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ABSTRACT

We propose a fairness-aware learning framework that mitigates intersectional sub-
group bias associated with protected attributes. Prior research has primarily fo-
cused on mitigating one kind of bias by incorporating complex fairness-driven
constraints into optimization objectives or designing additional layers that focus
on specific protected attributes. We introduce a simple and generic bias mitigation
framework that prevents models from learning relationships between protected
attributes and output variable by reducing mutual information. We demonstrate
that our approach is effective in reducing bias with little or no drop in accu-
racy. We also show that our approach mitigates intersectional bias even when
other attributes in the dataset are correlated with protected attributes. Finally,
we validate our approach by studying feature interactions between protected and
non-protected attributes. We demonstrate that these interactions are significantly
reduced when applying our bias mitigation.

1 INTRODUCTION

The unprecedented adoption of Machine Learning (ML) in critical sectors such as finance, healthcare
and education has made fairness-related bias detection and mitigation a crucial part of ML systems.
It is important that ML models do not discriminate against individuals based on protected attributes
such as race, gender or skin color when making predictions. Fairness research has typically focused
on detecting and mitigating bias for a single protected attribute. While this alleviates the bias with
respect to that specific attribute, the fairness gap for intersectional subgroups such as Female and
Black might still be high. This phenomenon is called fairness gerrymandering (Ghosh et al., 2021;
Kearns et al., 2018; Buolamwini & Gebru, 2018). Several works (Kearns et al., 2018; Yang et al.,
2020; Kang et al., 2021; Morina et al., 2019) proposed techniques to address fairness gerryman-
dering, which require predetermined fairness violation metrics. Nevertheless, a recent survey (Du
et al., 2021) highlights the scarcity of research in detecting and mitigating intersectional bias. One
of the key challenges of this research is the limited access to protected attributes and their unknown
correlations with other attributes in the dataset. These limitations are common due to privacy or
data restrictions. Another key challenge of fairness research is both reducing the bias across groups
and intersectional subgroups without a significant drop in accuracy.

In this paper we propose a generic and simple fairness-aware learning framework that addresses
the intersectional subgroup bias without requiring specific fairness metrics to be predetermined. It
learns latent representations without relying on protected attributes and their interactions with other
attributes in the dataset. Previous work (Cho et al., 2020; Song et al., 2018) shows that minimizing
mutual information between a protected attribute and the output variable plays a significant role in
reducing the bias associated with that protected attribute. We propose a generic framework that re-
duces the mutual information not only between a single protected attribute and the output variable
but also between any subset of protected attributes and the output variable. Experimentally, we show
that this approach debiases the model significantly with little or no drop in the accuracy. Further-
more, our framework mitigates the fairness gap both for individual protected attributes as well as
for intersectional subgroups defined by multiple protected attributes, such as Female ∩ Black
defined by Gender and Race. With the help of well-known metrics, Equalized Odds (Hardt et al.,
2016) and Demographic Parity (Dwork et al., 2012; Kusner et al., 2017), we show that the equality
and parity gaps Beutel et al. (2017) can be reduced even when the dataset is unbalanced with respect
to different subgroups of protected attributes. We elaborate more on those metrics in section 5.2.
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Table 1: Accuracy and True Positive Rate (TPR) for two subpopulations, computed for the original
model, our fairness-aware model and two baseline models.

Accuracy
TPR

Male ∩ White Female ∩ Black

Original model 0.87 0.96 0.77

Removed protected attributes 0.86 0.96 0.83

Upsampled minority groups 0.86 0.88 0.82

Our fairness-aware framework 0.86 0.94 0.90

Furthermore, we demonstrate the effectiveness of our approach when fairness bias is leaked through
other features in the dataset.

Motivating example: Table 1 illustrates accuracy and True Positive Rate (TPR) gaps between two
subpopulations, Male ∩ White and Female ∩ Black, for the Law School Admissions Council
(LSAC) dataset Wightman & Council (1998). TPR is an important metric in this specific example
since it measures the advantaged outcome. We compare our fairness-aware framework with three
baseline models: 1) the original model without mitigation, 2) a baseline model which is trained on
the dataset after removing protected attributes and 3) a baseline model which is trained using the
dataset where we upsample minority subgroups and balance sample distribution across subgroups.
We observe a significant TPR gap between two populations in the original model. Two of the base-
line models reduce the fairness gap, however, they are less effective compared to our approach. Our
approach learns latent representations that do not rely on protected attributes and their relationship
with the output variable, and thus reduces the fairness gap significantly.

