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Abstract

The Mixture-of-Experts (MoE) architecture enables a significant increase in the1

total number of model parameters with minimal computational overhead. However,2

it is not clear what performance tradeoffs, if any, exist between MoEs and standard3

dense transformers. In this paper, we show that as we increase the number of experts4

(while fixing the number of active parameters), the memorization performance5

consistently increases while the reasoning capabilities saturate. We begin by6

analyzing the theoretical limitations of MoEs at reasoning. We prove that there7

exist graph problems that cannot be solved by any number of experts of a certain8

width; however, the same task can be solved by a dense model with a slightly9

larger width. On the other hand, we find that on memory-intensive tasks, MoEs10

can effectively leverage a small number of active parameters with a large number11

of experts to memorize the data. To empirically validate our findings, we pre-train12

a series of MoEs and dense transformers and evaluate them on commonly used13

benchmarks in math and natural language. We find that increasing the number of14

experts helps solve knowledge-intensive tasks, but fails to yield the same benefits15

for reasoning tasks.16

1 Introduction17

The explosion in capabilities of large language models in recent years has largely been enabled by18

scaling their size, as measured by the number of parameters in the model. In the standard Transformer19

architecture, scaling the number of parameters entails a proportional increase in computational cost,20

e.g. doubling the number of parameters requires doubling the number of floating-point operations21

(FLOPs), making training and inference more computational intensive. Mixture-of-Experts (MoE)22

were introduced as a solution for this problem [66, 38, 21]. MoEs replace the single MLP in each23

Transformer block with multiple MLPs (called experts), where each token is routed to a few experts24

based on a linear routing function. The number of parameters in the MoE layer therefore increases25

with the total number of experts, while the compute increases only with the number of “active”26

experts (i.e., the number of experts to which the token is routed to). This offers a promising option27

for scaling models: increase the number of experts instead of the model dimension or its depth. For28

this reason, MoEs have become very popular, and many frontier models today are based on the MoE29

architecture [2, 17, 4, 16, 30, 79].30

In this work we study whether MoE indeed offers a “free-lunch”, enabling gains in performance with31

no computational cost. Interestingly, we find that the benefit from MoEs greatly depends on the task32

at hand. We show that for reasoning-based tasks, such as graph problems and mathematical reasoning,33

MoEs offer limited performance gains, and increasing the number of experts cannot compete with34

scaling the dimension (width) of the model. On the other hand, for memory-intensive tasks, we show35

that scaling the number of experts is competitive with scaling standard “dense” MLPs.36
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Figure 1: (a) Evaluation: world knowledge. We train a series of dense transformers and MoEs
on 65B tokens from a corpus essentially made of Fineweb-edu, Cosmopedia and Wikipedia (see
section 4 for details). We then evaluate the models on several world knowledge benchmarks (e.g.,
TriviaQA [33], Natural Questions [36]) and report the average F1 accuracy. Surprisingly, at a fixed
number of total parameters, MoEs with substantially fewer active parameters approximately match
the performance of dense models. This highlights the importance of experts in tasks that require
memorization. (b) Evaluation: commonsense. Here we evaluate the aforementioned pre-trained
models on natural language commonsense benchmarks (e.g., HellaSwag [83], WinoGrande [62]). On
these reasoning tasks, we observe that MoEs perform worse than dense models and more significant
benefits are obtained by increasing the number of active parameters. (c) Evaluation: math. Here
we train a series of dense transformers and MoEs on 65B tokens from a corpus essentially made
of Proof-Pile2 [7] (see section 4 for details). The results are consistent with the ones in (b): MoEs
perform worse than dense models at equal number of total parameters.

To demonstrate these claims, we begin with a theoretical analysis of MoEs and dense models. We37

use communication-complexity lower bounds to show that a single-layer MoE requires a critical38

dimension to solve a simple graph connectivity problem, implying that MoEs offer no benefit for39

solving this problem and only consume unnecessary memory. On the other hand, we show that for a40

pure memorization task, where the model only needs to “remember” an arbitrary set of examples,41

scaling the number of experts is equivalent to scaling the number of parameters in dense transformers,42

implying a significant computational gain when fixing the number of active parameters (section 3).43

Finally, we train dense transformers and MoEs on real datasets of mathematical reasoning and natural44

language, and perform intensive benchmarking of these models on a wide variety of downstream45

tasks. For memory-intensive tasks, MoEs surprisingly have a great advantage, where increasing the46

number of experts can match the performance of large dense models (Figure 1a). However, we show47

that for tasks that rely on reasoning, scaling the number of experts cannot compete with increasing48

the model dimension (Figures 1b-1c). Moreover, MoEs exhibit some memorization behaviors when49

trained on math problems (Figure 2). Taken together, our results show that the gains from using50

MoEs depend greatly on the nature of the training data and downstream task, and that while MoEs51

can improve performance in certain cases, sometimes increasing the effective size (width) of the52

model is unavoidable.53

2 Related work54

Mixture of Experts. Mixture-of-Experts (MoE) date back to the work of [28, 32]. [66, 21] were55

the first to scale this idea to deep learning and obtain state-of-the-art models in machine translation.56

Since then, several works have improved their routing algorithms [38, 39, 61, 13, 90, 5, 88], have57

improved their downstream performance after finetuning [19, 93] or made their training and inference58

more efficient [60, 22, 55, 72]. However, only a few papers have studied the science of MoEs and59

their comparison with dense transformers. [13, 35] establish scaling laws for MoEs. [11] design a60

specific classification problem where a model with multiple experts provably outperforms one with61

only one expert. [66, 38, 6, 39, 21, 19] show that given a fixed FLOP budget, MoEs are always better.62

However, these papers claim that on a per parameter basis, MoEs always seem comparatively worse63

than dense models. In this paper, we temper this claim by showing that it depends on the nature of the64

task at hand: on reasoning tasks, we validate this claim but on memory-intensive tasks, equally-sized65

MoEs perform as well as dense transformers.66
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Language models and memorization. Large language models (LLMs) store a considerable amount67

of knowledge in their parameters [59, 24]. They memorize useful knowledge such as facts and68

commonsense [87]. Many works studied how memorization occurs in LLMs by developing tools69

to locate the knowledge in the model [48, 3, 42] or by tracking the training dynamics [73, 68]. We70

draw inspiration from [3] and evaluate the memorization of our models by pre-training them on a71

mixture of datasets that includes Wikipedia, and at test time, evaluate them on world knowledge72

benchmarks, which are essentially question answering tasks on Wikipedia facts. With respect to73

theoretical findings, [34, 45, 44] provide upper bounds on the number of parameters needed for dense74

transformers to perform memorization tasks under various conditions.75

Language models and reasoning. In recent years, transformer-based language models have76

displayed remarkable effectiveness in solving a broad range of reasoning tasks. Specifically, the77

reasoning capabilities of transformers have been studied in the context of arithmetic problems78

