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Abstract

We propose a metric learning paradigm, Regression-based Elastic Metric Learning
(REML), which optimizes the elastic metric for geodesic regression on the manifold
of discrete curves. Geodesic regression is most accurate when the chosen metric
models the data trajectory close to a geodesic on the discrete curve manifold. When
tested on cell shape trajectories, regression with REML’s learned metric has better
predictive power than with the conventionally used square-root-velocity (SRV)
metric. The code is publicly available here.

1 Introduction

Cell shape is strongly representative of cell function and can help diagnose many conditions including
cancer [14]. However, most cell analyses do not consider the cell’s shape in its entirety and instead
only consider coarse global attributes like area, perimeter, or convexity [6]. Analyses that do use
the cell’s entire shape are often “static”, as they disregard cell shape as it evolves over time [1, 13].
Because advances in live imaging are poised to provide an increasing amount of cell video data,
statistical tools that describe the time evolution of cell shape are timely and necessary to precisely
assess cell health and potential pathological conditions.

We propose a metric learning paradigm, Regression-based Elastic Metric Learning (REML). REML
learns the optimal elastic metric for geodesic regression on the manifold of discrete curves: here,
the manifold of cell shapes. Our work expands on the framework [3, 10] which parameterizes cell
shapes from microscopy images with a 2D array of discrete points that trace a cell’s outline. Then,
we use the elastic metric implemented in Geomstats [11] to analyze these shapes on the manifold of
discrete curves. The outline of each cell is itself a point on the manifold of discrete curves M, and
changes in cell shape over time form a trajectory on M. Our method analytically solves the geodesic
regression problem using different metrics and selects the metric that maximizes the coefficient of
determination R2 on the validation set Fig. 1. The elastic metric is particularly meaningful when
analyzing cell shape because it quantifies “stretching” and “bending” between curves, which provides
a biological measure of stretching and bending properties of the cells in a cell shape trajectory. We
validate our approach on synthetic trajectories between real osteosarcoma cells. The experimental
results confirm that our paradigm (i) learns biological parameters of cell shape evolution, and (ii)
provides a mathematically-grounded approach to enhanced characterization of cell shape evolution.

2 Background

This section reviews the tools of Riemannian geometry that will support our metric learning method.
Additional background can be found in [12, 2]. We model cell outlines as elements of the space of
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Figure 1: Summary and results of the proposed approach. Left: A trajectory may follow a geodesic
as calculated by one metric but not follow a geodesic as calculated by another metric. Our paradigm
learns the elastic metric (parameterized by a) that best represents the data trajectory as a geodesic
on the manifold of discrete curves. Right: true cell trajectory overlaid with 1) cells predicted by
a regression which utilizes our paradigm’s learned metric parameter (a∗) 2) cells predicted by a
square-root-velocity (SRV) regression. Regression predictions using the SRV metric (red) do not
match the data trajectory (blue), but our algorithm’s a∗ predicts the data trajectory perfectly: our
prediction (green) perfectly overlays the data trajectory (blue).

regular planar curves C = C1([0, 1],R2). Our metric learning approach will require us to calculate
distances between cell shapes in C. To do so, we introduce the concept of elastic metrics.

Elastic metrics A Riemannian metric g on a manifold C is a set of smoothly varying inner products
defined on tangent spaces of C. These define geometric measurements on C, including distances,
geodesics and exponential maps. Geodesics on manifolds generalize straight lines on vector spaces:
they are curves that locally minimize the distance between points. Exponential maps generalize
addition on vector spaces.

