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ABSTRACT

Counterfactual inference aims to estimate the counterfactual outcome given
knowledge of an observed treatment and the factual outcome, with broad applica-
tions in fields such as epidemiology, econometrics, and management science. In
this paper, we propose a principled approach for identifying and estimating the
counterfactual outcome. Specifically, we introduce a simple and intuitive rank
preservation assumption to identify the counterfactual outcome without relying
on a known structural causal model. Building on this, we propose a novel ideal
loss for theoretically unbiased learning of the counterfactual outcome and further
develop a kernel-based estimator for its empirical estimation. Our theoretical anal-
ysis shows that the proposed ideal loss is convex, and the proposed estimator is
unbiased. Extensive semi-synthetic and real-world experiments are conducted to
demonstrate the effectiveness of the proposed method.

1 INTRODUCTION

Understanding causal relationships is a fundamental goal across various domains, such as epi-
demiology (Hernan & Robins, [2020), econometrics (Imbens & Rubin, 2015), and management
science (Kallus & Ueharal 2020). [Pearl & Mackenzie| (2018) define the three-layer causal hier-
archy—association, intervention, and counterfactuals—to distinguish three types of queries with
increasing complexity and difficulty (Bareinboim et al., |2022). Counterfactual inference, the most
challenging level, aims to explore the impact of a treatment on an outcome given knowledge about
a different observed treatment and the factual outcome. For example, given a patient who has not
taken medication before and now suffers from a headache, we want to know whether the headache
would have occurred if the patient had taken the medication initially. Answering such counterfac-
tual queries can provide valuable instructions in scenarios such as credit assignment (Mesnard et al.}
2021)), root-causal analysis (Budhathoki et al.}[2022), and fair decision-making (Imai & Jiang}[2023).

Different from interventional queries, which are prospective and estimate the counterfactual out-
come in a hypothetical world via only the observations obtained before treatment (as pre-treatment
variables), counterfactual inference is retrospective and further incorporates the factual outcome (as
a post-treatment variable) in the observed world. This inherent conflict between the hypothetical
and the observed world poses a unique challenge and makes the counterfactual outcome generally
unidentifiable, even in randomized controlled experiments (RCTs) (Pearl et al., 2016} [Ibeling &
Icard, [2020; [Bareinboim et al., [2022).

For counterfactual inference, Pearl et al.|(2016) proposed a three-step procedure (abduction, action,
and prediction) to estimate counterfactual outcomes. However, it relies on the availability of struc-
tural causal models (SCMs) that fully describe the data-generating process (Brouwer, 2022; Xie
et al., 2023). In real-world applications, the ground-truth SCM is likely to be unknown, and esti-
mating it requires additional assumptions to ensure identifiability, such as linearity (Shimizu et al.,
2006) and additive noise (Hoyer et al., | 2008; |Peters et al., 2014). Unfortunately, these assumptions
are hard to satisfy in practice and restrict the applicability.

To tackle the above problems, various counterfactual learning approaches have been proposed with
respect to different identifiability assumptions. For example, |Lu et al.|(2020), Nasr-Esfahany et al.
(2023), and [Xie et al| (2023) established the identifiability of counterfactual outcomes based on
homogeneity and strict monotonicity assumptions. The homogeneity assumption posits that the ex-
ogenous variable for each individual remains constant across different interventional environments,
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and the strict monotonicity assumption asserts that the outcome is a strictly monotone function of
the exogenous variable given the features. In terms of counterfactual learning, [Lu et al.| (2020) and
Nasr-Esfahany et al.| (2023)) adopted Pearl’s three-step procedure that needs to estimate the SCM
initially. In addition, [Xie et al.| (2023) proposed using quantile regression to estimate counterfac-
tual outcomes that effectively avoid the estimation of SCMs. Nevertheless, it relies on a stringent
assumption that the conditional quantile functions for different counterfactual outcomes come from
the same model and it requires estimating a different quantile value for each individual, leading to a
challenging bi-level optimization problem.

In this work, we propose a principled counterfactual learning approach with intuitive identifiabil-
ity assumptions and theoretically guaranteed estimation methods. On one hand, for identifiability
assumptions, we introduce the simple and intuitive rank preservation assumption, positing that an
individual’s factual and counterfactual outcomes have the same rank in the corresponding distri-
butions of factual and counterfactual outcomes for all individuals. We prove the identifiability of
counterfactual outcomes under the rank preservation assumption.

On the other hand, we further propose a theoretically guaranteed method for unbiased estimation
of counterfactual outcomes. The proposed estimation method enjoys several desirable merits. First,
unlike Pearl’s three-step procedure, it does not necessitate a prior estimation of SCMs and thus relies
on fewer assumptions than the methods proposed by Lu et al.[(2020) and|Nasr-Esfahany et al.|(2023).
Second, in contrast to the quantile regression method proposed by |Xie et al.| (2023)), our approach
neither restricts conditional quantile functions for different counterfactual outcomes to originate
from the same model, nor requires estimating a different quantile value for each individual. Third,
we enhance the previous learning approaches to adopt a convex loss for estimating counterfactual
outcomes, which leads to a unique solution.

In summary, the main contributions are as follows: (1) We introduce the intuitive rank preservation
assumption to identify the counterfactual outcomes with unknown SCM, and establish its relation-
ship with previous homogeneity and strict monotonicity assumptions; (2) We propose a novel ideal
loss for unbiased learning of the counterfactual outcome and further develop a kernel-based estima-
tor for the ideal loss. In addition, we theoretically show that the proposed ideal loss is convex, and
the proposed kernel-based estimator is consistent; (3) We conduct extensive experiments on both
semi-synthetic and real-world datasets to demonstrate the effectiveness of the proposed method.

2 PRELIMINARIES AND PROBLEM FORMULATION

Throughout, capital letters represent random variables and lowercase letters denote their realizations.

Structural Causal Model (SCM, Pearl, 2009). An SCM M consists of a causal graph G and a
set of structure equation models F = {fi, ..., fp}. The nodes in G are divided into two categories:
(a) exogenous variables U = (Uy, ..., U,), which represent the environment during data generation,
assumed to be mutually independent; (b) endogenous variables V. = {V;, ..., Vp}, which denote
the relevant features that we need to model in a question of interest. For variable V, its value is
determined by a structure equation V; = f;(PA;,U;), j = 1,...,p, where PA; stands for the set
of parents of V;. SCM provides a formal language for describing how the variables interact and
how the resulting distribution would change in response to certain interventions. Based on SCM, we
introduce the counterfactual inference problem in the following.