[29, 12, 26, 91, 47, 37], mathematical reasoning [84, 27, 76] graph problems [63, 20, 31, 75] and79

code challenges [67, 92]. Recently, state-of-the-art language models were used for solving complex80

math olympiad problems [18, 53, 54]. With respect to theoretical findings, various works study the81

reasoning capabilities of transformers, relating their expressive power to other complexity classes and82

formal languages [77, 89, 69]. Other works study how chain-of-thought can improve the reasoning83

capabilities of language models in terms of expressive power and learnability [1, 49, 46]. However, the84

reasoning capabilities of MoE language models compared to their dense counterparts have received85

comparatively less attention.86

3 Theory: representational capacity87

In this section, we analyze the capability of MoE transformers compared to standard (dense) models.88

We begin by studying a simple graph problem that requires scaling the hidden dimension of the89

transformer, showing that MoEs with small hidden dimension cannot solve this problem, regardless90

of the number of experts used. Then, we show that MoEs can effectively memorize random inputs,91

requiring significantly less computational resources (active parameters) compared to dense models.92

Consider a one-layer transformer f ∈ TransformerNm,H,1 which takes as input a sequence of length93

N and has logarithmic bit-precision. f embeds the input into dimension m via the function ϕ. f has94

h ≥ 1 attention heads, whose outputs are combined via concatenation before we apply point-wise95

function ψ 1. f is a dense transformer, if ψ is an MLP, i.e. function of the form:96

ψ(x) = u⊤σ(Wx+ b), forW ∈ Rm′×m, b ∈ Rm′
,u ∈ Rm′

where σ is the ReLU activation function. f ∈ TransformerNm,H,1,K is an MoE transformer with K97

experts if ψ is a function of the form:98

ψ(x) = u⊤
i σ(Wix+ bi) for i = argmax

j
r⊤j x

where W1, . . . ,Wk ∈ Rm′×m, b1, . . . , bk ∈ Rm′
, u1, . . . ,uk ∈ Rm′

are the parameters of each99

expert and r1, . . . , rk define the routing function (we use top-1 routing).100

Define the parameters as Qh, Vh,Kh ∈ Rm×m, ϕ : X → Rm, ψ : Rm → R. The output of f is:101

f(x1, . . . ,xN ) = ψ
([

softmax
(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)Vh

]
h∈[H]

)
.

3.1 MoEs require a critical hidden size to solve graph reasoning tasks102

We begin by showing a lower-bound on the width for a depth-1 mixture of expert model for the103

length-2 path problem. This lower bound implies a lower bound for search and retrieval tasks such as104

graph connectivity, shortest path, and cycle detection.105

1In multi-layer Transformers, each layer outputs a vector of size m. However, since our focus in this section
will be on binary classification problems, we will let the transformer output a single scalar, and we interpret the
output of the final token as the prediction for the classification task.
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Theorem 3.1 (Length-2 path lower-bound on sparse transformers). For some input sequence G =106

(V,E), fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈107

TransformerNm,H,1,K with O(logN)-bit precision that solves length-2 path for any input X where108

XA is a function of edges with the source s, XB is a function of edges with the destination d. Then,109

f has width satisfying mH = Ω(|V |/ logN).110

The proof follows almost identically from the proof in [63] for the class TransformerNm,H,1. The111

original proof does not place constraints on the function ψ and is based on a communication-112

complexity argument. As such we may design ψ so that it first routes and then chooses which expert113

to apply. We give a complete proof in Appendix A. As such, the result of [63] can also be extended114

to the class TransformerNm,H,1,K .115

Upper bound on width of depth-1 dense transformer for reasoning. In this section we give an116

upper bound for the width required for a dense model to solve the length-2 path problem.117

Theorem 3.2 (Length-2 path width upper bound for transformer). There exists a transformer of width118

|V | and O(logN)-bit precision that solves length-2 path problem for any input.119

The proof relies on an encoding of the inputs where the output values only exceed a certain threshold120

when u and v, the source and destination vertices, have edges with a common vertex. We defer the121

proof to Appendix A.122

Parameter-matched comparison of dense and sparse depth-1 transformers. Using the lower-123

bound on width required for a sparse transformer (Theorem 3.1) and the upper-bound on width124

required for a dense transformer (Theorem 3.2), we compare dense and sparse transformers when125

they have the same number of total parameters. We find that when the number of experts exceeds126

(logN)2, the sparse model is unable to solve the same task as the dense model.127

Corollary 3.3. Consider a sparse transformer (with K experts) and a dense transformer with the128

same number of parameters. There exists a number of experts K so that the the sparse model is not129

able to solve the reasoning task, but the dense transformer solves the task.130

Proof. Suppose we have two depth-1 transformers, where one is a dense model and the other is a131

mixture of experts with K experts. Let the width of the dense model be md, and the width of the132

sparse model be ms. The number of parameters in the dense model is O(m2
d) and the number of133

parameters in the sparse model is O(Km2
s). In order to match the number of parameters, it must be134

the case that ms =
md√
K

. Suppose we let md = |V |, as this is sufficient to solve the above problems.135

