
Identifying Precursors to Failures
in Robotic Lift-and-Place Tasks

Zeyu Shangguan, Rajas Chitale, Rutvik Patel, Satyandra K. Gupta, Daniel Seita
University of Southern California

{zshanggu, rachital, rutvikra, guptask, seita}@usc.edu

Abstract—Failure prediction for robotic manipulation in in-
dustrial applications has experienced substantial advancements in
terms of efficiency and reliability driven by the latest innovations
in machine learning. Most of the existing works focus on reactive
failure prediction. As an offline analyzing technique, it is not
suitable for real-time failure prevention. Therefore, proactive
failure prediction becomes a valuable approach to meeting the
requirements of online deployment. Although recent research on
proactive failure prediction has made progress, it still suffers
from limitations such as object specificity, fixed action spaces,
dynamic action, and high system complexity. In this paper, we
study lift-and-place tasks, and propose a more effective approach
to identifying failure by analyzing the relative motion of target
objects in the scene. Consequently, we propose a novel method
that proactively predict the failure by embedding the relative
motions in the scene. We verify our proposed method on both
simulation and real-world data. The experimental results indicate
that our proposed method not only demonstrates improved
generalization but also provides a more precise response to the
precursors of failure.

I. INTRODUCTION

Failures in robotic manipulation can result in serious safety
hazards, posing physical harm to both humans and equip-
ment [12, 6]. Therefore, it is imperative that robotic systems
autonomously identify and assess high-risk situations during
manipulation. We study one of the most fundamental and
widely encountered tasks in industry: lift-and-place. A signif-
icant challenge in lift-and-place tasks commonly involves the
target object dropping from the robot’s carrier during manipu-
lation, especially when the robot is executing dynamic action.
Such failures can disrupt workflow, damage materials, and
compromise functionality. Addressing these failure scenarios
is therefore critical for enhancing the robustness and overall
efficiency of robot manipulation.

During execution, failure prediction tasks typically fall
into two categories: reactive failure prediction and proactive
failure prediction [8, 1, 20]. Reactive failure prediction refers
to offline analysis that categorizes manipulation failures after
they occur, typically for the purpose of explanation or retro-
spective correction. Common methods for addressing reactive
failure prediction include learning a failure classifier [17]
and using large language models to explain failures [3, 9].
In contrast, proactive failure prediction relies on predicting
future risks to enable real-time corrections. Approaches to
proactive failure prediction often involve out-of-distribution
detection [19, 16] and analyzing object geometric relation-
ships [20, 5]. Compared to reactive failure analysis, which

Low risk: 0.04 Medium risk: 0.52 High risk: 0.92

Fig. 1. Our method predicts a continuous risk value to represent the
likelihood of a real-time failure in robotic lift-and-place tasks. The key insight
is to analyze the relative motion between the target object (bunny) and the
carrier (tray) from visual information. In the above example, when the relative
motion is small, the predicted risk value is low (0.04). As the relative motion
increases, the predicted risk value also goes up (0.52), suggesting that a failure
may soon occur. When the motion becomes even larger, the predicted risk
value rises to 0.92, resulting in inevitable failure. At test time, a robot can
reduce its speed once our model predicts a risk value above a threshold.

analyzes the entire manipulation process, proactive failure
prediction relies on the observations available before a failure
occurs. This makes proactive prediction significantly more
challenging and relatively less explored. In this paper, we focus
on methods for proactive failure prediction.

In addition, a key challenge in proactive failure prediction
in lift-and-place tasks is defining a generalized feature repre-
sentation of failures that enables the model to perform well on
unseen target objects. To address this, a prior study proposes
to represent failures by analyzing geometric constraints in
a scene [20], where a failure is likely to occur when these
constraints are violated. However, their method requires se-
quential inference from multi-level generation models, which
increases the complexity of the pipeline. We hypothesize that a
critical factor in understanding failure cases lies in accurately
analyzing the relative motion between target objects and
carriers. To this end, we propose a two-step strategy. The first
step leverages visual observations to extract motion values.
The second step processes these values using a deep neural
network, which outputs a continuous “risk” value representing
the likelihood of failure. See Fig. 1 for an example.