Counterfactual Inference (Pearl, 2009). Suppose that we have three sets of variables denoted by
X,Y,E C V, counterfactual inference revolves around the question, “given evidence E = e, what
would have happened if we had set X to a different value z'?”. [Pearl et al.| (2016) propose using the
three-step procedure to answer the problem: (a) Abduction: determine the value of U according
to the evidence E = e; (b) Action: modify the model M by removing the structural equations
for X and replacing them with X = z’, yielding the modified model M, ; (c) Prediction: Use
M and the value of U to calculate the counterfactual outcome of Y. In this paper, we focus on
estimating the counterfactual outcome for each individual. To illustrate the main ideas, we formulate
the common counterfactual inference problem within the context of the backdoor criterion.

Problem Formulation. Let V = (Z, X,Y'), where X causes Y, Z affects both X and Y, and the
structure equation of Y is given as

Y = fy(X, Z,Ux). (1)
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Let Y, denotes the potential outcome if we had set X = 2. The counterfactual question, “given
evidence (X = z,Z = 2,Y = y) of an individual, what would have happened had we set X = 2’
for this individual”, is formally expressed as estimating y,, the realization of Y, for the individual.
Here, we adhere to the deterministic viewpoint of |Pearl (2009) and [Pearl et al.| (2016), treating the
value of Y,/ for each individual as a fixed constant. According to Pearl’s three-step procedure, given
the evidence (X = z,Z = z,Y = y) for an individual, the identifiability of its counterfactual
value y,» can be achieved by determining the structural equation fy- and the value of Ux for this
individual. This is the key idea underlying most of the existing methods.

For clarity, we use y,- to denote the realization of the counterfactual outcome Y, for a specific
individual with observed evidence (X = 2,7 = z,Y =y).

3 ANALYSIS OF EXISTING METHODS

In this section, we elucidate the challenges of counterfactual inference. This clarification helps
further analysis of current approaches. Subsequently, we summarize the existing methods, shedding
light on their limitations and thereby motivating the proposal of our method.

3.1 CHALLENGES IN COUNTERFACTUAL INFERENCE

The main challenge lies in that the counterfactual value y,- is generally not identifiable, even in
randomized controlled experiments (RCTs).

By definition, y,s is a quantity involving two “different worlds” at the same time: the observed
world with (X = z,Z = 2,Y = y) and the hypothetical world where X = 2’. We only ob-
serve the factual outcome Y, = y but never observe the counterfactual outcome Y, which is the
fundamental problem in causal inference (Holland, |1986} [Morgan & Winship, |2015). This inherent
conflict prevents us from simplifying the expression of y,+ to a do-calculus expression, making it
generally unidentifiable, even in RCTs (Pearl et al[2016)). Therefore, in addition to the widely used
assumptions such as conditional exchangeability, overlapping, and consistency (Hernan & Robins)
2020), counterfactual inference requires extra assumptions to ensure identifiability. Essentially, esti-
mating y, is equivalent to estimating the individual treatment effect y,» — y,., while the conditional
average treatment effect (CATE) E[Y,, — Y;|Z = z] represents the ATE for a subpopulation with
Z = z, overlooking the inherent heterogeneity in this subpopulation caused by the noise terms such
as Ux (Albert et al., 2005} Le1 & Candes), [2021; [Ben-Michael et al., 20225 |Jin et al., 2023)).

3.2 SUMMARY OF EXISTING METHODS

We summarize the existing methods in terms of identifiability assumptions and estimation strategies.

We first present an equivalent expression of Eq. by using the notation of (Y,Y,). Eq. be
reformulated as the following system

YI = fY(x7Za Ux)7 Yz’ = fY(m/7Z7 UZE’)>

where U, and U, denote the values of Ux given X = x and X = 2/, respectively. The exogenous
variable Ux denotes the background and environment information induced by many unmeasured
factors (Pearl et al., [2016), and thus U, and U, account for the heterogeneity of Y, and Y, in the
observed and hypothetical worlds, respectively. These two worlds may exhibit different levels of
noise due to unmeasured factors (Heckman et al., [1997; Chernozhukov & Hansenl, [2005)).

For identification, previous work relies on the key homogeneity and strict monotonicity assumptions.
Assumption 3.1 (Homogeneity). U, = U,.

Assumption 3.2 (Strict Monotonicity). For any given x and z, fy (x, z,U,) is a smooth and strictly
monotonic function of U,; or Y, = fy(x, z,U,) is a bijective mapping from U,, to Y.

Assumption implies that the value of Ux for each individual remains unchanged across z.
Assumption [3.2] implies that Y, is a strict monotonic function of U, in the subpopulation of
(X = 2,Z = z). In Assumption the smoothness and strict monotonicity of fy (z,z,U,)
are akin to a bijective mapping of Y, and U, and serve the same purpose, so we don’t distinguish
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them in detail. The identifiability of y,/ in|Lu et al.| (2020), Xie et al| (2023) and Nasr-Esfahany
et al.| (2023) depends on Assumptions|3.1H3.2] as summarized in Lemma|3.3

Lemma 3.3. Under Assumptions[3.13.2) y,- is identifiable.

For estimation of y,, following Pearl’s three-step procedure, |Lu et al.| (2020) and Nasr-Esfahany
et al.| (2023) initially estimate fy and Uy for each individual. However, estimating fy and Ux
needs to impose extra assumptions, such as linearity (Shimizu et al.,[2006)) and additive noise Peters
et al.| (2014). On the other hand, Xie et al.| (2023) demonstrate that y,, corresponds to the 7*-th
quantile of the distribution P(Y|X = 2/, Z = z), where 7* is the quantile of y in P(Y|X =
x,Z = z) (See the proof of Lemma for more details). Based on it, the authors uses quantile
regression to estimate y,/, which avoids the problem of estimating fy and Ux. Nevertheless, this
method fits a single model to obtain the conditional quantile functions for both the counterfactual and
factual outcomes. Thus, its validity relies on the underlying assumption that the conditional quantile
functions of outcomes for different treatment groups stem from the same model. In addition, it
involves estimating a distinct quantile value for each individual before deriving the counterfactual
outcomes, posing a challenging bi-level optimization problem.

4 IDENTIFICATION THROUGH RANK PERSERVATION

In this section, we introduce a intuitive rank preservation assumption for identifying y,.. From a
high-level perspective, identifying vy, essentially involves establishing the relationship between Y,
and Y, for each individual. Pearl’s three-step procedure achieves this by estimating fy and Ux.

4.1 RANK PERSERVATION ASSUMPTION

Our identifiability assumption is based on Kendall’s rank correlation coefficient defined below.