The main contributions of this paper are as follows:

• We introduce a novel bias mitigation framework that aims to reduce the mutual information
between intersectional subgroups and the output variable.

• We show empirically that our approach reduces the equality and demographic parity gaps
significantly and outperforms state-of-the-art approaches.

• We study the sensitivity of our debiased model to the presence of protected attributes and
the effectiveness of our approach when non-protected attributes are correlated with pro-
tected ones.

• We demonstrate that feature interactions between protected and non-protected attributes
reduce significantly when the models are trained using our bias mitigation framework.

2 RELATED WORK

Fairness literature offers numerous definitions of fairness (Narayanan, 2018), its measurement and
mitigation. We base our fairness definition and measurement on the work of (Hardt et al., 2016)
and on three well-known metrics: Demographic Parity (Feldman et al., 2015; Dwork et al., 2012;
Kusner et al., 2017), Equalized Odds, and Equality of Opportunity (Hardt et al., 2016). Demographic
Parity compares the average prediction score across different subgroups. Equality of Opportunity, in
addition to that, takes the label distribution into account and measures the TPR gap among different
groups. Equalized Odds (Hardt et al., 2016) measures both the TPR and False Positive Rate (FPR)
gaps among different groups. Specific metrics have been developed for intersectional subgroups
such as the min-max ratio (Ghosh et al., 2021) and differential fairness metric (Foulds et al., 2020).
In this paper we focus on measuring the commonly used Demographic Parity and Equalized Odds
for intersectional subgroups, which facilitate comparisons with previous work.

Bias mitigation techniques reduce the disparities among the groups and intersectional subgroups
measured by the aforementioned metrics. Three types of mitigation techniques have been proposed
to combat fairness bias (Du et al., 2021):
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Postprocessing techniques aim to reduce fairness bias during model inference. Those approaches
enforce model predictions to follow the same distribution observed during training (Zhao et al.,
2017), transforming model predictions to follow a specific fairness measure such as Equality of Op-
portunity (Hardt et al., 2016) or ϵ-differential fairness metric (Morina et al., 2019). These techniques,
however, require access to protected attributes during inference, which is not always available due
to data scarcity or privacy reasons.

Dataset preprocessing techniques such as balancing the distribution of data labels, downsampling
and sample re-weighing (Kamiran & Calders, 2011) alleviate modelling bias to a certain extent.
Nonetheless, these approaches do not always work when the number of samples in a subpopulation
is small. However, (Wang et al., 2019) show that data preprocessing and balancing datasets often
have limited effect, compared with training inherently unbiased models. Apart from data balancing,
one can also delete protected attributes from the training set or mask them with neutral terms as part
of preprocessing. However, this is not sufficient, since protected attributes are often correlated with
other attributes in the data.

Train-time techniques aim to combat potential fairness bias during model training. This can be
accomplished using constraints based on adversarial loss (Beutel et al., 2017; Zhang et al., 2018;
Wang et al., 2019), feature importance (Liu & Avci, 2019; Du et al., 2019; Ross et al., 2017),
fairness measurement (Agarwal et al., 2018), decision boundary (Zafar et al., 2019) or statistical
dependence (Kamishima et al., 2012). Adversarial loss requires defining additional heads or con-
straints for a specific protected attribute. It maximizes the primary objective of a specific task while
minimizing the model’s ability to predict specific protected attributes. Constraints based on feature
importance, on the other hand, heavily rely on the feature contribution score (Liu & Avci, 2019;
Du et al., 2019), which is not always reliable (Hooker et al., 2019) and requires human annotated
labels of important features. Yang et al. (2020) propose Bayes-optimal classification framework for
interesectional group fairness which is also tied to fairness metric constraints. Approaches that in-
volve a certain fairness metric in the training objective require an upfront selection of this metric,
which is not always a straightforward choice. Kang et al. (2021) propose a framework based on
mutual information minimization for intersectional subgroups. This framework, however, requires
two estimators and two additional predictors which makes the mitigation process complex.

In contrast, we propose a simple and generic training-time fairness-aware framework that doesn’t
rely on specific fairness metrics, or architectural modifications such as adversarial heads. It accounts
for intersectional fairness of any subsets of input features and is straightforward to implement.