For any K ≥ Ω
(
(logN)2

)
, the sparse model is not sufficiently wide to solve the problem.136

3.2 MoEs use their experts to solve memory-intensive tasks137

In this section, we provide an upper-bound on the number of parameters necessary for a sparse trans-138

former to solve memorization tasks, followed by a lower-bound on the number of parameters needed139

for a dense transformer to solve the same task. We use these results to compare the memorization140

capabilities of dense and sparse transformers with the same number of active parameters. We find141

that with enough experts, the sparse transformer is able to solve memorization tasks with less active142

parameters than the dense transformer. In both bounds we assume that transformer has logarithmic143

number of bits to encode each parameter.144

We consider sequences {(Xi, yi)}ni=1 where Xi ∈ RN×m are input sequences of length N in145

dimension m such that Xi[j] is sampled from a Gaussian distribution N (0, Im). We assume146

y1, . . . , yN ∈ {±1} are arbitrary labels for the n sequences. The objective is for a transformer to147

memorize these sequences, i.e. map each input Xi to a label yi. The classification is determined by148

the sign of the last token output.149

Upper-bound on MoE for memorization. We begin by showing that, with high probability over150

the choice of the inputs, the MoE architecture can memorize (i.e., arbitrarily label the examples),151

with a small number of active parameters.152

Theorem 3.4. With probability at least 0.99, there exists a one-layer MoE transformer withK experts,153

using O
(mn
K

+mK
)

active parameters and O (mn+mK) total parameters that, when applied154
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to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e., sign(f(Xi)) =155

yi for all i = 1, . . . , n.156

Specifically, if we choose K =
√
n we get that an MoE architecture can solve the memorization157

problem with O(m
√
n) active parameters. . To prove this result, we show that for a random linear158

routing function, the number of examples routed to each expert is approximately n/K. Then, we159

show that an expert with O(n/K) neurons can memorize a sample of size O(n/K). We present the160

full proof in Appendix A.161

Lower bound on memorization with dense Transformer. Next, we give a lower-bound on the162

number of parameters for a dense transformer to perform memorization.163

Theorem 3.5 (Lower bound for dense model). Given the same task as above, a dense Transformer164

requires Ω̃(n) parameters to solve the memorization task.165

This bound follows from the fact that there are 2n possible labels for any fixed set of n inputs, and at166

most 2cW functions with W parameters and c bit per parameters.167

Separation between MoEs and Dense Models. Observe that the previous results on memorization168

imply a separation between MoEs and dense models in terms of the number of active parameters.169

Namely, we showed that an MoE withO(m
√
n) active parameters can memorize, while a dense model170

requires Ω̃(n) parameters. So, for large enough n (i.e. when n≫ m2), MoEs are significantly more171

efficient. Comparing the number of total parameters, MoEs require O(mn) parameters (assuming172

K ≤ n), so both MoE and dense models have linear dependence on n in the total parameter count.173

4 Pre-trained models174
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Figure 2: Generalization gap i.e., dif-
ference between the training and test ac-
curacies, when the test set is GSM8k (a)
and Hendrycks-MATH (b).

In this section, we pre-train dense transformers and MoEs and175

compare their performance on standard math and natural lan-176

guage benchmarks. We break the downstream tasks into those177

that require more memorization and those that require more178

reasoning. The memorization-intensive tasks test for “world179

knowledge” and consist of benchmarks like TriviaQA [33].180

We break the reasoning-intensive tasks into two subcategories:181

one for natural language reasoning tasks like WinoGrande [62]182

and another for mathematical reasoning tasks like Hendrycks-183

MATH [25]. Descriptions of the architecture, hyperparameters,184

pre-training dataset, and evaluation are in Appendix B.185

4.1 Results186

Experts improve memorization more than reasoning. We187

observe that our theoretical results from section 3 hold when188

pre-training and evaluating language models on natural lan-189

guage and math. In Figure 1a, we report the accuracy of our190

models with respect to the number of total parameters. All191

the lines in the plot approximately coincide which implies192

that regardless of the number of active parameters, MoEs can193

effectively use their routing to leverage all of their parameters194

to solve memory-intensive tasks. On the other hand, on com-195

monsense and math benchmarks (Figures 1b,1c) we find that196

MoEs do not reach the performance of dense models with the197

same number of total parameters. This indicates that for these198

reasoning tasks, increasing the dense model width is more199

effective that adding experts.200

On mathematics tasks, MoEs display a higher train-test gap than dense models, suggestive201

of memorization. We provide additional evidence that memorization occurs in pre-trained MoEs202

by considering the generalization gap. In Figure 2 we select 6,319 random problems from the203
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Figure 3: (a) On world knowledge benchmarks, MoEs consistently outperform dense transformers in
downstream performance when fixing the validation perplexity. (b-c) In reasoning benchmarks, dense
transformers perform about the same as MoEs at a fixed validation perplexity. MoEs can achieve
these perplexities with less active parameters, but may require substantially more total parameters.

OpenMathInstruct dataset, which is part of the training mixture data. More precisely, we pick 5,000204

Hendrycks-MATH like examples and 1,319 GSM8k-like examples to ensure that the number of205

training examples matches with the corresponding number of examples in GSM8k and Hendrycks-206

MATH test sets. We then report the generalization gap, which is the gap between the accuracy207

on training examples and test examples. Despite making a single pass on the OpenMathInstruct208

dataset, Figure 2 shows that at scales beyond 159M parameters, MoEs suffer from a more significant209

generalization gap than dense transformers. This is suggestive that MoEs are more liable to memorize210

training data than dense models.211

MoE models excel at world knowledge tasks but match dense models in reasoning when perplex-212

ity is fixed. Finally, we focus on the relationship between validation perplexity and downstream213

performance in Figure 3. Rather than comparing models by their parameter count, we can compare214

them based on how well they fit the training distribution as measured by validation perplexity. Even215

though two models may have the same perplexity, they will have learned different functions. The216

question is then if we can see any high level patterns in which types of functions a particular model217

class is more likely to learn. Figure 3a shows that at a fixed perplexity, the MoE models outperform218

the dense models on world knowledge tasks. This suggests that MoEs do have a bias towards learning219

functions that memorize training data. On the other hand, Figures 3b and 3c show that MoEs and220

dense models perform about the same on the reasoning tasks at fixed validation perplexity. We can221

square this with the results from Figure 1 by noting that at equal total number of parameters an MoE222

has worse validation perplexity than the corresponding dense model. This suggests that while MoEs223

do not change the relationship between perplexity and downstream accuracy on reasoning tasks224

relative to dense models, they may struggle to learn the reasoning parts of the training distribution as225

well.226

Overall, our main findings in Figure 1 and supplementary experiments in Figures 2 and 3 corroborate227

the hypothesis that MoEs can effectively use more experts to increase their memory capacity, but not228

necessarily their capability to reason.229
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A Proofs483

A.1 Reasoning proofs484

Definition A.1 (Set-disjointness task). Set disjointness is the following task: given two inputs485

A,B ∈ {0, 1}r for some r ∈ N, compute maxiAiBi.486

Set-disjointness can be thought of as follows: Alice and Bob are given sets A and B respectively.487

Their objective is to determine whether they have any overlapping items in their sets.488

Lemma A.2 (Equivalence of set-disjointness and length-2 path). The set-disjointness task is equiva-489

lent to the length-2 path task.490

Proof. ( =⇒ ): Given an instance of set-disjointness, we can encode it into a length-2 path problem.491