Definition 4.1 (Kendall, [1938). Let (z1,41), ..., (Zn, Yn) be a set of observations of two random
variables (X,Y), such that all the values of ©; and y; are unique (ties are neglected for simplicity).
Any pair of (x;,y;) and (z,y;), if (x; —x:)(y; —yi) > 0, they are said to be concordant; otherwise
they are discordant. The sample Kendall rank correlation coefficient is defined as

2 .
pn(X, V) = ——— > sign((wi — x;)(yi — y;)),
nn—1) 4
1<i<j<n
where sign(t) = —1,0,1 fort < 0, t = 0, t > 0, respectively. For any two random variables

(X,Y), wedefine p(X,Y) =1, if pn(X,Y) = 1 for all integers n > 2.

The p,,(X,Y) also can be written as 2(N. — Ny)/n(n — 1), where N, is the number of concordant
pairs, N is the number of discordant pairs. It is easy to see that —1 < p,,(X,Y) < 1 and if the
agreement between the two rankings is perfect (i.e., perfect concordance), p,, (X,Y) = 1.

Assumption 4.2 (Rank Preservation). p(Y,,Y./|Z) = 1.

For the individual with observation (X = z,Z = 2,Y = y), we denote (y, = vy, y.’) as its true
values of (Y, Y, ). Assumption @]implies that for this individual, its rankings of y, and y, are
the same in the distributions of P(Y,|Z = z) and P(Y,|Z = z), respectively. Therefore, we have

P(Y, <y.|Z =2) =PV <y |Z = 2). )

Since y,, = y is observed and the distributions P(Y,,|Z = z) and P(Y,/|Z = z) can be identified
asP(Y|X = 2,Z = z) and P(Y|X = 2/, Z = z), respectively, by the backdoor criterion (i.e.,
(Y, Y.) WL X|Z). Therefore, we have the following Proposition 4.3|(see Appendix B]for proofs).

Proposition 4.3. Under AssumptionH.2] y, is identified as the T*-th quantile of P(Y|X = ', Z =
z), where 7* is the quantile of y in the distribution of P(Y|X = x,Z = 2).

Proposition shows that Assumption can serve as a substitute for Assumptions in
identifying y,. Unlike Assumptions [3.1}{3.2] Assumption[4.2]is simple and intuitive, as it directly
links Y, and Y, for each individual. To clarify the relationship between Assumption introduced
by this work and Assumptions from previous work, we present Proposition 4.4 below.
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Proposition 4.4. Under Assumption or more generally, if U, is a strictly monotone increasing
function of Uy, Assumption[d.2)is equivalent to Assumption

Proposition4.4](see Appendix [A]for proofs) indicates that Assumptions[.2]is equivalent to Assump-
tion[3.2)under more general conditions than those considered in previous work. That is, Assumption
is slightly weaker than Assumptions [3.T}3.2] by allowing U,s # U,. For illustration, consider a
SCM with X € {0, ].}, Yl =7 + Ul, YO = Z/2 + Uo, U1 = Ug In this case, p(Yo,Y1|Z) = ]., U1
is a strictly monotone increasing function of Uy, but Uy # U.

4.2 FURTHER RELAXATION OF STRICT MONOTONICITY

In Definition 4.1} we ignore ties for simplicity. However, when the outcome Y is discrete or contin-
uous variables with tied observations, p(Y, Y;/) will always be less than 1. To accommodate such
cases, we introduce a modified version of the Kendall rank correlation coefficient given below.

Definition 4.5 (Kendall, [1945). Let (z1,y1), ..., (n, yn) be the observations of two random vari-
ables (X,Y), the modified Kendall rank correlation coefficient is define as

sign((z; — ;) (yi — ;)
I<ici<n Vnin—1)/2-T,-\/n(n—1)/2-T,
where T, is the number of tied pairs in {1, ..., x, } and T, is the number of tied pairs in {y1, ..., yn }.
We define p(X,Y) =1, if po(X,Y) = 1 for all integers n > 2.

ﬁn(X7 Y) =

By comparison of Definition |4.5| and Definition one can see that p(X,Y") adjusts p(X,Y") by
eliminating the ties in the denominator, and p(X,Y) reduces to p(X,Y) if there are no ties.

Assumption 4.6 (Rank Preservation). p(Y,,Y,/|Z) = 1.

Assumption [4.6] is less restrictive than Assumption {.2] as it accommodates broader data types of
Y. To illustrate, consider a dataset with four individuals where the true values of (V,,Y,/) are

(1,1),(2,1.5),(2,1.5),(3,2.5). In this scenario, 3, o, <, sign((¥i,z — Yj.e) Wi,er — Yjar) = 5,
Ty, = 1,Ty,, = 1, resulting in p(Y,Y,r) = 5/6 and p(Y,, Y, ) =5/(v6 —1-v/6 —1) = 1.

In addition, Assumption[4.6|also guarantees the identifiability of y,, as shown in Proposition[4.7]
Proposition 4.7. Under Assumption 4.6} the conclusion in Proposition4.3|also holds.

5 COUNTERFACTUAL LEARNING

In this section, we propose a novel estimation method for counterfactual inference. Suppose that
{(zs,2i,y;) : i = 1,..., N} is a sample consisting of N realizations of random variables (X, Z,Y).
For an individual, given its evidence (X = x, Z = 2, Y = y), we aim to estimate its counterfactual
outcome ¥, which is the realization of Y, for this individual.

5.1 THE RATIONALE AND LIMITATIONS OF USING QUANTILE REGRESSION

For estimating ., |Xie et al.|(2023) formulate it as the following bi-level optimization problem

N
" . " 1
™ = argm‘rln|f7(x,z) —yl, fi= argmflnﬁ I;ZT(yk — f(zk, 21)),

where I (§) = 7€£-1(€ > 0)+(7—1)¢-I(§ < 0) is the check function (Koenker & Bassett, |1978), the
upper level optimization is to estimate 7*, the quantile of y in the distribution P(Y|X = z, Z = z2),

and the lower level optimization is to estimate the conditional quantile function ¢(z, z;7) £ inf, {y :
*

P(Y <y|X ==x,Z = z) > 7} for a given 7. Then y,- can be estimated using ¢(z’, z; 7*).
We define the conditional quantile regression functions for Y, and Y- as follows,
@(z;7) = inf{y P(Y, <ylZ=2)>7}, qu(z;7)& inf{y:P(Yy <y|lZ=2)>71}
y y
By Eq. , Yo+ can be expressed as g,/ (z; 7*) with 7* being the quantile of y in the distribution of

P(Y;|Z = z),ie.,P(Y, <y|Z = z) = 7*. The Proposition[5.1](sece Appendix [B|for proofs) shows
the rationale behind employing the check function as the loss for estimating conditional quantiles.
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Proposition 5.1. We have that (i) q,(Z;7) = argming B[l (Y, — f(Z))] for any given x; (ii)
(X, Z;7) = argming E[I. (Y — f(X, Z2))].

