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Abstract

We demonstrate that efficient meta-learning can be achieved via end-to-end training
of deep neural networks with memory distributed across layers. The persistent state
of this memory assumes the entire burden of guiding task adaptation. Moreover, its
distributed nature is instrumental in orchestrating adaptation. Ablation experiments
demonstrate that providing relevant feedback to memory units distributed across
the depth of the network enables them to guide adaptation throughout the entire
network. Our results show that this is a successful strategy for simplifying meta-
learning — often cast as a bi-level optimization problem — to standard end-to-end
training, while outperforming gradient-based, prototype-based, and other memory-
based meta-learning strategies. Additionally, our adaptation strategy naturally
handles online learning scenarios with a significant delay between observing a
sample and its corresponding label — a setting in which other approaches struggle.
Adaptation via distributed memory is effective across a wide range of learning
tasks, ranging from classification to online few-shot semantic segmentation.

1 Introduction

Meta-learning or learning-to-learn is a paradigm that enables models to generalize to a distribution of
tasks rather than specialize to just one task [1, 2]. When encountering examples from a new task,
we would like the model to adapt to the new task after seeing just a few samples. This is commonly
achieved via episodic training of deep neural networks, where, in each episode, the network is exposed
to a variety of inputs from the same distribution [3, 4], and the distribution shifts over episodes. The
ability of deep networks to adapt to a new task within just a few samples or iterations is central to the
application of meta-learning methods in few-shot and online learning scenarios [5, 6].

A recent surge of interest directed towards meta-learning using neural networks has spurred develop-
ment of a variety of methods [7-9]. In a standard episodic training framework, a network must adapt
to a sampled task (or collection of tasks) and incurs a generalization loss for that task (or collection);
this generalization loss is backpropagated to update the network weights. Methods differ in the
underlying architecture and mechanisms they use to support adaptation. Strategies include using
gradient descent in an inner loop, storing and updating prototypes, parameterizing update rules by
another neural network, and employing neural memory [3, 10-12]. Section 2 provides an overview.

We focus on memory-based meta-learning, and specifically investigate the organization of neural
memory for meta-learning. Motivating this focus is the generality and flexibility of memory-based
approaches. Relying on memory for adaptation allows one to cast meta-learning as merely a learning
problem using a straightforward loss formulation (viewing entire episodes as examples) and standard
optimization techniques. The actual burden of adaptation becomes an implicit responsibility of the
memory subsystem: the network must learn to use its persistent memory in a manner that facilitates
task adaptation. This contrasts with explicit adaptation mechanisms such as stored prototypes.
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Figure 1: Adaptation in activation space. A trained
memory-based model F'* adapting to two different
tasks (red and blue path) using the corresponding per-
sistent states ki and h? at the ' time step of both
tasks. a:l(-l) and m£2> are samples of task 1 (red) and 2
(blue) at time step <.
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In this implicit adaptation setting, memory architecture plays a crucial role in determining what
kind of adaptation can be learned. We experimentally evaluate the effectiveness of alternative neural
memory architectures for meta-learning and observe particular advantages to distributing memory
throughout a network. More specifically, we view the generic LSTM equations, Wz + Wh_;, as
adaptation induced by hidden states in activation space (see Figure 1). By distributing LSTM memory
cells across the depth of the network, each layer is tasked with generating hidden states that are useful
for adaptation. Such a memory organization is compatible with many standard networks, including
CNNs, and can be achieved by merely swapping LSTM memory cells in place of existing filters.

Our simple approach also contrasts with several existing memory-based meta-learning methods used
in both generative and classification tasks [13—17]. These methods view memory as a means to store
and retrieve useful inductive biases for task adaptation, and hence focus on designing better read
and write protocols. They typically have a feature extractor that feeds into a memory network that
performs adaptation, whereas our architecture makes no such distinction between stages.

We test the efficacy of network architectures with distributed memory cells on online few-shot and
continual learning tasks as in Santoro et al. [13], Ren et al. [18] and Javed and White [6]. The online
setting is challenging for two reasons: 1) It is empirically observed that networks are not well suited
for training/adaptation with a batch size of one [19]; 2) In this setting the model has to adapt to one
image at a time step, thus having to deal with a prolonged adaptation phase. For these reasons, we
see these tasks as suitable for evaluating the adaptation capabilities of the hidden states generated by
the network.

