
8351295.

Rueckauer, B. and Liu, S.-C. Temporal pattern coding in
deep spiking neural networks. In 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2021.
doi: 10.1109/IJCNN52387.2021.9533837.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu,
S.-C. Conversion of continuous-valued deep networks to
efficient event-driven networks for image classification.
Frontiers in Neuroscience, 11, 2017. ISSN 1662-453X.
doi: 10.3389/fnins.2017.00682.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going
deeper in spiking neural networks: Vgg and residual ar-
chitectures, 2019. URL https://arxiv.org/abs/
1802.02627.

Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G.,
Pantazi, A., and Gerstner, W. An exact mapping from
relu networks to spiking neural networks, 2022. URL
https://arxiv.org/abs/2212.12522.

Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pan-
tazi, A., and Gerstner, W. High-performance deep spiking
neural networks with 0.3 spikes per neuron, 2023. URL
https://arxiv.org/abs/2306.08744.

Stöckl, C. and Maass, W. Optimized spiking neurons clas-
sify images with high accuracy through temporal coding
with two spikes, 2021. URL https://arxiv.org/
abs/2002.00860.

Taherkhani, A., Belatreche, A., Li, Y., Cosma, G.,
Maguire, L. P., and McGinnity, T. A review of learn-
ing in biologically plausible spiking neural networks.
Neural Networks, 122:253–272, 2020. ISSN 0893-
6080. doi: https://doi.org/10.1016/j.neunet.2019.09.
036. URL https://www.sciencedirect.com/
science/article/pii/S0893608019303181.

Thorpe, S. and Gautrais, J. Rank order coding. computa-
tional neuroscience: trends in research. J. Brower (Ed),
pp. 113–119, 01 1998.

Wang, Y., Zhang, M., Chen, Y., and Qu, H. Signed neu-
ron with memory: Towards simple, accurate and high-
efficient ann-snn conversion. In Raedt, L. D. (ed.),
Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-22, pp. 2501–
2508. International Joint Conferences on Artificial Intel-
ligence Organization, 7 2022. doi: 10.24963/ijcai.2022/
347. URL https://doi.org/10.24963/ijcai.
2022/347. Main Track.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in Neuroscience,
12, May 2018. ISSN 1662-453X. doi: 10.3389/
fnins.2018.00331. URL http://dx.doi.org/10.
3389/fnins.2018.00331.

Yamazaki, K., Vo-Ho, V.-K., Bulsara, D., and Le, N. Spiking
neural networks and their applications: A review. Brain
Sci, 12(7), June 2022.

Yang, Q., Zhang, M., Wu, J., Tan, K. C., and Li, H. Lc-
ttfs: Towards lossless network conversion for spiking
neural networks with ttfs coding, 2023. URL https:
//arxiv.org/abs/2310.14978.

10

https://www.sciencedirect.com/science/article/pii/S0893608022002064
https://www.sciencedirect.com/science/article/pii/S0893608022002064
https://arxiv.org/abs/1901.09948
https://arxiv.org/abs/1901.09948
https://doi.org/10.1152/jn.00559.2007
https://doi.org/10.1152/jn.00559.2007
https://arxiv.org/abs/1802.02627
https://arxiv.org/abs/1802.02627
https://arxiv.org/abs/2212.12522
https://arxiv.org/abs/2306.08744
https://arxiv.org/abs/2002.00860
https://arxiv.org/abs/2002.00860
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://doi.org/10.24963/ijcai.2022/347
https://doi.org/10.24963/ijcai.2022/347
http://dx.doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.3389/fnins.2018.00331
https://arxiv.org/abs/2310.14978
https://arxiv.org/abs/2310.14978

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

A. Mathematical Proofs
A.1. Proof of Equation (5)

∑
t S

l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T]

T

Proof. Starting with the initial condition ul
i[0] = 0 and Equation (3), we can write:

ul
i[1] = zli[1]− Sl

i[1] (A1)

