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ABSTRACT

Current state of the art computer vision applications rely on highly complex mod-
els. Their interpretability is mostly limited to post-hoc methods which are not
guaranteed to be faithful to the model. To elucidate a model’s decision, we
present a novel interpretable model based on an invertible deep convolutional
network. Our model generates meaningful, faithful, and ideal counterfactuals.
Using PCA on the classifier’s input, we can also create “isofactuals”– image in-
terpolations with the same outcome but visually meaningful different features.
Counter- and isofactuals can be used to identify positive and negative evidence
in an image. This can also be visualized with heatmaps. We evaluate our ap-
proach against gradient-based attribution methods, which we find to produce
meaningless adversarial perturbations. Using our method, we reveal biases in
three different datasets. In a human subject experiment, we test whether non-
experts find our method useful to spot spurious correlations learned by a model.
Our work is a step towards more trustworthy explanations for computer vision.
For code: https://anonymous.4open.science/r/ae263acc-aad1-42f8-
a639-aec20ff31fc3/

1 INTRODUCTION

The lack of interpretability is a significant obstacle for adopting Deep Learning in practice. As deep
convolutional neural networks (CNNs) can fail in unforeseeable ways, are susceptible to adversarial
perturbations, and may reinforce harmful biases, companies rightly refrain from automating high-risk
applications without understanding the underlying algorithms and the patterns used by the model.

Interpretable Machine Learning aims to discover insights into how the model makes its predictions.
For image classification with CNNs, a common explanation technique are saliency maps, which
estimate the importance of individual image areas for a given output. The underlying assumption,
that users studying local explanations can obtain a global understanding of the model (Ribeiro et al.,
2016), was, however, refuted. Several user studies demonstrated that saliency explanations did
not significantly improve users’ task performance, trust calibration, or model understanding (Kaur
et al., 2020; Adebayo et al., 2020; Alqaraawi et al., 2020; Chu et al., 2020). Alqaraawi et al. (2020)
attributed these shortcomings to the inability to highlight global image features or absent ones, making
it difficult to provide counterfactual evidence. Even worse, many saliency methods fail to represent
the model’s behavior faithfully (Sixt et al., 2020; Adebayo et al., 2018; Nie et al., 2018). While no
commonly agreed definition of faithfulness exists, it is often characterized by describing what an
unfaithful explanation is (Jacovi & Goldberg, 2020). For example, if the method fails to create the
same explanations for identically behaving models.

To ensure faithfulness, previous works have proposed building networks with interpretable com-
ponents (e.g. ProtoPNet (Chen et al., 2018) or Brendel & Bethge (2018)) or mapping network
activations to human-defined concepts (e.g. TCAV (Kim et al., 2018)). However, the interpretable
network components mostly rely on fixed-sized patches and concepts have to be defined a priori.

Here, we argue that explanations should neither be limited to patches and not rely on a priori
knowledge. Instead, users should discover hypotheses in the input space themselves with faithful
counterfactuals that are ideal, i.e. samples that exhibit changes that directly and exclusively correspond
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to changes in the network’s prediction (Wachter et al., 2018). We can guarantee this property by
combining an invertible deep neural network z = ϕ(x) with a linear classifier y = wTϕ(x) + b.
This yields three major advantages: 1) the model is powerful (can approximate any function Zhang
et al. (2019)), 2) the weight vector w of the classifier directly and faithfully encodes the feature
importance of a target class y in the z feature space. 3) Human-interpretable explanations can be
obtained by simply inverting explanations for the linear classifier back to input space.

As a local explanation for one sample x, we generate ideal counterfactuals by altering its feature
representation z along the direction of the weight vector z̃ = z + αw. The logit score can be
manipulated directly via α. Inverting z̃ back to input space results in a human-understandable
counterfactual x̃ = ϕ−1(z+αw). Any change orthogonal tow will create an “isofactual”, a sample
that looks different but results in the same prediction. While many vectors are orthogonal to w, we
find the directions that explain the highest variance of the features z using PCA. As the principal
components explain all variance of the features, they can be used to summarize the model’s behavior
globally.

We demonstrate the usefulness of our method on a broad range of evaluations. We compared our
approach to gradient-based saliency methods and find that gradient-based counterfactuals are not ideal
as they also change irrelevant features. We evaluated our method on three datasets, which allowed
us to create hypotheses about potential biases in all three. After statistical evaluation, we confirmed
that these biases existed. Finally, we evaluated our method’s utility against a strong baseline of
example-based explanations in an online user study. We confirmed that participants could identify
the patterns relevant to the model’s output and reject irrelevant ones. This work demonstrates that
invertible neural networks provide interpretability that conceptually stands out against the more
commonly used alternatives.

2 METHOD

Throughout this work, we rely on the following definitions, which are based on Wachter et al. (2018):

Definition 2.1 (Counterfactual Example). Given a data point x and its prediction y, a counterfactual
example is an alteration of x, defined as x̃ = x+ ∆x, with a altered prediction ỹ = y + ∆y where
∆y 6= 0. Samples x̄ with ∆y = 0 are designated “isofactuals”.

Almost any ∆x will match the counterfactual definition, including those that additionally change
aspects which are unrelated to the model’s prediction, e.g. removing an object but also changing the
background’s color. It is desirable to isolate the change most informative about a prediction:

Definition 2.2 (Ideal Counterfactual). Given a set of unrelated properties ξ(x) = {ξi(x)}, a sample
x̃ is called ideal counterfactual of x if all unrelated properties ξi remain the same.

The following paragraphs describe how we generate explanations using an invertible neural network
ϕ : Rn 7→ Rn. The forward function ϕ maps a data point x to a feature vector z = ϕ(x). Since ϕ is
invertible, one can regain x by applying the inverse x = ϕ−1(z). We used the features z to train a
binary classifier f(x) = wTz + b that predicts the label y. In addition to the supervised loss, we
also trained ϕ as a generative model (Dinh et al., 2016; 2015) to ensure that the inverted samples are
human-understandable.