3 PRELIMINARIES

In this section we formalize the problem, introduce preliminary notations and concepts that are used
later in the paper. The goal is to learn a fair Neural Network (NN) model that mitigates the fairness
gap for intersectional subgroups formed by multiple protected attributes. We seek to reach this
goal with minimal impact on accuracy. During training, we assume that there is a small number
of examples for which protected attributes (and their correlations with non-protected attributes) are
available. However, during inference, no information about the protected attributes is necessary.

3.1 NOTATION

We consider a typical ML model, f : RM → RC , that is trained on a dataset D =
{(x1, y1), ..., (xN , yN )}, where each sample xi consists of a set of M features xi = {x1

i , x
2
i ..., x

M
i }

where xj
i ∈ Rd represents the jth feature in the ith sample. yi ∈ [1, ..., C] is the label correspond-

ing to sample xi. Let x′j ∈ Rd denote a shared baseline across all samples for input feature j. It
indicates the absence of signal or feature value in the input. Traditionally, the zero value is used
to indicate the absence of signal but for certain features zero value might represent a meaning. For
example, 0 and 1 might indicate male and female for the gender feature in some datasets.

Protected Attribute Notation. Let Ak ⊆ {1, 2, ...,M} be a subset of features that are known to be
protected. For example, Ak may correspond to {race} or {gender, race}. Let also A denote a set of
the subsets of Ak. For example, A may correspond to A = {{gender}, {race}, {gender, race}}.
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Finally, let S(xi, x
′, Ak) denote a substitution function that replaces the features that are not in Ak

with values from baseline x′:

S(xi, x
′, Ak) =

{
xj
i , j ∈ Ak

x′j , otherwise
∀j ∈ [M ] (1)

We denote by xAk the subset of features in x corresponding to protected features Ak. Analogously,
x\Ak denotes a subset of features that excludes protected attributes Ak.

3.2 INFORMATION THEORY

We briefly revisit information theory in order to analyse the relationship between a subset of pro-
tected attributes Ak and a dependant output variable y. This analysis explains the reasoning behind
our bias mitigation framework. The entropy H(X) measures the average uncertainty (Cover &
Thomas, 2006) of a random variable X . It takes its highest value for a uniformly distributed random
variable X and is equal to zero when X is constant. Mutual Information (MI) uses entropy to mea-
sure shared information between two random variables. In our case, the mutual information between
an input feature xj and the output variable y can be measured as MI(xj ; y) = H(xj)−H(xj |y).
During bias mitigation, we aim to reduce the MI between the protected attributes xAk and y. Re-
ducing MI(xAk ; y) implies increasing the uncertainty H(xAk |y). We increase that uncertainty by
associating protected attributes with a uniformly distributed random output variable Unif(1, C),
given that

H
(
xAk |Unif(1, C)

)
≥ H

(
xAk |y

)
(2)

This way the model learns to de-correlate the protected attributes and the model output. Since
computing MI requires discretization of the continuous features and it doesn’t directly depend on
model parameters, we propose a proxy measure of MI that can be incorporated into the optimization
objective. The proxy measure aims to reduce the distance between S(xi, x

′, Ak) and Unif(1, C)
which can be represented as a regularization term in the optimization objective.

Table 2 shows how the mutual information between protected attributes Gender and Race reduces
as we augment the data with samples that associate intersectional subgroups of protected attributes
with random guesses. In the next section we describe how we incorporate this regularization term
into the model’s optimization objective.

Table 2: MI between protected attributes Gender and Race and output variable Passed Bar
before and after MI constraint-based data augmentation for the LSAC and Adult datasets.

Passed Bar (Before Mitigation) Passed Bar (After Mitigation)

LSAC Adult LSAC Adult

Gender 0.00101 0.043532 0.00029 0.011177

Race 0.02265 0.010469 0.004876 0.0010130

4 FAIRNESS-AWARE LEARNING ALGORITHM

The learning algorithm we propose is similar in spirit to the ones which incorporate predetermined
constraints into optimization objective as regularization terms. It is more generic in its nature and
does not use EO, DP or adversarial heads as a proxy for the minimization of the mutual informa-
tion (Cho et al., 2020; Song et al., 2018) between the protected attributes and the output variable.
We give a formal definition of the objective function starting from the definition of the the proxy
constraint for mutual information.
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Definition 4.1 Given a subset of protected attributes Ak ∈ A, an input example xi, a uniformly
random chosen label yrand and a baseline x′, the proxy constraint for the mutual information is
defined as follow:

LA(xi, x
′,A, yrand) = −

∑
Ak∈A

∑
c∈C

1(yrand = c) · log(fc(S(xi, x
′, Ak))) (3)

where c ∈ C are possible prediction classes and yrand = Unif(1, C) is a label drawn uniformly
random from C. The first summation over the subsets of protected attributes Ak helps us to ad-
dress bias mitigation for multiple subsets of protected attributes. The joint objective of a multiclass
classification problem is the following.

Lcombined =
∑

(xi,yi)∈D

L(xi, yi) + α ·
∑

(xi,x′)∈D′

LA(xi, x
′,A, Unif(1, C)) (4)

In our setup we use a classification loss but other loss definitions can be used instead. L(xi, yi)
represents the loss for the original model. The hyperparameter α is used to balance the amount
of regularization that we incorporate into the loss. D′ = {(x1, x

′), ..., (xN , x′)} represents the
dataset with a set of baseline values x′ = {x′j}j=M

j=1 for each feature j. Unif(1, C) chooses a label
uniformly at random from [1, ..., C]. Algorithm 1 illustrates an example of how our proposed loss
can be computed during training using Gradient Descent (GD) algorithm. Our method is not limited
to GD and can be trained with other optimizations algorithms as well.

Algorithm 1: Fairness-Aware Learning Algorithm

Input: Training Datasets D = {(xi, yi)}i=N
i=1 , Validation dataset Dvalid = {(xi, yi)}i=F

i=1 ,
Baseline x′ = {x′j}j=M

j=1 , A set of subsets of protected attributes A, hyperparameter α,
learning rate η, max epochs.

Output: Wbest for the best accuracy of the model f on Dvalid while minimizing reliance on the
feature sets in A.

1 Initialize the model parameters W0, set epoch=0;
2 while epoch < max epochs do
3 Linitial = 1

N ·
∑i=N

i=1

∑C
c=1 −1(yi = c) · log(fc(xi));

4 yrand = uniform rand(C) ; // Uniformly at random chooses class in
[1, C] for each example

5 LA = 1
N

∑i=N
i=1

∑|A|
k=1

∑C
c=1 −1(yi = c) · log(fc(S(xi, x

′, Ak))) ;
6 Lcombined = Linitial + α · LA

7 epoch = epoch + 1 ;
8 Wepoch = Optimizer(Lcombined, η); // Optimizer can be Adam, for example
9 Update Wbest based on the highest accuracy measures on Dvalid so far.

5 EXPERIMENTS

In this section we present experimental results of our fairness-aware learning framework and a num-
ber of state-of-the-art baseline approaches. We also describe experimental setup, evaluation metrics
and discuss empirical results.

5.1 EXPERIMENTAL SETUP

The UCI Adult dataset (Dua & Graff, 2017) and the Law School Admissions Council (LSAC)
dataset (Wightman & Council, 1998) are two highly unbalanced datasets used in our experiments.
Appendix A.1 provides details about those two datasets and an additional COMPAS 7 dataset used
in the appendix. For these two datasets we built a 2-layer RELU-BatchNorm-Linear NN models
similar to the one demonstrated in the literature (Beutel et al., 2017). The first linear layer contains
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128, the second 64 and the last output layer only a single neuron. The models are trained using
approximately 100 epochs with Adam optimizer, 0.001 learning rate and binary cross entropy logit
loss as the baseline model’s loss, L(xi, yi). As a bias mitigation constraint, LA, we used squared dis-
tance between the output and the provided label instead of cross entropy loss since it is a convenient
approach for binary classification. We chose baseline values x′ carefully to indicate missingness of
corresponding attributes in the dataset.

We compared our method with the well known GerryFair (Kearns et al., 2018) and a mutual infor-
mation reduction-based approach (Cho et al., 2020) adopted for intersectional fairness. GerryFair
performs a zero-sum optimization between a fairness auditor and a classifier subject to the auditor’s
constraints. On the other hand, (Cho et al., 2020; Song et al., 2018; Louppe et al., 2017) show that
mutual information reduction-based approaches can be formulated as generative adversarial opti-
mization problems. Here the classifier plays the role of the generator and the discriminator aims to
reduce the mutual information between the protected attributes and the output of the classifier. In-
spired by (Song et al., 2018; Louppe et al., 2017) we implemented an adversarial network with two
2-layer RELU-BatchNorm-Linear NNs. One of those networks serves as a generator and the other
one as a discriminator. The last layer of discriminator is equal to six; one representing binary-valued
gender and other 5 representing different values of race.