Denote every item i as a vertex. Denote two extra vertices as A, B, corresponding to Alice and Bob.492

For every element i that Alice has, draw an edge between A and i. For every element i that Bob493

has, draw an edge between B to i. If and only if there are any overlapping elements, then there is494

a length-2 path from A to B. The number of elements because the number of vertices that do not495

belong to Alice or Bob.496

( ⇐= ): Consider an instance G = (V,E), s, d of length-2 path, where s is the source vertex and d is497

the sink vertex. For all vertices with an edge with s, put this element into Alice’s set of elements. For498

all vertices with an edge with d, put this element into Bobs’s set of elements. If and only if there is a499

length-2 path, then Alice and Bob’s sets are overlapping. Then, r is the number of vertices.500

Lemma A.3 (Communication complexity lower-bound on concatenated outputs). For some sequence501

length, fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈502

TransformerNm,H,1 with O(logN)-bit precision that solves set disjointness for any input X where503

XA is a function of Alice’s input a ∈ {0, 1}r, XB is a function of Bob’s input b ∈ {0, 1}r, and504

X[N ]\(A∪B) is fixed regardless of a, b. Then, f has width satisfying mH = Ω(r/ logN).505

Proof. By re-writing the following, the remainder of the proof from [63] still holds.506

DISJ(a, b) = ψ
([

softmax
(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

)
.

This is because we may still use the same definition for Zh,S , Lh,S as in the proof. Hence, this507

concludes the proof.508

A.1.1 Proof of Theorem 3.1509

We restate the corollary.510

Theorem A.4 (Theorem 3.1). For some input sequence G = (V,E), fix two disjoint subsets A,B ⊂511

[N − 1], and consider a single-layer transformer f ∈ TransformerNm,H,1,K with O(logN)-bit512

precision that solves length-2 path for any input X where XA is a function of edges with the source s,513

XB is a function of edges with the destination d. Then, f has width satisfying mH = Ω(|V |/ logN).514

Proof. The proof outline is as follows:515

1. Adapt Lemma 39 [63] to support concatenation instead of addition from different attention516

heads.517
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2. The lower bound with concatenation holds for length-2 path because set-disjointness and518

length-2 path are equivalent.519

3. Extend the result to sparse transformers.520

We complete the first step with Lemma A.3. We complete the second set due to Lemma A.2. It521

remains to show that a router function also yields the same lower bound. We show that Lemma522

39 of [63] can be generalized to the case in which ψ is applied according to a routing function.523

Specifically, consider a top-1 routing function r : Rm → [K], and K element-wise functions524

ψ1, . . . , ψK : Rm → R. For shorthand, define:525

Y (XN ) =
[
softmax

(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

,

which is the output of the attention head prior to applying the element-wise transformation. Next, we526

define f(XN ) as the output when the router function r is used to select ψi.527

f(XN ) =
∑
i∈K

I{r(Y (XN )) = i}ψi(Y (XN )).

Because the lower bound does not place any restrictions on the function ψ and rather argues a528

communication-complexity lower bound due to information from Y (XN ), the lower bound also529

holds for a routing function.530

A.1.2 Proof of Theorem 3.2531

We re-state Theorem 3.2 and give its proof.532

Theorem A.5 (Theorem 3.2). For sequence length N , f ∈ TransformerNm,H,1 with O(logN)-bit533

precision that solves length-2 path for any input X . Then, there exists a dense transformer with width534

|V | which solves the problem.535

Proof. Tokens are elements in V = V ∪ {0} × V ∪ {0}. The input is as follows: for vertex i, if the536

source shares an edge with that vertex, then the i’th input value is (s, i). Otherwise, it is (s, 0). The537

first |V | tokens we see correspond to edges possibly shared with the source vertex. Then, the last538

|V | input tokens correspond to edges possibly shared with the destination vertex and share the same539

format as the first r tokens. In between, we can have arbitrary edges (u, v). We define an embedding540

function where ei is the i’th standard basis vector in dimension r.541

ϕ : V → R|V |

(u, v) 7→
{
ei if i > 0 and u = s or u = v

0 if i = 0.

Next, we define Vh ∈ R|V |×|V | to be the identity matrix, and Qh, Vh ∈ R|V |×|V | both to have 0542

everywhere. Consequently, the attention matrix is given by:543 
1/|V | . . . 1/|V |

...
. . .

1/|V | 1/|V |

ϕ(X)


j,i

=


2/|V | if there is a path through ii
1/|V | if one target vertex shares an edge with i
0 otherwise.

For any entry that exceeds 1
|V | , the correct answer is there is a length-2 path. Hence, any thresholding544

function which achieves this separation suffices.545

A.1.3 Proof of Corollary ??546

Corollary A.6. Consider a sparse transformer (with K experts) and a dense transformer with the547

same number of parameters. There exists a number of experts K so that the the sparse model is not548

able to solve the reasoning task, but the dense transformer solves the task.549

Proof. Suppose we have two depth-1 transformers, where one is a dense model and the other is a550

mixture of experts with K experts. Let the width of the dense model be md, and the width of the551

sparse model be ms. The number of parameters in the dense model is O(m2
d) and the number of552
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parameters in the sparse model is O(Km2
s). In order to match the number of parameters, it must be553

the case that ms =
md√
K

. Suppose we let md = |V |, as this is sufficient to solve the above problems.554

For any K ≥ Ω
(
(logN)2

)
, the sparse model is not sufficiently wide to solve the problem.555

A.2 Memorization Proofs556

In this section, we use d to denote the input dimension, N to denote the number of examples and n to557

denote the sequence length.558

Lemma A.7. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal559

distribution N (0, σ2Id), where σ > 0 and Id is the d× d identity matrix. For any δ ∈ (0, 1), with560

probability at least 1− δ, every pair of distinct vectors xi and xj satisfies561

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Proof. We aim to bound the inner product x⊤i xj for each pair (i, j) with i ̸= j. Since the vectors are562

sampled independently from N (0, σ2Id), each component xik and xjk is independently distributed563

as N (0, σ2).564

For fixed i ̸= j, the inner product Sij = x⊤i xj =
∑d

k=1 xikxjk is the sum of d independent random565

variables. Each term xikxjk has:566

• Mean:567

E[xikxjk] = E[xik]E[xjk] = 0.

• Variance:568

Var[xikxjk] = E[x2ik]E[x2jk] = σ4.