Counterfactuals To create a counterfactual example x̃ for a datapoint x, we can exploit that w
encodes feature importance in the z-space directly. To change the logit score of the classifier, we
simply add the weight vector to the features z and then invert the result back to the input space:
x̃ = ϕ−1(z + αw). Hence, for any sample x, we can create counterfactuals x̃ with an arbitrary
change in logit value ∆y = αwTw by choosing α accordingly. Figure 1a shows several such
examples. Since the generation (ϕ−1) and prediction (ϕ) are performed by the same model, we know
that x̃ will correspond exactly to the logit offset αwTw. Consequently, x̃ is a faithful explanation.

To show that our counterfactuals are ideal, we have to verify that no property unrelated to the
prediction is changed. For such a property ξ(x) = vTz, v has to be orthogonal to w.1 As the
unrelated property ξ does not change for the counterfactual ξ(x̃) = vT (z + αw) = vTz = ξ(x),
we know that x̃ = ϕ−1(z + αw) is indeed an ideal counterfactual.

1ξ(x) could actually be non-linear in the features z as long as the gradient ∂ξ
∂z

is orthogonal tow.
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PCA Isosurface Since users can only study a limited number of examples, it is desirable to choose
samples that summarize the model’s behavior well (Ribeiro et al., 2016; Alqaraawi et al., 2020).
For counterfactual explanations, the change ∆x may vary significantly per example as ϕ(x) is a
non-linear function. As each x has a unique representation z in the feature space, we want to find
examples describing the different directions of the feature distribution. To isolate the effect of w,
such examples would have the same prediction and only vary in features unrelated to the prediction.

We implement this by first removing the variation along w using a simple projection z⊥ = z −
(wTz/wTw)w and then applying PCA on z⊥. The resulting principal components e1 . . . em are
orthogonal tow except of the last principal component em which has zero variance and can therefore
be discarded. The principal components span a hyperplane αw +

∑m−1
i βiei. Since all samples on

this hyperplane have the same prediction (a logit value of αwTw), it is an isosurface.

As a principal component ei is a vector in the z-space, we can create counterfactuals for it
ϕ−1(ei + αw) and understand how the changes of adding w differ per location in the z-space.
The e1, . . . , em−1 are sorted by the explained variance allowing to prioritize the most relevant
changes in the data. As the principal components cover the whole feature distribution, understanding
the effect of w on them allows forming a global understanding of the model’s behavior.

Saliency maps Saliency maps are supposed to draw attention to features most relevant to a predic-
tion. In our case, it is most reasonable to highlight the difference between x and the counterfactual
x̃. We can measure the difference although in an intermediate feature map h. The saliency map
of an intermediate layer can be resized to fit the input’s resolution as information remains local
in convolutional networks. Per feature map location (i, j), we calculate the similarity measure
m(i,j) = |∆hij | cos

(
](∆hij ,hij)

)
. The sign of the saliency mapm depends on the alignment of

the change ∆h with the feature vector h, i.e. (](∆hij ,hij) > 0). The magnitude is dominated by
the length of the change |∆hij |. Figure 1b presents saliency maps for the CELEBA Attractive label.

Model Our invertible network follows the Glow architecture (Kingma & Dhariwal, 2018). The
network is trained to map the data distribution to a standard normal distribution. We reduce the
input dimensionality of (3, 128, 128) down to (786) by fading half of the channels out with each
downsampling step. When generating a counterfactual, we reuse the z values out-faded from the
lower layers as they correspond to small details and noise. We have 7 downsampling steps and 351
flow layers. The network has 158.769.600 parameters in total. An important design decision is that
the final layer’s output is not input to the linear classifier. The PCA would fail to discover meaningful
directions as the N (0, I) prior induces equal variance in all directions. The classifier uses the output
of layer 321. The layers 322-351 are optimized using the standard unsupervised flow objective. For
the first 321 layers, we also train on the classifier’s supervised loss (for details see Appendix A.1).

3 EVALUATION

We evaluated the ability to construct hypotheses about the model’s behavior on three datasets and
with a user study. We focused on these aspects as our method is faithful by construction, needing no
empirical confirmation. Instead, we use the strong faithfulness guarantees of our model to evaluate
gradient-based attribution methods.

3.1 HYPOTHESIS DISCOVERY

CelebA A claimed utility of our method is that it allows users to discover hyphotheses about the
models features used for prediction. We choose CELEBA (Liu et al., 2015), a popular face dataset,
because it is a challenging dataset for feature attribution: how can an abstract concept as attractiveness
be linked to pixels? Additionally, it already contains annotations (e.g. make-up, accessories, hair),
which makes it easier for us to accept or reject a given hypothesis about feature importance.

We especially focus on the Attractive class as it is unclearer what the relevant features are.The
CELEBA Dataset in general and the class attractive in particular are ethically questionable. How can
a subjective label, which depends on individual or even cultural preferences, be reduced to a binary
label? Unfortunately, (Liu et al., 2015) did not state the annotation process (which is considered
good practice - (Gebru et al., 2020; Geiger et al., 2020)). Furthermore, the dataset was criticized for
lacking diversity (Kärkkäinen & Joo, 2019).
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Figure 1: (a) We generate counterfactual images by moving along the direction of the classifier
weights w of the attractive class and inverting it back to the input. Last row shows the saliency
maps from the center row (logit y=0) to the top row (y=8). Blue marks features changed into a
different direction and red marks features getting enhanced. (b) We extract principal components
(L=ei, R=−ei) orthogonal to the classifier weightw. All images in a row have the exact same logit
score given on the left. The saliency maps show the change between the bottom (y=-8) and top (y=8).

Figure 1b shows the first 8 principal components at different logit values. We base our investigation
on them, as they cover the feature distribution well by construction. At this point, we invite the reader
to study the explanations: What are your hypotheses about the model’s used features?

Studying the counterfactuals in rows (3R, 5L, 6R, 8R), one might hypothesize that glasses influence
the prediction of attractiveness negatively. To validate this, we analyzed our model’s predictions on
the test set. Since glasses are a labeled feature of CELEBA it is easy to test the hypothesis empirically.
Only 3.5% of the portrait photos, which are showing glasses were labeled as attractive by the model.
Furthermore, the correlation of the presence of glasses and the logit score was r=-0.35.