5.2 EVALUATION METRICS

As fairness measurement metrics we adopted Equalized Odds (EO) Hardt et al. (2016); Beutel et al.
(2017) and Demographic Parity (DP) Dwork et al. (2012); Kusner et al. (2017) metrics to measure
model’s intersectional subgroup biases. Inspired by Beutel et al. (2017) and Ghosh et al. (2021)
we measure EO as the differences between minimum and maximum TPR and FPR scores across all
subgroups formed by a given subset of protected attributes. Let G denote the set of different com-
binatorial options formed by the subgroups of protected attributes in the set Ak ∈ A. For example
G = {(Male,White), (Male,Black), (Male,Asian), (Female,White), (Female,Black),
(Female,Asian), ...}. The values in G are then denoted by Gi ∈ G. EO based on TPR
and FPR are then defined as EOTPR

G = |max(TPR(Gi)) − min(TPR(Gj))| and EOFPR
G =

|max(FPR(Gi))−min(FPR(Gj))|, Gi ∈ G,Gj ∈ G accordingly. Similarly, demographic par-
ity is measured as DPG = |max(DP (Gi))−min(DP (Gj))|, Gi ∈ G,Gj ∈ G.

5.3 EXPERIMENTAL RESULTS

In order to better understand the accuracy vs fairness gap relationship, we run multiple experiments
by varying the weight of the fairness component from zero to a large number both for our approach
and two baseline approaches. We compare our approach against GerryFair (Kearns et al., 2018) and
a mutual information-based approach (Cho et al., 2020) in terms of Accuracy vs TPR, FPR and DP
gaps. As described in section 5.1 mutual information based fairness mitigation is performed based
on adversarial training. Our experimental results depicted on figure 1 reveal that our method re-
sults in higher accuracy when reducing TPR gap from 0.5 to 0.2 for LSAC and from 0.46 to 0.23 for
Adult datasets. All three methods exhibit similar accuracy when the TPR gap is further reduced from
approximately 0.2 to 0.0. We examine similar patterns for Accuracy vs FPR and DP gap measure-
ments as well. We observe that the adversarially trained approach slightly underperforms two other
approaches in terms of accuracy. We hypothesize that generator-discriminator based approaches are
more effective for binary protected attributes as also shown in (Louppe et al., 2017). When dealing
with multiple non-binary protected attributes, generator-discriminator based networks become less
effective and might require further fine tuning. We conclude that our method can be beneficial espe-
cially when the goal is to reduce fairness gaps substantially without hurting the accuracy too much.
Appendix A.2 provides additional results for COMPAS (Barenstein, 2019) dataset.

Furthermore, we compare our method with the original and two additional baseline models. One
of the baselines represents a model trained without protected attributes. In this case we removed
Gender and Race attributes from the dataset. The second baseline model is trained on a dataset
where examples for all underrepresented intersectional subgroups of Gender and Race are upsam-
pled. Figure 2 summarizes Accuracy, TPR, FPR and DP gaps across all baselines and our approach
for LSAC and Adult datasets. We observe that our method is comparable or better in reducing the
fairness gap for almost the same accuracy trade-off.
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Figure 1: Our method, GerryFair and adversarially trained approaches compared on accuracy vs
fairness metrics (TPR, FPR and DP gaps) for LSAC (top) and Adult (bottom) datasets. Best viewed
in color.

Figure 2: Our method (α = 0.5) vs original model, removed Gender and Race attributes and
upsampled for underrepresented subgroups. Best viewed in color.

In order to validate the effectiveness of our approach we perform two additional studies. We aim to
understand how inference time masking of protected attributes and the presence of attributes strongly
correlated with protected attributes, change the accuracy, TPR, FPR and DP gaps.