We equip C with a family of elastic metrics ga,b parameterized by a, b > 0 [9]:

ga,bc (h, k) = a2
∫ 1

0

⟨Dsh,N⟩⟨Dsk,N⟩ds+b2
∫ 1

0

⟨Dsh, T ⟩⟨Dsk, T ⟩ds, ∀c ∈ C, h, k ∈ TcC, (1)

where c is a cell outline (a point in C), h, k are infinitesimal deformations of c (tangent vectors in
TcC), Ds is the derivative with respect to arc-length s along the curve c, (T,N) denote the unit
tangent and the unit normal to c, respectively, and <,> is the canonical Euclidean inner-product of
R2. An elastic metric ga,b depends on two parameters: a “bending” parameter b and a “stretching”
parameter a, which respectively evaluate whether two curves are “bent” or “stretched” compared to
one another and then define how far apart these curves should be on C. For example, when a is large,
two curves that differ by a stretching operation will be far apart. When b is large, two curves that
differ by a bending operation will be far apart. Elastic metrics are invariant under shape-preserving
transformations, i.e., elements in the group G of 2D translations, 2D rotations, and re-scaling of
cell outlines [12]. As such, elastic metrics are well-defined on the space of curve shapes, which is
formally given by the quotient M = C1([0, 1],R2)/G. The elastic metric with a = 1 and b = 0.5 is
called the square-root-velocity (SRV) metric, and is often used as the “default metric” on the manifold
of discrete curves. For this reason, we will consider the statistical analysis with the SRV metric as a
baseline in our experiments.

Geodesic regression Because M is a manifold, we consider geodesic regression, which is the
linear regression equivalent for manifolds. Geodesic regression on (M, ga,b) solves a least-square
fitting problem [5]:

min
(p,v)∈TM

T∑
i=1

d2
(
Expp(tiv), ci

)
, (2)

where d and Exp are the Riemannian distance and exponential maps associated with the metric ga,b.
When the metric is Euclidean, this expression simplifies to the usual linear regression with intercept
p and slope v. In geodesic regression, choice of metric affects the goodness of fit. Because metrics
define distances between points in shape space, a data trajectory may follow the geodesic calculated
by one metric but not another. We design an algorithm that finds the "optimal" metric for regression
of a particular trajectory —the metric where the trajectory is closest to a geodesic, as judged by
the value of the coefficient of determination R2. This optimal metric gives the regression fit more
predictive power, which in the case of microscopy image analysis in cell biology can thus provide a
more accurate prediction of future cell shapes. We will perform metric learning across all possible
elastic metrics and compare our results to the commonly used SRV metric.
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Related Works (i) Shape Spaces: Cell biology has only recently started to use tools of statistical
shape analysis. Like us, Philip et al. study cell shapes, but unlike us, they use the Kendall metric,
which is a metric designed to compare shapes defined as sets of landmarks, while the elastic metric is
meant to study shapes of curves [3]. Cho et al. use the SRV metric to study biological shapes, but
they do not generalize their study to all elastic metrics, and they do not study cell shape as we do [4].
(ii) Metric Learning: The problem of metric learning has received considerable attention in machine
learning literature for many years (see [7] for a survey). However, no existing paradigm optimizes the
elastic metric for geodesic regression on cell shape trajectories. Riemannian metric learning has been
studied by [8, 15], but these works do not learn elastic metrics. In research concurrent to ours, Bauer
et al. [2] proposed an elastic metric learning scheme. However, they optimize the elastic metric in
the context of shape classification, while we optimize it here for geodesic regression. Additionally,
they use a random search on the elastic metrics’ parameter, whereas we propose a gradient-ascent
scheme instead.

3 Methods

In what follows, we consider synthetic trajectories of osteosarcoma cell shapes changing through time.
The synthetic trajectory draws a geodesic between two real osteosarcoma cells, and thus, the synthetic
shapes in the trajectory mimic realistic cell outlines. We give each trajectory a predetermined (i)
number of time points, (ii) number of sampling points on each cell outline, and (iii) amount of
measurement noise on each sampling point. These discrete cell outlines lie on the manifold of
discrete curves, which we equip with an elastic metric. We divide the time trajectory of cell shapes
c1, ..., cT into three sequential datasets: a train set (60%), a validation set (30%) and a test set (10%),
the size of which depends on the size of the synthetic trajectory. Our paradigm uses the train set to
learn regression fit parameters for any metric gab being tested by the validation set. The validation
set allows us to learn the ”optimal” metric, chosen as the metric that maximizes the value of the
coefficient of determination R2. We denote a∗ the parameter of this optimal elastic metric. We use
the test data set to evaluate the regression performance of the learned a∗ to that of the SRV metric.