Additionally, we implement a novel data collection pipeline
capable of labeling risk values during lift-and-place tasks.
It records key data points around the moment when failure
happens throughout the manipulation process. The pipeline
collects both the observations of the environment and the
actions performed by the robot at each time step, providing



a detailed chronological record of the manipulation sequence.
At every time step, the pipeline calculates and assigns a risk
value that serves as a quantitative indicator of the likelihood of
manipulation failure, helping to pinpoint moments when the
system operates under conditions of heightened uncertainty or
instability. By enabling proactive risk assessment, our method
achieves high success rates in early detection of high-risk
scenarios, allowing for timely interventions.

Our main contributions include:
• A novel scene representation using the relative motion of

objects, for generalizable proactive failure prediction.
• Experiments demonstrating that our proposed method

adapts to unseen objects and demonstrates better perfor-
mance compared to a baseline method.

II. RELATED WORKS

A. Failure Cases During Manipulation

In general, failure cases in robotic manipulation can be
categorized into two categories: task planning failures and
task execution failures [2]. Task planning failure refers
to the case where the model cannot generate a valid plan
due to an unsatisfactory scene setup, such as missing target
objects, which leads to failed motion planning. In contrast,
task execution failure refers to an accident that occurs during
robot execution due to improper planning. We study the task
execution failures.

There are two distinct types of task execution failures: pri-
mary object failure and secondary object failure, with each
encompassing two phases: the manipulation phase and the
post-manipulation phase. Primary object failure directly af-
fects the object in contact with the robot, while secondary fail-
ure involves objects indirectly influenced. Manipulation-phase
failures occur during interaction, while post-manipulation
failures happen afterward. According to prior research [6],
understanding the dynamics of these phases is crucial for
designing robust systems. In this paper, we concentrate on
secondary object failures that occur during the manipulation
phase of the lift-and-place task, where the failure happens
happens at the contact between the object and the carrier.

B. Failure Identification

Current research on failure identification in robotic ma-
nipulation can be broadly categorized into two approaches:
reactive failure analysis (post-hoc, offline) and proactive
failure prediction (ex-ante, online).

For reactive analysis methods, Arda et al. [6] frame failure
identification as a classification problem that uses multimodal
scene features as input and outputs predefined failure cate-
gories. Yuliang et al. [11] also propose a failure classifier
that enhances robustness to camera faults such as noise and
blur. REFLECT [9] leverages a vision-language model to
assist in failure analysis by generating textual explanations
of failure causes. AHA [3] uses a large language model to
identify specific failure modes and provide textual explana-
tions. Jeon et al. [7] design a model that combines multimodal
scene features with recovery procedures, using an LLM to

generate tailored recovery codes and link failure analysis with
corrective planning. Pradip et al. [13] propose to extend the
explanation of robot failure in a multi-modal way. Despite
progress, their post-hoc nature limits use in industrial settings,
where proactive prediction and prevention are crucial.

For proactive failure prediction, Enshen et al. [20] propose
using geometric constraints for real-time failure prediction,
but their multi-level generation models increase system com-
plexity. Chen et al. [19] formulate failure detection as an
out-of-distribution problem to address the limitations of data
collection, but might produce false positives in OOD cases.
RoboFail [15] generates action probability distributions to
assess risk without explicit failure labels, but its fixed action
space limits flexibility. Ping et al. [5] use machine learning to
predict maximum object shift during manipulation, assigning
risk scores to scenarios. However, this method is limited to the
wafer transferring scenario. RoboFail [15] and Ping et al. [5]
are the most relevant related works, where the precursor of
failure is represented as a scalar value. However, we focus on
a more generative and dynamic scenario.

Our research focuses on proactive failure prediction prob-
lem. Although previous works have significantly advanced
proactive failure prediction, it still suffers from limitations
such as dependence on specific objects, limited action spaces,
and high system complexity.

III. PROBLEM FORMULATION

We define proactive failure prediction for the lift-and-
place task as a regression problem, which takes a sequence
of visual observations as raw input, noted as Oraw =
{O0

raw, O
1
raw, . . . , O

n
raw}, and outputs a risk value Rt. We

assume that failure occurs only once per trajectory, as any
subsequent failures do not affect the overall safety of the
situation. The observation Ot

raw = {I, EEpos} contains image
frames from multiple camera sources at the current time step,
and the position of the end-effector (EEpos).

IV. METHODS

Our method is two-fold, as indicated in Fig. 2. The first
step is to analyze the relative motion between the target object
and the carrier. The kinematic state M = {θ, Tx, Ty} includes
relative rotation and translation values. Then at the second
step, we will use the collected kinematic states to predict
failure proactively.

