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Abstract

Retrosynthesis is one of the core tasks in the organic molecule design cycle, yet it
is still a computational challenge to produce suitable sets of precursors for a desired
product. Commonly used template-based approaches reduce the problem to a multi-
class classification task for single steps. However, reactions in available datasets
are noisy and incomplete, making usual training methods problematic. In this work,
considering that multiple disconnections are possible for a product, we propose
training models using differential top-k losses. We show that using these loss
functions yields improvements in every top-N metric, with little overhead relative
to cross-entropy. The use of more powerful models, more diverse and complete
datasets, and other methodologies, is expected to yield significant improvements
on this task when combined with the training approach presented here.

1 Introduction

The development of novel materials and molecules is at the foundation of societal development
towards a sustainable future. However, synthesis –i.e. the reaction steps for how to make a given
molecule– remains one of the crucial bottlenecks during the design cycles of such substances1, heavily
slowing down the discovery and production of such novel materials and molecules. Human experts
attempt to solve this problem by applying their chemical knowledge in retrosynthetic planning, where
the goal is to find a synthetic path for a target molecule, such that it can be resolved to commercially
available or easily synthetically accessible substances. The search is performed backwards by
inspection of the target molecule, while suggesting sets of precursors that, upon reaction under
adequate conditions, would lead to the desired product.

Current computational approaches for the multi-step problem2–6 pair single-step retrosynthetic pre-
diction models with search algorithms, that iteratively compose single-step predictions until a suitable
synthetic plan is obtained from commercially available starting materials. In turn, multiple strategies
have been published towards solving the single-step problem7, such as template-based8–12, graph
edit-based13,14 and sequence-based approaches4,15–18. Since the pioneering work of Corey19,20,
researchers have attempted to encode chemical transformations into expert-curated21,22 and auto-
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Figure 1: Top. Multiple plausible synthetic paths exist for a given product, however only a small
subset has been reported. Using cross entropy loss, models get punished for proposing synthetic
paths alternative to the ground truth. Bottom. Differentiable top-k based loss functions (below) help
this by also considering higher ranks (k) as valid, their importance given by a distribution PK .

matically extracted reaction rules2,8, that describe types of reactions found in data –very much like
“name reactions" in organic chemistry. When a template library is built, the single-step retrosynthetic
problem can be reframed as a multi-class classification problem2, where the task is to find the most
suitable reaction leading to the desired product. Although such approaches are limited by the size of
the template library, they are popular in synthesis planning tools thanks to their speed, as the problem
is reduced to a much simpler classification task. In this work, we focus solely on template-based and
single-step retrosynthesis approaches, and how mapping the training task closer to reality leads to
overall prediction improvements.

The challenge with single-step retrosynthesis task is that multiple correct possibilities exist to
synthesize the same target molecule15 (Figure 1 top). However, typically only one of the correct
possibilities is recorded in the current reaction benchmark datasets and hence the ground truth is
generally incomplete. As reactions other than the ground truth ones could equally be correct, the
cross entropy loss on which previous template-based approaches were trained is ill-posed8–10,12.

Inspired by recent improvements in image classification by Petersen et al. 23 , we introduce differential
top-k learning (DTk) for the single-step retrosynthetic task (Figure 1 bottom). We show that a
straightforward change in the loss function, which relaxes the distribution over the target templates,
leads better top-N accuracies compared to the same models trained on top-1 cross entropy. Most
strikingly, even the top-1 prediction accuracy typically increases as a result. We conclude that
the use of this type of cost functions is better suited for this task, both from the chemical and the
computational perspectives. We expect DTk learning to become valuable for other applications in
machine learning for chemical sciences, where the ground truth is incomplete and contains only a
fraction of the correct classes.

2 Methods

2.1 Template-based single-step retrosynthesis models

Several template-based models and molecular representations have been proposed in the recent years
to tackle the single-step retrosynthesis problem. In the seminal work of Segler et al. 2 , the authors
used a highway neural network architecture24 (NeuralSym) that takes as input an ECFP4 fingerprint
of the desired molecule25, to predict the most suitable template from a set of automatically extracted
transformations. More recent approaches are based on conditional graph logic networks (GLN)9,
modern Hopfield networks12, and re-ranking of predictions using energy-based models26, which all
improve over the simple highway neural network baseline. Though not ideal, all studies use top-k
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accuracy, whether the ground truth is found in the k most likely prediction or not, as a proxy for
evaluating and comparing single-step retrosynthesis models.