There are two major concerns with the estimation method of Xie et al.|(2023). First, it only fits a
single quantile regression model for ¢(X, Z; 7) to obtain estimates of ¢,.(Z; 7) and g,/ (Z; 7). When
the two conditional quantile functions ¢, (Z; 7) and ¢,/ (Z; 7) originate from different models, this
method may yield inaccurate estimates. Second, it explicitly requires estimating the quantile 7* for
each individual before estimating the counterfactual outcome /.

Inspired by [Firpo|(2007), a simple improvement is to estimate ¢, (z; 7) and g, (z; ) separately. For
example, for estimating ¢, (z; 7), the associated loss function is given as

N

1 I =) L (yx — . .

R.(f,7) = E (@ =) by f(zk)), pz(2) = P(X = z|Z = z) is the propensity score.
k=1

SN & pa(2r)

Likewise, we could define R,/ (f,T) by replacing x with 2’. Then the estimation procedure for
Y.+ involves four steps: (1) estimating the propensity score; (2) estimating ¢, (z;7) by minimizing
R.(f,7) for a range of candidate values of 7; (3) identifying the 7* in the candidate set of 7, that
corresponds to the quantile of y in the distribution P(Y'|X = x,Z = z2); (4) estimating y, using
gz (z;7*), where g, (z; 7) is obtained by minimizing R,/ (f, 7).

Despite this four-step estimation method allowing ¢, (Z; 7) and ¢,/ (Z; ) to come from different
models, it still needs to estimate a different 7* for each individual and is cumbersome.

5.2 ENHANCED COUNTERFACTUAL LEARNING METHOD

To address the aforementioned limitations of directly applying quantile regression and improve the
estimation accuracy, we propose a novel loss function that yields an unbiased estimator of ¥,/ for
the individual with evidence (X = z,Z = 2,Y = y). The proposed ideal loss is constructed as

Ry(tlw,2,y) =B [|Yo —t| | Z=2] + E[sign(Ya —y) | Z = 2] - ¢,

which is a function of ¢ and the expectation operator is taken on the random variable of (Y, Y,)
given Z = z. The proposed estimation method is based on Theorem[5.2]

Theorem 5.2 (Validity of the Proposed Ideal Loss). The loss R, (t|x, z,y) is convex with respect to t
and is minimized uniquely at t*, where t* is the solution of P(Yy < t*|Z = z) = P(Y, < y|Z = 2).

Theorem [5.2] (see Appendix [B|for proofs) implies that given the evidence (X = z,Z = z,Y =y)
for an individual, the counterfactual outcome 1,/ (a realization of Y, for this individual) satisfies
Yo = argming R,/ (t|x, z,y) under Assumption Importantly, the loss R,/ (t|z, z,y) neither
estimates the SCM a priori, nor restricts q,(z;7) and g,/ (z;T) stem from the same model, and it
does not need to estimate a different quantile value for each individual explicitly.

To optimize the ideal loss R, (t;x, z,y), we first need to estimate it, which presents two signif-
icant challenges: (1) R, (t|z, z,y) involves both Y, and Y/, but for each unit, we only observe
one of them; (2) The terms E [|Y,r —t| | Z = z] and E [sign(Y, — y) | Z = z] in Ry (t|z, 2,y) is
conditioned on Z = z, and when Z is a continuous variable with infinite possible values, it can-
not be estimated by simply splitting the data based on Z. We employ inverse propensity score and
kernel smoothing techniques to overcome these two challenges. Specifically, we propose a kernel-
smoothing-based estimator for the ideal loss, which is given as
. Sy Kn(on = 2) 828 e — 1] 0L K(z, — 2) 2225 - sign(ye — )
Rz’(t‘x’zvy) = N - + N - -t
Zk-:l Kh(zkfz) Zk:l Kh(zkfz)
where h is a bandwidth/smoothing parameter, K, (u) = K (u/h)/h, and K (-) is a symmetric kernel
function (Fan & Gijbels,|1996;|Li & Racine}, 2007) that satisfies f K(u)du = 1and f uK (u)dt =1,
such as Epanechnikov kernel K(u) = 3(1 — u?) - I(Ju| < 1)/4 and Gaussian kernel K (u) =
exp(—u?/2)/v/2x for u € R. Then we can estimate y,/ by minimizing R/ (t; x, z,y) directly.
Proposition 5.3. I[fh — 0 as N — oo, and the density function of Z is twice differentiable, then

RI/(H.’L’, Z,y) E} Rz' (t‘.’lf, Z,y),

P . e
where — means convergence in probability.
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Table 1: /epgng of individual treatment effect estimation on the simulated Sim-m dataset, where m
is the dimension of Z.

| Sim-5 | Sim-10 | Sim-20 | Sim-40
Methods \ In-sample  Out-sample \ In-sample  Out-sample \ In-sample  Out-sample \ In-sample  Out-sample
T-learner 295+£0.02 2664001 | 299+0.01 3.17+0.01 | 336 +£0.02 3.19+0.03 | 5.124+0.02 4.74 £ 0.04
X-learner 294 £0.01 2.66+0.01 | 298 +£0.02 3.19+0.02 | 3.31 £0.02 3.21+£0.02 | 5.08 +£0.04 4.77 £0.03
BNN 291+£0.08 2.64+0.07 | 290£0.11 3.08+0.12 | 321 £0.13 3.13+£0.16 | 481 £0.10 4.54 £0.09
TARNet 2.89+0.07 2.64+£0.06 | 294£0.07 3.16£0.08 | 3.18 £ 0.07 3.11 £0.07 | 482+0.07 4.56£0.07
CFRNet 2.88+0.07 2.62+0.06 | 294 +£0.07 3.15+£0.08 | 3.15+0.07 3.08+0.07 | 471 +£0.12 445+0.11
CEVAE 292+£0.27 2.65+021 | 3.04£027 3.11+0.18 | 3.16+0.17 3.11+£0.17 | 488+0.23 4.53+0.20
DragonNet 290 £0.08 2.63+0.08 | 3.02+£0.07 3.25+0.08 | 3.16+0.11 3.09+0.10 | 478 £0.11 4.50 £0.12
DeRCFR 2.88£0.06 2.61+0.06 | 287 £0.05 3.07+0.06 | 3.11 £0.07 3.04 £0.06 | 477 £0.11 4.50 £ 0.10
DESCN 293+0.11 2.66+£0.09 | 3.27£081 346+0.79 | 3.124+0.20 3.06+0.20 | 491 +£0.37 4.59+0.35
ESCFR 2.87+£0.08 2.624+0.07 | 294 +£0.08 3.15+0.09 | 3.03+0.09 3.06+0.09 | 471 +0.15 4.43+£0.15
CFQP 291+£0.09 2.67+0.11 | 3.14+030 3404037 | 321 +0.12 3.18+0.11 | 493 +0.14 4.55+0.13
Quantile-Reg | 2.80 £0.06 2.54 £0.05 | 2.78 £0.08 3.05+£0.09 | 292+ 0.07 3.01 £0.08 | 439+0.13 4.12+0.10
Ours 2.41 £0.58 2.25+048 | 2.25+£0.07 2.33+0.07 | 2.51 +0.07 2.46 +0.06 | 3.78 - 0.61 3.61 + 0.56