Since Sij is a sum of independent, zero-mean random variables with variance σ4, the variance of Sij569

is:570

Var[Sij ] = dσ4.

We use the fact that Sij is approximately normally distributed due to the Central Limit Theorem. For571

a normal distribution Z ∼ N (0, σ2
Z), the tail probability satisfies:572

P(|Z| ≥ t) ≤ 2 exp

(
− t2

2σ2
Z

)
.

Applying this to Sij , we have:573

P
(
|x⊤i xj | ≥ t

)
≤ 2 exp

(
− t2

2dσ4

)
.

There are
(
N
2

)
≤ N2

2
pairs of distinct vectors. Applying the union bound over all pairs:574

P
(
∃ i ̸= j : |x⊤i xj | ≥ t

)
≤ N2 exp

(
− t2

2dσ4

)
.

To ensure that this probability is at most δ, set:575

N2 exp

(
− t2

2dσ4

)
≤ δ.

Taking the natural logarithm:576

− t2

2dσ4
+ 2 lnN ≤ ln δ.
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Rewriting:577

t2

2dσ4
≥ 2 lnN − ln δ.

Noting that − ln δ = ln
1

δ
, we have:578

t2

2dσ4
≥ 2 lnN + ln

1

δ
.

Including the factor from the inequality, adjust as:579

t2

2dσ4
≥ 2 lnN + ln

2

δ
.

Thus,580

t ≥ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Therefore, with probability at least 1− δ, every pair of distinct vectors satisfies:581

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

582

Lemma A.8. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal583

distribution N (0, σ2Id). For any δ ∈ (0, 1), with probability at least 1− δ, every vector xi satisfies584

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

Proof. Each component xik is independently distributed as N (0, σ2). For a Gaussian random585

variable X ∼ N (0, σ2), the tail probability is:586

P(|X| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
.

For a fixed vector xi, the probability that its L∞ norm exceeds t is:587

P (∥xi∥∞ ≥ t) ≤ 2d exp

(
− t2

2σ2

)
.

Applying the union bound over all N vectors:588

P (∃ i : ∥xi∥∞ ≥ t) ≤ 2Nd exp

(
− t2

2σ2

)
.

To ensure this probability is at most δ, set:589

2Nd exp

(
− t2

2σ2

)
≤ δ.

Taking logarithms:590

− t2

2σ2
+ ln(2Nd) ≤ ln δ.

Rewriting:591

t2

2σ2
≥ ln

2Nd

δ
.
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Solving for t:592

t ≥ σ

√
2 ln

(
2Nd

δ

)
.

Therefore, with probability at least 1− δ, every vector xi satisfies:593

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

594

Lemma A.9. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal595

distribution N (0, σ2Id). For any δ ∈ (0, 1), with probability at least 1− δ, every vector xi satisfies596

∥xi∥2 ≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

.

Proof. Each vector xi has components that are independent N (0, σ2) random variables. Thus,597

∥xi∥22 =
∑d

k=1 x
2
ik is distributed as σ2χ2

d, where χ2
d denotes the chi-squared distribution with d598

degrees of freedom.599

Using concentration inequalities for chi-squared distributions, for any ε ∈ (0, 1):600

P
(
∥xi∥22 ≤ σ2d(1− ε)

)
≤ exp

(
−dε

2

4

)
.

Applying the union bound over all N vectors:601

P
(
∃ i : ∥xi∥22 ≤ σ2d(1− ε)

)
≤ N exp

(
−dε

2

4

)
.

To ensure this probability is at most δ, set:602

N exp

(
−dε

2

4

)
≤ δ.

Taking logarithms:603

−dε
2

4
+ lnN ≤ ln δ.

Rewriting:604

dε2

4
≥ ln

N

δ
.

Solving for ε:605

ε ≥ 2

√√√√√ ln

(
N

δ

)
d

.
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Since ε ∈ (0, 1), we can use the inequality
√
1− ε ≥ 1− ε

2
for ε ∈ (0, 1). Therefore, with probability606

at least 1− δ, every vector xi satisfies:607

∥xi∥2 ≥ σ
√
d(1− ε)

≥ σ
√
d
(
1− ε

2

)

≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

 .

608

Theorem A.10. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal609

distribution N (0, σ2Id), and let y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability610

at least 1− δ, there exists a one-hidden-layer ReLU neural network with N neurons that correctly611

classifies the points xi according to their labels yi, i.e.,612

sign(f(xi)) = yi for all i = 1, . . . , N,

where f is the function computed by the network. Furthermore, the L∞-norms of the weights and613

biases are bounded as follows:614

• Input weights: ∥wi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.615

• Biases: |bi| ≤ σ2d

1 +

√√√√2 ln

(
N

δ

)
d

.616

• Output weights: |αi| = 1.617

Proof. We will construct a one-hidden-layer ReLU network that correctly classifies the points xi618

with the specified labels yi. The network has the following structure:619

• Hidden layer: Consists of N neurons with weights wi ∈ Rd and biases bi.620

• Output layer: Computes the function f(x) =
∑N

i=1 αi ReLU(w⊤
i x+ bi), where αi = yi.621

Step 1: High-Probability Bounds622

From Lemmas A.7, A.8, and A.9, with probability at least 1− δ, the following hold simultaneously623

for all i ̸= j:624

1. Bound on ∥xi∥∞ (Lemma A.8):625

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

2. Lower bound on ∥xi∥2 (Lemma A.9):626

∥xi∥2 ≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

 .
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3. Bound on |x⊤i xj | (Lemma A.7):627

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Step 2: Constructing the Network628

We define the weights and biases as follows:629

• Input weights: wi = xi.630

• Biases: bi = −x⊤i xi + s, where s =
σ2d

2
.631

• Output weights: αi = yi.632

Step 3: Network Output on Training Points633

For each training point xj , the pre-activation of the i-th hidden neuron is:634

zij = w⊤
i xj + bi = x⊤i xj − x⊤i xi + s.

We consider two cases:635

Case 1: i = j636

zjj = x⊤j xj − x⊤j xj + s = s > 0.

Therefore,637

ReLU(zjj) = s.

Case 2: i ̸= j638

Using the bounds from Step 1:639

zij = x⊤i xj − x⊤i xi + s

≤ |x⊤i xj | − ∥xi∥22 + s

≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
− σ2d

1−

√√√√√2 ln

(
N

δ

)
d


2

+ s.