Next, we derive the expression for ul
i[2] by substitute the above into Equation (3):

ul
i[2] = zli[1]− Sl

i[1] + zli[2]− Sl
i[2] (A2)

We can generalize this process to iteratively compute the membrane potential up to t = T :

ul
i[T] =

T∑
t=1

zli[t]− Sl
i[t] (A3)

Substituting zli[t] with Equation (4) and rearranging the terms, we get:

Sl
i[t] =

T∑
t=1

∑
j

wl
ijS

l−1
j [t] + bli − ul

i[T] (A4)

Exchange the order of summation and devide both sides by T , we can write:∑
t S

l
i[t]

T
=
∑
j

wl
ij

∑
t S

l−1
j [t]

T
+

T∑
t=1

bli
T
− ul

i[T]

T
(A5)

A.2. Proof of Proposition 3.1

Proposition A.1. The stepwise weighting process described by Equation (8) is equivalent to directly transmitting weighted
spikes. Furthermore, the input and output spike trains satisfy the following relationship:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T]

T
, 0

Proof. Following a similar derivation as in Appendix A.1, we can write:

ul
i[T] =

T∑
t=1

βT−t(zli[t]− Sl
i[t]) (A6)

Substituting zli[t] with Equation (4) and reorganizing the terms, we get:

ul
i[T] =

∑
j

wl
ij

T∑
t=1

βT−tSl−1
j [t] +

T∑
t=1

βT−tbli −
T∑

t=1

βT−tSl
i[t] (A7)

Based on Equation (A7), we can conclude that stepwise weighting is equivalent to directly receiving and firing weighted
spikes. Reorganize the terms and devide both sides by T , we have:∑T

t=1 β
T−tSl

i[t]

T
=
∑
j

wl
ij

∑T
t=1 β

T−tSl−1
j [t]

T
+

∑T
t=1 β

T−tbli
T

− ul
i[T]

T
(A8)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Following the definition of r̄li in Equation (7) and note that
∑

t β
T−tSl

i[t]

T ≥ 04, we can write:

r̄li = max

∑
j

wl
ij r̄

l−1
j +

T∑
t=1

βT−tbli
T

− ul
i[T]

T
, 0

 (A9)

A.3. Proof of Proposition 3.3

Proposition A.2. ∀ϵ > 0, ul
i[T] < ϵ if and only if for all timestep τ ∈ {0, 1, . . . , T − 1}:

ul
i[τ] <

ϵ

βT−τ
+

1

βT−τ

T∑
t=τ+1

θlβT−t − 1

βT−τ

T∑
t=τ+1

βT−tzli[t]

Proof. We first prove the forward direction. Given that ul
i[T] < ϵ, we can express it using Equation (8) as follows:

βul
i[T − 1] + zli[T] < ϵ+ Sl

i[T] ≤ ϵ+ θl (A10)

Substitute ul
i[T − 1] with Equation (8) and we can write:

β2ul
i[T − 2] + βzli[T − 1] + zli[T] < ϵ+ θl + βθl (A11)

For all timestep τ ∈ {1, 2, . . . , T}, the above process can be repeated until we obtain an equation involving ul
i[τ]:

βT−τul
i[τ] +

T∑
t=τ+1

βT−tzli[t] < ϵ+

T∑
t=τ+1

θlβT−t (A12)

Reorganizing Equation (A12) and dividing both sides by βT−τ , the validity of the forward reasoning is established.