We empirically observe that our method outperforms strong gradient-based and prototypical baselines,
delineating the efficacy of the local adaptation rule learnt by each layer. Particularly important is the
distributed nature of our memory, which allows every network layer to adapt when provided with
label information; in comparison, restricting adaptability to only later network layers delivers far
less compelling performance. These results suggest that co-design of memory architecture and meta-
training strategies should be a primary consideration in the ongoing development of memory-based
meta-learning. We further test our model in a harder online few-shot learning scenario, wherein
the corresponding label to a sample arrives after a long delay [20]. Our method adapts seamlessly,
without requiring any changes to the model, while, in this setting, other adaptation strategies struggle.
These results highlight promising directions for advancing and simplifying meta-learning by relying
upon distributed memory for adaptation.

2 Related Work

Early work on meta-learning introduces many relevant concepts. Schmidhuber [21] proposes using
task specific weights, called fast weights, and weights that are adapted across tasks, called slow
weights. Bengio et al. [2] updates the network via a learning rule which is parameterized by another
neural network. Thrun [22] presents meta-learning in a life-long scenario, where the algorithm
accrues information from the past experiences to adapt effectively for the task at hand. Hochreiter
et al. [23] train a memory network to learn its own adaptation rule via just its recurrent states. These
high level concepts can be seen in more recent methods. We group current meta-learning methods
based on the nature of adaptation strategy and discuss them below.

Gradient-based Adaptation Methods. Methods that adapt via gradients constitute a prominent class
of meta-learning algorithms [9]. Model-agnostic meta-learning (MAML) [4] learns an initialization
that can efficiently be adapted by gradient descent for a new task. Finn et al. [24] focus on learning
a network that can use experience from previously seen tasks for current task adaptation. They
adapt to the current task by using a network that is MAML pre-trained on the samples from the
previous task. Nagabandi et al. [25], Caccia et al. [26] perform online adaptation under non-stationary
distributions, either by using a mixture model or by spawning a MAML pre-trained network when the



input distribution changes. Javed and White [6], Beaulieu et al. [27] employ a bi-level optimization
routine similar to MAML, except the outer loop loss is catastrophic forgetting. They thereby learn
representations that are robust to forgetting and accelerate future learning under online updates.

Memory and Gradient-based Adaptation. Andrychowicz et al. [28], Ravi and Larochelle [10]
learn an update rule for network weights by transforming gradients via a LSTM, which outperforms
human-designed and fixed SGD update rules. Munkhdalai and Yu [29] learn a transform that maps
gradients to fast (task specific) weights, which are stored and retrieved via attention during evaluation.
They update slow weights (across task weights) at the end of each task.

Prototypical Methods. These methods learn an encoder which projects training data to a metric
space, and obtain class-wise prototypes via averaging representations within the same class. Following
this, test data is mapped to the same metric space, wherein classification is achieved via a simple rule
(e.g., nearest neighbor prototype based on either euclidean distance or cosine similarity) [5, 30, 31].
These methods are naturally amenable for online learning as class-wise prototypes can be updated in
an online manner as shown by Ren et al. [18].

Memory-based Adaptation. Santoro et al. [13] design efficient read and write protocols for a Neural
Turning Machine [32] for the purposes of online few-shot learning. Rae et al. [33] design sparse
read and write operations, thereby making them scalable in both time and space. Ramalho and
Garnelo [11] use logits generated by the model to decide if a certain sample is written to neural
memory. Mishra et al. [7] employ an attention-based mechanism to perform adaptation, and use a
CNN to generate features for the attention mechanism. Their model requires storing samples across
all time steps explicitly, thereby violating the online learning assumption of being able to access
each sample only once. All of these methods mainly focus on designing better memory modules
either via using more recent attention mechanisms or by designing better read and write rules to
neural memory. These methods typically use a CNN which is not adapted for the current task. Our
approach differs from these methods, in that we study efficient organization of memory for both
online few-shot learning and meta-learning more generally, and show that as a consequence of our
distributed memory organization, the entire network is capable of effective adaptation when provided
with relevant feedback.

