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ABSTRACT

Reconstructing textured 3D human models from a single image is fundamental for
AR/VR and digital human applications. However, existing methods predominantly
focus on single individuals and thus fail in multi-human scenes, where naive com-
position of individual reconstructions often leads to artifacts such as unrealistic
overlaps, missing geometry in occluded regions, and distorted interactions. These
limitations highlight the need for approaches that incorporates group-level context
and interaction priors. We introduce HUG3D, a holistic method that explicitly mod-
els both group- and instance-level information. To mitigate perspective-induced
geometric distortions, we first transform the input into a canonical orthographic
space. Our primary component, Human Group-aware Multi-View Diffusion (HUG-
MVD), then generates complete multi-view normals and images by jointly mod-
eling individuals and their group context to resolve occlusions and proximity.
Subsequently, the Human Group-Aware Geometric Reconstruction (HUG-GR)
module optimizes the geometry by leveraging explicit, physics-based interaction
priors to enforce physical plausibility and accurately model inter-human contact.
Finally, the multi-view images are fused into a high-fidelity texture. Extensive
experiments show that HUG3D significantly outperforms both single-human and
existing multi-human methods, producing physically plausible, high-fidelity 3D
reconstructions of interacting groups from a single image.

1 INTRODUCTION

Reconstructing detailed 3D human models from visual input (Ho et al., 2024; Zhang et al., 2024;
Jiang et al., 2024; Zheng et al., 2021; Li et al., 2024b; Saito et al., 2019; 2020; Xiu et al., 2022;
Kim et al., 2023) is a fundamental task in computer vision, supporting applications in augmented
and virtual reality (AR/VR) (Ma et al., 2021; Orts-Escolano et al., 2016), digital humans, and social
behavior understanding. While monocular 3D reconstruction from a single RGB image (Ho et al.,
2024; Zhang et al., 2024; Li et al., 2024b) has made substantial progress, most existing methods are
limited to isolated individuals in controlled environments. However, these approaches often fail to
generalize to real-world scenes involving multiple interacting people, where occlusion, perspective
distortion, and spatial entanglement introduce significant ambiguity and modeling challenges.

In particular, we identify three core challenges in monocular multi-human 3D reconstruction: (1)
Geometric complexity and perspective distortion. Multi-human scenes introduce strong perspective
distortion due to depth variation, occlusion, and complex spatial layout. While most methods assume
orthographic views leading to noticeable distortions on real-world perspective inputs (Fig. 1(a)), a
few learn perspective-aware projections (Li et al., 2024a; Wang et al., 2025), but these are limited
to single-object cases and struggle with multi-human complexity. The scarcity of annotated multi-
human data (Yin et al., 2023; Zheng et al., 2021) further hinders generalization across camera
poses and interaction patterns. (2) Lack of interaction-aware geometric modeling. Most methods
reconstruct individuals independently, overlooking contextual cues like contact, occlusion, and spatial
proximity (Fig. 1(b)). This often results in unrealistic outputs such as overlapping limbs or unnatural
distances. Although group-wise SMPL-X approaches (Baradel et al., 2024; Müller et al., 2024; Sun
et al., 2022) offer early signs of interaction modeling, full-surface, textured reconstruction remains
underexplored. (3) Missing geometry and texture in occluded regions. Occlusions between
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Figure 1: Core challenges in monocular multi-human 3D reconstruction: (a) geometric complexity
and perspective distortion, (b) lack of interaction-aware geometric modeling, and (c) missing texture
and geometry in occluded regions. Our HUG3D, jointly addresses all three challenges.

people obscure critical body parts, causing incomplete geometry and textures (Fig. 1(c)). While
generative inpainting (Rombach et al., 2022; Labs, 2024) can hallucinate plausible content, only a
few approaches (Cao et al., 2024; Barda et al., 2024) jointly address geometry and appearance, and
even fewer try handling multi-view consistency under occlusion.

To address these challenges, we propose HUG3D, a holistic method for HUman Group-aware 3D
reconstruction from a single image. HUG3D effectively incorporates both group- and instance-level
information with three main components: (1) Canonical Perspective-to-Orthographic View Transform
(Pers2Ortho). To make multi-view diffusion of interacting people tractable under severe geometric
distortion, we transform the input perspective image into a canonical orthographic space. From the
image, we estimate a partial 3D textured geometry and reproject it to obtain consistent multi-view
RGB and normal representations. (2) Human Group-Instance Multi-View Diffusion (HUG-MVD).
This diffusion model jointly completes missing geometry and textures while serving as an implicit
prior that enforces physically plausible human interactions. (3) Textured Mesh Reconstruction. Our
Human Group-Instance Geometry Reconstruction (HUG-GR) module first optimizes the mesh using
group-level, instance-level, and physics-based supervision. Subsequently, the multi-view images are
fused into a final, high-fidelity texture using occlusion-aware blending.

Experiments show that HUG3D outperforms single- and multi-human baselines, producing physically
plausible, high-fidelity textured reconstructions 3D of interacting groups from a single image.

2 RELATED WORK

Single-Human 3D Reconstruction. Significant advances in single-human 3D reconstruction have
been driven by parametric models such as SMPL (Loper et al., 2015) and SMPL-X (Pavlakos
et al., 2019). Early methods fit models to 2D cues (Bogo et al., 2016), while later works regress
parameters directly from images using deep networks (Kanazawa et al., 2018). Implicit and volumetric
approaches (Saito et al., 2019; 2020; Mustafa et al., 2021; Fieraru et al., 2021) further improve
geometric detail. Recent efforts enhance view consistency and texture. SIFU (Zhang et al., 2024)
optimizes UVs via SDF, and SiTH (Ho et al., 2024) uses back-view synthesis. PSHuman (Li et al.,
2024b) generates multi-view RGBs via diffusion, and LHM (Qiu et al., 2025) uses transformers over
image and SMPL-X tokens. Though effective for isolated individuals, these methods struggle in
multi-human settings. Naïve application per instance leads to artifacts like overlapping meshes and
inconsistent scale, underscoring the need for interaction-aware models.

Multi-Human 3D Reconstruction. Reconstructing multiple humans in 3D remains challenging
due to occlusions, inter-person interactions, and depth ambiguities. Early approaches reconstructed
each individual independently (Li et al., 2019; Sun et al., 2022; Zheng et al., 2021), but this often
led to physically implausible results. Later methods improved spatial coherence by introducing
global constraints (Hassan et al., 2021) or jointly regressing shapes and poses in a shared coordinate
system (Mustafa et al., 2021). Multi-view and video-based approaches (Kocabas et al., 2020; Jiang
et al., 2024) further enhanced reconstruction accuracy, though they require video or multi-view inputs,
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Figure 2: Overview of our HUG3D framework. Given a single perspective image, (1) the Canonical
Perspective-to-Orthographic View Transform (Pers2Ortho) converts it into a consistent multi-view
orthographic representation. (2) The Human Group-Instance Multi-View Diffusion (HUG-MVD)
model completes occluded geometry and texture while maintaining plausible group interactions. (3)
The Textured Mesh Reconstruction stage refines the mesh with our physics-aware Human Group-
Instance Geometry Reconstruction (HUG-GR) module and generates high-fidelity textures.

which can be costly to acquire and process. More recently, learning-based methods have sought to
tackle multi-human reconstruction from a single image. While interaction-aware networks (Fieraru
et al., 2021; Cha et al., 2024; Chan et al., 2024) and model-free architectures (Mustafa et al., 2021)
improve plausibility, their performance remains limited in single-view, single-frame scenarios.

Scene-Level Human Reconstruction and Interaction Modeling. Several methods incorporate
human-scene or human-human interaction to improve physical plausibility. POSA (Hassan et al.,
2021) enforces realistic body-ground contact but focuses on single-person scenarios. Group-level
priors (Müller et al., 2024) enhance pose coherence, while BUDDI (Müller et al., 2024) learns a
diffusion-based prior for plausible two-person interactions. Other approaches rely on explicit contact
labels (Joo et al., 2018), but typically focus on coarse geometry or pose estimation. However, these
methods often yield results with low texture fidelity or limited to SMPL-X mesh predictions, falling
short of producing fully textured, detailed 3D reconstructions of interacting human groups.

3 HUMAN GROUP-AWARE 3D RECONSTRUCTION FROM A SINGLE IMAGE

Figure 3: Comparison of
results from multi-view
diffusion trained on per-
spective vs. orthographic
images.

Our HUG3D framework operates in three main stages, as illustrated in
Fig. 2. First, the Canonical Perspective-to-Orthographic View Trans-
form (Pers2Ortho) module converts the input perspective image into a
consistent multi-view orthographic representation. Next, our Human
Group-Instance Multi-View Diffusion (HUG-MVD) model completes oc-
cluded geometry and texture while ensuring plausible group interactions.
Finally, the Textured Mesh Reconstruction stage refines the mesh with our
physics-aware HUG-GR module and synthesizes a high-fidelity texture.

3.1 CANONICAL PERSPECTIVE-TO-ORTHOGRAPHIC
VIEW TRANSFORM (PERS2ORTHO)

Multi-human scenes exhibit severe depth variation and occlusion, which
violate the orthographic assumptions typically adopted in multi-view
diffusion models. As a result, directly learning group interactions from
a single perspective-view image is challenging due to extreme geomet-
ric complexity (see Fig. 3). To overcome this limitation, we introduce
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Pers2Ortho module, a canonical view transformation module that estimates partial 3D geometry from
the input perspective view and constructs consistent multi-view representations robust to geometric
distortion.

Initial Geometry, Segmentation, and Camera Setup. Given a single RGB input, we first estimate
an initial SMPL-X mesh, instance segmentation masks, and the perspective camera parameters
pKin,Rin,Tinq of Cin. We employ established methods based on SAM (Kirillov et al., 2023) and
BUDDI (Müller et al., 2024), as detailed in Sec. A.1. To define a canonical processing space, the
SMPL-X mesh is first normalized to a tight bounding box. Around this normalized geometry, we
place six orthographic cameras tC0, . . . , C5u at fixed azimuths t0˝, 45˝, 90˝, 180˝, 270˝, 315˝u with
zero elevation. Each camera has extrinsic parameters pRi,Tiq. This canonical camera rig ensures
spatial alignment across all instances, providing a stable basis for downstream multi-view generation.

Partial 3D Construction. To enhance the fidelity of the canonical representation, we initialize a
partial 3D mesh M with the initial SMPL-X mesh and refine it using geometric supervision from
Sapiens (Khirodkar et al., 2024). Specifically, Sapiens predicts affine-invariant depth (d1in

Sap) and
surface normals (nin

Sap) from the perspective input view Cin. The mesh vertices of are optimized to
align with these predictions by minimizing the geometry loss:

Lgeo “

›

›

›
d1in

Sap ´ d1in
M

›

›

›

2

2
` 1 ´

A

nin
Sap, n

in
M

E

, (1)

where d1in
M and nin

M denote the depth and normal maps rendered from the mesh. The first term
enforces depth consistency via L2 distance, while the second term enforces orientation consistency
via cosine similarity. To handle possible topology mismatches between the initial mesh and Sapiens
predictions, we adopt a remeshing strategy (Li et al., 2024b).

Multi-View Input Generation via PCD Reprojection. For the multi-view diffusion stage, we first
render a complete set of normal maps tn

piq
SMPLXu5i“0 from all six canonical views tCiu from the initial

SMPL-X mesh for the pose guidance.