A. Data Labeling: Historical Backtracking

In this paper, we design a data collection pipeline that
labels each time step with a risk value, Rt ∈ [0, 1], during
manipulation. We propose a historical backtracking method
for data collection in simulation. The idea is to identify two
key moments within a trajectory: the last possible moment
to trigger an emergency stop (e-stop) tstop, and the moment
when the failure actually occurs tfail. We note the start of the
manipulation as t0.

In our lift-and-place case, the tfail is the moment when
the target object starts dropping from the carrier. The tstop is



RGB Observation 
(N frames)
+
Prompt

Instance 
Segmentation
(SAM2)

2D - Rotation & 
Translation

Encoder Risk 
value

2-D 
ICP

Segmented 
Contours

EE 
trajectory

R, T
CurrentPrevious

+

Fig. 2. Our proposed method consists of two stages. First, it processes a series of images captured from multiple camera views to extract the segmented
contours of the target object and the carrier. Then, a 2-D ICP algorithm computes the motion values between consecutive time steps based on these contours.
In the second stage, the calculated motion values, together with the recorded current end-effector trajectory, are input to a feature encoder, which outputs a
continuous risk value indicating the likelihood of failure.

tfailtstopt0 tfail-λ

…

Rt=1.0

e-stop

Rt=0.9Rt=0.8
Rt=0.5

Iter. 0
(Failure)

Iter. 1
(Failure)

Iter. 2
(Failure)

Iter. n
(No failure)

1.0

0.5

0.0

Rt

tfail-2λ

…

…

…

…

Time 
step

Fig. 3. Historical backtracking data collection pipeline. The above part
demonstrates the process of searching backward from the actual failure mo-
ment tfail in steps of λ. At each moment tfail−i·λ (where i = 0, 1, 2, . . .),
we apply an e-stop and observe whether failure still occurs in the following
time steps (indicated by the translucent color). The bottom part is the labeled
ground truth curve of the risk value, Rt = 0.5 at the moment tstop, Rt = 1.0
at the moment tfail.

determined by our proposed historical backtracking method.
The key idea is to identify the earliest safe intervention
point by iteratively searching backward from the actual failure
moment tfail in steps of λ, starting at tfail−λ, then tfail−2λ,
followed by tfail−3λ, and so forth. At each earlier time step
tfail − i ∗ λ(i = 0 = 1, 2, . . .), an emergency stop (e-stop) is
applied to determine if the failure can be avoided, since the
object will still move due to its inertia and contact friction. If
not, this process continues.

For example, in Fig. 3, the left section shows a curve
collected from the simulator (we use MuJoCo [18]). The curve
in the right section represents the robot trajectory. From top to

bottom is the process of our historical backtracking exploration
method. For Iteration 0 in Fig. 3, we apply an emergency
stop (e-stop) when we observe a failure. Therefore, from that
moment onward, the risk value is always Rt = 1.0. Then
for Iteration 1, we replay the trajectory but apply the e-stop
at tfail − λ. If the failure still occurs, then this is a high-
risk situation. Then, for Iteration 2 and all subsequent ones,
we continuously advance the e-stop by λ time. Eventually,
after n rounds, we find a moment tstop = tfail−nλ at which
applying e-stop prevents failure, and we define the risk value as
Rt = 0.5. Based on this, we assign all time steps before tstop
to represent low-risk situations where failure can be avoided,
while the time steps after tstop represent high-risk situations
with unavoidable failures. Then, we apply Hermite splines [4]
to interpolate the risk values at other time points.

In the real-world, it is infeasible to continually reset and
perform historical backtracking. Therefore, we develop a GUI
to manually label real-world data. The times t0 and tfail are
labeled as the start of the manipulation and the actual failure
moment, respectively. The time tstop is labeled manually when
a human observes substantial relative motion between the
target object and the carrier.