Kirsch and Schmidhuber [34] introduce an interesting form of weight sharing wherein LSTM cells
(with tied weights) are distributed throughout the width and depth of the network, however each
position has its own hidden state. Further, they have backward connections from the later layers to
the earlier layers, enabling the network to implement its own learning algorithm or clone a human-
designed learning algorithm such as backprop. Both our model and theirs implement an adaptation
strategy purely using the recurrent states. The difference, however, is in the nature of the adaptation
strategy implemented in the recurrent states. Similar to conventional learning algorithms, their
backward connections help propagate error from the last layer to the earlier layers. In our architecture,
the feedback signal is presented as another input, propagated from the first layer to the last layer.

In addition to being used in classification settings, Guez et al. [35] employ memory-based meta-
learning approach to perform adaptation for reinforcement learning tasks indicating the generality of
using memory as a means for adaptation.

Few-shot Semantic Segmentation. Few-shot segmentation methods commonly rely on using proto-
types [36, 37], though recent approaches include gradient-based methods analogous to MAML [38].
The methods that use neural memory typically employ it in final network stages to fuse features of
different formats for efficient segmentation: Li et al. [39] use ConvLSTMs [40] to fuse features from
different stages of the network; Valipour et al. [41] to fuse spatio-temporal features while segmenting
videos; Hu et al. [42] use a ConvLSTM to fuse features of query with the features of support set;
Azad et al. [43] use a bidirectional ConvLSTM to fuse segmentation derived from multiple scale
space representations. We differ from these works in organization, use of, and information provided
to memory module: 1) Memory is distributed across the network as the sole driver of adaptation; 2)
Label information is provided to assist with adaptation.

Meta-learning Benchmarks. Caccia et al. [26] present benchmarks that measure the ability of a
model to adapt to a new task, using the inductive biases that it has acquired over solving previously
seen tasks. More specifically, the benchmark presents an online non-stationary stream of tasks, and
the model’s ability to adapt to a new task at each time step is evaluated. Note that they do not measure



the model’s ability to remember earlier tasks; they only want the model to adapt well on a newly
presented task.

Antoniou et al. [44] present benchmarks for continual few-shot learning. The network is presented a
number of few-shot tasks, one after the other, and then is expected to generalize even to the previously
seen tasks. This is a challenging and interesting setup, in that, the network has to show robustness to
catastrophic forgetting while learning from limited data. However, we are interested in evaluating the
online adaptation ability of models, while Antoniou et al. [44] feed data in a batch setting. We follow
experimental setup as in Javed and White [6], where in, the model is required to remember inductive
biases acquired over a longer time frame when compared to the experimental setup used by Antoniou
et al. [44].

3 Methodology

3.1 Problem: Online Few-shot Learning

This setting combines facets of online and few-shot learning: the model is expected to make predic-
tions on a stream of input samples, while it sees only a few samples per class in the given input stream.
In particular, we use a task protocol similar to Santoro et al. [13]. At time step ¢, an image x; is
presented to the model and it makes a prediction for x;. In the following time step, the correct label y;
is revealed to the model. The model’s performance depends on the correctness of its prediction at each
time step. The following ordered set constitutes a task: 7 = ((21, null), (z2,y1), - - (T4, ye—1)).
Here null indicates that no label is passed at the first time step, and ¢ is the total number of time steps
(Iength) of the task. For a k-way N-shot task ¢t = k x IN. The entire duration of the task is considered
as the adaptation phase, as with every time step the model gets a new sample and must adapt on it to
improve its understanding of class concepts.

3.2 Memory as Adaptation in Activation Space

Consider modulating the output of a network F for input x with a persistent state h: u = F'(x, h).
Now, if adding h aids in realizing a better representation u than otherwise (F'(z)), we could view this
as adaptation in activation space. In Figure 1, model F™* adapts to tasks using its persistent states h.
Specifically let us consider the generic LSTM equations Wx + W' h_1, we could view Wz as the
original response and W' h_; as modulation by a persistent state (memory) in the activation space.
So, for the online learning task at hand, we seek to train a LSTM which learns to generate hidden
state h; at each time step ¢, such that it could enable better adaptation in ensuing time steps. We note
that adaptation in activation space has been discussed in earlier works. We use this perspective to
organize memory better and to enable effective layer-wise adaptation across the network.

3.3 Model

Architecture. We distribute memory across the layers of the network, in order to enable the layers
to learn local layer-wise adaptation rules. In particular, we use a model in which each layer of the
feature extractor is a convolutional LSTM (CL) [40] followed by a LSTM [45] and a classifier, as
shown in Figure 2.