Second, we generate partial RGB inputs tx
p0q

pcd, x
p1q

pcd, x
p5q

pcdu by reprojecting the input image onto the
refined partial 3D mesh M from three key canonical views (0˝, 45˝, and 315˝). Concretely, we
render a depth map d1in

M from M and build a dense point cloud (PCD) P in the coordinate system of
Cin. This PCD is reprojected into each orthographic view Ci as:

Pi “ Πi
orthopPq “ Ri ¨ P ` Ti, (2)

where Πi
ortho denotes the orthographic projection. RGB values from Cin are then transferred onto

Pi, yielding partial RGB maps xpiq
pcd. Unlike mesh vertex coloring, which often produces sparse and

low-quality textures, our PCD reprojection preserves dense appearance details in visible regions while
maintaining spatial consistency across canonical views. These inputs serve as robust conditioning
signals for multi-view diffusion. Further details can be found in Sec. A.2 of the supplementary.

3.2 HUMAN GROUP-INSTANCE MULTI-VIEW DIFFUSION (HUG-MVD)

We introduce Human Group-Instance Multi-View Diffusion (HUG-MVD), a diffusion model that
leverages both group-level and instance-level priors to resolve occlusions and inter-person interactions
in multi-human scenes.

Interaction- and Occlusion-Aware Multi-View Diffusion. Given reprojected partial RGB inputs and
canonical-view SMPL-X normal maps, HUG-MVD reconstructs geometry and appearance missing
due to occlusion. Unlike standard single-human diffusion models, our formulation incorporates
group-level priors by jointly training on two complementary sources. First, diverse single-human
datasets with full supervision (Ho et al., 2023; Yu et al., 2021) provide coverage over a wide range of
body shapes and identities. Second, multi-human datasets with partial geometry (Yin et al., 2023)
capture realistic inter-person occlusions and interactions, though with limited identity variation. This
combination enables the model to generalize across diverse individuals while remaining robust to
complex group-level occlusions.

To simulate realistic occlusions for single-human training data, we generate masked inputs x
piq
mask

from the reprojected point clouds xpiq
pcd and visibility masks Mvis, as described in Sec. A.3.3. These
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masks indicate unobserved regions for each canonical view Ci. The model is conditioned on SMPL-X
normal maps tn

piq
SMPLXu5i“0, which provide geometric guidance via ControlNet (Zhang et al., 2023),

steering the denoising process toward consistent, human-like reconstructions.

Multimodal Training Objective. Given 6 canonical views, the model predicts complete RGB images
tx̂piqu and surface normals tn̂piqu simultaneously using a shared denoising diffusion process. To train
the model, we minimize the following objective:

Ldiff “

5
ÿ

i“0

˜

Et,ϵ

” ›

›

›
ϵ ´ ϵθpz

piq

t,rgb, t, x
piq

mask, n
piq

SMPLXq

›

›

›

2

2

ı

` Et,ϵ

” ›

›

›
ϵ ´ ϵθpz

piq

t,normal, t, x
piq

mask, n
piq

SMPLXq

›

›

›

2

2

ı

¸

,

(3)
where zpiq

t,rgb and z
piq
t,normal are the noisy latents for the RGB and normal map at timestep t, respectively.

The denoising network ϵθ learns to estimate the clean signals for both modalities, conditioned on
the masked RGB inputs xpiq

mask and SMPL-X normal maps npiq
SMPLX. By jointly optimizing RGB and

normal prediction, the model enforces consistency between appearance and geometry.

Joint Group-Instance Inference. At inference, a single HUG-MVD model jointly performs group-
and instance-level reconstruction, predicting complete normals tn̂piqu and RGB images tx̂piqu from
partial RGB inputs and SMPL-X guidance.

To maintain consistency between group- and instance-level latent representations, instance-specific
latents z

piq
t,instpkq

are injected into the group latent zpiq
t,group at their corresponding spatial regions.

Formally, at diffusion timestep t:

z
piq

t,group Ð

K
ÿ

k“1

”

α ¨ 1
pi,kq

inst ¨ z
piq

t,instpkq
` p1 ´ αq ¨ 1

pi,kq

inst ¨ z
piq

t,group

ı

`

˜

1 ´

K
ÿ

k“1

1
pi,kq

inst

¸

¨ z
piq

t,group, (4)

where 1pi,kq

inst indicates the spatial extent of instance k in view Ci, and α P r0, 1s controls blend-
ing strength. This composition allows fine-grained instance details to inform the global group
representation, improving geometric consistency across overlapping surfaces.

Further details with detailed illustrations of HUG-MVD are provided in Sec. A.3 of the supplementary.

3.3 TEXTURED MESH RECONSTRUCTION

3.3.1 HUMAN GROUP-INSTANCE GEOMETRY RECONSTRUCTION (HUG-GR)

We refine the initial SMPL-X mesh to produce physically plausible geometry for multi-human scenes,
leveraging both group- and instance-level supervision and physics-inspired constraints.

Group-Instance Normal Supervision. The mesh M is optimized to match predicted normals from
HUG-MVD at both group and instance levels. Let npiq

MVD,group and n
piq
M,group denote predicted and

rendered normals for the group, and n
pi,kq

MVD,inst and n
pi,kq

M,inst for instance k. We define:

Lnormal “ λgroup ¨ Lgroup ` λinst ¨ Linstance, (5)

Lgroup “

5
ÿ

i“0

´

1 ´ xn
piq
MVD,group, n

piq
M,groupy

¯

, Linstance “

5
ÿ

i“0

K
ÿ

k“1

´

1 ´ xn
pi,kq

MVD,inst, n
pi,kq

M,insty

¯

, (6)

where nM is rendered from the currently optimized mesh via a differentiable renderer at each step.

Interpenetration Loss. To prevent implausible overlaps between body parts, we define an interpen-
etration loss over tolerance pairs pi, jq P Ωtol, derived from contact regions in the initial SMPL-X
meshes. For each pair, let si,j1 and si,j2 be the closest points on the surfaces of parts i and j. The loss
penalizes distances below a threshold tol, discouraging overlaps.:

Lpen “
1

|Ωtol|

ÿ

pi,jqPΩtol

´

|si,j1 ´ si,j2 | ` max
´

0, tol ´ |si,j1 ´ si,j2 |

¯¯

. (7)

Visibility Loss. We enforce consistency between rendered visibility and ground-truth masks:

Lvis “
1

2B

K
ÿ

k“1

B
ÿ

b“1

Ek
b

Mk
b ` ϵ

, (8)
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Figure 4: Qualitative comparison on multi-human 3D reconstruction from a single image. HUG3D
outperforms baselines by correcting perspective distortion, preserving inter-human contact, and
hallucinating plausible textures under heavy occlusion.

where Ek
b and Mk

b denote incorrectly occluded and total visible pixels for body part b in instance k.
This loss encourages each body part in the rendered mesh to match its expected visible region, ensuring
accurate silhouettes and occlusion boundaries, especially in complex multi-human interactions.

Total Optimization Objective. The final mesh is optimized using:

Ltotal “ Lnormal ` λvis ¨ Lvis ` λpen ¨ Lpen. (9)

We apply finer learning rates to high-frequency semantic regions (e.g., hands, face) to improve local
accuracy while maintaining overall shape stability.

Additional details for HUG-GR are provided in Sec. A.4 of the supplementary.

3.3.2 TEXTURE CONSTRUCTION

Full-body vertex texture is generated by projecting multi-view RGBs onto the optimized mesh. To
improve fidelity, occluded and low-confidence regions are blended using view-aware confidence
masks. High-fidelity face restoration is applied for oblique or occluded views. Please refer to Sec. A.5
of the supplementary for additional details on texture construction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. The Pers2Ortho module is based on SAM (Kirillov et al., 2023) for
instance mask extraction and BUDDI (Müller et al., 2024) for SMPL-X fitting and camera parameter
estimation. For partial 3D construction, the initial SMPL-X mesh is optimized for 200 iterations
using Adam (Kingma & Ba, 2014) with a learning rate of 0.02. HUG-MVD is initialized from
PSHuman (Li et al., 2024b), based on Stable Diffusion 2.1 Rombach et al. (2022), and integrates a
frozen normal-map ControlNet (Zhang et al., 2023). Training is performed on a single NVIDIA A100
(80GB) GPU with a batch size of 16 and gradient accumulation of 8 steps, using Adam (lr=5 ˆ 10´6,
β1 “ 0.9, β2 “ 0.999). A two-stage curriculum is employed: (1) 1,000 steps without inpainting
masks, and (2) 1,000 steps with inpainting masks to simulate occlusion. Training takes approximately
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Figure 5: Qualitative results on in-the-wild images. Our method demonstrates robust multi-human
reconstructions, outperforming baseline approaches and highlighting its practical applicability.

two days. A DDPM scheduler with 1,000 diffusion steps is used during training, while inference
uses a DDIM scheduler (η “ 1.0) with 40 denoising steps. A blending factor of α “ 0.8 balances
diversity and fidelity. HUG-GR optimizes the mesh over 200 iterations with a learning rate of 0.01
and loss weights: λgroup “ 1.0, λinst “ 0.2, λpen “ 2.0, and λvis “ 1.0. Further implementation
details are provided in Sec. A of the supplementary.

Training Data. Training samples of HUG-MVD are rendered from raw scans which are composed
of textured mesh sequences. We train our model using the Hi4D dataset (Yin et al., 2023) for multi-
human supervision, along with THuman2.0 (Yu et al., 2021) and CustomHumans (Ho et al., 2023)
for diverse single-human poses and appearances, enabling robust learning across varied interactions
and body configurations. Additional details are provided in Sec. A.3.1 of the supplementary.

Evaluation Dataset. We conduct experiments on the MultiHuman (Zheng et al., 2021) dataset,
which provides multi-person, multi-view sequences with full 3D mesh supervision. For quantitative
evaluation, we focused on two-person interacting scenes, including 20 sequences - six of these
feature closely interacting pairs with heavy occlusions and complex spatial entanglements, while
remainings capture more natural interactions. For each scene, we select a random initial viewpoint
and render four perspective views, to evaluate under natural camera distortion, at azimuth offsets of
t0˝, 90˝, 180˝, 270˝u, yielding 80 images in total. See Sec. B.2 of the supplementary for the details.

Baselines. To the best of our knowledge, we are the first to tackle multi-human 3D reconstruction
with both geometry and texture, and no existing public baselines directly address this task (see
Tab. S5). We therefore compare our method against two categories of prior works: (i) single-human
reconstruction from a single image, and (ii) multi-human reconstruction from multi-view images or
videos. To ensure a fair comparison, we follow the evaluation protocol of (Cha et al., 2024). For
single-human methods—ECON (Xiu et al., 2023), SIFU (Zhang et al., 2024), SiTH (Ho et al., 2024),
and PSHuman (Li et al., 2024b)—we crop each person using the dataset’s ground-truth instance
masks, reconstruct them independently, and then align the results into a shared coordinate frame and
composited to form the complete scene. We also report PSHuman’s performance when applied directly
to uncropped multi-person images. For multi-human methods, we evaluate DeepMultiCap (Zheng
et al., 2021), designed for multi-view images, and Multiply (Jiang et al., 2024), designed for videos,
under single image setting. All SMPL-based methods use ground-truth SMPL-X poses to isolate

7
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Table 1: Quantitative comparison of geometric metrics for multi-human 3D reconstruction. HUG3D
achieves the best overall scores in all metrics including CD, P2S, and NC, and also outperforms other
baselines in CP, indicating better interaction-aware reconstruction.