Our data post-processing involves a hard cut-off and un-
even sampling, as seen in Fig. 4. For the hard cut-off, we
remove time steps following each failure. This is because
the relative motion is minimal or absent both when the
robot is moving steadily and after a failure, when the object
remains stationary on the ground and the robot stays fixed.
In such cases, the model may struggle to distinguish between
these scenarios solely on such homogeneous relative motion.
Furthermore, post-failure data is not informative for proactive
failure prediction and is therefore excluded from training. Our
raw data is also naturally imbalanced, as failures are rare and
occur only briefly during manipulation, meaning most training
data represents low-risk cases. To mitigate this imbalance,
we sample fewer low-risk instances. In each manipulation
trajectory, we downsample the data before tstop using a stride



Fig. 4. Visualization of the data post-processing for a real-world data. The
top three figures of the manipulation scene illustrate the moments t0, tstop,
and tfail, from left to right. We resample the data points to save more data
points with high-risk label while reducing the proportion of the low-risk label.
The original data is indicated by the red dotted line, while the resampled data
points are marked by red circles. In addition, we apply a hard cut-off to
remove data points after the failure occurs (around the 170-th time step).
Through resampling, we reduce the number of data points by 62.1%. The
hard cut-off further reduces the data by an additional 1.3%.

of 2. In addition, our data post-processing method significantly
reduces the data volume. For example, as shown in Fig. 4,
resampling alone reduces the data by 62.1%, and the reduction
increases to 63.4% when hard cut-off is additionally applied.

B. Network Design

As shown in Fig. 2, the idea of our network is to first analyze
the object motion from the RGB images, and then predict
the risk value. Intuitively, large relative motion indicates high
risk. However, this motion may be unobservable from certain
viewpoints, such as if the object moves along the camera’s line
of sight. To address this, we use two cameras at different lo-
cations. In addition, robot manipulation is a dynamic process,
so we analyze failure based on a sequence of RGB images
from each camera captured within a time window.

We will first process the raw input to get the motion values
of the target object (Mobj) and the carrier (Mcarr) from
multiple camera views between each two time step. Both Mobj

and Mcarr will include a rotation value and a translation value
(T ). And then we get Oproc = {O0

proc, O
1
proc, . . . , O

n−1
proc},

where Ot
proc = {Mobj ,Mcarr, EEpos}. Then we will pro-

cess these processed inputs with a sampling window of
length m, thus, the observation window would be Owin =

τgtfail τgtno−fail

τpredfail & (tpredstop ≤ tstop) TP FP

τpredfail & (tpredstop > tstop) FP

τpredno−fail FN TN

TABLE I
DEFINITION OF TRUE POSITIVE, TRUE NEGATIVE, FALSE POSITIVE, AND

FALSE NEGATIVE.

{Oi
win, O

i+1
win, . . . , O

i−1+m
win }, where each Ot

win corresponds to
a ground truth risk value Rgt

t ∈ [0, 1].
One direct approach to analyzing relative motion is to

model the dynamics of object interactions. However, this
requires extensive scene modeling and estimation of phys-
ical properties of both the object and the robot, which
can be unreliable—especially for properties like friction
and surface texture. Therefore, we propose analyzing rel-
ative motion by estimating rotation and translation based
on contour movement. We first get the geometric con-
tours of the target object and the carrier in both camera
views ({cobj,cam1

i , cobj,cam2
i , ccarr,cam1

i , ccarr,cam2
i }) at each

time step i. In the real world, we do this by using a pre-trained
SAM2 model [14] to perform this process. In simulation,
we directly obtain the object shape projection as its contour.
And then we adopt the classic 2D-iterative closest point
(ICP) method to calculate the motion values Mobj ,Mcarr. As
described in Sec. III, M includes both the rotation angle θ and
translation values T (x, y). Therefore,

M cam1
obj = {θobj,cam1

i , T (x)obj,cam1
i , T (y)obj,cam1

i },

M cam2
obj = {θobj,cam2

i , T (x)obj,cam2
i , T (y)obj,cam2

i },

M cam1
carr = {θcarr,cam1

i , T (x)carr,cam1
i , T (y)carr,cam1

i },

M cam2
carr = {θcarr,cam2

i , T (x)carr,cam2
i , T (y)carr,cam2

i }.

Consequently, for each time step, we get a motion vector M⃗
consisting of 15 values as the input to the encoder (we omit
the vector arrow in the remainder of the paper for ease of
reading). It includes data from two cameras, two contours per
camera, three motion values per contour, and three end-effector
position values.