Similar to the LSTM, each convolutional LSTM (CL) layer consists of its own input, forget, and
output gates. The key difference is that convolution operations (denoted by *) replace matrix-
vector multiplication. In this setup, we view the addition by Wj; x h;_1 as adaptation in the i
time step within the input gate. The same view could be extended to other gates as well. The
cell and hidden state generation are likewise similar to LSTM, but use convolution operations:

ir = o (Wii * xp + Whix hi—1) (1) ct = [t ©ci—1 + i © tanh(Wig % x4 + Wiy x hy_q)
fi :J(Wif*xtJrth*ht_l) 2) “4)
ot = 0(Wip * @y + Who x he—1) (3) hy = o, @ tanh(cy) 5)

In initial experiments, we observe that for tasks with 50 time steps these models did not train well.
We hypothesize that this could be due to the same network being repeated 50 times, thereby inducing
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Figure 2: Methodology. An example distributed memory architecture consists of four layers of
convolutional LSTMs (gray), followed by an LSTM (gray), and a classifier (gray). At the i, time
step, the sample x; (green) and the previous sample’s label y_; are presented to network. Three
different label injection modes are shown. : label is fed to the first CL layer only; Violet: label is
fed to each CL layer; Red: label is fed to the LSTM layer. Label information is provided at every

time step; for sake of clarity we avoid showing it at time 7 + 1 here. hl(.j ), cl(.j ) are the hidden and cell
state of the j;;, layer at the iy, time step. We use cyan, gray, orange, and green to denote persistent
states, network parameters, label information, and input sample, respectively. Best viewed in color.

an effectively very deep network. We resolve this issue by adding skip connections between the
second layer and the fourth layer (omitted in Figure 2). Further discussion on this is in Appendix B.

Label Encoding. As label information is essential for learning an adaptation rule, we inject labels
offset by one time step to the ConvLSTM feature extractor and the LSTM. This provides the
opportunity for each layer to learn an adaptation rule. For a k-way classification problem involving
images of spatial resolution s, we feed the label information as a k& x s matrix with all ones in the
ct? row if ¢ is indeed the true label. We reshape this matrix as a k X s x s tensor and concatenate it
along the channel dimension of image at the next time step. To the LSTM layer, we feed the label in
its one-hot form by concatenating it with the flattened activations from the previous layer.

3.4 Training and Evaluation

Following Santoro et al. [13], we perform episodic training by exposing the model to a variety of
tasks from the training distribution P(7¢qin ). For a given task, the model incurs a loss £; at every
time step of the task; we sum these losses and backpropagate through the sum at the end of the task.
This is detailed in Algorithm 1 in Appendix A. We evaluate the model using a partition of the dataset
that is class-wise disjoint from the training partition. The model makes a prediction at every time
step and adapts to the sequence by using its own hidden states, thereby not requiring any gradient
information for adaptation. Algorithm 2 in Appendix A provides details.

4 Experiments

4.1 Online Few-Shot Learning

We use CIFAR-FS [46] and Omniglot [47] datasets for our few-shot learning tasks; see Appendix A
for details. We adopt the following methods to serve as baselines for comparison.

LSTM and NTM. Santoro et al. [13] use a LSTM and a NTM [32] with read and write protocols for
the task of online few shot learning. Both aim to meta-learn tasks by employing a neural memory.

Adaptive Posterior Learning (APL). Ramalho and Garnelo [11] propose a memory-augmented
model that stores data point embeddings based on a measure of surprise, which is computed by the
loss incurred by each sample. During inference, they retrieve a fixed number of nearest-neighbor data
embeddings, which are then fed to a classifier alongside the current sample.

Online Prototypical Networks (OPN). Ren et al. [18] extend prototypical networks to the online
case, where they sequentially update the current class-wise prototypes using weighted averaging.



Contextual Prototypical Memory (CPM). Ren et al. [18] improve on OPN by learning a represen-
tation space that is conditioned on the current task. Furthermore, weights used to update prototypes
are determined by a newly-introduced gating mechanism.

Table 1 shows that our model outperforms the baselines in most settings. These results suggest that
the adaptation rules emergent from our design are more efficient than adaptation via prototypes, and
adaptation via other memory-based architectures. In the CIFAR-FS experiments, the prototypical
methods outperform our method only in the 1-shot scenario. As the 5-shot and 8-shot scenarios
have a longer fine-tuning or adaptation phase, this shows that our method is more adept at handling
tasks with longer adaptation phases. One reason could be that the stored prototypes which form
the persistent state of OPN and CPM are more rigid than the persistent state of our method. The
rigidity stems from the predetermined representation size of each prototype, which thereby prevents
allocation of representation size depending upon classification difficulty. In our architecture, the
network has the freedom to allocate representation size for each class as it deems fit. Consequently,
this may help the network learn more efficient adaptation strategies that improve with time.