We investigated NeuralSym2, GLN9 and a Transformer classifier (ChemBERTa)27, whose input
is the molecular SMILES of the desired product. NeuralSym and ChemBERTa were trained and
tested using a set of 15 random seeds each time, using the same set of hyperparameters for each
loss function (see Appendix A.1). GLN was only run once for each loss function, due to its high
computational cost during training and inference.

2.2 Differential top-k learning

Conventionally used loss functions for classification tasks are built to maximize top-k, for a given
positive integer k28,29, cross entropy loss being the special case for k = 1. Building on recent
advances in differentiable sorting30,31, Petersen et al. 23 further relaxed the need to choose a value
of k, and instead use a distribution over this parameter, giving a relative importance to each top-k
objective. They thus propose a family of loss functions, each being specified by such distribution.
The authors thoroughly test the method in a range of benchmarks for image classification, and show
that mixed top-k strategies not only improve top-5 accuracies but also top-1 accuracy, achieving a
new state-of-the-art on ImageNet32.

Differentiable sorting works by producing a differentiable permutation matrix P30 from a model’s
raw logits fΘ(X). Each entry Pk,j of this matrix is interpreted as the predicted probability that class
j is the k-th best prediction. Finally, the loss function is fully specified by the distribution over ks
PK , so that PK(k) is the relative importance assigned to the pure top-k objective.

The model is then trained by minimizing the following loss function

L(X, y) = − log

(
n∑

k=1

PK(k)

(
k∑

m=1

Pm,y(fΘ(X))

))
. (1)

To highlight the importance of top-k predictions other than top-1, and thus the advantage of DTk
learning, examples are shown in the Appendix A.3, where models fail to predict the ground truth
precursors. In the cases where the ground truth is highly ranked, usually the other highly ranked
predictions also correspond to equally valid disconnections and possible transformations. However
the cross entropy loss still punishes the model for these “wrong" predictions. DTk learning prevents
this, thus giving more flexibility to the models which in turn allow them to predict more diverse
disconnections and reaction types.

2.3 Data and representation

Schneider et al. 33 initially published the USPTO 50k dataset, and Liu et al. 15 later curated it and
created the retrosynthesis benchmark dataset. It contains 50k reactions from 10 reaction superclasses.
We use the same train/valid/test split as used by Lin et al. 26 , and the same template library for
NeuralSym and ChemBERTa. The templates are extracted from atom-mapped reactions34, and their
quality might be limited by the quality of the mapping35. For the NeuralSym models, the target
molecules are represented with extended-connectivity fingerprints (ECFPs)25. The ChemBERTa
model directly takes tokenized SMILES as input. For GLN, the data is featurized as in the original
paper9.

3 Results & Discussion

We investigate three types of template-based single-step retrosynthesis prediction models on the
USPTO 50k dataset: NeuralSym2 based on the highway neural network architecture24, Graph Logic
Network (GLN)9, and a SMILES Transformer Classifier based on the pretrained ChemBERTa
architecture27. Each model is trained using the standard cross entropy loss function as a baseline,
and a set of selected Pk distributions for DTk learning. As the original GLN model used a different
optimization objective, the architecture was slightly modified to train with an explicit cross entropy
loss, allowing in turn training with DTk losses. Thus for this architecture we additionally report
results of training with the original loss as well as with cross entropy and DTk losses.
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As shown in Table 1, trainig with DTk losses typically provide accuracy improvements of as much
as 3% in some top-k accuracies relative to the cross entropy baseline on the same model. Note
that such gains in accuracy are achieved by simply changing the loss function while using the same
hyperparameters as for cross entropy. This method thus provides better results with little extra
overhead. In general we find that the best results are achieved typically with a combination of
strong top-1 (9/10 in table) with small additions of other top-k objectives, which tend to yield better
top-1 test accuracies as well as improvements in the other metrics. Other combinations work good
as well in some cases, such as flat distributions over the first n values of k, e.g. {1/3, 1/3, 1/3} or
{1/4, 1/4, 1/4, 1/4} and so on. However, training of the transformer model appears to be unstable under
some DTk losses, yielding far from optimal results in these particular cases. Further results are shown
in the Appendix A.2.