Another insight noticeable in 1L is that the amount and density of facial hair changes the prediction.
The correlation of the absence of facial hair with the attractiveness logit score was r=0.35. At the
same time, less head hair seemed to reduce attractiveness predictions in rows 1L, 2R, 4R. Row 6L
paints the opposite picture, which illustrates the varying effectw can have on different datapoints.
We found a correlation (r = 0.30) of hair-loss (combination of baldness or receding hairline) with
attractiveness.

Indicative of higher attractiveness appear to be a more feminine appearance (e.g. 4R in Figure
1) . This hints to a gender bias, which we confirmed as only 20.0% of men are predicted to be
attractive, and the label male was negatively correlated with the prediction (r = −0.59). Further,
it is noticeable that counterfactuals for higher attractiveness tend to have redder lips (1R, 2R,4R
and 5L). This hypothesis could also be confirmed as the label Wearing Lipstick is also positively
correlated (r = 0.64). For age, similar patterns can be found in 1L, 3R, 8L (r = 0.44). Table 4 in the
Appendix D lists the correlation of all 40 attributes. Some attributes cannot be found in the principal
components because the cropping hides them (double chin, necklace, necktie). Others describe local
details such as arched eyebrows, earrings. While earrings do not show up in the counterfactuals, they
are correlated with the model’s logit score by r=0.20. This might be because PCA tends to capture
global image features while smaller local changes are scattered over many principal components.
Another explanation could be that earings are actually not that relevant: if we control for gender using
partial correlation the earings are only correlated by r=-0.01.

Darker skin color seems to influence the network negatively, as in principal components (2R, 3R,
6L) a light skin color suggests high attractiveness. Since CELEBA has no labels for skin color, we
annotated 3250 randomly selected images: 249 photos matched the Fitzpatrick skin type V-VI and
were labeled as dark skin (Fitzpatrick, 1986). For light skin, the percentage of Attractive was 52.0%.
The same bias is contained in the model: r=-0.187 (-0.22, -0.15)95%.

Two4Two The TWO4TWO dataset (Anonymous, 2020) is a set of computer-generated images
intended to evaluate interpretable ML – to test both humans and algorithms. While the dataset is
simple, we control the data generation process and can create arbitrary images to test the model. The
dataset contains two abstract animals, Sticky and Stretchy. For Sticky, the right arms are moved
inwards and for Stretchy outwards (see Figure 2b). As the arms overlap sometimes, it is beneficial
also to use the color which is slightly predictive (blue for Stretchy and red for Sticky). Building
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Figure 2: (a) The principal components for TWO4TWO. Sticky is on the top and Strechy below.
The saliency maps shown below fail to highlight the object movement well. (b)The main feature of
Stretchy are the outward moved left arms. For Sticky, they are moved inwards

blocks (cubes or spheres), bending, rotation, and background are sampled independently. For the
TWO4TWO dataset, the invertible neural network ϕ was only trained on an unsupervised loss, i.e. the
gradients of the classifier were detachted. Probably due to the datasets simplicity, we had problems to
align the unsupervised and supervised loss well.

The principal components in Figure 2a suggest that the model indeed learned to use the color bias. We
an confirm this by resampling only the color and measure how the logit score is correlated: r=0.352.
For the arm’s position, we found a correlation with the model’s probability of -0.798. Additionally,
Sticky on the top seems to be more rotated, which we can also confirm as only changing the rotation
results in a correlation of the logit score with the absolute value of teh rotation of with r=0.136 (0.11,
0.16)95%. At high rotations, the model is more certain that it is a Sticky. Although not intended by
the dataset, this bias can be well explained by the fact that ϕ was not trained on the supervised loss.

Black Mice We wanted to check our method on a dataset which is not already known to have biases
as the CelebA dataset and is harder for a human to understand. The BLACK MICE dataset Andresen
et al. (2020) contains images of laboratory mice after different treatments. The label to predict is
related to the amount of pain. For a detailed discussion of the dataset, see Appendix ??. The main
take-away point is that we find that the yellow bedding material, which is changed by our model’s
counterfactuals, is indeed predictive of the label.

3.2 COMPARISON OF THE GRADIENT OF x AND THE DIRECTIONAL DERIVATIVE dϕ−1/dw

In this evaluation, we propose a simple validity check for attribution methods and apply it to our
method and gradient-based attribution methods. The idea is to relate saliency maps to counterfactuals.
As saliency maps should highlight features most influential for the outcome of a datapoint, amplifying
these features should increase the prediction and therefore create a counterfactual. We propose the
following test: integrate the raw feature attribution values and then check if (1) the counterfactual
increases the logit score and (2) if the changes are into the direction of w or rather into the direction
of unrelated properties. We measure (2) by calculating the changes in the directions of the principal
components: ξ = Ez where E is the matrix of all ei.

We construct an infinitesimal version of our counterfactuals by limα→0
ϕ−1(z+αw)

α|w| . This gives the
directional derivative2 of the input w.r.t. to the classifier weight: ∇wx = ∇wϕ

−1 = dϕ−1(z)/dw.
Moving the input x into the direction∇wx will result in a move of z into the w direction.3

We evaluate the directional derivative against the raw gradient, which serves as a basis for many
saliency methods (SmoothGrad, LRPε, LRPαβ , γ-rule, and integrated gradients (Smilkov et al.,
2017; Bach et al., 2015; Montavon et al., 2019; Sundararajan et al., 2017)).4 Additionally, we
include SmoothGrad (sm.g) and build two additional methods by penalizing changes in the unrelated

2 TCAV (Kim et al., 2018) uses the directional derivative of the networks output w.r.t. a concept vector v:
df
dv

. Different to our method, TCAV computes the gradient of the forward model and not on the inverse ϕ−1.
3 A reader familiar with differential geometry might recognize this as the pushforward ofw using ϕ−1.
4 The gradient and the directional derivative have a mathematical similarity which can be seen on the Jacobian:

∇xf=Jϕ(x)w and ∇wx=Jϕ−1(z)w.
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Figure 3: (a) Saliency maps computed for the Eyeglasses class of our method (cf.sl.), integrated
gradients (int.g.), and SmoothGrad (sm.g.). cf. denotes counterfactuals with logit y=6. (b) Integration
of the raw feature attribution values, e.g. gradient w.r.t. to a single neuron. The gradient (grad)
results in a strong logit change (given on top) but fails to create visible changes. Differences with
the original images (img) are magnified below (×10). SmoothGrad and the respective penalized
version (pe.gr and pe.s.g). show similar results. The directional derivative dϕ−1/dw adds sunglasses.
(c) The distribution of ξ is shown in the first row. All gradient-based methods result in strong and
therefore less interpretable counterfactual. The directional derivative∇wϕ

−1 changes ξ little.

properties ξ using a mean squared error with the ξ of the original image (pe.gr. for gradient and for
SmoothGrad pe.s.g). The integration is done by iterative steps into the direction of the integrated
quantity, e.g. for the gradient we would calculate xt+1 = xt + γ∇xf(xt) where γ is a small step
(see Appendix A.2 for all technical details).