Method CD ↓ P2S ↓ NC ↑ F-score ↑ bbox-IoU ↑ Norm L2 ↓ CP ↑

SIFU 5.644 2.284 0.754 29.244 0.778 0.028 0.089
SiTH 9.251 3.185 0.709 21.037 0.708 0.040 0.135

PSHuman 15.579 6.088 0.617 9.749 0.659 0.069 0.027
DeepMultiCap 13.719 2.555 0.749 18.125 0.513 0.049 0.083

Ours 3.631 1.752 0.811 41.504 0.847 0.019 0.240

Table 2: Quantitative evaluation on texture qual-
ity of multi-human 3D reconstruction.

Method PSNR ↑ SSIM ↑ LPIPS ↓

SIFU 15.202 0.793 0.202
SiTH 13.798 0.789 0.233

PSHuman 11.418 0.742 0.304
Ours 16.456 0.809 0.168

Table 3: Quantitive evaluation within oc-
cluded region.

Method Norm L2 ↓ PSNR ↑ SSIM ↑

SIFU 0.197 6.157 0.559
SiTH 0.197 6.355 0.539

PSHuman 0.252 4.621 0.510
DeepMultiCap 0.217 - -

Ours 0.140 8.388 0.602

Table 4: Ablation study of key components in HUG3D. We report geometry (CD, P2S, Norm L2)
and texture (PSNR, LPIPS) metrics under various configurations.

Module Method CD ↓ P2S ↓ Occ.Norm L2 ↓ PSNR ↑ LPIPS ↓ Occ.PSNR ↑

HUG-MVD
Trained on group-only data 4.564 2.203 0.157 15.641 0.191 7.423

Trained on instance-only data 4.645 2.245 0.156 15.840 0.185 7.726
w/o Instance-to-group latent composition 4.646 2.249 0.159 16.198 0.183 7.916

HUG-GR Instance-only normal supervision 4.642 2.250 0.156 16.180 0.183 7.902
Group-only normal supervision 4.620 2.230 0.159 16.169 0.183 7.678

Ours (Full) 4.316 2.122 0.153 16.454 0.179 8.082

reconstruction quality from pose estimation errors. Further details are provided in B.1 and results on
multi-human baselines can be found in Secs. C.1 of the supplementary material.

Evaluation Metrics. We evaluate geometry with L1 Chamfer distance (CD) [cm] and 1-directional
point-to-surface distance (P2S) [cm], normal consistency (NC), F-score, and bbox-IoU between
reconstructed and ground-truth meshes. To assess surface detail consistency, we compute L2

normal error between predicted and ground-truth normal renders - across four rotated views at
t0˝, 90˝, 180˝, 270˝u relative to the input view. This normal error is separately computed specifi-
cally within occluded regions to evaluate robustness under occlusions. Physical realism is quantified
through contact precision score (CP) defined by the overlap between the estimated and ground-truth
inter-body contact map. Texture fidelity is assessed using PSNR, SSIM, and LPIPS, computed across
four rotated views same as L2 normal error. Also separately computed specifically within occluded
regions. More details on the metrics are provided in Sec. B.3 of the supplementary.

4.2 RESULTS

Quantitative Results. As shown in Tab. 1, our method outperforms on all geometric metrics, with
the lowest CD, P2S and highest NC. CP is markedly higher than other baselines, indicating superior
physical realism and fidelity of inter-instance contacts. Tab. 2 shows our method achieved the
highest PSNR and SSIM scores along with the lowest LPIPS. Moreover, in the occluded-region
evaluation, Tab. 3, we significantly outperform the baselines in both Normal L2 error for geometry
and PSNR/SSIM for texture. This indicates better perceptual quality of hallucinated textures where
baselines typically fall.

Qualitative Results. Fig. 4 illustrates that our approach surpasses all baselines in multi-human 3D
reconstruction from a single image. Pers2Ortho corrects perspective distortion, enabling accurate
shape recovery in challenging viewpoints such as elevated scenes, while baseline models produce
distorted results. Through HUG-MVD and HUG-GR, we model inter-human interactions, producing
meshes that faithfully align with contact regions in the input image. In contrast, baselines either
suffer from interpenetration or fail to preserve contact. Visual inspections confirm that HUG3D
successfully reconstructs complete human meshes even under substantial occlusion. Hallucinated
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Ours (Diffusion) Ours (Mesh) Ours (PCD)Input Era3D Input All. off Adapt. off Pen. off

(b) Ablation on HUG-GR  optimization loss
Vis. off Ours (Full)

(a) Ablation on Pers2Ortho

Figure 6: Ablation study on key components. (a) Pers2Ortho improves projection sharpness.(b) Each
HUG-GR loss boosts geometric plausibility.

textures plausibly infer clothing and shape details not visible in the input. Competing methods,
by contrast, exhibit broken surfaces, floating limbs, and missing textures. Fig. 5 shows results on
in-the-wild images. Our approach consistently reconstructs multiple humans with high fidelity,
surpassing baseline methods and demonstrating real-world applicability.

Additional results can be found in Secs. C and D of the supplementary.

4.3 ABLATION STUDY

Pers2Ortho. As shown in Fig. 6(a), we evaluate our PCD-based Pers2Ortho against several baselines:
the generative method Era3D (Li et al., 2024a), and our custom diffusion and mesh reprojection
variants. These competing methods often produce blurry results with lost facial details, whereas our
strategy consistently preserves high-fidelity features from the original view.

HUG-MVD. Tab. 4 shows that training HUG-MVD on group-only data (Yin et al., 2023) suffers
from limited geometry and texture diversity, while instance-only data (Ho et al., 2023; Yu et al.,
2021) fails to capture inter-person interactions. Our full setting, combining both sources, significantly
outperforms either alone, highlighting their complementary benefits. Also, disabling instance-to-
group latent composition leads to inconsistent surfaces and breaks continuity across instances.

HUG-GR. We analyze the impact of each component in HUG-GR. As shown in Fig. 6(b), omitting
adaptive-region specific optimization degrades quality in high-frequency areas, such as hands. Re-
moving interpenetration loss leads to mesh interpenetration and unrealistic overlaps, demonstrating
its importance for physically grounded reconstruction. Excluding the visibility loss impairs alignment
and produces unnatural surface at contact regions. In Tab. 4, by comparing variants using only
group-level or only instance-level losses, we found that incorporating both losses simultaneously
yields the best performance on both geometry and texture quality.

More ablations and analysis can be found in Sec. E of the supplementary.

5 DISCUSSION

Limitations. HUG3D focuses on inter-human occlusion and does not handle occlusions from external
objects, which we plan to address in future work. Although robust in the wild, our method depends
on SMPL-X initialization and may fail under severe depth ambiguity or heavy occlusion, leading to
distorted geometry. Further discussion appears in Sec. G of the supplementary.

Conclusion. We presented HUG3D, a three-stage framework for high-fidelity 3D reconstruction of
human groups from a single RGB image. HUG3D addresses key challenges such as occlusions, com-
plex interactions, and geometric distortions by combining a canonical view transform (Pers2Ortho),
a group-aware multi-view diffusion model (HUG-MVD), and a physics-based reconstruction stage
(HUG-GR) for refined geometry and texture. Extensive experiments show that HUG3D significantly
outperforms single-human and prior multi-human methods, producing visually accurate, physically
plausible reconstructions. Our framework enables reliable applications in AR/VR, telepresence, and
digital human modeling, advancing realistic multi-human 3D reconstruction from a single image.

9
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ETHICS STATEMENT

We take ethics very seriously, and our work fully conforms to the ICLR Code of Ethics. While our
method enables legitimate applications such as AR/VR, telepresence, and graphics, it also carries
potential dual-use risks, including privacy violations, lack of consent, biometric identification, and
harassment. We rely exclusively on publicly available datasets released by third parties and did not
collect any new human-subject data; therefore, IRB approval was not required. To mitigate misuse,
we do not release pretrained weights. Any released code is intended for research purposes only and
is provided under a license that prohibits non-consensual modeling, surveillance, re-identification,
sexual or exploitative uses, and any use involving minors without verified consent. All demonstrations
use either consented or synthetic inputs, and we enforce strict access controls with minimal data
retention. We also provide detailed documentation of the limitations and typical failure cases of our
method, and we clearly label all generated assets.

REPRODUCIBILITY STATEMENT

We follow ICLR guidance by providing a concise statement that points to the materials required
to reproduce our results. The overall pipeline and experimental protocol are described in Sec. 3.
Implementation and training details for each stage are provided in the supplementary material,
including Secs. A.2, A.3, A.4, and A.5. Evaluation settings, datasets, and metrics are detailed in
Secs. B.1, B.2, and B.3. Adaptations of baselines and additional comparisons appear in Sec. C.1,
while efficiency and compute details are summarized in Sec. E.5. Information about environment
libraries, datasets, and pretrained components used for research-only evaluation is listed in Secs. F.1,
F.2, and F.3. Upon acceptance, we will release training and inference code along with reproduction
scripts that rebuild all main tables and figures using only the public datasets cited in this paper.
In line with our Ethics Statement, we will not release pretrained weights due to potential risks of
non-consensual modeling and re-identification.
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A DETAILS ON METHODS AND IMPLEMENTATION

A.1 ROBUST INSTANCE SEGMENTATION AND SMPL-X ESTIMATION

Instance Segmentation. We adopt a hybrid instance segmentation pipeline that combines detection,
pose estimation, and promptable segmentation to produce per-person masks from a single image.
This process is designed to be occlusion-aware and ensures that each human instance is segmented
consistently, serving as the foundation for downstream SMPL-X fitting.

We begin by applying YOLOv11 (Khanam & Hussain, 2024) to detect human instances in the input
image, using only the “person” class to extract tight bounding boxes around each individual. For each
detected bounding box, we then estimate 2D keypoints using ViTPose (Xu et al., 2022) generated
from BUDDI (Müller et al., 2024) project. These keypoints provide reliable localization of body joints
and are retained for subsequent matching and alignment purposes. To generate high-quality binary
masks for each person, we pass the bounding boxes as prompts to the Segment Anything Model
(SAM) (Kirillov et al., 2023), which produces accurate per-instance segmentations. These masks are
then associated with individual people by solving a Hungarian assignment problem between keypoint-
based anchor regions (e.g., head and feet) and the detected masks, ensuring proper instance-level
alignment. To further improve segmentation quality, overlapping or duplicate detections are merged
based on intersection-over-union (IoU) thresholds. Additionally, in cases of occlusion or ambiguous
limb segmentation, we use the predicted keypoints along with SAM’s region prompting to correct
mismatched or missing parts, particularly in the hand and foot regions. This pipeline enables robust
and scalable segmentation of multiple humans in a single view, even in the presence of occlusion or
complex poses.

SMPL-X Estimation (RoBUDDI). We adopt BUDDI (Müller et al., 2024), a diffusion-based prior
model, to estimate SMPL-X parameters for multi-human scenes. While BUDDI produces high-
quality predictions for individual subjects, it exhibits limited effectiveness in handling collisions
and interpenetrations. This is primarily because the penetration constraints are applied only in a
second-stage refinement, after collisions have already occurred. As a result, scenes with dense
interactions still suffer from body interpenetrations and inaccurate keypoint estimations in occluded
regions.

To overcome these limitations, we introduce two physics-inspired supervision terms during opti-
mization: (1) an interpenetration loss that penalizes body collisions between interacting subjects,
and (2) a visibility-aware keypoint loss that reduces errors in self- and inter-human occluded areas.
These additions enable more robust and physically plausible multi-human pose estimation. We refer
to our enhanced approach as RoBUDDI, which integrates these geometry-level constraints into the
fitting process. As shown in Tab. S10 and Fig. S21, RoBUDDI achieves both quantitatively superior
accuracy and qualitatively improved physical realism compared to the baseline.