Masking protected attributes: We mask protected attributes in the test dataset and compare
model accuracy and fairness metrics before and after masking. This validates the hypothesis that
fairness gap changes will remain changed before and after protected attributes are masked in the test
dataset, if our method is effective in mitigating bias. Table 3 showcases the high sensitivity of the
original model’s accuracy, TPR, FPR and DP gaps when protected attributes are masked. In contrast
to the original model, our model is almost insensitive to the masking of protected attributes showing
its robustness to the presence of protected attributes. Appendix A.2 demonstrates the results of the
same experiment for Adult dataset.

Studying the effects of strongly correlated features with protected attributes: In order to un-
derstand the effectiveness of our approach in the presence of features strongly correlated with pro-
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Table 3: Test Accuracy, TPR, FPR and DP Passed Bar Gaps for the Original and Our Models
(α = 0.5) with and without masking of protected attributes applied on LSAC dataset.

Accuracy TPR FPR DP passed

Original model 0.87 0.55 0.14 0.23
Original model w/masked A(Gender,Race) 0.85 0.53 0.05 0.15
Our model 0.86 0.28 0.06 0.11
Our model w/masked A(Gender,Race) 0.86 0.28 0.06 0.10

Table 4: Accuracy and TPR for two subpopulations, computed for the original model, a baseline
model trained without Gender and Race, and our approach. The dataset contains an additional
attribute Race1 for which mitigation is intentionally not performed.

Accuracy TPR

Male ∩ White Female ∩ Black

Original model 0.87 0.99 0.76
Removed protected attributes 0.86 0.96 0.77

Our model (α = 0.5) 0.86 0.99 0.90

tected attributes we use two race related features Race1 and Race. We apply bias mitigation only to
fields Gender and Race. No mitigation for field Race1 is carried out. Table 4 shows that our ap-
proach is still effective in mitigating the bias in underrepresented groups such as Female∩Black.
It is not as effective as in the absence of Race1 field 1, however, it is more effective than removing
Gender and Race from the dataset.

Feature interaction effects: In addition to accuracy and fairness evaluation metrics, we also anal-
yse pairwise feature interaction effects of protected attributes for the biased and unbiased versions
of the model. We compute pairwise feature interactions based on the formulations in Tsang et al.
(2020). We validate the hypothesis that pairwise feature interaction of protected attributes with
non-protected ones drops significantly in the unbiased model. Furthermore, our experiments re-
veal that the decline of feature interaction scores for protected attributes leads to the emergence
of stronger interaction patterns between other attributes. Figure 3 visualizes aggregated pairwise
feature interaction heatmaps for the original, biased model, at the top and unbiased model, based
on our approach, at the bottom of the diagram. The results suggest that feature interaction effects
for Male and Female look very similar. We also observe that the protected attribute gender
has a relatively strong interaction pattern with the age attribute and race with the fulltime in
the biased model. The unbiased model, however, exhibits no distinct and strong feature interaction
patterns for gender and race with age and fulltime respectively. On the other hand, we dis-
cern stronger emerging interaction patterns between parttime and zgpa, fulltime and zgpa.
This helps us better understand how feature interaction patterns are impacted when the models are
trained with bias mitigation constraints. These findings can serve as sanity checks and facilitate
better understanding of bias mitigation techniques.

Our experimental studies provide the following empirical evidence:

• Our approach achieves higher accuracy when reducing the same amount of TPR, FPR and
DP gaps compared to the GerryFair Kearns et al. (2018) and mutual information Cho et al.
(2020) based baseline approaches.

• In numerous instances, our approach is more effective, when reducing TPR, FPR and DP
gaps, compared to removing protected attributes from the dataset or upsampling examples
for underrepresented subgroups.

• Masking protected attributes neither changes the accuracy nor the measured gap for our
approach.

• Our approach is still effective even when protected attributes are highly correlated with
non-protected ones.
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Figure 3: Aggregated pairwise feature interaction heatmaps before (top) and after (bottom) bias
mitigation for both Male and Female based on LSAC test dataset. Best viewed in color.

• A model trained with our approach exhibits lower feature interaction effects between pro-
tected and non-protected attributes in the dataset.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a framework to mitigate modeling bias in intersectional subgroups indepen-
dent of the type of the protected attributes. The framework incorporates a generic proxy constraint
into the optimization objective which increases the uncertainty between protected attributes and the
output variable, thus reduces mutual information. We study accuracy vs TPR, FPR and DP gap
trade-offs both with respect to state of the art approaches as well as data pre-processing techniques
such as upsampling and removing protected attributes. We show, empirically, that our approach
surpasses GerryFair and adversarially trained approaches when reducing the fairness gaps up to a
certain extent. In addition to that we also demonstrate that our approach outperforms data pre-
processing based baseline approaches. Furthermore, we show empirically that our approach is still
effective when other features are correlated with protected attributes. Lastly, our experiments reveal
that bias removal reduces the interaction effects between protected attributes and other attributes in
the dataset.