Figure 3b shows exemplary results of the integration for the Eyeglass dimension. While the gradient-
based counterfactual increases the logit score by an order of magnitude, the resulting image is hardly
different from the original. Only noise patterns appear – similar to adversarial examples. SmoothGrad
results in both a lower logit score and even smaller changes to the image. Penalizing changes in
unrelated properties only yields amplified noise patterns. At the start of the integration, the difference
in ξ0 is zero, which probably results in first moving along ξ . In contrast, integrating the directional
derivative adds sunglasses to the astronaut – a meaningful counterfactual.

We measure the quality of a counterfactual by measuring how strongly unrelated factors change on
100 random samples and report the results in Figure 3c. Thus, gradient-based counterfactuals do
not only explain the increase of the logit score, but also all the other changes too. A user studying
the gradient counterfactual could not differentiate between changes done to the prediction and the
unrelated factors. The counterfactual based on the directional derivative keeps the independent factors
almost unchanged up to numerical imprecision.

3.3 HUMAN SUBJECT STUDY

Our aim was to evaluate whether counterfactual interpolations can help lay users to form hypotheses
about a models used patterns and potential biases. Evaluating explanation techniques with users is
important though a challenging endeavor as it requires mimicking a realistic setting, while avoiding
overburdening participants (Doshi-Velez & Kim, 2017; Wortman Vaughan & Wallach, 2020).

The choice of the dataset is important for any evaluation. Some datasets introduce participants’
domain knowledge as a cofounding factor (e.g. images of dog breeds). While others like CELEBA
introduce subjectivity. Datasets can have many relevant features, creating an enormous amount of
possible and valid hypotheses. If participant were allowed to develop hypotheses about them without
limitation this would require us to mostly evaluate them manually which would be too labor intensive.
Asking participants to reason about pre-selected hypothesis prevents us from assessing their total
understanding of the model as there are potentially many relevant features.

We chose the TWO4TWO data set (Section 3.1) as it addresses these issues (Anonymous, 2020).
The simple scenario enables us to control the available patterns and limit the number of feasible
hypotheses, allowing for comparable quantitative analysis. Concretely, we assessed a participant’s
judgment about the plausibility of six hypotheses. Three hypotheses were reasonable (sensitivity to
spatial compositions, color, and rotation). Two others were not (sensitivity to background and shape
of individuals blocks). We also asked them to reason about the model’s maturity and measured their
perception of the explanations using applicable statements taken from the Explanation Satisfaction
Scale (Hoffman et al., 2018).
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Baseline Selection Many studies in machine learning solely demonstrate their methods feasibility
without a baseline comparison (e.g. Ribeiro et al. (2016); Singla et al. (2020)). In contrast, we
carefully considered what would be the best alternative method available to allow users to discover
hypotheses about a model. As discussed previously in this work, many feature attribution techniques
suffer from a lack of faithfulness and fail to provide meaningful counterfactuals. If counterfactuals
are meaningful and faithful to the model they can be expected to look similar. Hence, comparing
our method to other counterfactual generation methods (e.g. to GANs (Singla et al., 2020)) provides
limited insight about their practical usefulness if there are alternative ways of discovering similar
hypotheses. As for saliency maps, in addition to concerns about their faithfulness, there are also
growing concerns about their practical usefulness. While early works found they can calibrate users’
trust in a model (e.g. Ribeiro et al. (2016)), more recent works cast doubts about this claimed utility
(Kaur et al., 2020; Chu et al., 2020). Studies found that while they are useful to direct users’ attention
towards relevant features, they facilitate limited insight (Alqaraawi et al., 2020; Chu et al., 2020).
Other studies found they may even harm users’ understanding about errors of the model (Shen &
Huang, 2020). After all, users often seem to ignore them, relying predominantly on predictions
instead when reasoning about a model (Chu et al., 2020; Adebayo et al., 2020).

While we introduce a faithful saliency method, we do not claim that it would not suffer from the same
usability problems, especially with lay users (see Figure 7 for examples generated for TWO4TWO).
After all our maps would need to be used in conjunction with counterfactuals, potentially adding a
dependent variable (presence of saliency map) to experiment. For these reasons, we decided against
considering saliency maps in this evaluation.

We also did not consider methods based on infilling (e.g. Goyal et al. (2019)), as we expected them
to suffer from similar usability problems. For example, as they explain features locally by removing
them, paying no attention to overlapping features, they can be expected to remove the entire object
from the scene when explaining the model’s bias towards the object’s color. This would leave the
user puzzled what feature of the object (shape, position or color) is important.

A simple alternative is to study the system predictions on exemplary input. Such reasoning on natural
images to understand model behavior has surfaced as a strong baseline in another study (Borowski
et al., 2020). Hence, we choose example-based explanations as our baseline treatment.

Explanation Presentation Considering that participants’ attention is limited and to allow for a fair
comparison, we wanted to provide the same amount of visual information in both conditions. We
choose a 30x5 image grid (3 rows shown in Figure 4). Each column represented a logit range. Ranges
were chosen so that high confidence predictions for Stretchy were shown on the far left column and
high confidence predictions Sticky on the far right. Less confident predictions were shown in the
directly adjoining columns. The remaining middle column represented borderline-cases. This visual
design had prevailed throughout numerous iterations and ten pilot studies, as it allows users to quickly
scan for similar features in columns and differing features in rows.