For the encoder, we adopt a simple deep neural network
such as ResNet-18 and ResNet-50, to extract the feature
embedding of the motion vectors M⃗ and output a continuous
risk value Rt ∈ [0, 1]. The training loss is defined by the MSE
loss over n samples:

LMSE =
1

n

n∑
t=1

(Rpred
t −Rgt

t )2. (1)

C. Assessment Metrics

We evaluate using four metrics: MSE, precision, recall and
execution rate. The MSE value is directly from Eq. 1. We
calculate precision and recall by defining 5 cases as described
in Tab. I, where we note the trajectories with ground truth
label that indicate failure occurred as τgtfail, and τgtno−fail if no



Setting Encoder Arch Input Evaluation MSE ↓ Precision ↑ Recall ↑ Rexe ↑

Sim-only

ResNet-18

Raw image Sim&Real 0.065 0.448 1.000 0.200
Motion value Sim&Real 0.077 0.364 0.981 0.487

Raw image Real-only 0.271 0.600 1.000 0.000
Motion value Real-only 0.175 0.000 0.000 0.000

ResNet-50

Raw image Sim&Real 0.065 0.347 1.000 0.275
Motion value Sim&Real 0.080 0.449 0.985 0.368

Raw image Real-only 0.279 0.600 1.000 0.000
Motion value Real-only 0.235 0.000 0.000 0.000

Sim&Real

ResNet-18

Raw image Sim&Real 0.063 0.451 0.995 0.218
Motion value Sim&Real 0.077 0.351 0.981 0.504

Raw image Real-only 0.172 0.500 0.667 0.270
Motion value Real-only 0.154 0.000 0.000 0.000

ResNet-50

Raw image Sim&Real 0.072 0.466 0.995 0.210
Motion value Sim&Real 0.079 0.451 1.000 0.377

Raw image Real-only 0.174 0.600 1.000 0.000
Motion value Real-only 0.138 0.600 1.000 0.000

Real-only

ResNet-18

Raw image Sim&Real 0.099 0.546 1.000 0.000
Motion value Sim&Real 0.266 0.280 0.318 0.183

Raw image Real-only 0.147 0.600 1.000 0.000
Motion value Real-only 0.134 0.600 1.000 0.000

ResNet-50

Raw image Sim&Real 0.098 0.546 1.000 0.000
Motion value Sim&Real 0.437 0.750 0.012 0.375

Raw image Real-only 0.147 0.600 1.000 0.000
Motion value Real-only 0.046 0.750 1.000 0.375

TABLE II
EXPERIMENT RESULTS BASED ON THREE TYPES OF TRAINING SETS. RAW IMAGE REFERS TO OUR BASELINE METHOD.

Training set Test set

Si
m

ul
at

io
n

Re
al

Si
m

ul
at

io
n

Re
al

Fig. 5. Visualization of the dataset. The objects used in the training set have
no overlap with those in the test set.

failure occurred. Similarly, for the predicted results, we note
the trajectory as τpredfail if failure is detected and τpredno−fail if no
failure is detected. For τgtfail, we already define the key moment
to identify failure as tstop, while for τpredfail , we define this
moment as tpredstop . Examples of these 5 cases are in Sec. V-B.

In addition, to avoid the model simply predicting a high
risk value at the start of manipulation in order to always
avoid failure, we quantify this behavior to evaluate overly
conservative predictions. We assess the model by introducing
the execution rate Rexe, which represents the percentage of
time steps completed at the moment when the failure is
correctly predicted, as seen in Eq. 2:

Rexe =
tpredstop

tstop
, (2)

where the optimal Rexe is 1.0, meaning that the model predicts

the failure at the last possible moment to apply an emergency
compensation.

V. EXPERIMENTS

We use one UR-5 robot arm for both MuJoCo simula-
tion [18] and real-world experiments. The carrier of the UR-5
consists of a Robotiq parallel-jaw gripper which firmly holds
a flat tray, and an object lies on the tray. We install two
RealSense cameras, one from a top-down view and the other
from a side view. We use two GeForce 4090 GPUs for model
training.

We collect 5,349 manipulation trajectories from simulation,
and 52 trajectories from the real-world. Each trajectory demon-
strates the robot performing a lift-and-place task, where it
holds a tray, transports an object placed on top, and moves
back and forth within the workspace. The tray is assigned a
random tilt angle offset from the horizontal pose, and the joint
speeds are perturbed with random acceleration offsets to reach
the maximum joint speed during manipulation, mimicking an
industrial scenario. We have 5,349 objects for simulation and
10 objects for the real-world. The objects for simulation come
from Lum et al. [10], which contains 5,751 distinct object
meshes. The real-world objects are 3D printed. The collected
data is split into training, validation, and test sets, using an
8:1:1 ratio. The objects in the test set are distinct from those
in training, see Fig. 5 for some examples.