The interpenetration loss penalizes unrealistic mesh overlaps between specific body part pairs. We
define a tolerance set Ωtol, which enumerates body part index pairs that are likely to collide in
crowded scenes (e.g., left thigh vs. right calf). For each pair pi, jq P Ωtol, we compute the distances
si,j1 , si,j2 between the closest surface points on each mesh and apply a soft constraint with threshold
tol. The loss is formulated as:

Lpen “ γpen
1

|Ωtol|

ÿ

pi,jqPΩtol

´

ˇ

ˇsi,j1 ´ si,j2

ˇ

ˇ ` max
`

0, tol ´
ˇ

ˇsi,j1 ´ si,j2

ˇ

ˇ

˘

¯

, (S10)

where γpen is a high impact factor to strictly enforce separation and eliminate implausible interpene-
tration.

In addition, we introduce a visibility-aware keypoint loss that adaptively downweights occluded
joints. Given instance segmentation masks, each projected joint j is assigned:

wj “

"

1, if joint j is visible,
αocc, if joint j is occluded (αocc “ 0.1).

Let tuju and tûju be the ground-truth and estimated 2D joint positions. We define

Lstd “
1

N

N
ÿ

j“1

}uj ´ ûj}2, Lvis “
1

N

N
ÿ

j“1

wj }uj ´ ûj}2.
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Here, N denotes the total number of 2D keypoints used in the reprojection loss. We then combine
them as below.

Lkp “ γstd Lstd ` γvis Lvis

Although conceptually similar to the visibility loss used in mesh reconstruction, where misclassified
silhouette pixels are penalized, this formulation operates on joint reprojection errors rather than
mask-pixel discrepancies, yielding improved robustness to occlusion in keypoint alignment.

RoBUDDI estimates each person’s 3D pose in multi-person scenario, relative to the camera, providing
all necessary geometric information for canonicalization. This effectively sets the camera’s extrinsic
rotation to I and translation to 0⃗.

The original BUDDI optimization takes approximately 60s per image and peaks at 12.48GB of
GPU memory on NVIDIA RTX A6000 GPU (batch size=1). Adding our interpenetration and
visibility penalties increases runtime to 77s and peak memory to 15.16GB. All experiments use an
interpenetration threshold tol “ 0.02, a penetration loss weight γpen “ 15, an occlusion weight
αocc “ 0.1, and visibility-aware keypoints and keypoint loss blend factors γstd “ γvis “ 0.5.

A.2 CANONICAL PERSPECTIVE-TO-ORTHOGRAPHIC VIEW TRANSFORM (PERS2ORTHO)

Figure S7: Depth edge-aware filtering removes uncertain boundary regions to improve orthographic
projection stability.

Figure S8: Depth-aware filtering selects front-visible points for clean orthographic projections.

In addition to the primary transformation pipeline described in the main paper, we detail two
depth-aware filtering strategies designed to suppress projection artifacts during the conversion from
perspective to orthographic views.

Depth Edge-Aware Uncertain Point Filtering. As shown in Fig. S7, depth discontinuities often
lead to jagged contours and ghosting artifacts near object boundaries. To address this, we detect depth
edges using Canny edge detection applied to the rendered depth map. To reduce spurious detections
near image borders, we erode the foreground mask before edge extraction. The resulting edge map
is then dilated to encompass uncertain boundary regions. A refined validity mask is constructed by
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excluding these edge-dilated areas from the projection domain, ensuring that only stable, interior
pixels are used in the orthographic projection.

Depth-Aware Visibile Point Selection. As represented in Fig. S8, to preserve geometric consistency
during the projection of partial point clouds (PCD) into orthographic views, we filter for front-visible
points using the rendered depth from the mesh as a geometric prior. This strategy eliminates occluded
or background points, retaining only those lying in front of the mesh surface and visible from the
target camera view.

Specifically, we project 3D world-space points onto the image plane and sample the mesh depth at
corresponding pixel locations. A point is retained if: (1) its projected 2D coordinate lies within image
bounds, (2) the absolute depth difference between the point and the mesh is below a threshold τ (set
to τ “ 0.02), and (3) the sampled mesh depth is positive.

Formally, let pi P R3 be a 3D point from the PCD, and zpcd
i and zmesh

i denote the depths from the
point cloud and mesh at the projected location, respectively. The point is retained if:

|zmesh
i ´ zpcd

i | ă τ, and zmesh
i ą 0 (S11)

This depth-aware visibility filtering yields cleaner foreground silhouettes and reduces projection noise
by removing points that are geometrically inconsistent or lie behind the mesh surface.

We optimize the mesh for partial 3D reconstruction over 200 iterations with a learning rate of 0.02.
The Pers2Ortho module, including the reprojection step, takes 16.20 seconds and consumes 14.4GB
of VRAM on an NVIDIA A100. We apply a dilation operation with a kernel size of 5 for depth
edges.

A.3 HUMAN GROUP-INSTANCE MULTI-VIEW DIFFUSION (HUG-MVD)

A.3.1 TRAINING DATASETS

We leverage one multi-human dataset (Yin et al., 2023) and two single-human datasets (Ho et al.,
2023; Yu et al., 2021) to supervise our model with diverse human poses, interactions, and appearances.

Hi4D (Yin et al., 2023) is a novel dataset targeting close-range, prolonged human-human interactions
with physical contact. Capturing and disentangling such interactions is particularly challenging due
to severe occlusions and topological ambiguities. To address this, Hi4D employs individually fitted
neural implicit avatars and an alternating optimization scheme that jointly refines surface and pose
during close contact. This enables automatic segmentation of fused 4D scans into individual humans.
The dataset comprises 100 sequences across 20 subject pairs, totaling over 11K textured 4D scans, all
annotated with accurate 2D/3D contact labels and registered SMPL-X models. For our experiments,
we extract 1,272 scenes by sampling contact frames with a stride of 16.

CustomHumans (Ho et al., 2023) contains high-quality static scans of 80 individuals, captured using
a multi-view photogrammetry system with 53 RGB (12MP) and 53 IR (4MP) cameras. Each subject
performs a set of predefined motions, including T-pose, hand gestures, and squats, in 10-second
sequences at 30 FPS. From each sequence, 4–5 high-fidelity frames are selected, yielding over 600
3D scans. Each sample includes a 40K-face mesh, a 4K texture map, and accurately registered
SMPL-X parameters, with a wide range of garment styles (120 total).

THuman2.0 (Yu et al., 2021) offers 500 high-resolution human scans captured using a dense DSLR
rig. Each sample consists of a detailed 3D mesh paired with a high-quality texture map, covering a
wide range of body shapes and clothing types. This dataset serves as a clean source of diverse clothed
human geometry.

A.3.2 RENDERING PROCEDURE

For each 3D human scene, we render 16 views in total, comprising 8 orthographic and 8 perspective
images. Each view includes RGB images, normal maps, depth maps, and segmentation masks,
rendered from both SMPL-X meshes and original scanned meshes. All views share the same azimuth
angles to allow consistent comparison across projection types. Orthographic views are rendered with
slight variation in elevation (randomly sampled in the range r´10˝,`10˝s) to improve robustness
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against vertical pose and camera variations. Perspective views, on the other hand, utilize elevation
values randomly sampled from a broader range of r´20˝,`45˝s and distances between 2.0 and 6.0
units to enhance variability and generalization.

Camera extrinsic parameters (rotation R and translation T) are generated using a virtual camera
located at the specified distance and orientation, always looking at the origin. These parameters are
derived via the look_at_view_transform function in PyTorch3D (Ravi et al., 2020).

Prior to rendering, all meshes are normalized to a canonical space. This is done by computing the
bounding box of the vertex positions, determining the center and maximal axis length, and scaling
the mesh such that it fits within a unit cube. For datasets like CustomHumans (Ho et al., 2023) and
THuman2.0 (Yu et al., 2021), we additionally introduce random jittering to the mesh center (on the
X and Y axes) to prevent overfitting and encourage generalization. The normalized vertex positions
vnorm are computed by:

vnorm “
v ´ c

s{2

where c is the computed center of the bounding box and s is the padded bounding box size.

For orthographic rendering, we fix the camera distance at 3.0 units and maintain consistent scale
across all views. For perspective rendering, focal lengths are automatically determined based on
the normalized mesh size and camera distance, with additional jitter applied up to 20% to simulate
realistic monocular variation.

Rendering is performed using the PyTorch3D MeshRenderer, configured with either orthographic
or perspective camera models. RGB images are rendered using a Phong shading model with ambient
or point lighting depending on the dataset. Depth maps are extracted from the rasterizer’s z-buffer.
Normal maps are generated by interpolating face vertex normals in view space. Instance segmentation
masks are computed per-pixel using face-to-instance ID mappings. When contact information is
available, contact masks are also rendered for the case of multi-human dataset by identifying faces
associated with contact regions and projecting them to image space. Small holes in the resulting
binary masks are filled using post-processing.

All outputs are rendered at a base resolution of 768 ˆ 768 pixels. For training, we randomly
select a reference view and sample six additional views at fixed relative azimuth angles of
t0˝, 45˝, 90˝, 180˝, 270˝, 315˝u, resulting in a 6-view training input for each instance.

A.3.3 MASKING STRATEGY FOR OCCLUSION SIMULATION

Reprojected RGBs

Pers2Ortho

Input image

SMPL-X instance masks

Dilation

Masked RGBs

Isolate each subject & 
Mask for inpainting

(a) Masking strategy for multi-subject datasets

(b) Masking strategy for single-subject datasets

Input image Silouhette-shaped 
masks

Occlusion-simulated
masked RGBs Input image Silouhette-shaped 

masks
Occlusion-simulated

masked RGBs

Figure S9: Illustration of masking strategy for occlusion simulation. (a) For multi-subject datasets,
SMPL-X instance masks are used to isolate each subject and specify regions to inpaint. (b) For
single-subject datasets, we simulate oclusion through sillouhette-shaped masks.
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To simulate realistic visibility and occlusion in multi-human 3D scenes, we construct masked images
x

piq
mask from reprojected point clouds xpiq

pcd and visibility masks Mvis, which indicate regions of missing
observation in each canonical view Ci.
To define the canonical visibility views, we use the reprojected RGB images captured at {0˝, 45˝,
315˝}. For all other viewpoints, only the SMPL-X instance masks are used for occlusion simulation
without relying on PCD.

During training, we generate masked RGB images tx
piq
masku5i“0 to guide inpainting or occlusion-aware

reconstruction networks: background regions are labeled as 1, while occluded or missing areas are
labeled as 0 and the visible region with the pixel values. These masks provide supervision for learning
to reconstruct or inpaint plausible content in the occluded regions.

In multi-subject datasets such as Hi4D (Yin et al., 2023), where mutual occlusion naturally occurs,
we use SMPL-X instance masks to isolate each subject. These masks are further dilated to account
for peripheral structures such as garments and hair, ensuring that edge regions around the human
silhouette are adequately covered for inpainting tasks. We apply a dilation operation with a kernel
size of 61.