We examine the importance of distributed adaptation through ablation experiments that vary the layer
into which we inject label information. Table 2 shows that models with feature extractors that do
not receive label information are outperformed by the model whose earlier layers do receive label
information (injecting into CL-1); the latter is even better than pre-trained models. By distributing
memory across each layer and allowing label information to flow to each memory module, we enable
every layer to learn its own adaptation rule. Here, the CNN baselines are pre-trained with MAML,;
these pre-trained networks replace the ConvLSTM part and are jointly trained with the LSTM (which
receives the labels) and classifier. In these cases, we just replace the ConvLSTM in Figure 2 with a
CNN. During the meta-testing phase, the CNN is a just feature extractor and the burden of adaptation
falls entirely on the LSTM. In CNN-F, we freeze the weights during meta-training. Our CL+LSTM,
restricted to adapt only in the final layer (3rd row; label injection into final LSTM layer only) performs
comparably to the CNN baselines. The same model, with full adaptivity (last row) outperforms.

4.2 Delayed Feedback

We consider a task similar to online few-shot classification (Section 3.1), except instead of offset by
one timestep, labels are offset by a delay parameter. Supposing the label delay is 3, then the task 7 is
presented to the model as the sequence: T = ((x1, null), (x2, null), (x5, null), (x4, y1), -+ - (T¢, yi—3))s
where t is the sequence length. The model must discern and account for the time delay.

Table 3 shows that our network can learn under these conditions, though performance decreases with
increase in delay. This could be imputed to difficulty in associating the hidden representation of a
sample with the correct label, consequently creating a noisy environment for learning adaptation rules.
We see that pre-training helps: we take our network pre-trained for label delay of 1 and meta-train
for tasks with label delay of 5. This improves the model accuracy to outperform the model directly
trained with label delay of 4. This could be because the necessary adaptation rules are already learnt
by the pre-trained model, and it only has to learn the quantum of delay. Furthermore, from Tables |
and 3, even with a delay of 2 our method outperforms CPM with no delay.

Omniglot CIFAR-FS
1-shot 5-shot 8-shot 1-shot 5-shot 8-shot

LSTMT  853(0.2) 94.4(0.1) 95.8(0.6) - - -

NTM!  88.7(0.5) 96.8(0.1) 97.3(0.1) - - -
APL 89.1(0.0) 94.9(0.0) 957(0.1) 37.6(0.6) 45.8(0.4) 46.9(0.7)
OPN 91.2(1.1) 94.6(1.1) 95.8(0.5) 49.9(0.2) 54.9(0.4) 56.8(0.1)
CPM 94.5(0.1) 97.0(0.1) 97.4(0.4) 50.2(02) 558(0.4) 57.8(0.4)
CL+LSTM 96.8 (0.5) 99.4(0.2) 99.7(0.2) 47.6(1.0) 56.7(1.6) 61.0(1.3)

Model

Table 1: Omniglot and CIFAR-FS results for 5-way online few-shot learning. Shown are average
and standard deviation across 3 runs. Methods with hand-designed memory mechanisms, like
CPM and APL, benefit less from increased number of samples. Distributed memory in CL+LSTM
comfortably outperforms other adaptation methods. T These methods fail to train on CIFAR-FS.



Model Pre-training Label Injection Layer 1-shot 5-shot 8-shot
CNN-F + LSTM v LSTM 89.1(0.2) 96.4(0.0) 97.0(0.2)
CNN + LSTM v LSTM 93.9(0.1) 97.9(0.2) 98.2(0.4)
CL+LSTM X LSTM 94.7(0.6) 97.3(0.7) 97.9 (0.6)
CL+LSTM X CL-1,LSTM 96.8 (0.5) 99.4 (0.2) 99.7 (0.2)

Table 2: Ablation experiments on Omniglot 5-way online few-shot learning. Results in (%)
(average and deviation across 3 runs), comparing different feature extractors (pre-trained or not)
while providing labels offset by 1 time step. Outputs of feature extractors are given to a LSTM
(Figure 2). Our distributed memory model (CL+LSTM), with offset labels provided at the first layer,
outperforms other models: since memory is distributed across layers, and since label information is
provided to the entire network, each layer has sufficient information to learn its own adaptation rule.