Next, we proceed to prove the backward direction. For any τ ∈ {0, 1, . . . , T − 1}, by iteratively updating the membrane
potential using Equation (8) from t = τ + 1 until t = T and then substituting zli[t] with Equation (4), we can get:

ul
i[T] = βT−τul

i[τ] +

T∑
t=τ+1

βT−tzli[t]−
T∑

t=τ+1

βT−tSl
i[t] (A13)

Note that
∑

t β
T−tSl

i[t] ≤
∑

t θ
lβT−t. Then we can write:

ul
i[T] ≤ βT−τul

i[τ] +

T∑
t=τ+1

βT−tzli[t]−
T∑

t=τ+1

θlβT−t < ϵ (A14)

A.4. Proof of Theorem 3.5

Theorem A.3. Let the integrated input zli[t] at each timestep be independent and follow a uniform distribution, U(0, θl).
When α = 1

2 , for all t ∈ {1, 2, . . . , T}, we have:

E(ul
i[t]) = 0 and E(ul

i[t]
2) is minimized.

Proof. Let p(z) denote the probability density function of the input zli[t]. Define kli[t] = βul
i[t]. For simplicity, we will

4For the ternary neuron model, we ensure this condition by filtering out spike trains encoding negative values, as detailed in Section 3.3.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

drop both neuron and layer index and denote z[t] and k[t] as z and k, respectively. According to Equation (8), we have:

E(u[t+ 1]) = Ek

(∫ ∞

−∞
(z + k)p(z)dz − θl

∫ ∞

αθl−k

p(z)dz

)
= Ek

(
E(z) + k − θl

∫ ∞

αθl−k

p(z)dz

)
= E(z) + E(k)− θlEk

(∫ ∞

αθl−k

p(z)dz

) (A15)

Let q(k) denote the probability density function of k. We can write:

Ek

(∫ ∞

αθl−k

p(z)dz

)
=

∫ (α−1)θl

−∞
q(k)

∫ ∞

αθl−k

p(z)dzdk

+

∫ αθl

(α−1)θl

q(k)

∫ ∞

αθl−k

p(z)dzdk +

∫ ∞

αθl

q(k)

∫ ∞

αθl−k

p(z)dzdk

=

∫ αθl

(α−1)θl

q(k)

∫ ∞

αθl−k

p(z)dzdk +

∫ ∞

αθl

q(k)dk

= Ek

(
Fz(∞)− Fz(αθ

l − k)
)
+ Fk(∞)− Fk(αθ

l)

(A16)

where Fz(·) and Fk(·) denote the cumulative distribution functions of z and k, respectively. Note that Z ∼ U(0, θl), so
Fz(·) is linear. We further assume that k is almost constrained within the threshold, i.e., Fk(αθ

l) ≈ 1. Therefore, we have:

Ek

(∫ ∞

αθl−k

p(z)dz

)
≈ 1− Fz(αθ

l − E(k)) (A17)

and
E(u[t+ 1]) = E(z) + E(k)− θl

(
1− Fz(αθ

l − E(k))
)

(A18)

Note that k[0] = 0 and Fz

(
1
2θ

l
)
= 1

2 . When α = 1
2 , we have:

E(u[1]) = E(z)− θl
(
1− Fz(

1

2
θl)

)
= 0 = E(k[1]) (11)

By repeatedly applying Equation (A18), we can conclude that for all t ∈ {1, 2, . . . , T}, E(ul
i[t]) = 0.

Similarily, we can write:

E(u[t+ 1]2) = Ek

(∫ αθl−k

−∞
(z + k)2p(z)dz +

∫ ∞

αθl−k

(z + k − θl)2p(z)dz

)

= Ek

(∫ αθl

−∞
z2p(z − k)dz +

∫ ∞

αθl

(z − θl)2p(z − k)dz

)

= Ek

(∫ ∞

−∞
z2p(z − k)dz − θl

∫ ∞

αθl

(2z − θl)p(z − k)dz

)
(A19)

Taking the derivative of the above equation with respect to α and exchanging the order of differentiation and integration (i.e.,
E(·)), we obtain:

∂E(u[t+ 1]2)

∂α
= −Ek

(
∂

∂α
θl
∫ ∞

αθl

(2z − θl)p(z − k)dz

)
= Ek

(
∂

∂α
θl
∫ αθl

∞
(2z − θl)p(z − k)dz

)
= (2α− 1)(θl)3Ek

(
p(αθl − k)

)
(A20)

Note that Ek

(
p(αθl − k)

)
> 0. The derivative is negative when α < 1

2 and positive when α > 1
2 . Therefore, when α = 1

2 ,
E(ul

i[t]
2) is minimized for all t ∈ {1, 2, . . . , T}.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

B. Applying optimal threshold to IF neurons

Table 5. Timesteps vs. Accuracy under rate coding with and w/o optimal threshold.