Both conditions only varied in the images that were used to populate the grid. In the baseline, the grid
was filled with images drawn from validation set that matched the corresponding logit ranges. In the
counterfactual interpolations conditions, only the diagonal of the grid was filled randomly with such
“original” images. They were marked with a golden frame. The remaining cells were filled row-wise
with counterfactuals of the original images that matched the corresponding columns score range.

Our online study was preregistered 5 and followed a between-group design. Participants (N=60) were
recruited from Prolific and needed to hold an academic degree with basic mathematical education.
Participants were randomly but equally assigned to view either counterfactual interpolations or
the baseline. Upon commencing the study on the Qualtrics platform, participants were shown
handcrafted video instructions. After that, they studied the image grid while rating their agreement to
six statements on a 7-point Likert scale. Participants also rated their agreement to four applicable
statements taken from the Explanation Satisfaction Scale (Hoffman et al., 2018).

Study Results and Discussion The significance of rating difference was assessed using a Kruskal-
Wallis Test. To account for multiple comparisons, we applied Bonferroni correction to all reported
p-values. For a detailed assessment of all preregistered hypothesis, please refer to the Appendix
(Section E.1). Figure 4a summarizes the responses.

5see supplementary material
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Figure 4: Left: Participants agreements to statements about the networks used patterns. Right: The
study interface (vertically cropped) in the counterfactual interpolations (Top) and baseline condition
(Bottom). Each participant was assigned to only one treatment.

Counterfactual interpolations allowed users to identify the model’s main pattern: the position of the
arms of Stretchy and Sticky. They did this with high certainty, as 83.34% strongly agreed with the
corresponding statement. They were more certain about this pattern than with the baseline technique
(H(1) = 8.86, p = 0.018), even though the baseline technique also performed well for this task. The
large majority (70%) also identified the color bias with counterfactual interpolations, while only
43% identified this bias using the baseline explanations. However, the difference in rating between
conditions for the corresponding statement about color bias was not significant (H(1) = 3.21, p =
0.42). Participants who had missed the color bias using our method were later asked to provide their
reasoning. A participant stated: “I would think that the color would be relevant if I saw an example
where it went from certain to very certain and only the color, brightness or intensity changed.” Such
rule-based rather than probabilistic cognitive models of the network may have led users to reject the
presence of color bias even though we instructed them clearly that interpolation would only change
relevant features.

To our surprise, fewer participants noticed the network’s more subtle bias towards object rotation in
both conditions. As Figure 4 indicates, participants were somewhat undecided about the relevance,
leaning rather to conclude that the network is not sensitive to rotation. As a limitation, we note that
participants may not have noticed the rotation bias due to how we had phrased the corresponding
statement. When we asked them to explain their reasoning, many explained that they instead focused
on the individual blocks’ rotation rather than the whole animal.

Both explanation techniques allowed participants to confidently reject statements about irrelevant
patterns (sensitivity to the background, sensitivity to the type of blocks). We argue this indicates
a high quality of collected responses and good utility of both explanation techniques. Somewhat
worrying is participants’ assessment of the system’s maturity. They were very confident that the
network has learned the right patterns and is ready to use for both techniques. Such bias towards
model deployment has previously surfaced in other studies (Kaur et al., 2020).

Explanation Satisfaction ratings were very high for both techniques (see Figure 10 in Appendix)
underlining that participants perceived both methods very well. While this also means that our
method was unable to outperform the baseline, it also shows that our careful visual design and our
clear instructions how to use the explanations technique were well received. As a limitation, we note
that participants may have found the introductory videos very informative as many reported enjoying
the study. This may have led them to more favorable ratings and the conclusion that they understand
the system very well regardless of the explanation technique they had used.

4 RELATED WORK

Others have suggested methods for counterfactual generation. Chang et al. (2019) identifies relevant
regions by optimizing for sufficiency and necessarity for the prediction. The classifier is then probed
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on the counterfactuals replacing relevant regions with heuristical or generative infilling. Goyal et al.
(2019) find regions in a distractor image that would change the prediction if present. Both works
assume that relevant features are localized, but for many datasets these may cover the entire image,
e.g. changes due to gender or age in face images. Singla et al. (2020); Liu et al. (2019); Baumgartner
et al. (2018) explain a black-box neural network by generating counterfactuals with GANs which can
generate counterfactuals of similar or even better visual quality. However, the GANs model does not
have to align with the explained model perfectly, e.g. see Figure 3 in (Singla et al., 2020).

The TCAV method (Kim et al., 2018) estimates how much manually defined concepts influence
the final prediction. Recent work has extended TCAV to discover concepts using super-pixels
automatically (Ghorbani et al., 2019). Goyal et al. (2020) extend TCAV to causal effects of concepts
and use a VAE as generative model.

Being able to interpolate in feature space and inverting these latent representations is one of the
advantages of invertible networks (Jacobsen et al., 2018; Kingma & Dhariwal, 2018). Mackowiak
et al. (2020) use invertibility to improve the trustworthiness but focus on out-of-distribution and
adversarial examples. (Rombach et al., 2020; Esser et al., 2020) employ invertible networks to
understand vanilla convolutional networks better.

One example of an interpretable model is ProtoPNet (Chen et al., 2019). The feature maps of image
patches that correspond to prototypical samples in the dataset are used for the final prediction. This
way, a result can be explained by pointing to labeled patches. The method is limited to a fixed
patch size and does not allow counterfactual reasoning. Another patch-based interpretable model is
proposed in Brendel & Bethge (2018).

Our combination of PCA and invertible neural networks for interpretability is novel. The finding that
the directional derivative corresponds to ideal counterfactuals, whereas the gradient does not, has not
been reported before. We are also not aware of a user study has previously demonstrated that visual
counterfactual can help users identify biases of a neural network.

5 DISCUSSION

A disadvantage of our method is that it requires an invertible network architecture — the weights of
an existing CNN cannot be reused. Learning the input distribution entails additional computational
costs, when training an invertible neural network. For non-image domains such as natural language
or graphs, the construction of an inverse is currently more difficult. However, first works have taken
on the challenge (MacKay et al., 2018; Madhawa et al., 2019). Furthermore, learning the input
distribution requires a larger network. Given that our method performed similar to the baseline in the
user study in all but one category, an obvious question is whether it is worth the additional effort.