1. Training: Geodesic regression with Fa,b-transform Our training procedure simplifies regres-
sion fit calculations by harnessing a key property of elastic metric ga,b. Riemannian operations on cell
shapes c on the manifold (M, ga,b) are equivalent to Euclidean operations in a linear “Fab space”,
which is accessible through the Fab transform defined as [12]:

Fab(c) = 2b∥c′∥1/2
(

c′

∥c′∥

) a
2b

, (3)

where c′ is the derivative of the curve w.r.t. its parameter s ∈ [0, 1]. The Fab-transform maps a
curve c, which lies on the Riemannian manifold M, to a point in the Euclidean Fab-space. The
Fab-transform also has an inverse, which maps elements of the Fab-space back to curve shapes on M.
This allows us to perform Euclidean operations in Fab space and then transform the results back into
shape space. Using the Fab-transform, the geodesic regression of Eq. 2 becomes a linear regression
on the train set Fab(c1), ..., Fab(cTtrain).

2. Validation: Optimization of the elastic parameter a We use the validation set to perform
elastic metric learning. The definition of the elastic metric in Eq. 1 shows that the parameter b is
only a rescaling factor, as only the ratio a

b substantially affects the metric. Different choices of b only
change units and do not affect whether a trajectory is a geodesic or not. Thus, we fix the "units of
the calculation" by imposing b = 0.5 and perform elastic metric learning by optimizing only a. We
evaluate how close a trajectory is to a geodesic by calculating the R2 value of the fitted geodesic
regression model:

R2 = 1−
∑ival

i=itrain
∥yi − ŷi∥∑ival

itrain
∥yi − ȳ∥

, (4)

where yi = Fa(ci) and ȳ = 1
nval

∑ival

i=itrain
yi. ŷi is the ith cell shape predicted by the regression

model parameters derived from the "training" data set. Note that R2 depends explicitly on the elastic
parameter a, which allows us to compute its gradient with respect to a (see analytical expression in
the appendices).

3



We perform gradient ascent on the coefficient of determination R2 of the validation set to find the
optimal a, the a∗ that brings R2 closest to 1. Importantly, we derive the gradient of R2 with respect
to a (see appendices for derivation).

3. Evaluation and Test We evaluate our metric learning method based on 1) whether the a∗
calculated by the validation dataset is close to atrue (which is the metric used to create the synthetic
data trajectory), 2) whether regression on the test dataset using a∗ provides a good fit and R2 value,
and 3) whether the regression fit on the test dataset using a∗ is better or worse than the regression fit
using the SRV metric.

4 Experiments

Datasets We simulate the evolution of a cancer cell through time by generating an extensive set of
synthetic geodesics between two cancer cells extracted from real microscopy images [10]. We gen-
erate geodesics with all combinations of the following parameters: atrue ∈ {0.2, 0.5, 0.7, 0.9, 1.0}
(a used to generate synthetic geodesic trajectory i.e., the metric space where the trajectory follows
a geodesic), number of time points T (number of cells on the geodesic): T ∈ {20, 50, 100, 200},
number of sampling points ns along each cell outline ns ∈ {30, 50, 100}, and standard deviation
of a centered Gaussian noise σ ∈ {0.0, 0.001, 0.01} added on the 2D coordinates of the sampling
points. Our synthetic experiments are directly relevant to biological researchers as they help inform
the characteristics of their experimental cell shape dataset. The number of time points T corresponds
to a choice of length of biological experiment video recording; the number of sampling points ns is
a biologist’s choice upon extracting a discrete cell outline from a microscopy image, and the noise
level σ represents the uncertainty during the cell outline extraction process from images.