In this setting, our model can be used in a seamless manner, without having to make any adjustments.
Gradient-based and prototypical methods cannot be used as is, and would require storing the samples
(violating online assumption) for the time period of delay, causing memory usage to grow linearly
with delay; in contrast, it is constant for our method. Further, to use prototypical or gradient-based
methods, we would have to know the delay parameter in advance; our network learns the delay.

4.3 Online Continual Learning

We address the problem of continual learning in the online setting. In this setup, the model sees a
stream of samples from a non-stationary task distribution, and the model is expected to generalize
well even while encountering samples from a previously seen task distribution. Concretely, for a
single continual learning task we construct n subtasks from an underlying dataset and first present to
the model samples from the first subtask, then the second subtask, so on until the nt" subtask in that
order. Once the model is trained on all n subtasks sequentially, it is expected to classify images from
any of the subtasks, thereby demonstrating robustness catastrophic forgetting [48].

Task Details. We use the Omniglot dataset for our experiments. Following [6], we define each
subtask as learning a single class concept. So in this protocol a single online 5-way 5-shot continual
learning task is defined as the following ordered set: 7 = (7'17 T2, T3, Ta, 7'5) Here, subtask 7;
contains 5 samples from 1 particular Omniglot class. After adaptation is done on these 5 subtasks
(25 samples) we expect the model to classify samples from a query set consisting of samples from
all of the subtasks. The performance of the model is the prediction accuracy on the query set. We
experiment by varying the total number of subtasks from 5 to 20 as in Figure 3.

Training Details. We perform episodic training by exposing our model to a variety of continual
learning tasks from the training partition. At the end of each continual learning task, the model incurs
a loss on the query set. We update our model by backpropagating through this query set loss. Note
that during evaluation on the query set, we freeze the persistent states of our model in order to prevent
any information leak across the query set. Since propagating gradients across long time steps renders
training difficult, we train our model using a simple curriculum of increasing task length every SK
episodes. This improves generalization and convergence. Appendix C presents more details. Further,
we shuffle the labels across tasks in order to prevent the model from memorizing the training classes.
During evaluation, we sample tasks from classes the model has not encountered. The model adapts
to the subtasks using just the hidden states and then acquires the ability to predict on the query set,
which contains samples from all of the subtasks. We use the same class wise disjoint train/test split
as in Lake [47].

Table 3: CIFAR-FS results (%) for 5-

Delay Pre-training 6-shot 7-shot 8-shot . 5 .
way online few-shot learning with de-
2 X 56.8(0.1) 58.4(0.2) 60.0(0.0) 1ayed labels (average and deviation,
4 X 52.2(0.4)  53.1(0.3)  54.1(0.4)  in parentheses, across 2 runs). As
4 v 56.1(0.6)  57.6(0.3) 59.0(0.1)  expected, longer delays degrade the
5 X 51.1(0.8)  51.7(0.7)  52.7(0.3)  model’s performance. Further, we ob-
5 v 55.2(0.3) 56.4(0.0) 57.4(0.4)  serve that pre-training a model with 1-

step delay improves the performance
in tasks with 5-step and 4-step delays.
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Figure 4: Accuracy of subtasks within a 20 task con-
tinual learning task. Typically in earlier tasks (first 10),
CL+LSTM seems to have a higher accuracy than ANML
and OML, suggesting that it is more immune to forgetting.
ANML performs poorly in the 20" task, about 56 % we
impute that to momentum issues in training. Note: Exclud-
ing the 20*" task, the average ANML performance in the
first 19 tasks is 91.78, while CL+LSTM averages 93.15 in
the first 19 tasks.

Figure 3: Online few-shot continual
learning. Accuracy vs task length on
Omniglot. CL+LSTM model all outper-
forms the baselines across tasks lengths,
strongly suggesting that the CL+LSTM
model is adept at storing inductive biases
required to solve the subtasks within a
given continual learning task.

Baseline: Online Meta Learning (OML). Javed and White [6] adopt a meta-training strategy
similar to MAML. They adapt deeper layers in the inner loop for the current task, while updating the
entire network in the outer loop, based on a loss measuring forgetting. For our OML experiments we
use a 4-layer CNN followed by two fully connected layers. Appendix C provides implementation
details.