TN

FP

TP

FP FN

TP*

Fig. 6. Visualization of the predicted risk value curve vs the ground truth risk value curve during evaluation. The solid red line refers to the ground truth
curve, while the solid blue line demonstrates the predicted curve. The dotted red line refers to the moment of tstop, while the dotted blue line is tpredstop . The
threshold of risk value (Rt = 0.5) is indicated by dotted green line. TP* is a perfect case that demonstrates our tpredstop = tstop.

A. Model Evaluation

To verify the effectiveness of our proposed motion value
representation, we implement a vision-based representation
method as a baseline. This shares the same feature encoder
structure as our proposed method, but takes raw images as
input instead of motion values. The encoder directly predicts
the regression value of Rt from the input images.

We train the model and report its performance using three
training sets: pure simulation data, pure real-world data, and
a mix of both. For each training setting, we train the model
with different encoder sizes. For each encoder architecture, we
train the model with both raw images and motion values. We
evaluate each model on two types of test sets: pure real-world
data and Sim&Real data.

Our experimental results are listed in Tab. II. As described
in Sec. IV-C, the four metrics evaluate from multiple perspec-
tives. MSE evaluates the overall performance of the model in
terms of the prediction accuracy at each time step. However,
low MSE does not mean the model always correctly predicts
failures. Precision and recall values indicate the correctness
of proactive failure prediction. While a high precision value
demonstrates a successful failure prediction before it actually
happens, it is possible that the model is overly conservative.
For example, it would be undesirable if a model always
predicts failure at the beginning of manipulation.

From the experimental results, we observe that as model
size increases, the MSE values tend to increase. For example,
the MSE of the ResNet-50 model trained on Sim&Real data
with raw image inputs and tested on pure real-world data,
increases from 0.172 to 0.174, compared to the model trained

with ResNet-18. However, the precision improves from 0.500
to 0.600 and the recall greatly improves from 0.667 to 1.000.

Compared to the baseline method, where the raw image
is the only input, while our proposed method tends to have
higher MSE and lower precision and recall, the Rexe is higher.
This means our method is effective in keeping the model from
acting overly conservative. This is an important advancement,
since a model with low Rexe has weak practical significance.

In terms of generalization, there is a visual sim2real gap be-
tween simulated and real-world images. Our proposed motion-
value-based method is less sensitive to the visual domain gap,
as it does not directly rely on raw image features. However,
there still exists a sim2real gap when we obtain object contours
in the real-world, since we use an open-source segmentation
model, while in simulation we can directly use ground-truth
geometry projection. When evaluating the Real-only test set,
the MSE of the baseline is always larger than our method, and
the Rexe of the baseline method is lower in most cases. These
indicate that our method has stronger visual generalization.

B. Visualization

In Fig. 6, we visualize representative prediction results
and simultaneously illustrate the five cases used to calculate
precision and recall. These results are based on the setting
where the model is trained and evaluated on Sim&Real data,
using ResNet-18 with motion values as input. In the TN case,
our model correctly predicts low risk values throughout the
manipulation. In the FP case, the model either incorrectly
predicts a high risk value when no failure occurs, or it predicts
tpredstop after the ground-truth tstop. In the TP case, the model



correctly predicts tpredstop before the ground-truth tstop. In the
FN case, the model fails to predict any high risk values, even
though the ground truth indicates a failure. Additionally, the
TP* case represents a perfect prediction, where tpredstop = tstop
and Rexe = 1.0.

VI. CONCLUSION

In this paper, we study proactive failure prediction in the
context of lift-and-place tasks. We propose extracting rela-
tive motion from images to represent visual changes in the
scene and encoding these motion values to proactively predict
failures. Our experiments suggest that the proposed method
effectively generalizes to unseen objects during test-time de-
ployment. We hope that our proposed method contributes to
advancing proactive failure prediction.

REFERENCES

[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Zi-ang
Cao, Rika Antonova, Marco Pavone, and Jeannette Bohg.
Unpacking Failure Modes of Generative Policies: Run-
time Monitoring of Consistency and Progress. In Con-
ference on Robot Learning (CoRL), 2024.

[2] Maximilian Diehl. Explainable and Interpretable Meth-
ods for Handling Robot Task Failures. PhD thesis,
Chalmers Tekniska Hogskola (Sweden), 2025.