Use Opt.
threshold T=4 T=8 T=16 T=24 T=32 T=64 T=128

✘ 10.00% 10.00% 55.52% 91.05% 94.02% 95.32% 95.80%
✔ 33.55% 77.80% 90.40% 93.34% 94.40% 95.55% 95.83%

In this section, we use VGG-16 to conduct experiments on CIFAR-10 and compare two threshold settings for IF neurons:
vlth = 1

2θ
l and vlth = θl. Notably, since each spike carries equal weight, the over-fired information can be treated as

quantization error. The experimental results in Table 5 demonstrate that setting vlth = 1
2θ

l effectively reduces encoding
errors in rate coding. When T is relatively small (e.g., T ≤ 16), the last term in Equation (5), i.e. the residual error, can
no longer be ignored. In this case, the optimal threshold effectively controls the encoding error, leading to a significant
performance improvement.

C. Algorithm for ANN-SNN conversion

Algorithm 2 Algorithm for ANN-SNN conversion under CSS coding.

Input: ANN model fA(Ŵ , b̂), number of timesteps T , number of batches B, number of layers L.
Output: SNN models fS(W, b)
/ ∗ determine θl ∗ /
for l = 0 to L− 1 do
p̄l ← 0
for n = 0 to B − 1 do
pl ← 99.99th percentile of al distribution
/ ∗ average ∗ /
p̄l ← p̄l + pl

/B
end for
θl ← p̄l

end for
for l = 0 to L− 1 do

/ ∗ copy weight and bias ∗ /
W l ← Ŵ l

bl ← b̂l

Replace ReLU activation with TSA.
end for

D. Energy Consumption Analysis
The energy consumption of inferring a single image can be estimated by the following equation:

E = T × EAC ×
∑
l

FLOPs(l)×R(l) (A21)

where T denotes the number of timesteps, EAC denotes the energy consumption of an AC operation, R(l) denotes the firing
rate of the l-th layer. FLOPs(l) denotes the number of floating-point operations in l-th layer:

FLOPs(l) =

{
(Kl)2 ×W l ×H l × Cl

in × Cl
out, Conv layer

Cl
in × Cl

out, Linear layer
(A22)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Canonic Signed Spike Coding for Efficient Spiking Neural Networks

Stanojevic et al. (2023) reported an average of 0.38 spikes per neuron on VGG-16. Assuming similar neuronal activity
levels across layers, we estimate energy consumption for TTFS coding with the following equation:

E = 0.38× EAC ×
∑
l

FLOPs(l) (A23)

E. Additional Results for Section 5.4
Results from VGG-11:

0.4 0.5 0.6 0.7 0.8
50

60

70

80

90

100

Ac
c.

 (%
)

(a) VGG-11 on CIFAR-10

0.2 0.3 0.4 0.5 0.6 0.7 0.8
u[T]

Pr
ob

. d
en

sit
y

(b) VGG-11 on CIFAR-10
= 0.4
= 0.5
= 0.6
= 0.7

Results from VGG-13:

0.4 0.5 0.6 0.7 0.8
50

60

70

80

90

100

Ac
c.

 (%
)

(a) VGG-13 on CIFAR-10

0.2 0.3 0.4 0.5 0.6 0.7 0.8
u[T]

Pr
ob

. d
en

sit
y

(b) VGG-13 on CIFAR-10
= 0.4
= 0.5
= 0.6
= 0.7

15