Simplify the expression (assuming d is large enough that terms involving
lnN

d
are small):640

Let ε =

√√√√2 ln

(
N

δ

)
d

, and γ =

√√√√2

(
2 lnN + ln

2

δ

)
d

.641

Then:642

zij ≤ σ2d
(
γ − (1− ε)

2
)
+ s.

Note that:643

(1− ε)2 = 1− 2ε+ ε2.

Therefore,644

zij ≤ σ2d
(
γ − 1 + 2ε− ε2

)
+ s.

Assuming ε and ε2 are small, and γ is small compared to 1 (since d is large), we have:645

zij ≤ −cσ2d,
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for some positive constant c > 0. Therefore,646

ReLU(zij) = 0.

Step 4: Final Output647

The network output for xj is:648

f(xj) =

N∑
i=1

αi ReLU(zij) = yjs+
∑
i ̸=j

yi · 0 = yjs.

Since s > 0, the sign of f(xj) matches yj :649

sign(f(xj)) = sign(yjs) = yj .

Step 5: Bounding the Weights and Biases650

• Input Weights: From Lemma A.8:651

∥wi∥∞ = ∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

• Biases: Using the bound on ∥xi∥2 from Lemma A.9:652

|bi| =
∣∣−x⊤i xi + s

∣∣
≤ ∥xi∥22 + s

≤
(
σ
√
d (1− ε)

)2
+
σ2d

2

= σ2d

(
(1− ε)2 +

1

2

)
= σ2d

(
1− 2ε+ ε2 +

1

2

)
≤ σ2d

(
3

2
− 2ε

)
.

• Output Weights: |αi| = |yi| = 1.653

654

Theorem A.11. Let X1, X2, . . . , XN ∈ Rn×d be N sequences of length n, where each token655

Xik ∈ Rd is independently sampled from the multivariate normal distribution N (0, Id). Let656

y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability at least 1 − δ, there exists657

a one-layer transformer with inner dimension N should probably use a different variable that, when658

applied to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e.,659

sign(f(Xi)) = yi for all i = 1, . . . , N,

where f is the function computed by the transformer. Furthermore, the L∞-norms of the weights and660

biases of the transformer are explicitly bounded as follows:661

• The L∞-norm of all weights in the attention mechanism is at most 1.662

• The L∞-norm of the feed-forward weights is at most663

∥Wff∥∞ ≤ 1√
n

√
2 ln

(
2Nd

δ

)
.
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• The L∞-norm of the feed-forward biases is at most664

∥bff∥∞ ≤ d

n

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• The output weights satisfy |αi| = 1 for all i.665

Proof. We will construct a one-layer transformer with inner dimension N that correctly classifies the666

sequences Xi according to their labels yi. The transformer consists of:667

• Self-Attention Layer: Configured to compute the average of the input tokens at the last668

position.669

• Feed-Forward Network: Applied at the last token to classify the averaged input.670

Step 1: Configure Self-Attention to Compute Token Averages671

Our goal is to compute the average of the input tokens Xi1, Xi2, . . . , Xin at the last token position.672

To achieve uniform attention, we set the query and key matrices to zero:673

• WQ = 0 ∈ Rd×dk674

• WK = 0 ∈ Rd×dk675

Since Qt =WQXit = 0 and Kt′ =WKXit′ = 0 for all tokens t, t′, the attention scores become:676

AttentionScoret,t′ =
Q⊤

t Kt′√
dk

= 0.

The softmax of a vector of zeros yields uniform attention weights:677

αt,t′ =
1

n
.

We set the value matrix WV = Id (the identity matrix), so the output of the attention layer at the last678

token t = n is:679

hn =

n∑
t′=1

αn,t′Vt′ =
1

n

n∑
t′=1

Xit′ = Si,

where Si ∈ Rd is the average of the input tokens for sequence Xi:680

Si =
1

n

n∑
k=1

Xik.

Step 2: Distribution of Si681

Since each Xik is independently sampled from N (0, Id), the average Si is distributed as:682

Si ∼ N
(
0,

1

n
Id

)
.

Step 3: Apply the Feed-Forward Network Theorem683

We now apply the previous theorem (Theorem A.10) to the vectors Si. Specifically, since Si684

are independently sampled from N
(
0,

1

n
Id

)
, we set σ =

1√
n

in Theorem A.10. The theorem685

guarantees that, with probability at least 1− δ, there exists a one-hidden-layer ReLU neural network686

with N neurons that correctly classifies the vectors Si according to their labels yi, i.e.,687

sign(f(Si)) = yi for all i = 1, . . . , N,
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where688

f(S) =

N∑
i=1

αi ReLU(w⊤
i S + bi),

with αi = yi.689

Step 4: Bounding the Weights and Biases690

From Theorem A.10, with σ =
1√
n

, the L∞-norms of the weights and biases are bounded as follows:691

• Input Weights:692

∥wi∥∞ ≤ 1√
n

√
2 ln

(
2Nd

δ

)
.

• Biases:693

|bi| ≤
1

n
d

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• Output Weights: |αi| = |yi| = 1.694

Step 5: Mapping to Transformer Architecture695

We design the feed-forward network at the last token to simulate the ReLU network operating on Si:696

• Feed-Forward Network at Last Token: Consists of weights Wff ∈ Rd×N and biases697

bff ∈ RN , where the i-th column of Wff is wi, and the i-th element of bff is bi.698

• Output Layer: Computes f(Xi) = α⊤ ReLU(W⊤
ff Si + bff), where αi = yi.699

Step 6: Bounding the Transformer Weights700

The L∞-norms of the transformer weights and biases are explicitly bounded:701

• Attention Weights: Since WQ = 0 and WK = 0, their L∞-norms are zero. The value702

matrix WV = Id has L∞-norm equal to 1.703

• Feed-Forward Weights:704

∥Wff∥∞ = max
i,k

|wik| ≤
1√
n

√
2 ln

(
2Nd

δ

)
.

• Feed-Forward Biases:705

∥bff∥∞ = max
i

|bi| ≤
d

n

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• Output Weights: |αi| = 1.706

Step 7: Network Output on Sequences707

For each sequence Xi, the transformer computes:708

1. Attention Layer: Outputs Si at the last token.709
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2. Feed-Forward Network: Computes710

hi = ReLU(W⊤
ff Si + bff) ∈ RN .

3. Final Output:711

f(Xi) = α⊤hi =

N∑
j=1

yj ReLU(w⊤
j Si + bj).