However, the same question applies to almost any explanation method and remains largely unan-
swered. Unfortunately user evaluations that include a reasonable baselines are very rare. An additional
finding of this work is that explanation methods should be evaluated for their utility and usability
against a reasonable baseline. For image classification our work shows, that studying the raw input
and corresponding predictions is such a reasonable baseline.It has the potential to allow lay users to
identify, many but not all, high level features used for prediction. Even though we found a strong
baseline, the user study also demonstrated that our method is useful to lay users as they found two
out of three relevant patterns and rejected two more irrelevant patterns. It also highlights that some
more subtle patterns may still go unnoticed even when using our method.

We would like to argue that the additonal effort required to implent invertability, may well be justified
especially in high-stakes domains. Combining an invertible neural network with a linear classifier
enables the use of simple explanation techniques which are otherwise restricted to low complexity
models. Here, we can use them on a deep model with much greater predictive power. Counterfactuals
can be created by simply using the weight vector of the classifier. In contrast to many other techniques,
they are faithful to the model, changing only features relevant for the prediction. Since, they can
be inverted back to the input space the high level features they encode are human interpretable.
This allows users to discover hypotheses about the models used patterns largely independent of
their preconception about feature importance. Using our method we found biases in three datasets
including some that have not been previously reported. As we have demonstrated in this work, that
invertibility has mayor advantages for interpretability.
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Dataset NLL Accuracy Supervised
BLACK MICE 3.28 86.5 86.4 (our model) / 88.5±2.5 (Andresen et al., 2020)
CELEBA 2.55 88.2 89.9
TWO4TWO 0.63 84.9 98.2

Table 1: Model Performances on the different datasets. Negative Log Likelihood in bits/pixels.

A APPENDIX: TECHNICAL DETAILS

A.1 NEURAL NETWORK ARCHITECTURE

Our model follows the Glow model closely (Kingma & Dhariwal, 2018). Similarly, we use a block of
actnorm, invertible 1× 1 convolution and affine coupling layer. After 18 blocks, we add an reshuffle
operation to reduce the spatial dimensions by a factor of 2 and half of the channels are faded out. The
first layer is The classification is done before the final mapping to the prior N (0, 1).

As described in section 2, we trained added the classifier after layer 321 before the final layer 351.
Let ϕ denote the first 321 layers and µ : Rn 7→ Rn the last. We train ϕ both on a supervised loss
from the classifier f(x) and an unsupervised loss from matching the prior distribution N (0, I) and
the log determinante of the Jacobian. µ is only trained on the unsupervised loss:

arg min
θϕ,θµ,θf

Lun(µ ◦ ϕ(x)) + β Lsup(wTϕ(x) + b, ytrue). (1)

For the supervised loss Lsup, we use the binary cross entropy although our method is not restricted
to this loss function and could be extend to more complex losses easily. As unsupervised loss Lun,
we use the commonly used standard flow loss obtained from the change of variables trick Dinh et al.
(2016). The unsupervised loss ensures that inverting the function results in realistic looking images
and can also be seen as a regularization.

In total, ϕ and µ have 158.769.600 parameters. We use the identical network architecture on all
datasets.

A.2 DETAIL TO INTEGRATION: SECTION 3

In section 3.2, we integrated the gradient and the directional dirivative. We used the torchdiffeq
package. For figure 3b, we integrated from t=[0, 11] using the midpoint method with 20 steps.
Here the integration was done in layer 40. As this was rather slow, we used 5steps and t = [0, 4] to
determine the differences in the unrelated factors ξ again in 40, shown in Figure 3c.

B BLACK MICE

In this case study, we apply our method on the BLACK MICE dataset (Andresen et al., 2020). In
contrast to CELEBA, the images vary more strongly in location, size, posture, and camera angle. The
dataset contains a total of 32576 images of 126 individual mice. Andresen et al. (2020) trained a
ResNet and reported an accuracy of 88.5±2.6% using 10-fold cross-validation. Our model achieves
a similar accuracy of 86.5% tested on a single fold. The images were collected for earlier works
(Hohlbaum et al., 2018; 2017). The mice were divided in three groups: castration, only anesthesia, or
untreated. A binary label marks any signs of post-surgical/-anesthetic effects. According to (Langford
et al., 2010), typical features for pain are squeezed eyes, pulled-back ears, bulged cheeks and nose,
and change in whisker position.

Together with the authors of (Andresen et al., 2020), we reviewed our model’s explanations. We
confirmed that counterfactuals affect different image features accordingly: eyes, nose, ears, whiskers,
and head position change in biologically plausible ways. The mice’s eyes seem to be less relevant to
the network. For humans, squeezed eyes are a good indicator of pain. However, the counterfactuals
only showed slight changes: sometimes the eyes blend into the surroundings. As neural networks
perform well on the task using only the eyes (Neurath, 2020), we believe changes to our network
architecture could preserve these details. Some other features may co-appear with image artifacts,
e.g. the ear’s shape changes may also appear partially blended with the background.
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Figure 5: Examples for the BLACK MICE dataset. (a) Random eigenvectors of the isosurface (the
columns correspond to the principal components) (b) Counterfactuals generated by our model. In
both subplots, the rows correspond to the indicated change in logits.

Intriguingly, the counterfactuals also show contrast changes in the surroundings, see figure ??. The
authors of (Andresen et al., 2020) voiced the suspicion that this may be explained how the photos
were taken. Since mice after anesthesia or surgery predominantly drop the head and the nose tip
points downwards, the camera angle may have been adjusted to get a better view of the animal and,
in effect, show more of the yellow wooden bedding material on the cage floor.

To verify if wooden bedding material is predictive, we annotated 1000 randomly selected images from
our test set. Depending on the image area covered by the wooden bedding material, we assigned each
sample to the classes: (0) ≤ 5%, (1) ≤ 20%, (2) > 20% if the bottom of the image showed yellow
bedding material. This classification resulted in 346, 258, 396 samples per bin. Of all samples, 44.7%
were marked to show post-surgical/-anesthetic effects. Per bin, the label was unevenly distributed:
19.9%, 52.3%, 61.4%. We account for the unequal distribution of labels using partial correlation (see
Appendix ??) and obtain the following values between the models’ output probabilities and the bins
(95% CI): (1) -0.255 (-0.31, -0.20)95%, (2) 0.026 (-0.04, 0.09)95%, (3) 0.217 (0.16, 0.27)95%.