In the future, we plan to analyse the effects of different types of bias mitigation constraints on a
specific ML task of interest. This type of research can help better understand what kind of constraints
might work better for a specific problem space and why. In addition to that it is also valuable
to investigate techniques for estimating the optimal hyperparameter value for the weight of bias
mitigation term, instead of a grid search approach.
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A APPENDIX

A.1 DATASET

In this section we describe LSAC and UCI Adult datasets in detail. Both datasets have a highly
unbalanced distribution over their protected attributes such as race and gender. Approximately 84%
of all samples in the LSAC dataset have White as race, while only 1.8% have Other as race.
Likewise, there are more examples for Male than for Female gender. The labels have skewed dis-
tributions as well; with approximately 94% samples labelled as Passed while only 6% are labeled
as Not Passed. The full breakdown of LSAC dataset is presented in Table 5. We observe simi-
lar data distribution patterns for the Adult dataset. Approximately 86% of all samples in the Adult
dataset are associated with White race, with only 0.7% with other race. There are more samples
for Male than for Female and more sample for <=50K salary range than for >50K. The full break-
down of Adult dataset is presented in the table 6. Similar to LSAC and Adult dataset we observe
uneven distribution of samples across Gender and Race intersectional subgroups 7. We observe
that, specifically, the number of examples with recidivism label for Male and Not Caucasian
subgroup surpass the number of examples with no recidivism label for the same subgroup. This is
not the case for any other subgroup formed by Gender and Race attributes.

Table 5: LSAC dataset breakdown by gender, race and dataset label (Bar Pass and Bar Not Pass)
Black Hispanic Asian White Other

Male ( Not Pass / Pass ) 99 / 352 64 / 443 33 / 363 311 / 9622 17 / 197

Female ( Not Pass / Pass ) 167 / 580 51 / 368 27 / 367 249 / 6957 20 / 140

Table 6: Adult dataset breakdown by gender, race and income category
Black Asian-Pac-Isl Amer-Ind-Esk White Other

Male(<=50k/>50k) 1736 / 408 563 / 304 230 / 39 18268 / 8752 191 / 36

Female(<=50k/>50k) 1958 / 126 371 / 65 152 / 14 10428 / 1455 117 / 9

Table 7: COMPAS dataset breakdown by gender, race and recidivism label
Caucasian Not Caucasian

Male(No recid. / Did recid.) 968 / 652 1630 / 1744

Female(No recid. / Did recid.) 310 / 170 450 / 230

A.2 ADDITIONAL EXPERIMENTS

Similar to LSAC dataset, we perform additional experiments on the Adult dataset when protected
attributes Gender and Race are masked in the test dataset. We observe that after masking those
attributes, Accuracy, TPR, FPR and DP Passed gaps do not change much. This validates the hypoth-
esis that our method learns latent representations that do not rely on protected attributes.
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Table 8: Test Accuracy, TPR, FPR and DP Passed Bar gaps for the original and our models (α = 0.5)
with and without masking of protected attributes applied on Adult dataset.

Accuracy TPR FPR DP Passed

Original model 0.81 0.46 0.08 0.24
Original model w/masked A(Gender,Race) 0.80 0.40 0.06 0.19
Our model 0.80 0.23 0.06 0.19
Our model w/masked A(Gender,Race) 0.80 0.22 0.06 0.19

Similar to LSAC and Adult datasets, we perform additional experiments with COMPAS dataset in
order to further support our findings and empirical evidence. Table 4 compares our method against
GerryFair and adversarialy trained methods when mitigating the intersectional subgroup bias for
Gender and Race protected attributes. We observe that our approach outperforms GerryFair and
adversarially trained methods in terms of reducing Accuracy vs TPR, FPR and DP gap tradeoffs.

Figure 4: Our method, GerryFair and adversarially trained approaches compared on accuracy vs
fairness metrics (TPR, FPR and DP gaps) for COMPAS dataset. Best viewed in color.
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