Since the feed-forward network at the last token simulates the ReLU network from Step 3, we have:712

sign(f(Xi)) = sign(f(Si)) = yi.

Conclusion713

With the constructed transformer, all sequences Xi are correctly classified according to their labels714

yi, and the L∞-norms of the weights and biases are explicitly bounded as specified.715

716

Theorem A.12. Let X1, X2, . . . , XN ∈ Rn×d be N sequences of length n, where each token717

Xik ∈ Rd is independently sampled from the multivariate normal distribution N (0, Id). Let718

y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability at least 1 − δ, there exists719

a one-layer Mixture-of-Experts (MoE) transformer with K experts, each having O
(
N

K

)
neurons,720

that, when applied to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e.,721

sign(f(Xi)) = yi for all i = 1, . . . , N.

Furthermore, the L∞-norms of the weights and biases of the transformer are explicitly bounded, and722

the bit-complexity (number of bits per parameter) is723

O

(
log(nd) + log ln

(
NK

δ

))
.

Proof. We construct a one-layer MoE transformer with K experts to classify the sequences Xi724

according to their labels yi. The transformer operates as follows:725

1. Self-Attention Layer: Configured to compute the average of the input tokens at the last726

position.727

2. Routing Function: Assigns each sequence to one of the K experts based on a routing728

decision.729

3. Expert Networks: Each expert processes its assigned sequences using a feed-forward730

network.731

Step 1: Configure Self-Attention to Compute Token Averages732

As in the previous theorem, we set the query and key matrices to zero to achieve uniform attention733

weights:734

• WQ = 0 ∈ Rd×dk735

• WK = 0 ∈ Rd×dk736

The output at the last token t = n is the average of the input tokens:737

hn =
1

n

n∑
k=1

Xik = Si,

where Si ∼ N
(
0,

1

n
Id

)
.738
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Step 2: Define Routing Vectors and Assign Inputs to Experts739

We define routing vectors r1, r2, . . . , rK ∈ Rd, where each rj is independently sampled from740

N (0, Id). For each sequence Xi, we compute routing scores:741

sij = r⊤j Si, for j = 1, . . . ,K.

The sequence Xi is assigned to expert j∗ where:742

j∗ = arg max
1≤j≤K

sij .

Since Si ∼ N
(
0,

1

n
Id

)
and rj ∼ N (0, Id), the routing scores sij are independent and distributed743

as N
(
0,

1

n

)
.744

Step 3: Balance Inputs Among Experts745

For each input Si, the probability that it is assigned to expert j is:746

P(Xi assigned to expert j) =
1

K
.

Let Nj denote the number of inputs assigned to expert j. Since assignments are independent, Nj747

follows a binomial distribution Binomial(N,
1

K
).748

Using Hoeffding’s inequality, for any ε > 0:749

P
(∣∣∣∣Nj −

N

K

∣∣∣∣ ≥ εN

)
≤ 2 exp

(
−2ε2N

)
.

Set ε =

√
ln(2K/δ)

2N
. Then,750

P
(∣∣∣∣Nj −

N

K

∣∣∣∣ ≥ εN

)
≤ δ

K
.

Applying the union bound over all experts:751

P
(
∃ j :

∣∣∣∣Nj −
N

K

∣∣∣∣ ≥ εN

)
≤ δ.

Therefore, with probability at least 1− δ, each expert receives at most752

Nj ≤
N

K
+ εN =

N

K
+N

√
ln(2K/δ)

2N
=
N

K
+

√
N ln(2K/δ)

2
.

Since N is large, Nj = O

(
N

K

)
.753

Step 4: Apply the Feed-Forward Network Theorem to Each Expert754

Within each expert j, we haveNj inputs Si assigned to it. We apply Theorem A.10 (from the previous755

result) to construct a feed-forward ReLU network that correctly classifies these inputs. Specifically:756

• Inputs: The vectors Si assigned to expert j, each sampled from N
(
0,

1

n
Id

)
.757

• Labels: The corresponding yi for these inputs.758

• Network Size: The network uses Nj neurons.759

From Theorem A.10 (with σ =
1√
n

and N replaced by Nj), with probability at least 1 − δ

K
, the760

network correctly classifies all inputs assigned to expert j. Applying the union bound over all experts,761

with probability at least 1− δ, all experts correctly classify their assigned inputs.762

Step 5: Bounding the Weights and Biases763

From Theorem A.10, the L∞-norms of the weights and biases in each expert are bounded:764
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• Input Weights:765

∥wi∥∞ ≤ 1√
n

√
2 ln

(
2Njd

δ/K

)
≤ 1√

n

√
2 ln

(
2NdK

δ

)
.

• Biases:766

|bi| ≤
d

n

1 +

√√√√√2 ln

(
Nj

δ/K

)
d

 ≤ d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 .

• Output Weights: |αi| = 1.767

Step 6: Bounding the Bit-Complexity768

To determine the bit-complexity per parameter, we need to calculate the number of bits required to769

represent the weights and biases with sufficient precision.770

Let ϵ be the desired precision for representing each parameter.771

Weights:772

The maximum absolute value of the weights is:773

Mw =
1√
n

√
2 ln

(
2NdK

δ

)
.

The number of bits required per weight parameter is:774

Bitsw = O

(
log

(
Mw

ϵ

))
= O

(
log

(
1√
n

√
2 ln

(
2NdK

δ

)
1

ϵ

))

= O

(
log

(
1√
n

)
+

1

2
log

(
2 ln

(
2NdK

δ

))
+ log

(
1

ϵ

))
= O

((
−1

2
log n

)
+

1

2
log ln

(
NK

δ

)
+

1

2
log (2 ln d) + log

(
1

ϵ

))
.

Simplifying, we have:775

Bitsw = O

(
log n+ log d+ log ln

(
NK

δ

)
+ log

(
1

ϵ

))
.

Note that the negative term −1

2
log n becomes negligible in the overall O notation, as we are776

concerned with the total number of bits required.777

Biases:778

The maximum absolute value of the biases is:779

Mb =
d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 ≤ d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 .
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Since

√√√√2 ln

(
NK

δ

)
d

is small for large d, we can approximate Mb ≈ d

n
. The number of bits780

required per bias parameter is:781

Bitsb = O

(
log

(
Mb

ϵ

))
= O

(
log

(
d

nϵ

))
= O

(
log d+ log n+ log

(
1

ϵ

))
.