The label “post-surgical/-anesthetic effects” is unequally distributed across the three bins: 346, 258,
396. This can be problematic, when we measure the correlation between sample’s bin and the model
logit score. The model has learned to predict lower scores for a negative label and vise versa. To
account for this, we calculate the partial correlation between the model’s output probability and the
bin class while using the label as a confounding variable. In table 2, we report both full and partial
correlations and also the correlations of the bins with the label.

These results confirm a connection between the surroundings, label, and logit score. The hints of
our explanations to this bias in the data were correct. The surroundings’ changes can be explained
probably by mice dropping their head if in pain and by changes to the camera angle. As we could
also confirm many characteristic features, the network does not base its decision solely on wooden
bedding material. This case study highlights the practicability of our method in a real-world scenario.
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Table 2: Bias in the BLACK MICE dataset. The post-surgical/-anesthetic effects label is unevenly
distributed across the bins (0-2) for the amount of yellow bedding material present in an image. The
classifier’s probabilties are correlated negatively with (0) fewer bedding material and positively with
more (2). When we account for the effect of unequal label distribution using partial correlation, the
output probabilities and bins (0 & 2) are still correlated.

Bin Data Method Corr. CI 95%
(0) ≤ 5 Label full -0.362 -0.410, -0.310
(1) ≤ 20 Label full 0.090 0.030, 0.150
(2) > 20 Label full 0.271 0.210, 0.330
(0) ≤ 5 Pred. Prob. full -0.429 -0.480, -0.380
(1) ≤ 20 Pred. Prob. full 0.085 0.020, 0.150
(2) > 20 Pred. Prob. full 0.341 0.290, 0.390
(1) ≤ 5 Pred. Prob. partial -0.255 -0.310, -0.200
(2) ≤ 20 Pred. Prob. partial 0.026 -0.040, 0.090
(3) > 20 Pred. Prob. partial 0.217 0.160, 0.270

C TWO4TWO

(a) Background (b) Color

(c) Shape (spheres or cubes) (d) Rotation and Bending

Figure 6: Parameters in the TWO4TWO dataset. The objects in the TWO4TWO dataset are Sticky
shown in (a) and Stretchy shown in (b). Each animal consists of a spine of four blocks and two sets of
arms at either end. For Sticky, the right set of arms is moved inwards. For the stretchy class, both
sets of arms are moved outwards. (a) background and (b) animal colors can be changed. (c) The
individual blocks can be spherical, cubic or something in between This is achieved by rounding off
cubes until they become spherical. (d) The animals can take a random pose.

Parameter Corr. Data CI95% Corr. Change CI 95%
Color 0.329 0.27, 0.38 0.352 0.33, 0.37
Background 0.022 -0.04, 0.08 -0.037 -0.06, -0.01
Incline 0.032 -0.03, 0.09 0.003 -0.02, 0.02
Arm Position -0.799 -0.82, -0.78 -0.798 -0.81, -0.79
Spherical -0.053 -0.11, 0.01 -0.010 -0.03, 0.01
Abs. Rotation 0.060 -0.00, 0.12 0.136 0.11, 0.16

Table 3: TWO4TWO: Correlation between object parameters and the model’s output probabilities.
Corr. Data: Correlation estimated on the joint distribution. Corr. Change: Correlation if only the
parameter is changed and all other parameters are kept fixed. While the absolute rotation is only
slightly correlated with the model output when calculating correlation on the test set, it becomes
correlated if we solely change the attribute and keeping all others fixed.

D CELEBA
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Figure 7: Examples for the TWO4TWO dataset. (a) Random eigenvectors of the isosurface (the
columns correspond to the principal components) (b) Counterfactuals generated by our model. In
both subplots, the rows correspond to the indicated change in logits.
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Figure 8: Eigenvectors of the isosurface for the ”attractiveness” class. (a) Eigenvectors with the higest
explained variance (b) Randomly selected eigenvectors: 82, 129, 131, 157, 224 (c) Eigenvectors with
the smallest explained variance

E USER-STUDY PREGISTRATION AND HYPOTHESIS

The Study is preregisterd at https://aspredicted.org/ we provide and anonimyzed pdf
version in supplemental material. Participants (N=60), of the study were required to fluent in English
and needed to have an approval rate of at least 95. Given the demanding nature of the task and
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Name Attr. % freq. r r Gender

Beard 59.13 0.36
No Beard 59.03 85.37 0.35 0.06
Five o Clock Shadow 28.23 9.99 -0.15 0.14
Goatee 7.43 4.58 -0.24 -0.09
Mustache 6.61 3.87 -0.22 -0.09
Sideburns 11.23 4.64 -0.21 -0.07
Makeup 80.63 0.68
Wearing Lipstick 80.64 52.19 0.64 0.35
Heavy Makeup 86.08 40.50 0.62 0.38
Rosy Cheeks 90.92 7.17 0.26 0.16
Arched Eyebrows 79.87 28.44 0.38 0.19
Hairloss 56.30 0.30
Bald 0.71 2.12 -0.22 -0.14
Receding Hairline 23.85 8.49 -0.22 -0.19
Cubby/Double Chin 56.21 0.32
Chubby 8.22 5.30 -0.29 -0.20
Double Chin 6.35 4.57 -0.26 -0.17
Smiling/Mouth/Cheek 62.11 0.25
High Cheekbones 63.21 48.18 0.23 0.08
Mouth Slightly Open 53.85 49.51 0.02 -0.05
Smiling 60.54 50.03 0.19 0.12