 
% of runs where a* metric 
outperforms SRV metric

0.2
0.5
0.7
0.9

41/44 = 93%
30/32 = 94%
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17/30 = 56%
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Step
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Figure 2: Experimental results on synthetic trajectories modeling the evolution of real osteosarcoma
cells. (a-b) shows our method simultaneously converging upon R2 = 1 and atrue = 0.5. c) When the
number of cell sampling points is between 30− 50, the number of cells in the trajectory is 100− 200,
and the noise level is < 0.005, the a∗ metric predicted by our algorithm outperforms the SRV metric
with a better R2 at every atrue (excluding atrue = 1, which is the SRV metric itself).

Results Our experimental results demonstrate that (i) our algorithm successfully converges a∗
to atrue and R2

test to 1 and (ii) our method outperforms the SRV metric at every atrue excluding
atrue = SRV when the noise level is < 0.005, the cells are sampled between 30 − 50 times, and
there are 100− 200 cells in the trajectory. Our results show that our method (i) correctly learns the
metric atrue that was used to generate the synthetic cell trajectory and (ii) provides better predictions
of future cell shapes. Learning a is biologically relevant because a quantifies how much a cell bends
and stretches over a given amount of time.

5 Conclusion and Future Work

Our method, Regression-based Elastic Metric learning, describes an automated way for finding
the elastic metric that brings a trajectory closest to a geodesic on the manifold of discrete curves.
Our method increases the predictive power of geodesic regression, which allows for more accurate
prediction of future cell shapes. In the long term, such methodology could be used for early detection
of diseases or for early diagnosis of chemo-resistant cells based on their early evolution. Currently,
most analyses on the manifold of discrete curves use the SRV metric by default. However, our
results show that the SRV metric does not produce the best regression fit for most trajectories. Our
method recognizes that the "optimal" metric is trajectory-dependent and thus creates an opportunity
for improved analysis on all cell data trajectories.
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6 Appendix

6.1 Derivation of R2 in terms of a

This derivation finds R2 in terms of a. We are considering regression on curve trajectories, so R2 is
given by

R2 = 1−
∑nval

ntrain
d(ci, ĉi)

2∑nval

ntrain
d(ci, c̄)2

(5)

.

where ci is an arbitrary curve in the trajectory, ĉi is a curve predicted by the regression model, c̄ is the
mean curve in the data set curve trajectory, ntrain is the number of curves in the data set trajectory
that are used to train the regression model, and nval−ntrain is the number of curves in the validation
data set trajectory that we use to calculate R2 (and thus, the number of curves that we use to optimize
R2 to find a∗). The numerator of the second term is the (un-normalized) mean squared error, which
shows how much variation exists between the data set curve trajectory and the regression-predicted
trajectory. The denominator of the second term is the (un-normalized) variance, which shows how
much variation exists between the curves in the data set trajectory.

We will begin by finding the mean squared error (MSE) in terms of a.

MSE =

nval∑
i=ntrain

∥r⃗i∥2

=

nval∑
i=ntrain

d(ci, ĉi)
2.

We choose to do this analysis in Fa−space, and use q’s to denote curves which have been transformed
to Fa − space. Thus, the derivation continues as

=

nval∑
i=ntrain

∥qi − q̂i∥2

=

nval∑
i=ntrain

∥qi − β̂0 − β̂1ti∥2

To continue our derivation of the MSE in terms of a, we must derive expressions for the β
parameters in terms of a. Consider the linear regression in F-space:

qi = β0 + β1ti. (6)

We will learn/estimate the coefficients β0, β1 using the training set of cells. We will learn the optimal
a factor using the validation set. The size of the training set is denoted ntrain, the size of the
validation set is denoted nval − ntrain.

The estimated coefficients of the regressions are given by the normal equations, i.e.

β̂ = (XTX)−1XT y (7)

where β̂ =

[
β̂0

β̂1

]
are the estimated coefficients, X =

1 t1
...