In single-subject datasets such as CustomHumans (Ho et al., 2023) and THuman2.0 (Yu et al., 2021),
we simulate occlusion by randomly selecting one of two masking strategies with equal probability
(0.5): (1) silhouette-shaped masks that resemble human figures, randomly scaled and positioned
near the image center to mimic the presence of an occluder, or (2) random hole-based masks, such
as freeform or template-driven occlusions, which introduce unstructured masking artifacts. This
augmentation scheme enables the model to generalize to a wide range of occlusion scenarios, even in
the absence of multiple real subjects.

A.3.4 TRAINING PROCEDURE

HUG-MVD

ControlNet

Latent 
Encoder

Add noise

Pers2Ortho

“A rendering image of 3D human,
[v] view, [M] map”

Training
loss

Masking

V
ie

w
-w

is
e 

se
lf 

at
n

Se
lf 

at
n …

Trainable

Frozen

Input image

GT RGBs & normals

Multi-view SMPL-X normals

Masked RGBs

Figure S10: Illustration of the training procedure of HUG-MVD. The model takes occluded RGB
images and SMPL-X normal maps from six views and learns to reconstruct complete RGB and
normal views via a multi-view diffusion model. SMPL-X guidance is injected via ControlNet, with
attention applied across views and modalities for coherent multi-human reconstruction.

The objective of our training procedure is to reconstruct complete RGB and normal images from
partially visible, occluded inputs by leveraging a multi-view diffusion model. An overview of the
training process is illustrated in Fig. S10. Each training sample consists of six canonical views
per scene. The model receives the following inputs: (1) Occluded RGB images reprojected from
point clouds using the masking strategies described earlier: tx

piq
masku5i“0, and (2) Corresponding

SMPL-X normal maps providing geometric structure: tn
piq
SMPLXu5i“0. The supervision targets are: (1)

Ground-truth RGB images: txpiqu5i“0, and (2) Ground-truth normal maps: tnpiqu5i“0.
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We initialize the model from PSHuman (Li et al., 2024b), a pre-trained diffusion model designed
to synthesize six RGB and normal views from a single RGB image. Notably, PSHuman is trained
exclusively on single-human datasets, including THuman2.0 (Yu et al., 2021) and CustomHumans (Ho
et al., 2023), and the open-source version of PSHuman does not support SMPL-X conditioning. To
overcome this limitation and extend the model to multi-human scenes with explicit geometry input,
we integrate ControlNet (Zhang et al., 2023) into the architecture. This enables the model to utilize
SMPL-X normal maps as structural guidance during training.

Our model operates in the latent space defined by the variational autoencoder (VAE) from Stable
Diffusion 2.1 (Rombach et al., 2022). Each ground-truth RGB image xpiq and normal map npiq is
encoded into latent variables zpiq

rgb and z
piq
normal using the VAE encoder. The model then predicts the

residual noise added to these latents during the forward diffusion process. The training objective is
defined as:

Ldiff “

5
ÿ

i“0

ˆ

Et,ϵ

„

›

›

›
ϵ ´ ϵθpz

piq

t,rgb, t, x
piq

mask, n
piq

SMPLXq

›

›

›

2

2

ȷ

` Et,ϵ

„

›

›

›
ϵ ´ ϵθpz

piq

t,normal, t, x
piq

mask, n
piq

SMPLXq

›

›

›

2

2

ȷ˙

(S12)

Here, zpiq
t,rgb and z

piq
t,normal denote the noisy latent variables at timestep t, and ϵ is the Gaussian noise

sampled during training. The denoising model ϵθ learns to recover the clean signal conditioned on
the masked RGB inputs and the SMPL-X geometry.

Two key attention modules are employed to support effective multi-view generation. First, following
prior work (Li et al., 2024a;b), we apply row-wise multi-view self-attention independently within
each modality (RGB or normal), allowing the model to correlate across the six canonical views.
Second, to enable information exchange between RGB and normal modalities, we apply self-attention
across all latent tokens, allowing cross-modality attention between RGB and normal features at each
view. This joint RGB-normal attention mechanism is also inspired by (Li et al., 2024a;b).

During training, only the U-Net parameters are optimized, while the remaining components such
as the CLIP image encoder and the VAE are kept frozen. Text prompt embeddings are injected
via cross-attention using the template: “a rendering image of 3D human, [V] view,
[M] map”, where [V] indicates the view direction (e.g., front, left, face) and [M] specifies
the modality (color or normal).

We also experimented with classifier-free guidance (CFG) by applying conditioning dropout, follow-
ing prior work (Ho & Salimans, 2021). However, since CFG yielded only marginal performance
improvements at test time, it was not used during inference.

To address occlusion and mesh collision issues in multi-human scenes, we optionally apply contact-
aware binary masks on Hi4D (Yin et al., 2023) samples. These masks suppress gradient updates
in regions of body-to-body contact where the mesh supervision is less reliable due to penetration
artifacts or annotation noise.

The model is trained on a single NVIDIA A100 GPU (80GB) with a batch size of 16 and gradient
accumulation steps of 8. We use the Adam (Kingma & Ba, 2014) optimizer with a learning rate
of 5 ˆ 10´6, β1 “ 0.9, and β2 “ 0.999. Training follows a two-stage curriculum: (1) pre-training
without inpainting masks for 1,000 steps, followed by (2) fine-tuning with inpainting masks for
another 1,000 steps to simulate occlusion. The entire training takes approximately two days, with
peak GPU memory usage of around 62GB. A DDPM scheduler with 1,000 diffusion steps is used
throughout training.

A.3.5 INFERENCE PROCEDURE

At inference time, the model predicts complete normal maps tn̂piqu and synthesizes complete RGB
images tx̂piqu across all views from partially visible RGB inputs and canonical-view SMPL-X normal
maps as illustrated in Fig. S11.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Instance-to-group latent composition
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Figure S11: Illustration of the inference procedure of HUG-MVD. (a) Instance-to-group latent
composition and (b) partial RGB latent injection for RGB synthesis.

To maintain consistency between group-level and instance-level reconstructions, we perform latent-
space composition. At each diffusion timestep t, instance-specific latents zpiq

t,instpkq
are softly injected

into the group-level latent zpiq
t,group using binary masks 1pi,kq

inst and a blending ratio αgi “ 0.8:

z
piq

t,group Ð

K
ÿ

k“1

”

αgi ¨ 1
pi,kq

inst ¨ z
piq

t,instpkq
` p1 ´ αgiq ¨ 1

pi,kq

inst ¨ z
piq

t,group

ı

`

˜

1 ´

K
ÿ

k“1

1
pi,kq

inst

¸

¨ z
piq

t,group, (S13)

This mechanism allows high-frequency details from instance-specific predictions to be integrated
into the global group representation, improving surface continuity in multi-human scenes.

Also, to further enhance RGB quality, we inject latent signals from partially visible RGB inputs. At
each diffusion timestep t, we generate a noisy version z̃raw of the raw RGB latent (restricted to visible
regions) and blend it into the current latent zt using a binary mask mraw and mixing ratio αpcd “ 0.8:

zt Ð mraw ¨
“

αpcd ¨ z̃raw ` p1 ´ αpcdq ¨ zt
‰

` p1 ´ mrawq ¨ zt, (S14)

This operation is applied exclusively to the RGB branch and aims to reinforce reliable visual priors in
visible areas, improving fidelity in occluded or ambiguous regions. We apply this injection selectively
to low-confidence views (e.g., non-source views) to avoid overwriting already plausible outputs.

We use a DDIM scheduler with η “ 1.0 and perform 40 denoising steps per sample. We also used
αgi “ αpcd “ 0.8. Inference for all group-level and instance-level multi-view RGB and normal maps
takes 60.16 seconds, using 34.76GB of VRAM on an NVIDIA A100.

A.4 HUMAN GROUP-INSTANCE GEOMETRY RECONSTRUCTION (HUG-GR)

Here, we provide a detailed explanation of the two geometry-level supervision
terms—interpenetration loss and visibility loss. As illustrated in Fig. S12, these losses play
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complementary roles in enhancing geometric plausibility and part-level visibility consistency during
group-instance reconstruction.

Figure S12: Illustration of the interpenetration loss and visibility loss. The interpenetration loss
penalizes body-part collisions (blue arrows), while the visibility loss enforces alignment between
rendered masks and ground-truth visibility (red region).

Interpenetration Loss. To prevent anatomically implausible overlaps between articulated body parts,
we define an interpenetration loss that penalizes violations among predefined part pairs pi, jq P Ωtol,
where Ωtol is the tolerance set encoding pairs subject to collision constraints inspired by (Huang et al.,
2024). To determine the tolerance set, Ωtol, we first compute a contact map based on vertex-to-vertex
distances on the initial SMPL-X meshes, which identifies all potential contact regions. The resulting
contact regions, constitutes our tolerance set. For each pair, we compute the shortest distances si,j1 and
si,j2 between the nearest surface points of parts i and j. These distances are then softly constrained
using a tolerance threshold tol. Our formulation assigns a fixed penalty value of tol for any distance
within this threshold. This acts as a step-like penalty that strongly discourages any violation of the
minimum distance, rather than penalizing the magnitude of the penetration. While this approach does
not provide a gradient within the penetrated region, it can enhance training stability by bounding the
penalty for any single pair.

Lpen “
1

|Ωtol|

ÿ

pi,jqPΩtol

´

|si,j1 ´ si,j2 | ` max
´

0, tol ´ |si,j1 ´ si,j2 |

¯¯

(S15)

This term encourages a minimum surface separation between adjacent parts (e.g., thighs vs. calves),
helping to reduce self-penetration artifacts while preserving flexibility for naturally close configura-
tions such as seated or folded poses.

Visibility Loss. To improve spatial alignment in crowded scenes, we supervise visibility using
rendered segmentation masks. For each body part b in instance k, we penalize visibility mismatches
using:

Lvis “
1

2B

K
ÿ

k“1

B
ÿ

b“1

Ek
b

Mk
b ` ϵ

, (S16)

where Ek
b is the number of incorrectly occluded pixels and Mk

b the total visible pixels in the ground
truth. This encourages accurate silhouette and occlusion boundaries, particularly in group interactions.

Adaptive Region-Specific Optimization. To balance global stability and preservation of local
details, we apply region-specific optimization strategies. In particular, lower learning rates are used
for vertices located in semantically and geometrically complex regions such as the hands and face.
This allows the model to better preserve high-frequency features provided in the initial SMPL-X
mesh in these areas while still allowing flexible carving of geometric features, such as clothing, in
other regions. We determine how close a vertice is to a complex region using the optimized SMPL-X
joint positions of the hands and face. And use sigmoid blending to derive the actual learning rate.
Formally, the vertice-wise adaptive learning rate αv for vertice v is:

αv “ αbase ¨
1

e´p200dv`10q ` 1
, (S17)
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Where αbase is the base learning rate and dv is the minimum distance between v and the set of all
SMPL-X joint vertices in consideration denoted as JSMPL-X. Then, dv is:

dv “ min
jPJSMPL-X

}v ´ j} (S18)

Thus, we assign lower learning rates to vertices with smaller dv (i.e. vertices closer to hands or
the face). As illustrated in Fig. 6(b), this adaptive strategy results in sharper reconstructions of fine
regions (e.g., fingers, facial contours) while maintaining coherence in broader anatomical parts like
the torso or limbs.

We optimize the mesh over 200 iterations with a learning rate of 0.01, λgroup “ 1.0, λinst “ 0.2,
λpen “ 2.0 and λvis “ 1.0. HUG-GR takes 125.47 seconds and consumes 7.58GB of VRAM on an
A100 GPU.

A.5 OCCLUSION- AND VIEW-AWARE TEXTURE FUSION

Figure S13: View-aware face restoration enhances frontal views using landmark-guided inpainting.