Proposition indicates that R,/ (t|z,z,y) is an asymptotically unbiased estimator of
Ry (t|z, z,), demonstrating the validity of the estimator of the ideal loss. The loss R, (t|x, z, y)
is applicable only for discrete treatments due to the terms I(z;, = ') and I(x;, = x). However, it
can be easily extended to continuous treatments, as detailed in Appendix

6 EXPERIMENTS

6.1 SYNTHETIC EXPERIMENT

Simulation Process. We generate the synthetic dataset by the following process. First, we sample
the covariate Z ~ N (0, I,,) and the treatment X ~ Bern(w(Z)), where Bern(-) is the Bernoulli
distribution with probability 7(Z) = P(X =1 | Z) = o(W, - Z), o(-) is the sigmoid function,
and W, ~ Unif(—1,1)™, Unif(-) is the uniform distribution. Then, we sample the noise Uy ~
N (0,1) and U; = « - Uy to consider the heterogeneity of the exogenous variables, where « is
the hyper-parameter to control the heterogeneity degree. Finally, we simulate Y, = W, - Z 4 U,
and Yy = W, - Z/a + Uy with W, ~ N(0,1,,). We generate 10,000 samples with 63/27/10
train/validation/test split and vary m € {5, 10,20, 40} in our synthetic experiment.

Baselines and Evaluation Metrics. We compare our method with the following baselines: T-
learner (Kiinzel et al., 2019), X-learner (Kiinzel et al.l 2019), BNN (Johansson et al., [2016),
TARNet (Shalit et al., 2017), CFRNet (Shalit et al., [2017), CEVAE (Louizos et al., 2017), Drag-
onNet (Shi et al, [2019), DeRCFR (Wu et al.| [2022), DESCN (Zhong et al., [2022), ESCFR (Wang
et al., 2023), CFQP (Brouwer, [2022), and Quantile-Reg (Xie et al., 2023)). Following the pre-
vious studies (Shalit et al.l 2017; |Yao et al.l [2018), we evaluation the individual treatment effect
estimation by using the Precision in Estimation of Heterogeneous Effects (PEHE) as epggp =
LS ((Vi(Z:) = Yo(Zi)) — (Yi(1) — Y;(0)))?, where Yi(Z) and Yp(Z) are the predicted val-
ues for the corresponding true potential outcomes. Both in-sample and out-of-sample performances
are reported in our experiments. See Appendix [D]for more details.

Performance Analysis. The results of estimation performance are shown in Table First, the
Quantile-Reg method achieves the most competitive performance across all baselines. Second, our
method stably outperforms all baselines with varying covariate dimensions m, benefiting from the
robustness of our estimation method. In addition, we compared our method with the Quantile-Reg
under varying heterogeneity degrees and the results are shown in Figure |[I} As the heterogeneity
degree increases, our method stably outperforms the Quantile-Reg in terms of PEHE. Moreover,
as shown in Figure 2] our method stably outperforms the Quantile-Reg and ESCFR methods with
different kernels and bandwidths, which further verifies the superiority of our method.

6.2 REAL-WORLD EXPERIMENT

Dataset and Prepossessing. Following previous studies [Shalit et al., (2017)/Louizos et al.
(2017),Yoon et al.| (2018), and |Yao et al.[| (2018), we conduct experiments on one semi-synthetic
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Figure 2: The estimation performance with different kernels and bandwidths.

dataset, IHDP, and one real-world dataset, JOBS. The IHDP dataset is constructed from
the Infant Health and Development Program (IHDP) with 747 individuals and 25 covariates. The
JOBS dataset [1986) is based on the National Supported Work program with 3,212 individ-
uals and 17 covariates. We follow Shalit et al.|(2017) to split the data into training/validation/testing
set with ratios 63/27/10 and 56/24/20 for the IHDP and the JOBS dataset, respectively. We repeat
the experiment 100 times for the IHDP dataset and 10 times for the JOBS dataset.

Evaluation Metrics. Following previous studies |Shalit et al. (2017); |[Louizos et al.| (2017);

(2018), the absolute error in Average Treatment Effect (ATE) is defined as earg =
— X "

L3 (V(Z:) — Yo(Zy)) — (Yi(1) — Yi(0)))|, and we use \/épprE and earg to evaluate per-

formance on the IHDP dataset. For the JOBS dataset, since one of the potential outcomes is not

available, we evaluate the performance using the absolute error in Average Treatment eﬁ‘ect on

the Treated (ATT) as earr = |ATT — ‘—%‘ ZieT(Yl(Zi) Yo(Z;)| with ATT = ‘ITI Y ier Yi
|07%E| > iccng Yil- We also use the policy risk Rpoy = 1 — (E[Y(1) | Yi(Z) - Yo(Z) > 0,X =

1)-B(V1(2) - Yo(Z) > 0)+E[Y (0) | Yi(2) - Yo(Z) < 0, X = 0]-B(Y1(2) - Yo(Z) < 0)), where
T, C, E are the treatment sample set, control sample set, and randomized sample set, respectively.

Performance Comparison. The experiment results are shown in Table[2} Similar to the synthetic
experiment, the Quantile-Reg method still achieves the most competitive performance compared to
the other baselines. Our method stably outperforms all the baselines on both the semi-synthetic
dataset IHDP and the real-world dataset JOBS, especially in the out-sample scenario. This provides
the empirical evidence of the effectiveness of our method.