[3] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru
Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna,
Dieter Fox, Ajay Mandlekar, and Yijie Guo. Aha:
A vision-language-model for detecting and reasoning
over failures in robotic manipulation. arXiv preprint
arXiv:2410.00371, 2024.

[4] KAYA Erdogan. Spline interpolation techniques. Journal
of Technical Science and Technologies, pages 47–52,
2013.

[5] Ping Wun Huang and Kuan-Jung Chung. Task failure
prediction for wafer-handling robotic arms by using
various machine learning algorithms. Measurement and
Control, 54(5-6):701–710, 2021.

[6] Arda Inceoglu, Eren Erdal Aksoy, and Sanem Sariel.
Multimodal detection and classification of robot manipu-
lation failures. IEEE Robotics and Automation Letters, 9
(2):1396–1403, 2024. doi: 10.1109/LRA.2023.3346270.

[7] Jeon Ho Kang, Neel Dhanaraj, Siddhant Wadaskar, and
Satyandra K Gupta. Using large language models to
generate and apply contingency handling procedures
in collaborative assembly applications. In 2024 IEEE
International Conference on Robotics and Automation
(ICRA), pages 15585–15592. IEEE, 2024.

[8] Gregory LeMasurier, Alvika Gautam, Zhao Han, Ja-
cob W Crandall, and Holly A Yanco. Reactive or proac-
tive? how robots should explain failures. In Proceedings
of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction, pages 413–422, 2024.

[9] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect:
Summarizing robot experiences for failure explanation

and correction. In Conference on Robot Learning, pages
3468–3484. PMLR, 2023.

[10] Tyler Ga Wei Lum, Albert H Li, Preston Culbertson,
Krishnan Srinivasan, Aaron D Ames, Mac Schwager, and
Jeannette Bohg. Get a grip: Multi-finger grasp evaluation
at scale enables robust sim-to-real transfer. arXiv preprint
arXiv:2410.23701, 2024.

[11] Yuliang Ma, Jingyi Liu, Ilshat Mamaev, and Andrey
Morozov. Multimodal failure prediction for vision-
based manipulation tasks with camera faults. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2951–2957. IEEE, 2024.

[12] Anirudha Majumdar and Marco Pavone. How should a
robot assess risk? towards an axiomatic theory of risk in
robotics. In Robotics Research: The 18th International
Symposium ISRR, pages 75–84. Springer, 2020.

[13] Pradip Pramanick and Silvia Rossi. Multimodal coher-
ent explanation generation of robot failures. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2487–2493. IEEE, 2024.

[14] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Ro-
man Rädle, Chloe Rolland, Laura Gustafson, et al. Sam
2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024.

[15] Som Sagar and Ransalu Senanayake. Robofail: Analyz-
ing failures in robot learning policies. arXiv preprint
arXiv:2412.02818, 2024.

[16] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew
Foutter, Edward Schmerling, and Marco Pavone. Real-
time anomaly detection and reactive planning with large
language models. arXiv preprint arXiv:2407.08735,
2024.

[17] Santosh Thoduka, Nico Hochgeschwender, Juergen Gall,
and Paul G Plöger. A multimodal handover failure detec-
tion dataset and baselines. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
17013–17019. IEEE, 2024.

[18] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026–5033. IEEE, 2012.

[19] Chen Xu, Tony Khuong Nguyen, Emma Dixon, Christo-
pher Rodriguez, Patrick Tree Miller, Robert Lee, Paarth
Shah, Rares Ambrus, Haruki Nishimura, and Masha
Itkina. Can we detect failures without failure data?
uncertainty-aware runtime failure detection for imitation
learning policies. CoRR, 2025.

[20] Enshen Zhou, Qi Su, Cheng Chi, Zhizheng Zhang,
Zhongyuan Wang, Tiejun Huang, Lu Sheng, and
He Wang. Code-as-monitor: Constraint-aware visual
programming for reactive and proactive robotic failure
detection. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pages 6919–6929, 2025.


	INTRODUCTION
	RELATED WORKS
	Failure Cases During Manipulation
	Failure Identification

	PROBLEM FORMULATION
	METHODS
	Data Labeling: Historical Backtracking
	Network Design
	Assessment Metrics

	EXPERIMENTS
	Model Evaluation
	Visualization

	CONCLUSION