...
1 tn

 is the design matrix, y =

[y1 . . . yn] is the response. We have

XTX =

[
ntrain

∑ntrain

i=1 ti∑ntrain

i=1 ti
∑ntrain

i=1 t2i

]
= ntrain

[
1 t̄
t̄ t̄2

]
, (8)
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where we have introduced the notations: t̄ =
∑ntrain

i=1 ti and t̄2 =
∑ntrain

i=1 t2i .

The inverse gives:

(XTX)−1 =
1

ntrain(t̄2 − (t̄)2)

[
t2 −t̄
−t̄ 1̄

]
. (9)

Multiplying by XT :

(XTX)−1XT =
1

ntrain(t̄2 − (t̄)2)

[
t̄2 − t̄.t1 . . . t̄2 − t̄.tntrain

−t̄+ t1 . . . −t̄+ tntrain

]
. (10)

Multiplying by y:

β̂ = (XTX)−1XT y =
1

ntrain(t̄2 − (t̄)2)

[∑ntrain

i=1 (t̄2 − t̄.ti)qi∑ntrain

i=1 (−t̄+ ti)qi

]
. (11)

We introduce the notations:

τi0 =
(t̄2 − t̄.ti)

ntrain(t̄2 − (t̄)2)
; τi1 =

(−t̄+ ti)

ntrain(t̄2 − (t̄)2)
(12)

so that:

β̂ =

[∑ntrain

i=1 τi0qi∑ntrain

i=1 τi1qi

]
=

[∑ntrain

i=1 τi0Fab(ci)∑ntrain

i=1 τi1Fab(ci)

]
, (13)

where the last expression highlights the dependency of this quantity in a, b.

Thus, we can continue our MSE derivation as:

=

nval∑
i=ntrain

∥qi −
n∑

j=1

τj0qj −
n∑

j=1

τj1qjti∥2

=

nval∑
i=ntrain

∥qi −
n∑

j=1

(τj0 + τj1ti)qj∥2

=

nval∑
i=ntrain

∥Fab(ci)−
n∑

j=1

(τj0 + τj1ti)Fab(cj)∥2

=

nval∑
i=ntrain

∥Fab(ci)−
n∑

j=1

τijFab(cj)∥2,

where we denote n = ntrain for convenience of notations.

Now, let’s begin our derivation of the (un-normalized) variance (VAR) of the data set curve
trajectory.

V AR = =

nval∑
i=ntrain

d(ci, c̄)
2

=

nval∑
i=ntrain

∥Fab(ci)−
1

nval

ntrain∑
j=1

Fab(cj)∥2,

where the "f-transform" explicitly depends on a.

Thus, in its entirety, R2 w.r.t. a is given by:

R2 = 1−
∑nval

i=ntrain
∥Fab(ci)−

∑n
j=1 τijFab(cj)∥2∑nval

i=ntrain
∥Fab(ci)− 1

nval

∑ntrain

j=1 Fab(cj)∥2
(14)

The next section expands the norm in this result.
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6.2 Expansion of the norm ∥r⃗i∥2.

The previous section derives R2 in terms of a, and comes to the result:

R2 = 1−
∑nval

i=ntrain
∥Fab(ci)−

∑n
j=1 τijFab(cj)∥2∑nval

i=ntrain
∥Fab(ci)− 1

nval

∑ntrain

j=1 Fab(cj)∥2
(15)

This section will show how we expand the norm in the equation above. We will use the MSE norm
as an example. r⃗i is a vector which indicates the difference between two curves: ci, which is the
ith curve in the data set trajectory, and ĉi, which is the corresponding ith curve in the regression-
predicted trajectory. Because r⃗i indicates a difference between two curves, it must be a function of
the parameter s, which parameterized all curves. Thus, its long-form notation is ⃗ri(s). Conceptually,
if all curves are deformed circles, then the parameter s tells you where a point on a curve maps to on
an equivalent circle. s ranges from 0 to 1 by construction, where s = 0 is the start point of the curve
and s = 1 is the end point of the curve. The squared vector norm of the function ⃗ri(s) is given by