7 RELATED WORK

Conditional Average Treatment Effect (CATE). CATE also referred to as heterogeneous treat-
ment effect, represents the average treatment effects on subgroups categorized by covariate values,
and plays a central role in areas such as precision medicine Kosorok & Laber| (2019) and policy
learning [Dudik et al (2011). Benefiting from recent advances in machine learning, many meth-
ods have been proposed for estimating CATE, including matching methods [Rosenbaum & Rubin
(1983)); [Schwab et al.| (2018)); |Yao et al.| (2018), tree-based methods |(Chipman et al.| (2010); |Wager
& Athey| (2018)), representation learning methods Johansson et al.| (2016); [Shalit et al.| (2017); [Shi
et al.| (2019); Wu et al] (2022)); Wang et al.| (2023), and generative methods [Louizos et al.| (2017);
Yoon et al.| (2018). Unlike the existing work devoted to estimating CATE at the intervention level for
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Table 2: The experiment results on the IHDP dataset and JOBS dataset. The best result is bolded.

\ IHDP \ JoBs

| In-sample Out-sample | In-sample Out-sample
Methods | \/epEnE €ATE \/€PEHE €ATE ‘ Rpol EATT Rpol EATT
T-learner 1494+0.03 037+£0.05 1.81+£0.04 049+£0.04 | 031006 0.16+0.10 0.27+0.08 0.20 =+ 0.07
X-learner 1.50 £0.02 021 £0.05 1.73+£0.03 0.36+0.07 | 0.16 £0.04 0.07+0.05 0.16+0.03 0.10+0.09
BNN 2.09+0.16 1.00+0.23 237+0.15 1.18+0.19 | 0.15+£0.01 0.08+0.03 0.16+0.02 0.134+0.07
TARNet 1.524+0.07 0224+0.13 1.78+0.07 034+0.18 | 0.17+£0.06 0.06+0.08 0.18+0.09 0.10=+0.06
CFRNet 1.46 £0.06 0.17+0.15 1.77+£0.06 0.32+0.20 | 0.17 £0.03 0.05+0.03 0.19+0.07 0.10+0.04
CEVAE 408 +0.88 3.67+123 4.124+091 3.75+1.23 | 0.18+0.05 0.09+0.03 0.22+0.08 0.10+0.09
DragonNet 149 4+0.08 022+0.14 1.80+£0.06 029+0.19 | 0.17+0.06 0.07+0.07 0.20+0.08 0.11+0.09
DeRCFR 148 +0.06 025+0.14 1.69+0.06 025+0.14 | 0.15+0.02 0.14+£0.04 0.16+0.04 0.15+0.11
DESCN 208+098 0.74+£1.00 267+145 1.04+146 | 0.15£0.02 021+0.14 0224+0.16 0.16£0.04
ESCFR 146 +£0.09 0.16 £0.16 1.73£0.08 027+0.16 | 0.14+£0.02 0.10£0.03 0.15+0.02 0.10+0.08
Quantile-Reg | 1.43 +£0.05 0.14 £0.09 1.56£0.03 0.18£0.09 | 0.14 £0.01 0.06 +0.01 0.15+0.01 0.07 +0.04
CFQP 1474+0.10 0.18+0.17 148+0.05 0.15+£0.08 | 0.15+0.02 023+0.15 0.16+0.03 0.15+0.07
Ours 141 £0.02 0.11+£0.10 1.50+0.06 0.13+0.08 | 0.08+0.04 0.06+0.02 0.11+0.05 0.05 =+ 0.05

subgroups, our work focuses on counterfactual inference at the more challenging and fine-grained
individual level.

Counterfactual Inference. Counterfactual inference involves the identification and estimation of
counterfactual outcomes. For identification, Shpitser & Pearl| (2007) provided an algorithm lever-
aging counterfactual graphs to identify counterfactual queries. In addition, Correa et al.| (2021)
discussed the identifiability of nested counterfactuals within a given causal graph. More relevant to
our work, [Lu et al.|(2020) and |Xie et al.| (2023)) studied the identifiability assumptions in the setting
of backdoor criterion under homogeneity and strict monotonicity assumptions. Several methods fo-
cus on determining its bounds with less stringent assumptions, such as |Balke & Pearl| (1994), Tian
& Pearl (2000), |Pearl| (2009), Pearl et al.[(2016), Finkelstein & Shpitser|(2020), Zhang et al.|(2022)),
and Melnychuk et al.| (2023).

For estimation, [Pearl et al.| (2016)) introduced a three-step procedure for counterfactual inference.
Many machine learning methods estimate counterfactual outcomes in this framework, such as [Lu
et al.| (2020), Mesnard et al.| (2021)), [Brouwer (2022)), Shah et al.| (2022), |Yan et al.| (2023a), [Nasr-
Esfahany et al.[(2023) and |Chao et al.|(2023)). Recently, |Xie et al.|(2023) employed quantile regres-
sion to estimate the counterfactual outcomes, effectively circumventing the need for SCM estima-
tion. In our work, we extend the above methods in both identification and estimation.

Recently, counterfactual inference methods have been extensively applied across various application
scenarios, such as counterfactual fairness (Kusner et al., 2017} |[Zuo et al.| 2023} |Anthis & Veitch,
2023} |[Kavouras et al.,[2023[;|Chen et al.,2023a)), policy evaluation and improvement (Tang & Wiens,
2023} |Saveski et al., 2023} (Chen et al.l [2023b), reinforcement learning (Lu et al., [2020; Tsirtsis &
Rodriguez, [2023; Liu et al., | 2023a;|Shao et al.,[2023; Meulemans et al., 2023;|Haugh & Singal, 2023;
Zenati et al.,[2023), imitaion learning (Sun et al.,2023)), counterfactual generation (Yan et al.,|2023bj
Prabhu et al.| 2023} Feder et al., 2023} Ribeiro et al., 2023), counterfactual explanation (Kenny &
Huang|, 2023} |Raman et al.| 2023; Hamman et al., 2023 |Wu et al.| 2023 [Ley et al.,2023), counter-
factual harm (Richens et al.}[2022; |Li et al.,|2023), physical audiovisual commonsense reasoning (Lv
et al.| [2023)), interpretable time series prediction (Yan & Wang, [2023)), classification and detection
in medical imaging (Fontanella et al) [2023), data valuation (Liu et al [2023b)), etc. Therefore,
developing novel counterfactual inference methods holds significant practical implications.

8 CONCLUSION

This work addresses the fundamental challenge of counterfactual inference in the absence of a
known SCM and under heterogeneous endogenous variables. We first introduce the rank preser-
vation assumption to identify counterfactual outcomes. Then, we propose a novel ideal loss for
unbiased learning of counterfactual outcomes and develop a kernel-based estimator for practical
implementation. The convexity of the ideal loss and the unbiased nature of the proposed estimator
contribute to the robustness and reliability of our method. A potential limitation arises when the
propensity score is extremely small in certain data sparsity scenarios, which may cause instability in
the estimation method. Further investigation is warranted to address and overcome this challenge.
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A PROOFS IN SECTIONS 3] AND [4]

One can show Lemma[3.3]by a similar argument of the proof of Theorem 1 in[Xie et al.| (2023). For
the sake of self-containedness, we provide a novel proof of it.