Baseline: A Neuromodulated Meta-Learning Algorithm (ANML). Beaulieu et al. [27] use a
hypernetwork to modulate the output of the trunk network. In the inner loop, the trunk network is
adapted via gradient descent. In the outer loop, they update both the hypernetwork and the trunk
network on a loss measuring forgetting. For our ANML experiments, we use a 4-layer CNN followed
by a linear layer as the trunk network, with a 3-layer hypernetwork modulating the activations of the
CNN. They use 3 times as many parameters as our CL+LSTM model. Appendix C provides details.

Results. Figure 3 plots average accuracy on increasing the length of the continual learning task. Task
length is the number of subtasks within each continual learning task, which ranges from 5 to 20
subtasks in our experiments. As expected, we observe that the average accuracy generally decreases
with increased task length for all models. However, the CL+LSTM model’s performance degrades
slower than the baselines, suggesting that the model has learnt an efficient way of storing inductive
biases required to solve each of the subtasks effectively.

From Figure 4, we see that CL+LSTM is robust against forgetting, as the variance on performance
across subtasks is low. This suggests that the CL+LSTM model learns adaptation rules that minimally
interfere with other tasks.

Analysis of Computational Cost. During inference, our model does not require any gradient
computation and fully relies on hidden states to perform adaptation. Consequently, it has lower
computational requirements compared to gradient-based models — assuming adaptation is required at
every time step. For a comparative case study, let us consider three models and their corresponding
GFLOPs per forward pass: OML baseline (1.46 GFLOPs); CL+LSTM (0.40 GFLOPs); 4-layer CNN
(0.30 GFLOPs) with parameter count similar to CL+LSTM. Here, we employ standard methodology
for estimating of compute cost [49], with a forward and backward pass together incurring three times
the operations in a forward pass alone.

We can extend these estimates to compute GFLOPs for the entire adaptation phase. Suppose we are
adapting/updating our network on a task of length ¢ iterations. The OML baseline and the 4-layer
CNN (adapting on gradient descent) would consume 4.38t GFLOPs and 0.9¢ GFLOPs, respectively.
Our CL+LSTM model would consume only 0.40t GFLOPs; here, we drop the factor of three while
computing GFLOPs for the CL+LSTM model, since we do not require any gradient computation for
adaptation. During training, we lose this advantage since we perform backpropagation through time,
making the computational cost similar to computing meta-gradients.
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Figure 5: Sample online few-shot segmentation task with distractors. At each time step, the
model gets one image, and its corresponding ground truth in the subsequent time step. The model
is tasked with either segmenting or masking, depending on whether or not the image is a distractor.
Here, the fish are distractors and the ducks are objects we want to segment. The portion highlighted
in green is the predicted segmentation, and the red portion is the predicted mask. These are results
from our 10-ConvLSTM model with label injection at the first layer.

4.4 Online few-shot Semantic Segmentation

These experiments investigate the efficacy and applicability of adaptation via persistent states to a
challenging segmentation task and analyze the effectiveness of label injection for segmentation.

Task Details. We consider a binary segmentation task: we present the model a sequence of images,
one at each time step (as in Figure 5), and the model must either segment or mask out the image
based on whether it is a distractor. Similar to the classification tasks, we augment the ground truth
segmentation information along the channel dimension. The ground truth is offset by 1 time step, so
at the first time step we concatenate to the channel dimension an all -1 matrix as a null label, at the
next time step we concatenate to the channel dimension the actual ground truth of the image at time
step 1. If it is an image to be segmented, we concatenate the ground truth binary mask of the object
and the background in the form of a binary matrix. If it is a distractor image, we concatenate to the
channel dimension an all zeros matrix indicating that the entire image should be masked out. k-shot
scores for segmentation is the IoU of the predicted segmentation on the k + 1'" time the model sees
the object we want to segment out. For k-shot masking scores, we compute the fraction of the object
that has been masked, when model sees the distractor image for the k + 1" time step. We sample
our episodes from the dataset FSS1000 [50]; more dataset details are in Appendix D.

The construction of this task avoids zero-shot transfer of inductive biases required for segmentation
and forces the model to rely on the task data to learn which objects are to be segmented.