Figure S14: Illustration of the occlusion-aware blending strategy. Edge-aware confidence masks,
computed from depth discontinuities, suppress artifacts near occlusion boundaries, resulting in cleaner
silhouettes and improved cross-view consistency.

To construct coherent and high-quality full-body textures, we fuse multi-view RGB predictions into
a unified texture. To improve texture fidelity and suppress artifacts, we introduce two important
enhancements: view-aware face restoration and occlusion-aware blending.

View-Aware Face Restoration. Faces captured from extreme angles or under occlusion often exhibit
degraded appearance. To address this, as shown in Fig. S13, we first analyze each view using facial
landmarks and SMPL-X head orientation to estimate the relative frontalness of the face. Among the
six RGB predictions per instance, we select the two most frontal views. If the source view is used for
the face, we directly use its content. If not, we perform face inpainting on the most frontal view using
CodeFormer (Zhou et al., 2022), where a soft circular mask is generated using warped 5-point facial
landmarks. In both cases, the enhanced face region is warped back and blended into the original view
using inverse affine transformation. This step improves the final texture synthesis especially in the
face region.

Occlusion-Aware Blending. As illustrated in Fig. S14, to prevent ghosting and bleeding artifacts
near occlusion boundaries, we employ edge-aware confidence masking guided by view-dependent
depth maps. Depth edges are first extracted using the Canny filter, and the resulting edge map is
dilated with a fixed kernel to define an exclusion zone. We retain only the pixels that lie within
foreground regions and are sufficiently distant from detected depth discontinuities. These reliable
pixels are used to generate a binary confidence mask Ci for each view. The final contribution of a
view’s texture projection Ti is modulated by this mask as T 1

i “ Ci ¨Ti. This occlusion-aware blending
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strategy effectively suppresses unstable regions near self-occlusion edges, resulting in cleaner object
silhouettes and improved consistency across views. We apply a dilation operation with a kernel size
of 21.

Our texture fusion takes 14.49 seconds and consumes 4.95GB of VRAM on an A100 GPU.
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B EVALUATION DETAILS

B.1 EVALUATION SETTINGS

We evaluate our method in comparison to prior works across three categories: methods of single
human reconstruction from single image, methods of multi-human reconstruction from multi-view
images, and methods of multi-human reconstruction from videos. Since there is no publicly available
baseline implementation that directly performs multi-human reconstruction from a single image
as represented in Tab. S5, To ensure a fair comparison, we follow the evaluation protocol of (Cha
et al., 2024) by adapting related methods in each category under consistent settings. To isolate the
effect of SMPL-X prediction from the reconstruction process, all main comparisons are conducted
using ground-truth SMPL-X. Results using predicted SMPL-X are included in Sec. C.1 of the
supplementary.

Table S5: Comparison of recent 3D human reconstruction methods. HUG3D supports multi-human
reconstruction from a single image with both geometry and texture.

Method Multi- or Single Human Input Type Geometry Texture Publicly Available

ECON (Xiu et al., 2023) Single human Single image ✓ ✗ ✓
SiTH (Ho et al., 2024) Single human Single image ✓ ✓ ✓
SIFU (Zhang et al., 2024) Single human Single image ✓ ✓ ✓
PSHuman (Li et al., 2024b) Single human Single image ✓ ✓ ✓
DeepMultiCAP (Zheng et al., 2021) Multi-human Multi-view images ✓ ✗ ✓
Multiply (Jiang et al., 2024) Multi-human Video ✓ ✓ ✓
Cha et al. (Cha et al., 2024) Multi-human Single image ✓ ✗ ✗
HUG3D (Ours) Multi-human Single image ✓ ✓ ✓ (upon acceptance)

Single human reconstruction from single image. For methods of originally designed for single
human reconstruction (Zhang et al., 2024; Ho et al., 2024; Li et al., 2024b; Xiu et al., 2023), we
adapted them to the multi-human setting as follows. Ground-truth instance segmentation masks were
used to isolate each person in the input image. Each individual was then reconstructed independently
using the corresponding method. Since the outputs lie in different coordinate frames, we performed
a canonicalization procedure to align all reconstructions into a shared space. Specifically, for each
instance, we first predicted the SMPL-X mesh using the method’s native estimator. We then computed
a similarity transformation—comprising scale, rotation, and translation—that aligns the ground-truth
SMPL-X mesh to the predicted one. The ground-truth SMPL-X mesh was transformed into the
predicted space before reconstruction, and the reconstruction output was transformed back to the
ground-truth space via the inverse transformation, allowing the reconstructed scene to be composited
consistently. We also evaluate PSHuman-multi, which applies the single-person reconstruction
pipeline PSHuman (Li et al., 2024b) directly to uncropped multi-person images. Since we use
ground-truth SMPL-X for all evaluations, we omit the SMPL-X optimization process for baselines
that originally involve it.

Multi-human reconstruction from multi-view image. For multi-view baselines (Zheng et al., 2021),
we provided only a single view as input for inference, to ensure comparability with our single-image
reconstruction setting.

Multi-human reconstruction from videos. Similarly, for video-based baselines (Jiang et al., 2024),
we provided only a single image as the first frame for inference.

B.2 EVALUATION DATASET

MultiHuman (Jiang et al., 2024).To facilitate both quantitative and qualitative evaluation of re-
constructed meshes, we rendered perspective-view images from the MultiHuman dataset using a
multi-view setup. Our evaluation covers a total of 20 two-person scenes, including 6 closely interac-
tive cases (sequences 8, 23, 24, 250, 252, 253) and 14 naturally interactive scenes (sequences 12, 16,
17, 18, 19, 20, 22, 30, 226, 244, 249, 251, 255, 256). For ablation studies, we focus on the closely
interactive cases.

For each scene, we rendered the meshes from 4 distinct camera viewpoints, generated by sampling
a random azimuth and adding fixed offsets of t0˝, 90˝, 180˝, 270˝u, resulting in views uniformly
distributed around the subject. The elevation angles were randomly sampled in the range r´20˝, 45˝s,
and the camera-to-subject distances were sampled uniformly from r2.0, 6.0s, simulating varying
levels of zoom and perspective distortion.
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To ensure scale-invariant and consistently framed rendering, each mesh was normalized to fit within
a unit cube centered at the origin. This was achieved by computing the mesh’s axis-aligned bounding
box and uniformly scaling it based on the maximum side length.

In-the-wild. For our qualitative evaluation with in-the-wild images, we leveraged OpenAI’s Sora
service to obtain a diverse set of test images. Sora performs a web-based image search for user-
specified concepts, reconstructs novel scenes by referencing those search results, and synthesizes
new images that reflect real-world variation. The resulting Sora outputs—whose content is derived
from Internet-sourced photos—were then used as our "in-the-wild" evaluation set, ensuring that our
method is tested on unconstrained, naturally diverse imagery.

B.3 EVALUATION METRICS

We employ a comprehensive set of metrics to evaluate both the geometric and texture quality of
reconstructed multi-human meshes. These metrics cover surface accuracy, physical realism, and
perceptual quality. Here, P and Q are point clouds sampled from the predicted and ground-truth
meshes.

Chamfer Distance (CD). Chamfer Distance measures the bidirectional discrepancy between the
predicted and ground-truth surfaces. We uniformly sample 100,000 points from each mesh surface
and compute the average closest-point distance from the predicted points to the ground-truth surface
and vice versa. The final CD score is defined as:

CDpP,Qq “
1

|P |

ÿ

pPP

min
qPQ

}p ´ q}2 `
1

|Q|

ÿ

qPQ

min
pPP

}q ´ p}2.

A lower CD indicates a more accurate reconstruction that closely matches the geometry of the ground
truth in both completeness and precision.

Point-to-Surface Distance (P2S). P2S measures the unidirectional accuracy of the predicted surface
with respect to the ground-truth shape. Specifically, it measures the average Euclidean distance from
each point sampled on the predicted mesh to the closest point on the ground-truth surface:

P2SpP Ñ Qq “
1

|P |

ÿ

pPP

min
qPQ

}p ´ q}22.

P2S emphasizes surface accuracy without penalizing missing parts, and lower values indicate closer
alignment to the reference shape.

Normal Consistency (NC). NC measures the angular similarity between surface normals on the
predicted and ground-truth meshes. For each point, we compare the normal vector at that point
with the normal vector at the closest point on the opposite surface. The final score is averaged
bidirectionally:

NCpP,Qq “
1

2|P |

ÿ

pPP

`

1 ´ xnp,nNNpp,Qqy
˘

`
1

2|Q|

ÿ

qPQ

`

1 ´ xnq,nNNpq,P qy
˘

,

where x¨, ¨y denotes the dot product between unit normals, and NNp¨q returns the nearest neighbor in
the opposite set. A higher NC indicates better preservation of surface orientations and local detail.

F-score. F-score evaluates both precision and recall of the predicted surface points with respect to
a ground-truth reference under a distance threshold τ . We use τ “ 1cm. Precision measures the
percentage of predicted points that lie within τ of the ground-truth surface, while recall measures the
converse. F-score is defined as the harmonic mean of the two:

F-score “
2 ¨ Precision ¨ Recall
Precision ` Recall

.

This metric rewards reconstructions that are both accurate and complete.

Bounding Box IoU (bbox-IoU). We compute the 3D Intersection-over-Union (IoU) of axis-aligned
bounding boxes of the predicted and ground-truth meshes:

IoUbbox “
volpBpred X Bgtq

volpBpred Y Bgtq
,
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where Bpred and Bgt are the predicted and ground-truth bounding boxes, respectively. This metric
evaluates global layout similarity and spatial coverage.

L2 Normal Error. We assess surface detail preservation by computing the per-pixel L2 distance
between rendered normal maps of the predicted and ground-truth meshes. This is done across four
orthographic views at azimuth angles t0˝, 90˝, 180˝, 270˝u:

L2-NormErr “
1

N

N
ÿ

i“1

}npred
i ´ ngt

i }22.

We also report this error computed within occluded regions, to specifically assess reconstruction
quality under visual occlusion.

Contact Precision (CP). To evaluate the physical plausibility of multi-human reconstruction, we
measure the alignment of predicted inter-body contact regions with the ground truth. This metric
quantifies how accurately the predicted contact points reflect the true contact between two human
bodies.

Let M̂1 and M̂2 be the predicted meshes, and M1 and M2 the corresponding ground-truth meshes.
Denote their vertex sets as V̂1, V̂2, V1, and V2, respectively. A vertex is considered in contact if it lies
within a threshold distance δ from the other mesh.

First, we define the ground-truth contact region Cgt as:

Cgt “

"

v P V1 Y V2

ˇ

ˇ

ˇ

ˇ

min
v1PV2YV1

}v ´ v1}2 ă δ

*

,

and similarly, the predicted contact region Cpred as:

Cpred “

"

v̂ P V̂1 Y V̂2

ˇ

ˇ

ˇ

ˇ

min
v̂1PV̂2YV̂1

}v̂ ´ v̂1}2 ă δ

*

.

We then compute precision by counting the proportion of predicted contact points that are close to
the ground-truth contact region:

CP “
1

|Cpred|

ÿ

v̂PCpred

1 rNNpv̂, Vgtq P Cgts ,

where NNpv̂, Vgtq denotes the nearest vertex to v̂ among all ground-truth vertices.

We set the contact threshold δ “ 0.01 meter. A higher CP indicates better prediction of physically
plausible inter-human contacts.