Lemma 3.3 Under Assumptions [3.1\3-2] y,-is identifiable.

Proof of Lemma[3.3] First, the distributions P(Y;|Z = z) and P(Y,/|Z = z) can be identified as
PY|X = 2,Z = z) and P(Y|X = 2/,Z = z), respectively, by the backdoor criterion (i.e.,
(Y., Y.) 1L X|Z) of the setting.

Then, according to the model (I)), we can equivalently write
Y(E = fY(x7 Z, Ux)7 Yz’ = fY(m/7 Z, Ua:’)7

and Y and Ux in model (1) can be expressedas Y = > I(X = z)- Yo andUx = >, I(X =
x) - Uy, where X is the support set of X and I(-) is an indicator function. Assumptionimplies
that Uy = U, = U, conditional on Z, i.e., Y, = fy(x,2,Ux), Yo = fy(a’,2,Ux).

Finally, for the individual with observation (X =z, Z = 2, Y = y), we denote (y., y,’) as the true
values of (Y, Y,) for this individual. For this individual, we can identify the quantile of y,, in the
distribution of P(Y,|Z = 2) = P(Y|X = z,Z = z), denoted by 7*. Let u,~ be the true value of
Ux for this individual, it is the 7*-quantile in the distribution P(Ux|Z = ), then we have

T =P(Y, <y.|Z = 2) (by the definition of 7)
=PU, <u.|Z =2) (by Assumption [3.2))
=PUy <u,lZ =2) (by Assumption [3.1))

=Py < fy(a,z,u+)|Z =2) (by Assumption[3.2)
=PV <yu|Z =2) (by the definition of 1),
which implies that for this individual, its rankings of y, and y,- are the same in the distributions

of P(Y;|Z = z) and P(Y,/|Z = z), resepcctively. Thus, y,is identified as the 7*-quantile of the
distribution P(Y,/|Z = 2) = P(Y|X =2/, Z = z).

O
Proposition[d.3| Under Assumptions[d.2] y,is identifiable.

Proof of Propositiond.3} For the individual with observation (X = z,Z = 2,Y = y), we denote
(Yz, Yo ) as the true values of (Y, Y,/). Assumption 4.2|implies that for this individual, its rankings
of y, and y, are the same in the distributions of P(Y,|Z = z) and P(Y,/|Z = z), respectively.
Therefore,

Since y,, = y is observed and the distributions P(Y,,|Z = z) and P(Y,/|Z = z) can be identified
asPY|X =x,Z = z) and P(Y|X = 2/, Z = 2), respectively, by the backdoor criterion (i.e.,
(Y, Y.) 1L X|Z), we can identify the quantile of y,, in the distribution of P(Y'|X = z,Z = z2),
denoted by 7*. Then

P(Yy <yw|Z =2) =177,
which yields that 0 is identified as the 7*-quantile of P(Y'| X = 2/, Z = 2).

O

Proposition [4.4 Under Assumption or more generally, if U, is a strictly monotone increasing
function of U,, Assumption[4.2]is equivalent to Assumption 3.2}

Proof of Proposition According to the model (T), we can equivalently write
Y, = fY($7 2, Uw)a Yo = fY(x/a 2, Um’)

Suppose that Uy, is a strictly monotone increasing function of U, (Assumption[3.1] i.e., U, = U,
is a special case of it). Under this condition, we next prove sufficiency and necessity, respectively.
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First, we show that Assumption [3.2] implies Assumption 4.2] If Assumption [3:2]holds, then Y, is
a strictly monotonic function of U, and Y, is a strictly monotonic function of U,,. Since U, is a
strictly monotone increasing function of U,-, then Y} is a strictly increasing monotonic function of
Y/, which leads to Assumption &2}

Second, we show that Assumption[4.2)implies Assumption [3.2] If Assumptiond.2]holds, then given
Z = z, Y, is a strictly increasing function of Y,,. When U, is a strictly monotone increasing
function of U, and note that

Y, = fY(x7 2 UX)7 Yo = fY(x/7 2, UX)7
which implies that fy- is a strictly monotonic function of Uy, i.e., Assumption 3.2 holds.
This finishes the proof. O

Proposition[d.7| Under Assumption the conclusion in Proposition[d.3|also holds.

Proof of Proposition This can be shown through a proof analogous to that of Proposition .3}

O
B PROOFS IN SECTION
Recall that I, (§) = 7§ -1(§ > 0) + (7 — 1)¢ - I(£ < 0), and
gz, z;7) 2 inf{y :P(Y <y|X =2,Z =2) > 1}
y
qo(z;7) 2 inf{y : P(Yy < y|Z = 2) > 7}
y
q(z;7) 2 infly : P(Y) <y|Z =2) > 7).
y
Proposition 5.1 We have that
(i) QI(Z;T) = arg minf EUT(YI - f(Z))]forx =0,1;
(ii) ¢(X, Z;7) = argminy E[l. (Y — f(X, Z))].
Proof of Proposition[5.1} We prove q,(Z;7) = argminy E[l, (Y, — f(Z))], and ¢(X,Z;7) =
argminy E[l.(Y — f(X, Z))] can be derived by an exactly similar manner. We write
To obtain the conclusion, note that [ (Y, — f(Z)) is always positive, it suffices to show that
Gz (z;7) = argmfinE[lT(Yx —f(2) | Z =~2] 4)

for any given Z = z. Next, we focus on analyzing the term E[l.(Y, — f(Z)) | Z = z|. Given
Z =z, f(Z) is a constant and we denote it by ¢, then

E[l,(Y, — f(2)) | Z = 2]
=E[l- (Yo —¢) | Z =7]
= E[T(Yx — (Y, >e)+ (=) (Yo — )Yy <c)| Z = z}

c

— 00

where ¢(y,|z) denotes the probability density function of Y,, given Z = 2.
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Since the check function is a convex function, differentiating E[l, (Y, — ¢) | Z = z] with respect to
c and setting the derivative to zero will yield the solution for the minimum

0

—E[l (Y, —¢)| Z = 2]

(v, -
dc
= [ Gl = eatuddn + (=) [ Ll = datunlldn.

c

== r(1- [ stwmladn) + @0 [ gl
Then let ZE[l, (Y, —¢) | Z = 2] = 0 leads to that
/; 9(Ya|2)dy. = T,
that is, ¢ = ¢, (z; 7). This completes the proof of Proposition
O

Theorem [5.2} If the probability density function of Y given Z is continuous, then the loss
R,/ (t; x, z,y) is minimized uniquely at t* satisfying

P(Yy <t*|Z =2) =P(Y, <y|Z = 2).