nval∑
i=ntrain

∥r⃗i∥2 =

nval∑
i=ntrain

∫ 1

0

∥ ⃗ri(s)∥2 ds =
nval∑

i=ntrain

∫ 1

0

⃗ri(s) · ⃗ri(s) ds

Now, we will describe how we compute this integral. In our code, we take discrete samples of the
points in each curve. Therefore, in our code, a curve is represented by a 2D array containing the
(x, y) coordinates of these samples. Because ci’s in curve space are 2D discrete curves, qi’s are also
discrete curves (in the linear Fa − space), and r⃗i’s are discrete vectors comprised of the coordinate
differences between two curves. Because r⃗i’s are discrete, we will compute the integral above using
a Riemann sum.

nval∑
i=ntrain

∥r⃗i∥2 =

nval∑
i=ntrain

1∑
s=0

⃗ri(s) · ⃗ri(s)∆s

Here, ∆s = 1ength of curve
number of segments = 1

number of sampling points−1 since in Fa − space, the transformed curve qi
has one fewer sampling point than ci.

6.3 Derivation of R2’s derivative with respect to a

In the previous appendix sections, we derived R2 w.r.t. a. Now, we will compute the gradient of R2

w.r.t. a.

R2 = 1−
∑nval

i=ntrain
∥Fab(ci)−

∑n
j=1 τijFab(cj)∥2∑nval

i=ntrain
∥Fab(ci)− 1

nval

∑ntrain

j=1 Fab(cj)∥2

d

da
R2 = − d

da

∑nval

i=ntrain
∥Fab(ci)−

∑n
j=1 τijFab(cj)∥2∑nval

i=ntrain
∥Fab(ci)− 1

nval

∑ntrain

j=1 Fab(cj)∥2

= − d

da

MSE

V AR

= −
d
daMSE ∗ V AR−MSE ∗ d

daV AR

V AR2

We now calculate d
daMSE and d

daV AR.
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Let’s start with d
daMSE. Using information from the previous section, we see

d

da
MSE =

d

da

nval∑
i=ntrain

1∑
s=0

⃗ri(s) · ⃗ri(s)∆s

= 2

nval∑
i=ntrain

1∑
s=0

[
d

da
⃗ri(s)

]
· ⃗ri(s)∆s

where for the MSE, ri(s) = Fab(ci(s))−
∑n

j=1 τijFab(cj(s)). Calculating d
da

⃗ri(s) is the trickiest
part. Halfway through the calculation, we switch into polar coordinates because polar coordinates
allow us to easily take derivatives of vectors raised to the power of the differentiated variable (in this
case, a).

d

da
⃗ri(s) =

d

da

|c′i|1/2 c′i
|c′i|

a

−
n∑

j=1

τij |c′j |1/2
c′j
|c′j |

a


= |c′i|1/2
d

da

c′i
|c′i|

a

−
n∑

j=1

τij |c′j |1/2
d

da

c′j
|c′j |

a

= |c′i|1/2
d

da
eiarg(c

′
i)a −

n∑
j=1

τij |c′j |1/2
d

da
eiarg(c

′
j)a

= |c′i|1/2(iarg(c′i))eiarg(c
′
i)a −

n∑
j=1

τij |c′j |1/2(iarg(c′j))eiarg(c
′
j)a

= |c′i|1/2(eiπ/2arg(c′i))eiarg(c
′
i)a −

n∑
j=1

τij |c′j |1/2(eiπ/2arg(c′j))eiarg(c
′
j)a

= |c′i|1/2(arg(c′i))ei(π/2+arg(c′i)a) −
n∑

j=1

τij |c′j |1/2(arg(c′j))ei(π/2+arg(c′j)a)

where we have used the facts that eiarg(c
′
i) =

c′i
|ci| and i = eiπ/2. This result can now be plugged into

the equation for d
daMSE.

The calculation for d
daV AR is similar, except for the VAR, ri(s) = Fab(ci) −

1
nval

∑ntrain

j=1 Fab(cj).
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