Notably, using DTk loss on the very simple NeuralSym architecture improves top-3 and top-5
accuracies, relative to the optimal results with the much more complex GLN model9. This shows
the potential of this training technique for this, as well as other classification tasks in chemistry36.
Further experiments are however required to determine training strategies that can work better in
general, across models and tasks. This is however left as future work.

Model type Loss function Top-k accuracy
1 3 5 10 20

NeuralSym

Cross entropy 45.43 66.85 74.09 81.34 85.92
Pk = {1/5,1/5,1/5,1/5,1/5} 46.24 69.12 76.79 83.12 86.55
Pk = {1/4,1/4,1/4,1/4, 0} 46.21 69.26 76.93 83.29 86.66
Pk = {1/3,1/3,1/3, 0, 0} 46.24 69.25 76.90 83.27 86.74
Pk = {1/10,0,0,0, 9/10} 45.56 68.90 76.87 83.37 86.68
Pk = {9/10,0,0,0, 1/10} 46.43 68.21 75.22 81.71 85.49
Pk = {9/10,0,0, 1/10,0} 46.57 68.14 75.43 81.59 85.44

ChemBERTa

Cross entropy 44.08 66.61 74.17 81.47 85.50
Pk = {1/5,1/5,1/5,1/5,1/5} 43.68 67.30 74.90 82.09 86.16
Pk = {1/4,1/4,1/4,1/4, 0} 22.40 40.88 50.28 61.29 66.64
Pk = {1/3,1/3,1/3, 0, 0} 37.95 59.96 68.76 77.30 82.03
Pk = {1/10,0,0,0, 9/10} 42.50 66.52 74.68 82.16 86.15
Pk = {9/10,0,0,0, 1/10} 44.75 67.03 74.72 82.05 86.09
Pk = {9/10,0,0,1/10, 0} 45.10 67.21 74.87 82.33 86.34

GLN

Original 52.27 66.56 74.05 82.28 88.09
Cross entropy 51.27 66.32 73.07 81.82 88.37
Pk = {1/5,1/5,1/5,1/5,1/5} 51.21 66.76 74.05 82.50 88.95
Pk = {1/4,1/4,1/4,1/4, 0} 50.89 66.25 73.50 82.54 88.24
Pk = {1/3,1/3,1/3, 0, 0} 51.55 67.56 75.19 83.46 88.71
Pk = {1/10,0,0,0, 9/10} 50.43 66.70 74.33 83.02 89.15
Pk = {9/10,0,0,0, 1/10} 52.27 66.10 73.69 81.74 88.45
Pk = {9/10,0,0, 1/10,0} 51.95 66.63 73.28 81.81 87.88

Table 1: Top-k accuracies on test set, for each combination of model type and loss function tested.
DTk stands for Differential Top-k loss with the Pk distribution shown in front. Numbers in bold
correspond to the maximum top-k accuracy achieved for the model type specified on the left column.
The numbers for NeuralSym and ChemBERTa models are average accuracies for 15 models trained
with the same parameters, but with the different random seeds shown in Appendix A.1. For GLN,
only one model was trained due to its long training and inference time. The additional "Original" loss
function is reported for GLN, as the original implementation9 had to be modified for training with
cross entropy loss.

4 Conclusion

Cross entropy is the most commonly used loss function for classification tasks in machine learning.
Here we argue that this function is not adequate for the task of single-step retrosynthesis planning, as
datasets for this task are incomplete and different reactions are usually as valid. Differentiable top-k
learning is proposed to alleviate this limitation, and it is shown that using this strategy for training
systematically leads to improvements on top-k accuracies. Notably, we show that the adoption of a
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DTk strategy can make a simple model like NeuralSym2 overperform much more complex models,
like GLN9, in certain top-k accuracies. This shows that the use of such loss functions can boost
the performance of retrosynthesis models when coupled with powerful models. We additionally
expect this approach to be useful and become a standard for other multi-label classification tasks in
chemistry36,37, beyond template based retrosynthesis. In the future, our work will be extended to
consider more diverse datasets, such as USPTO-full9, and more powerful models12. The code and
data to reproduce the results will be made available upon publication.
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