Proof of Theorem[5.2] Recall that
Ry (t|z,z,y) =E [|Ym/ —t ‘ Z = z} +E {sign(Yz -v) ‘ Z = z} - t.

Let g(y.|z) be the probability density function of Y, given Z = z. By calculation,

t

BV~ 2=2] = [ oo~ (ol + [ (6= pr)otu|2)d
t —o0
8 t t
e [IYIf —1 ‘ Z = Z} = —(1 —/ g(yxflz)dymf) +/ 9(Wor |2)dyar = 2P(Yor < t[Z = 2) — 1,
and

E [sign(Yx—y) ‘ Z:z} :E[—Q]I(Yx <y +1 ‘ Z:z] — OP(Y, <y|Z=2)+1,

we have
%Rz/ (tlx,z,y) =2P(Yy <t|Z=2)—1+E {sign(Y —v) ’ Z = z}
=2P(Y, <t|Z=2)—1-2P(Y, <ylZ=2)+1
= 2fP(ve <tl2) - (Y, < glo)}.
Since

82

ﬁRz’ (t|z, z,y) = 20P(Y, < tz)/0t = 2g(y. =t|z) >0,

R,/ (t|z, z,y) is a convex function with respect to ¢. Letting %Rm/ (t|z, z,y) = 0 yields that
P(Y, <tlz) —P(Y, <ylz) =0.

That is, R,/ (t|z, z,y) attains its minimum at ¢ = ¢,/ (z; 7*), where 7* is the quantile of y in the
distribution P(Y,.|Z = z).

O
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Proposition[5.3} Ifh — 0 as N — oo, and the density function of Z twice differentiable, then
Rz’(t; X, z, y) E) Rz/ (t; X, z, y)a

P ) e
where — means convergence in probability.

Proof of Proposition[5.3] For analyzing the theoretical properties of ]A%m/(t; x,z,y), we rewritten
R (ta z,z, y) as

N =z’ = .
Yot En(Zi — 2) 5075 Y — ) 3L, Kn(Zy — 2)"525) - sign(Yi — y)
Snet Kn(Z) = 2) Sic) Kn(Zi - )

where the capital letters denote random variables and lowercase letters denote their realizations.
This is slightly different from that used in the main text.

éxl (t; x? Z? y) =

To show the conclusion, it is sufficient to prove that

N [(Xp=a')
> k=1 Kn(Zy — 2) Pa k(zk Yy, — 1] LE [H(X

)Yt|‘Zz] :E[‘Yr/*ﬂ‘Z:z},

Z;ivzl Kh(Zk - ) Do ( )
®)
Yios Kn(Zi — 2) 5575 - sign(Vi —y) (X =
h=l ~ Po(Zs) KE[( x)-sign(Y—y)‘Z:z}:E[sign(Ym—y)’Z:z}.
Zi:l Kn(Zy — 2) Pz(2)
(6)
We prove equation (5)) only, as equation (6 can be addressed similarly.
Note that
N :x’ N =T
Sy Kn(Z — 2) 2BV — 1] & S, Kn(Z — 2) 2555 v — 1)

ke Kn(Z — 2) ¥ Lot Kn(Ze - 2)
we analyze the denominator and numerator on the right side of the equation separately. For the
denominator, it is an average of N independent random variables and converges to its expectation
E[K},(Z), — z)] almost surely. Let g(z) be the probability density function of Zj, and g(*)(z;,) is
its first derivative. Since

)

E[Kh Zk — Z

(zk)dzk
/K (z + hu)du (let z;, = z + hu)
= /K(u) Ag(2) + ¢ (2)hu + o(h) }du (by Taylor Expansion)

=g(2) / K (u)du + g™ (2)h / K(u)udu + o(h)
=g(z) + o(h) (by the definition of kernel function), 7
when h — 0 as N — 0o, the denominator converges to g(z) in probability.

Next, we focus on dealing with the numerator, which also converges to its expectation.

I(Xy =2')
E(Ky(Zy — )~k — 2y, ¢
K2 =)ty 1]
X
=FE [Kh(Zk - z)E{(p(Z))'Yk t| ’ZkH (by the law of iterated expectations)
_ I(X), = 2') . .
=K [Kh(Zk - z)E{ Yok — Zk}] (write Y} as the form of potential outcome)

pz’(Z )
- E[Kh(Zk. — z)IE{|Yw/7k — ’ZkH (by backdoor criterion Yy 1 X¢|Zy)- (8)
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Define m(Z) = E[|Y, — t[|Z] and m()(Z) is its first derivative, then the right side of equation
is m(z), and

E[Kh(zk —2) -E{m,k - t|‘ZkH - E{Kh(Zk —2)-m(Z)

= /K(u) -m(z + hu) - g(z + hu)du (let z, = z + hu)

= /K(u) Am(z) + mW (2)hu + o(h)} - {g(2) + gV (2)hu + o(h)}du  (by Taylor Expansion)
=m(2)g(z) + o(h). ©))
Thus, when h — 0 as N — oo, the numerator converges to g(z) in probability.

Combining equations (7)), (8), and (9 yields the equality (5). This completes the proof.

C EXTENSION TO CONTINUOUS OUTCOME

When the treatment is continuous, we can estimate the ideal loss with the following estimator

N Kp(zr—1z' N Ky (. — .
Sy Knla — 2) B )y, — ¢ Yo Knler = 2) 5550 - sien(ye —v)

Yees Kn(zk — 2) Soaey Kn(z — 2)

which is a smoothed version of the estimator

Ei#ﬁw—@ﬁﬁﬁm—ﬂ+Ziﬁﬁw—@ﬁ§?M@W—w¢
Sy Kn(zr — 2) Sy Kn(z — 2)

defined in Section[5] In addition, by a proof similar to that of Proposition[5.3] we also can show that

Ry (2, 2,y) = Ror (3, 2,7).

Rm' (t‘xa Zay) =

Rw’ (t\x,z,y) =

D EXPERIMENT DETAILS

We run all experiments on the Google Colab platform. For the representation model, we use the MLP
for the base model and tune the layers in {1, 2, 3}. In addition, we adopt the logistic regression model
as the propensity model. We tune the learning rate in {0.001, 0.005,0.01,0.05,0.1}. For the kernel
choice, we select the kernel function between the Gaussian kernel function and the Epanechnikov
kernel function, and tune the bandwidth in {1, 3,5,7,9}.
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