Texture Fidelity. To assess the perceptual quality of the reconstructed texture, we evaluate the
rendered mesh images against ground-truth renderings using three standard image similarity metrics:
PSNR, SSIM, and LPIPS.

Given the predicted image Î and the ground-truth image I rendered from the same view, we compute:

Peak Signal-to-Noise Ratio (PSNR):

PSNRpI, Îq “ 10 ¨ log10

˜

pLmaxq2

MSEpI, Îq

¸

,

where Lmax “ 255 and MSE denotes the mean squared error between pixel values. A higher PSNR
indicates better reconstruction.

Structural Similarity Index Measure (SSIM).

SSIMpI, Îq “
p2µIµÎ ` c1qp2σIÎ ` c2q

pµ2
I ` µ2

Î
` c1qpσ2

I ` σ2
Î

` c2q
,

where µ, σ2, and σIÎ denote means, variances, and covariances of local patches. SSIM captures
perceptual similarity in terms of luminance, contrast, and structure.
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Learned Perceptual Image Patch Similarity (LPIPS). LPIPS compares features from a pretrained
deep network (e.g., AlexNet) between Î and I , and correlates better with human judgment of
perceptual similarity. Lower LPIPS indicates better quality.

These metrics are computed over four rendered views t0˝, 90˝, 180˝, 270˝u, under orthographic
projection. We also report masked versions of these metrics that are evaluated only on occluded
foreground regions, allowing more fine-grained assessment under challenging interaction scenarios.

Occlusion-aware Metrics. To evaluate reconstruction quality under challenging visibility conditions,
we compute occlusion-aware variants of image-based metrics and surface normal metrics by restricting
the evaluation to regions occluded by another human instance.

Let Ipiq and Îpiq denote the ground-truth and predicted images of instance i P t0, 1u, and let M pjq be
the binary mask of the other instance j ‰ i. A pixel px, yq is considered occluded in instance i if it
belongs to M pjq and the corresponding pixel in Ipiq is not background (i.e., not white):

Opiq “

!

px, yq

ˇ

ˇ

ˇ
M pjqpx, yq “ 1 ^ Ipiqpx, yq ‰ background

)

.

We then compute each metric by applying the occlusion mask Opiq to both predicted and ground-truth
images:

Occ-PSNRpiq
“ PSNR

´

Îpiq|Opiq , Ipiq|Opiq

¯

,

Occ-SSIMpiq
“ SSIM

´

Îpiq|Opiq , Ipiq|Opiq

¯

For surface normal comparisons, let N piq and N̂ piq be the ground-truth and predicted normal maps of
instance i. The occlusion-aware L2 Normal Error is defined as:

Occ-L2-NormErrpiq
“

1

|Opiq|

ÿ

px,yqPOpiq

›

›

›
N̂ piqpx, yq ´ N piqpx, yq

›

›

›

2

2
.

All occlusion-aware metrics are averaged over both instances and across the four canonical viewpoints
to provide a robust estimate of reconstruction performance in visually occluded regions.
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C ADDITIONAL RESULTS OF 3D MULTI-HUMAN RECONSTRUCTION

C.1 QUALITATIVE COMPARISON INCLUDING ADDITIONAL BASELINES

Input MultiPly HUG3D (Ours)

Figure S15: Additional qualitative comparison on multi-human 3D reconstruction from a single
in-the-wild image. HUG3D outperforms baselines by correcting perspective distortion, preserving
inter-human contact, and hallucinating plausible textures under heavy occlusion.

In addition to the baselines presented in the main paper, we include two additional baselines for
comparison: DeepMultiCap (Zheng et al., 2021), a method designed for multi-human reconstruction
from multi-view images, and Multiply (Jiang et al., 2024), a method for multi-human reconstruction
from videos. Fig. S15 presents additional qualitative comparisons on the in-the-wild images, while
Fig. S16 shows results on the MultiHuman dataset. In the in-the-wild setting, where SMPL-X predic-
tions are used instead of ground-truth, our method continues to produce high-quality reconstructions,
demonstrating robustness to SMPL-X estimation errors. Across all baselines, we observe common
failure modes: incomplete geometry and missing textures in occluded regions, severe interpenetration
or failure to preserve contact due to the lack of inter-person modeling, and inability to correct perspec-
tive distortion in images with complex viewpoints. In contrast, HUG3D consistently delivers robust
multi-human reconstructions that preserve contact, correct geometric distortion, and hallucinate
plausible textures even under severe occlusion.

C.2 SEPARATE RESULTS FOR EACH INSTANCE

Table S6: Quantitative comparison of geometry and texture for each instance

Method CD ↓ P2S ↓ NC ↑ F-score ↑ bbox-IoU ↑ Norm L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SIFU 6.367 2.292 0.753 30.203 0.659 0.018 17.222 0.882 0.127
SiTH 9.642 3.166 0.712 21.740 0.541 0.024 16.090 0.881 0.143

PSHuman 16.876 6.384 0.614 9.561 0.402 0.039 13.720 0.857 0.188
DeepMultiCap 13.314 2.952 0.754 18.898 0.442 0.026 15.25 0.880 0.161

Ours 3.531 1.719 0.816 42.946 0.801 0.012 18.659 0.894 0.102
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No texture

Input SiTH SIFU PSHuman DeepMultiCap HUG3D (Ours)

No texture

Input
SiTH SIFU PSHuman DeepMultiCap HUG3D (Ours)

No texture

Input
SiTH SIFU PSHuman DeepMultiCap HUG3D (Ours)

Figure S16: Additional qualitative comparison on multi-human 3D reconstruction from a single
image in the MultiHuman dataset. Yellow boxes highlight broken geometry, missing texture, and in-
correct inter-human interactions. HUG3D outperforms baselines by correcting perspective distortion,
preserving inter-human contact, and hallucinating plausible textures under heavy occlusion.

Table S6 shows per-instance comparisons of geometry and texture metrics. Our method consistently
outperforms baselines across all measures, achieving better geometric accuracy (e.g., lowest CD, P2S,
and Norm L2; highest NC and F-score) and texture quality (highest PSNR/SSIM, lowest LPIPS).
This instance-level analysis further highlights the effectiveness of our unified framework in capturing
both fine-grained geometry and high-quality appearance.

C.3 RESULTS DEPENDING ON LEVEL OF INTERACTION

Table S7: Quantitative comparison of geometry depending on level of interaction.

Interaction Method CD ↓ P2S ↓ NC ↑ F-score ↑ bbox-IoU ↑ Norm L2 ↓ CP ↑

Closely

SIFU 7.267 2.750 0.724 24.335 0.757 0.033 0.117
SiTH 10.908 3.491 0.697 19.216 0.694 0.044 0.281

PSHuman 14.920 5.518 0.616 10.572 0.631 0.065 0.049
DeepMultiCap 9.6697 2.745 0.764 20.471 0.606 0.039 0.123

Ours 4.315 2.121 0.811 37.243 0.838 0.022 0.326

Natural

SIFU 4.895 2.069 0.768 31.510 0.788 0.026 0.076
SiTH 8.486 3.044 0.714 21.877 0.715 0.038 0.068

PSHuman 15.884 6.350 0.617 9.370 0.671 0.070 0.017
DeepMultiCap 17.081 2.463 0.741 17.018 0.470 0.052 0.064

Ours 3.340 1.585 0.816 42.957 0.849 0.018 0.184

Tables S7–S9 compare results across two interaction levels: Closely interactive and Naturally
interactive. Our method consistently outperforms others in geometry, texture, and occluded regions.
It demonstrates superior geometric fidelity (e.g., CD, NC, F-score), texture quality (PSNR, SSIM,
LPIPS), and robustness under occlusions, regardless of interaction level. These results highlight the
resilience and generalizability of our approach under varying interaction conditions.
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Table S8: Quantitative comparison of texture
depending on level of interaction.

Interaction Method PSNR ↑ SSIM ↑ LPIPS ↓

Closely

SIFU 14.369 0.781 0.223
SiTH 13.683 0.785 0.243

PSHuman 11.722 0.747 0.293
Ours 16.454 0.805 0.179

Natural

SIFU 15.586 0.799 0.192
SiTH 13.851 0.790 0.228

PSHuman 11.278 0.740 0.309
Ours 16.741 0.818 0.166

Table S9: Quantitative comparison within oc-
cluded regions depending on level of interac-
tion.

Interaction Method Norm L2 ↓ PSNR ↑ SSIM ↑

Closely

SIFU 0.223 5.745 0.569
SiTH 0.218 5.900 0.551

PSHuman 0.258 4.344 0.529
DeepMultiCap 0.219 - -

Ours 0.153 8.082 0.610

Natural

SIFU 0.184 6.359 0.554
SiTH 0.187 6.557 0.532

PSHuman 0.249 4.757 0.501
DeepMultiCap 0.216 - -

Ours 0.138 8.358 0.599

C.4 GENERALIZATION TO OUT-OF-DISTRIBUTION HUMANS

Figure S17: Qualitative results demonstrating HUG3D’s generalization capability to novel human
types, including stylized 3D characters and children. Despite domain differences, our method
produces structurally plausible and semantically consistent outputs.

To assess the robustness of our method, we tested HUG3D on novel human inputs, including
stylized 3D characters and children—categories not present during training. As shown in Fig. S23,
while minor mismatches in body proportions may occur due to distribution shifts, our model still
generates geometrically plausible and semantically coherent outputs. These results highlight the
strong generalization ability of HUG3D, even in challenging and unseen scenarios.

C.5 RESULTS FROM MULTIPLE VIEWS

Figs. S18 and S19 show qualitative renderings of our reconstructed textured 3D mesh from a broad
set of viewpoints. We visualize both training views (with gray backgrounds) and novel views (with
white backgrounds), sampled across varying camera positions: elevations of {-45°, 0°, 45°} and
azimuths of {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}. These results demonstrate the model’s
strong generalization capability to unseen perspectives for both normal maps and RGB images.
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Figure S18: Normal maps rendered from multiple viewpoints of our reconstructed textured 3D mesh,
including both training views (gray background) and novel views (white background).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure S19: RGB renderings from multiple viewpoints of our reconstructed textured 3D mesh,
including both training views (gray background) and novel views (white background).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D RESULTS FROM EACH COMPONENT

Figure S20: Example of results from each component of our HUG3D.

Fig. S20 presents qualitative outputs from each stage of our framework. (1) SMPL-X Estimation and
Instance Segmentation produce parametric body models and segmentation masks. (2) Canonical
Perspective-to-Orthographic View Transformation (Pers2Ortho) enables reprojection of RGB images
to a shared canonical view. (3) Human Group-Instance Multi-View Diffusion (HUG-MVD) generates
multi-view consistent RGB and normal maps. (4) Human Group-Instance Geometry Reconstruction
(HUG-GR) reconstructs accurate 3D meshes of multiple human subjects. (5) Occlusion- and View-
Aware Texture Fusion synthesizes high-quality textured meshes by integrating multi-view information
while handling occlusions and viewpoint variations.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E ADDITIONAL ABLATION STUDIES AND ANALYSIS

E.1 ROBUST SMPL-X ESTIMATION (ROBUDDI)

Figure S21: Qualitative comparison of our SMPL-X fitting (RoBUDDI) against BUDDI (Müller
et al., 2024). BUDDI exhibits visible interpenetrations between interacting subjects (yellow arrows),
whereas our RoBUDDI produces more physically plausible results.

Table S10: Quantitative comparison of SMPL-X fitting accuracy on the MultiHuman dataset (Zheng
et al., 2021). Metrics include mean per-joint position error (MPJPE), its Procrustes-aligned variant
(PA-MPJPE), and mean vertex error (MVE).