Training Details. We augment a 10 layer U-Net [51] like CNN with memory cells in each layer, by
converting each convolution into a convolutional LSTM-referred to as CL U-Net (architecture details
in Appendix D. We utilize episodic training, where each episode is an online few-shot segmentation
task, as in Figure 5 with 18 time steps in total (9 segmentation images and 9 distractors). We follow a
simple training curriculum to train: the first 100k episodes we train without any distractors; in the
next 100k episodes we train with distractors as in Figure 5. Further training details are in Appendix
D. The episodes presented during evaluation contain novel classes.

Baselines. We use a 10 layer U-Net like CNN pre-trained with MAML for segmentation without any
distractors (architecture details in Appendix D). We use this model as our fine-tuning CNN baseline,
in that we fine-tune the model on the online stream of images using gradient descent at each time
step. From Table 4, we see that the model fails to mask out the distractors, indicating its inability to
ability to adapt to the online feed.

From Table 4, we see that CL U-Net variants are capable of effective online adaptation; both models
are capable of segmenting and masking images. However we observe that providing label information
at the first layer significantly boosts our performance, thereby bolstering our claim that effective
task adaptation can be achieved by providing relevant feedback to a network containing distributed
memory.

4.5 Standard Supervised Learning

Finally, we assess whether our proposed model can be directly employed in a classic supervised
learning setting i.e., without requiring modifications in terms of architecture design. The central



Segmentation Masking

Model Label Injection 1-shot 6-shot 1-shot 6-shot
Fine-tuned CNN No 65.3 64.0 23.1 23.6
CL U-Net 9th layer 38.7 45.7 73.8 77.8
CL U-Net Ist layer 49.2 56.0 84.6 91.7

Table 4: Segmentation and Masking results on CL U-Net. Fine-tuning a CNN fails to adapt to
distractors, while CL U-Net variants demonstrate adept capacity for adaptation. Further label injection
at the first layer outperforms label injection at the 9" layer, suggesting that label injection enables
network wide adaptation.

Model Params (M) C10 C100 Table 5: Test accuracy (%) of supervised
VGG-11 o2 915 669 learning on CIFAR. Shown are averages
CL-VGG-11 (0.5x) 20.0 915 673 across 3 runs. Par.entheses following model
CL-VGG-11 (0.35%) 9.5 90.7 64.3 names indicate shrinkage factor of filter sets.
"ResNet:20 ~ 7 03 T 919 681  Variants perform comparably to original models,
CL-ResNet-20 (0.5x) 0.6 909  63.2 showing that they can be employed off-the-shelf
CL-ResNet-20 (0.35x) 0.3 895 588 in both meta and supervised learning settings.

motivation behind these experiments is to see if meta-learning methods can be applied to standard
supervised learning tasks without requiring any change in methodology. Hence, in a setting when a
priori knowledge of whether the task at hand is a standard supervised learning task or meta-learning
task is unavailable, we could use ConvLSTM models. This is similar to the experiments done in
[11], where they try to close the gap between standard supervised learning approaches and their
meta-learning method applied to standard supervised learning tasks.

We use CIFAR data as our standard supervised learning benchmark [52]; further dataset details
are in Appendix E. We use standard networks such as VGG [53] and ResNet [54] as our baselines.
In Table 5, we observe that CL variants perform comparably in most cases. This affirms that the
ConvLSTM model is capable of handling a conventional supervised learning scenario without any
change in training procedure. Even in the absence of temporal signal, ConvLSTMs can still operate
well. This is interesting since direct application of gradient-based meta-learners to the conventional
supervised learning setting would require optimizing through a prohibitively long inner loop.

5 Conclusion

Our results highlight distributed memory architectures as a promising technical approach to recasting
the problem of meta-learning as simply learning with memory-augmented models. This view has
potential to eliminate the need for ad-hoc design of mechanisms or optimization procedures for task
adaptation, replacing them with generic and general-purpose memory modules. Our ablation studies
show the effectiveness of distributing memory throughout a deep neural network (resulting in an
increased capacity for adaptation), rather than limiting it to a single layer or final classification stage.

We demonstrate that standard LSTM cells, when provided with relevant feedback, can act as a basic
building block of a network designed for meta-learning. On a wide variety of tasks, a distributed
memory architecture can learn adaptation strategies that outperform existing methods. The applica-
bility of a purely memory-based network to online semantic segmentation points to the untapped
versatility and efficacy of adaptation enabled by distributed persistent states.
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