Name Attr. % freq. r r Gender

Attractive 81.20 49.58 0.63 0.53
Bags Under Eyes 31.79 20.26 -0.24 -0.07
Bangs 64.65 15.57 0.11 -0.00
Big Lips 63.20 32.70 0.15 0.06
Big Nose 31.03 21.20 -0.28 -0.12
Black Hair 51.59 27.16 -0.00 0.07
Blond Hair 73.27 13.33 0.17 0.02
Blurry 21.39 5.06 -0.14 -0.17
Brown Hair 68.97 17.97 0.19 0.15
Bushy Eyebrows 54.25 12.95 0.03 0.22
Eyeglasses 3.49 6.46 -0.35 -0.29
Gray Hair 2.20 3.19 -0.25 -0.19
Male 20.03 38.65 -0.59
Narrow Eyes 45.22 14.87 -0.06 -0.09
Oval Face 62.96 29.56 0.19 0.16
Pale Skin 80.12 4.21 0.12 0.10
Pointy Nose 70.95 28.57 0.27 0.18
Straight Hair 53.89 20.99 0.01 0.08
Wavy Hair 70.85 36.40 0.33 0.17
Wearing Earrings 70.93 20.66 0.20 -0.01
Wearing Hat 12.99 4.20 -0.20 -0.15
Wearing Necklace 72.61 13.79 0.18 0.02
Wearing Necktie 13.65 7.01 -0.27 -0.08
Young 62.63 75.71 0.44 0.37

Table 4:
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Five o Clock Shadow
Male
Mustache
Sideburns
Goatee
Eyeglasses
Bald
Wearing Necktie
Double Chin
Chubby
Bags Under Eyes
Big Nose
Gray Hair
Receding Hairline
Straight Hair
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Black Hair
Pale Skin
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Narrow Eyes
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Big Lips
Pointy Nose
Young
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Oval Face
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Smiling
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Figure 9: CelebA correlation matrix indicating the relationship among the annotated labels. The
labels are sorted according to a hierarchical clustering on the correlation values. There are two strong
clusters of labels (upper left and lower right), in which e.g., the label Attractiveness belongs to the
same cluster (lower right) as Wearing Lipstick while the label Male belongs to the other cluster. This
confirms the biases highlighted by our method.
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Figure 10: Explanation Satisfaction Ratings by our study participants for counterfactual interpolations
(CF) and example-based explanation baseline (BL)

the complex of concepts used in the instructions they also needed to have an academic degree in
Computer Science, Engineering, Finance, Mathematics, Medicine, Physics or Psychology. Figure 10
summarizes the subjective ratings participants gave about the two explanation technqiues used in the
study.

E.1 EVALUATION OF PREREGISTERED HYPOTHESIS

H1: The hypothesis “Studying the system’s predictions on the validation set (Baseline Explanation
technique - referred to as Baseline) allows users to verify that the neural network (NN) is using the
blocks spatial arrangement (Pattern 1) for its predictions of the abstract animals.” is confirmed as
83.33% at least somewhat agree to corresponding statement.

H2: The hypothesis “Baseline does not allow users to detect the NN bias for colour (Pattern 2)
and rotation (Pattern 3).” is confirmed. Only 46.66 % of users at least somewhat disagree with the
statement claiming that there is a rotation pattern while only 43.33% at least somewhat agree (the
remaining are undecided). For the colour pattern 50% at least somewhat disagree that there is such a
pattern and only 43.33% at leat somewhat agree.

H3: Duplicate of H2 (copy and paste error during preregistration)

H4: The hypothesis “Studying the system’s predictions with counterfactual interpolations as explana-
tions (referred to as NNWI) allows users to verify that NN is using Pattern 1.” is confirmed as 96.66%
at least agree with the corresponding statement.

H5: The hypothesis “Counterfactual interpolations allows users to detect Pattern 2 and Pattern 3.”
is rejected. While 70 % at least somewhat agree with the statement about Pattern 2 only 33.33% at
least somewhat agree with the statement about Pattern 3.

H6: The hypothesis “Counterfactual interpolations allows users to verify that NN is neither using the
background of the image (Pattern 4) nor the surface structure of objects (Pattern 5).” is confirmed.
The corresponding statement about Pattern 4 and 5 have been at least somewhat disagreed to by
83.33% and 73.33% respectively.

H7: The hypothesis “Counterfactual interpolations allow users to detect Pattern 1 with higher
confidence” is confirmed. Agreement with the corresponding statement was significantly different
between conditions (p = 0.003) and on average higher for Counterfactual Interpolations (2.67)
compared to the baseline (1.76).

H8: The hypothesis “Counterfactual interpolations allow users to reject Pattern 4 and Pattern 5 with
higher confidence” is rejected. There was no significant difference in the certainty for disagreeing
with corresponding statements.
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H9: The hypothesis “Counterfactual interpolations allow users to detect Pattern 2 and Pattern 3
with higher confidence.” is rejected since H5 was rejected. However, it is worth pointing out that
for the statement about color 70% of participants at least somewhat agreed to it if they received
counterfactual interpolation while only 43.33% at least somewhat agreed to it if they received example
based explanations.

H10: The hypothesis “Counterfactual interpolations leads users to be more confident in the mature-
ness of the system.” is rejected as agreement to the corresponding statement was not significantly
different across conditions. In both conditions participants where rather confident in the system.

H11: The hypothesis “Users are more satisfied with Counterfactual interpolations as explanations.”
is rejected. Explanation Satisfaction rating were very high in both conditions but not significantly
different.

F IMAGE SOURCE

As the copyright of CELEBA is unclear and includes images under no free license, we decided against
showing any original CELEBA images in the paper. We show the following these six images all
under permissive license: Obama (CC BY 3.0): https://commons.wikimedia.org/wiki/File:
Official_portrait_of_Barack_Obama.jpg

Commander, Eileen M. Collins (Public Domain): https://www.flickr.com/photos/
nasacommons/16504233985/

Carl Jacobi (Public Domain): https://de.wikipedia.org/wiki/Datei:Carl_Jacobi.jpg

Grace Hopper (Public domain): https://de.wikipedia.org/wiki/Datei:Grace_Hopper.jpg

Alan Touring (CC BY 4.0): https://commons.wikimedia.org/wiki/File:%D0%A2%D1%8C%
D1%8E%D1%80%D0%B8%D0%BD%D0%B3.jpg

Lyndsey Scott (CC BY 4.0): https://en.wikipedia.org/wiki/File:Lyndsey_Scott_
being_combed.jpg
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