Method MPJPE ↓ PA-MPJPE ↓ MVE ↓

BEV 13.178 12.704 10.570
BUDDI 13.162 12.695 10.591

Ours (RoBUDDI) 13.139 12.673 10.566

We evaluate our proposed RoBUDDI on the MultiHuman dataset (Zheng et al., 2021) and compare it
against BEV (Sun et al., 2022) and BUDDI (Müller et al., 2024). As shown in Tab. S10, RoBUDDI
achieves lower MPJPE, PA-MPJPE, and MVE, demonstrating superior accuracy in 3D pose and
shape estimation.

In addition to quantitative improvements, our method shows qualitative benefits as illustrated in
Fig. S21. While BUDDI suffers from interpenetration artifacts between closely interacting subjects
(yellow arrows), our RoBUDDI, enhanced with interpenetration and visibility-aware losses, yields
more physically plausible and realistic 3D reconstructions.

E.2 CANONICAL PERSPECTIVE-TO-ORTHOGRAPHIC VIEW TRANSFORM (PERS2ORTHO)

Depth Edge-Aware Uncertain Point Filtering. As shown in Fig. S7, removing uncertain points
helps reduce jagged contours and ghosting artifacts near object boundaries after reprojection.
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Depth-Aware Visible Point Selection. As shown in Fig. S8, this strategy filters out occluded or
background points, retaining only those in front of the mesh surface and visible from the target
camera view.

E.3 HUMAN GROUP-INSTANCE MULTI-VIEW DIFFUSION (HUG-MVD)

Figure S22: Comparison of results from multi-view diffusion models trained directly on perspective
images vs. models trained on orthographic images.
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Perspective multi-view diffusion vs. Orthographic multi-view diffusion. We compare the results of
multi-view diffusion models trained directly on perspective images with those trained on orthographic
images in Fig. S22 with the same training settings. Due to the limited amount of ground-truth group
data, the geometric complexity of group scenes, and the constrained capacity of the base diffusion
model, models trained on perspective images often fail to produce plausible outputs (Fig. S22(a)).
These failures manifest as artifacts such as twisted limbs and mixed clothing textures. In contrast, our
multi-view diffusion model trained on orthographic images performs significantly better under limited
data settings (Fig. S22(b)). This highlights the effectiveness of our strategy, which first transforms
perspective images into orthographic views and then applies multi-view diffusion in a canonical
space.

Figure S23: Comparison between state-of-the-art diffusion-based inpainting methods and our HUG-
MVD framework for multi-view consistent inpainting and generation.

Freeform mask Ours

Input Region to inpaint

Freeform mask Ours

Mask used for training Inpainting results

Figure S24: Ablation on mask types for training HUG-MVD. Our occlusion-simulated masks enhance
inpainting compared to freeform masks.
Comparison with state-of-the-art diffusion-based inpainting. Fig. S23 shows a detailed com-
parison between current state-of-the-art diffusion-based inpainting methods (Rombach et al., 2022;
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Labs, 2024) and our HUG-MVD, which achieves multi-view consistent inpainting and generation.
Unlike existing inpainting approaches, HUG-MVD (1) produces multi-view consistent results, (2)
maintains pose consistency without anatomical errors, and (3) additionally performs normal map
inpainting—representing a significant advancement.

While several prior works address multi-view consistent inpainting, their tasks differ and are less
suitable for human occlusion completion. For instance, MVInpainter (Cao et al., 2024) requires a con-
sistent multi-view background and an inpainted object visible in the first view, and Instant3Dit (Barda
et al., 2024) demands a 3D object as input. In contrast, our method only requires a single occluded
human image as input, which is a more challenging and realistic scenario.

Training MVD with occlusion-aware masks and freeform masks. In fig. S24, we evaluate our
inpainting training strategy for HUG-MVD by comparing mask generation schemes. Since freeform
masks do not reflect real world occlusion patterns, it biases the model towards learning mask artifacts
and producing visibly unnatural inpainted regions. In contrast, our method enables more natural,
artifact-free inpainting.

E.4 OCCLUSION- AND VIEW-AWARE TEXTURE FUSION

View-Aware Face Restoration. As shown in Fig. S13, our method effectively refines facial regions
captured from extreme angles or under occlusion, such as back views, which often exhibit degraded
appearances.

Occlusion-Aware Blending. As illustrated in Fig. S14, our method effectively prevents ghosting and
bleeding artifacts near occlusion boundaries.

E.5 EFFICIENCY ANALYSIS

Table S11: Comparison of inference time and memory usage across baseline methods. Our method
achieves superior performance while operating within the range of existing methods.

Metric SIFU ECON SiTH PSHuman DeepMultiCap MultiPly HUG3D (Ours)

Elapsed Time (s) 333.79 80.09 148.01 128.47 42.35 27907.67 216.32
Peak VRAM (GB) 7.31 5.44 17.79 32.12 1.37 5.75 34.76

Table S12: Average elapsed time and peak VRAM usage for each pipeline stage.

Metric Pers2Ortho HUG-MVD HUG-GR Texture Fusion

Elapsed Time (s) 16.20 60.16 125.46 14.49
Peak VRAM (GB) 14.40 34.76 7.58 4.95

We provide a comparison of inference time and memory usage across baseline methods in Tab. S11.
While our end-to-end inference time of 216 seconds per image is within the range of existing
methods, this represents a reasonable trade-off, as our approach substantially outperforms them in
reconstruction fidelity and physical plausibility. Also, the runtime scales linearly with the number of
subjects, rather than exponentially.

We also measured the elapsed time and peak VRAM usage for each stage in our proposed method
as shown in Tab. S12 with NVDIA A100. We observed that the most significant bottlenecks
were identified to be HUG-GR (time-wise) and HUG-MVD (peak VRAM-wise), with each stage
consuming 125.46 seconds and 34.76 GB of VRAM respectively.

E.6 STATISTICAL SIGNFICANCE ANALYSIS

We conducted Wilcoxon signed-rank tests (Wilcoxon, 1945) to assess statistical significance across
all metrics in Tabs. 1, 2, 3. As shown in Tab. S13, the p-values confirm that our method consistently
outperforms all baselines with statistically significant (p value < 0.001) differences across geometry,
texture, and occlusion handling metrics.
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Table S13: Wilcoxon signed-rank test results (p-values) across all evaluation metrics, confirming
statistically significant improvements of our method over baselines.

Method CD P2S NC F-score bbox-IoU Norm L2 CP PSNR SSIM LPIPS Occ.Norm L2 Occ.PSNR Occ.SSIM

SIFU 1.8e-09 3.3e-08 3.9e-14 3.9e-10 1.6e-07 2.0e-39 1.1e-05 3.8e-27 1.7e-38 5.1e-37 5.7e-10 5.9e-10 1.9e-11
SiTH 3.6e-14 3.8e-14 3.6e-14 5.8e-14 4.6e-13 1.4e-51 8.2e-04 1.1e-48 2.2e-38 1.5e-51 1.3e-14 4.2e-14 1.4e-13

PSHuman 3.6e-14 3.6e-14 3.6e-14 5.2e-14 2.7e-13 1.4e-51 1.2e-08 1.4e-51 1.7e-51 1.4e-51 1.9e-18 1.4e-18 5.2e-17
DeepMultiCap 7.8e-13 1.1e-08 2.6e-12 1.3e-13 1.4e-13 1.4e-46 5.3e-06 3.5e-50 1.2e-27 5.2e-47 5.9e-11 1.1e-14 1.5e-14

F LICENSES FOR EXISTING ASSETS

F.1 LIBRARIES

Table S14: Libraries used in the paper

Library Link to license
Pytorch (Paszke et al., 2019) https://github.com/pytorch/pytorch/blob/main/LICENSE
Pytorch3D (Ravi et al., 2020) https://github.com/facebookresearch/pytorch3d/blob/main/LICENSE

Diffusers (von Platen et al., 2022) https://github.com/huggingface/diffusers/blob/main/LICENSE

The libraries used in this work are shown in Tab. S14.

F.2 DATASETS

Table S15: Datasets used in the paper

Dataset Link to license
Hi4D (Yin et al., 2023) https://hi4d.ait.ethz.ch

CustomHumans (Ho et al., 2023) https://custom-humans.ait.ethz.ch/
THuman2.0 (Yu et al., 2021) https://github.com/ytrock/THuman2.0-Dataset/blob/main/THUman2.1_Agreement.pdf

MultiHuman (Zheng et al., 2021) https://github.com/y-zheng18/MultiHuman-Dataset

The datasets used in this work are shown in Tab. S15.

F.3 PRETRAINED MODELS

Table S16: Pretrained Models used in the paper

Pretrained model Link to license
Stable Diffusion 2.1 Unclip (Rombach et al., 2022) https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL

PSHuman (Li et al., 2024b) https://github.com/pengHTYX/PSHuman/blob/main/LICENSE.txt
ControlNet (Zhang et al., 2023) https://github.com/lllyasviel/ControlNet/blob/main/LICENSE
CodeFormer (Zhou et al., 2022) https://github.com/sczhou/CodeFormer/blob/master/LICENSE
Face detector (Deng et al., 2020) https://github.com/serengil/retinaface/blob/master/LICENSE

The pretrained models used in this work are shown in Tab. S16.
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G LIMITATIONS, IMPACT AND SAFEGUARDS

G.1 LIMITATIONS

While our approach demonstrates strong performance across various scenarios, we acknowledge
several aspects that offer room for future improvement.

First, our method is trained under ambient lighting assumptions with consistent illumination across
multiple views. In certain challenging cases such as low-light scenes or strong lighting contrast,
minor failures may occur, as shown in the top-left of Fig. 4 in the main paper, the back side of the
person appears relatively dark. We note that our method is a proof of concept, and these issues can
potentially be mitigated through data augmentation, more diverse training data, or incorporation of
synthetic lighting variations.

Second, our method focuses on inter-human occlusion but does not yet explicitly model object-
induced occlusions. In cases where a person is holding or interacting with a object, the model may
fail to recognize the object as separate and instead reconstruct it as part of the body, resulting in
distorted geometry (see bottom-right of Fig. 4 in the main paper). We plan to address this limitation
in future work by incorporating object-aware reasoning.

Third, in cases where the model relies on predicted SMPL-X input, errors in the pose estimation can
lead to discrepancies between the input image and the reconstructed mesh. The model may tend to
follow the predicted SMPL-X pose, resulting in slightly misaligned geometry with the input image.
Nonetheless, as shown in Tab. S10 and Fig. S21, our method remains robust under such conditions
and outperforms existing baselines.

Finally, there is currently no publicly available baseline that directly matches our problem
setting—multi-human reconstruction from a single image. To allow meaningful comparisons, we
carefully adapted related methods across different input modalities (e.g., single-human or multi-view
approaches). Although these comparisons are not perfectly aligned, they offer reasonable context.
We also note that relevant recent work such as (Cha et al., 2024) was not included due to the lack of
released implementation.

G.2 IMPACT AND SAFEGUARDS

This work can have significant potential across fields such as virtual reality, gaming, telepresence,
digital fashion, and medical imaging. However, the ability to generate lifelike 3D representations
from minimal input raises important ethical concerns around consent, data ownership, and control
over digital likenesses. Moreover, the generated normal maps or 3D mesh can be used to infer
sensitive biological data of the individual. It is therefore essential to limit access to the model through
controlled licensing agreements and establish guidelines centered on the consent of the input image
provider to minimize these concerns.
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