Total Bit-Complexity per Parameter:782

Combining the bits required for weights and biases, the bit-complexity per parameter is:783

Bits = O

(
log n+ log d+ log ln

(
NK

δ

)
+ log

(
1

ϵ

))
.

Since ϵ is a constant precision (e.g., machine epsilon), we can omit log
(
1

ϵ

)
in the O notation.784

Therefore, the bit-complexity per parameter depends logarithmically on n and d, and logarithmically785

on the logarithm of N , K, and 1/δ. This means that n and d are inside a single logarithm, while N ,786

K, and 1/δ are inside a double logarithm.787

Step 7: Final Transformer Architecture788

The MoE transformer consists of:789

• Attention Layer: Computes Si =
1

n

∑n
k=1Xik at the last token.790

• Routing Function: Assigns Si to expert j∗ = argmaxj r
⊤
j Si.791

• Experts: Each expert j has its own feed-forward network with weights and biases as792

constructed in Step 4.793

• Output: For each Xi, the transformer outputs f(Xi) = fj(Si) where fj is the function794

computed by expert j.795

Conclusion796

With the constructed MoE transformer, all sequences Xi are correctly classified according to their797

labels yi. The total number of neurons across all experts is:798

K∑
j=1

Nj = N,

since each input is assigned to exactly one expert. The L∞-norms of the weights and biases are799

explicitly bounded, and the bit-complexity per parameter is800

O

(
log(nd) + log ln

(
NK

δ

))
.

This completes the proof.801

802

Proof of Theorem 3.5. Let c be the number of bits used for encoding each parameters (and we assume803

that c is logarithmic in the problem parameters). Denote by H the class of all transformers with W804

parameters and c bits per parameters. Since H is a finite class, where each function in the class can805

be encoded with cW bits, we have |H| ≤ 2cW . Let X1, . . . , XN ∈ Rn×d be the N input points.806
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Assume a H can solve the memorization task. Then, for every choice of y1, . . . , yN ∈ {±1}, there807

exists a transformer f ∈ H s.t. f(Xi) = yi for all i ∈ [N ]. There are 2N possible assignments for808

y1, . . . yN and therefore there are at least 2N different functions in H. So, we get 2N ≤ |H| ≤ 2cW809

and therefore W ≥ N/c.810

B Training details811

Architecture. We train dense transformers and MoEs using the OLMoE codebase [52]. We812

set the number of layers L = 20 and vary the width d ∈ {256, 512, 1024, 2048, 4096} for dense813

transformers and d ∈ {256, 512, 1024}. Similarly to [52], we consistently set the intermediate814

dimension in the FFN/MoE blocks to be equal to d (and not 4d). For MoEs, we vary the number of815

experts E ∈ {8, 16, 32, 64}. For the specific case of width 256, we also train a MoE with 256 experts816

because its parameter count approximately matches the one of a width-2048 dense model and thus,817

we can compare the downstream performance of the two models. We use top-2 token-choice routing,818

without token dropping which is implemented in the dMoE function from the Megablocks package819

[22].820

Training hyperparameters. We use the AdamW optimizer [43] with a weight decay equal to 0.1.821

We set the learning rate to 0.001, train on 63B tokens (60k steps) with batch size 512 and sequence822

length of 2048. We use warmup during the 20% first training steps and a linear decay scheduler. We823

train our models using FSDP [86].824

Pre-training datasets. We train two collections of models, one series on natural language and825

another one on math. The “natural language" dataset is a mixture constituted of FineWeb-edu [58],826

Cosmopedia [8], Wikipedia and the training sets of the downstream tasks we evaluate on. The “math"827

dataset is a mixture made of Proof-Pile 2 [7] and instruction datasets such as OpenMathInstruct [74]828

and MetaMathQA [81]. A precise description of the training mixtures can be found in subsection B.1.829

Evaluation. We measure the validation perplexity on 5,000 held-out sequences sampled from830

the training distribution. And we evaluate our models on a series of natural language and math831

benchmarks. Explicitly, we divide them into three categories:832

– World-knowledge tasks: TriviaQA [33], Natural Questions [36], HotpotQA [80], WebQuestions833

[9], ComplexWebQuestions [70].834

– Commonsense tasks: ARC-C and ARC-E [14], CommonsenseQA [71], HellaSwag [83], Open-835

bookQA [50], PIQA [10], SciQ [78], SIQA [64], WinoGrande [62].836

– Math benchmarks: SVAMP [57], GSM8k [15], GSM-Hard [23], Hendrycks-MATH [25] and837

Minerva-MATH [40].838

In all our experiments, we plot the average accuracy for each of these three categories.839

B.1 Details on pre-training datasets840

In section 4, we pretrain two collections of models, one on “natural language" and the other on841

“math". Here, we give a precise breakdown of our training mixtures. We start with the “natural842

language" training mixture that totals 64B tokens:843

– 37B tokens from Fineweb-edu dedup [58].844

– 14B tokens from Cosmopedia [8].845

– 12B tokens from Wikipedia (we loop over Wikipedia 3 times).846

– 1B tokens from the training set of the downstream tasks we test on. We create 3 copies of847

each of these to increase their presence in the mixture. The presence of these datasets is848

pretty important as argued in [3] so that the model is familiar with the downstream tasks at849

test time.850

∗ ComplexWebQuestions training set [70]851

∗ HotPotQA training set [80]852

∗ Natural Questions training set [36]853
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∗ TriviaQA training set [33]854

∗ WebQuestions training set [9]855

∗ ARC-Easy and ARC-Challenge training sets [14]856

∗ Hellaswag training set [83]857

∗ OpenBookQA training set [50]858

∗ PIQA training set [10]859

∗ SciQ training set [78]860

∗ SIQA training set [64]861

∗ Winogrande training set [62]862

Our “math" training mixture that totals 66B tokens gathers:863

– 55B tokens from Proof-Pile 2 [7] that contain AlgebraicStack (11B), OpenWebMath [56]864

and ArXiv (29B).865

– 2B tokens from OpenMathInstruct-1: we select the instances with a correct answer from the866

training set [74]867

– 7B tokens from DeepMind math [65]868

– 2B tokens from the following instruction-like datasets:869

∗ Math-Orca [51]870

∗ TinyGSM [41] (we only select 1 million examples from there).871

∗ StackMathQA [85]872

∗ MAmmoTH2 [82] (we only select the mathstackexchange subset).873

∗ NuminaMath-CoT [53] (duplicated 3 times)874

∗ MetaMathQA [81] (duplicated 3 times)875
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