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VQA
Q: What is the colors 
of the door in the 
building?
A: The door in the 
image is red.

Visual Grounding
Q: Provide the bounding box 
coordinate of the police vehicle.
A: [0.26, 0.56, 0.44, 0.71]

Image Captioning

Q: Provide a one-sentence caption for 
the image.
A: A vintage-style street clock stands 
prominently at a city intersection, 
with a historic brick building in the 
background and several cars, 
including a police car, navigating the 
crosswalk.

OCR
Q: What number is the 
hour hand pointed at?
A: The number 2 is 
pointed at.
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Figure 1: ChatVLA is the first work to unify multimodal understanding and embodied control. We conduct
extensive evaluations on VQA and multimodal understanding benchmarks to demonstrate that robot foundation
models can also engage in chat. Furthermore, we evaluate our approach on diverse real-world robot tasks.

Abstract001

Humans possess a unified cognitive ability to002
perceive, comprehend, and interact with the003
physical world. Why can’t large language004
models replicate this holistic understanding?005
Through a systematic analysis of existing train-006
ing paradigms in vision-language-action mod-007
els (VLA), we identify two key challenges:008
spurious forgetting, where robot training over-009
writes crucial visual-text alignments, and task010
interference, where competing control and un-011
derstanding tasks degrade performance when012
trained jointly. To overcome these limita-013
tions, we propose ChatVLA, a novel frame-014
work featuring Phased Alignment Training,015
which incrementally integrates multimodal data016
after initial control mastery, and a Mixture-017
of-Experts architecture to minimize task in-018
terference. ChatVLA demonstrates competi-019
tive performance on visual question-answering020

datasets and significantly surpasses state-of-the- 021
art vision-language-action (VLA) methods on 022
multimodal understanding benchmarks. No- 023
tably, it achieves a six times higher perfor- 024
mance on MMMU and scores 47.2% on MM- 025
Star with a more parameter-efficient design 026
than ECoT. Furthermore, ChatVLA demon- 027
strates superior performance on 25 real-world 028
robot manipulation tasks compared to existing 029
VLA methods like OpenVLA. Our findings 030
highlight the potential of our unified framework 031
for achieving both robust multimodal under- 032
standing and effective robot control. The real 033
robot video demo can be found at video link. 034

1 Introduction 035

Recent advancements in Vision-Language-Action 036

(VLA) models have largely prioritized robotic ac- 037

tion mastery. While models trained on robotic 038

control tasks excel at low-level manipulation and 039
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physical interaction, they often struggle to interpret040

and reason about multimodal data like images and041

text. This is paradoxical, as modern VLA architec-042

tures build upon pre-trained vision-language mod-043

els (VLMs). Conversely, VLMs trained on visual-044

text pairs demonstrate impressive multimodal scene045

understanding but lack the ability to physically in-046

teract with the environment. This duality highlights047

a critical challenge: unifying embodied control and048

multimodal understanding by aligning these dis-049

parate data sources (robotic actions and visual-text050

semantics) without sacrificing performance in ei-051

ther domain.052

This work investigates how to unify a single053

end-to-end neural network capable of multimodal054

scene understanding, conversational ability, and055

physical interaction. We first explore existing train-056

ing paradigms to assess their feasibility for uni-057

fication. Specifically, we examine three data set-058

tings for VLA training: 1) training solely on ex-059

pert demonstration data containing robot action tra-060

jectories (the most common approach, e.g., Open-061

VLA (Kim et al., 2024), TinyVLA (Wen et al.,062

2024c), π0 (Black et al., 2024)); 2) augmenting063

robot data with reasoning phrases to guide action064

(similar to ECoT (Zawalski et al., 2024) and Diffu-065

sionVLA (Wen et al., 2024a)); and 3) co-training066

with both visual-text pairs and robot data (as in067

RT-2 (Brohan et al., 2023a)). We analyze how each068

configuration impacts the model’s ability to bal-069

ance control and understanding. Our experiments070

reveal that training solely with robot data erodes071

conversational ability entirely; adding reasoning072

data partially preserves multimodal understanding;073

and introducing visual-text pairs significantly weak-074

ens control capabilities. This suggests two key075

challenges: (1) VLA models suffer from spurious076

forgetting (Zheng et al., 2025; Zhai et al., 2023;077

Luo et al., 2023), where performance degradation078

may not reflect complete knowledge loss from pre-079

trained VLMs, but rather a shift in how the model080

aligns its internal representations with different081

tasks. The alignment between robot actions and082

visual-text data appears fragile and susceptible to083

being overwritten during fine-tuning. (2) Task in-084

terference (Wang et al., 2021; Ahn et al., 2025)085

arises, where the conflicting parameter spaces of086

control and understanding tasks, sharing overlap-087

ping representations, cause mutual performance088

degradation when trained simultaneously.089

To address these challenges, we present090

ChatVLA, a simple yet effective framework—in091

terms of both neural architecture and training strat- 092

egy—for enabling a single neural network to mas- 093

ter both understanding and manipulation. We pro- 094

pose Phased Alignment Training, a two-stage strat- 095

egy inspired by curriculum learning. The model 096

first masters embodied control before incremen- 097

tally integrating multimodal data to "reactivate" 098

frozen alignment links. Furthermore, we introduce 099

a Mixture-of-Experts (MoE) on the MLP layers. 100

This allows the two tasks to share attention lay- 101

ers (for cross-task knowledge transfer) while iso- 102

lating task-specific MLPs (to minimize interfer- 103

ence). This design is motivated by Dual Coding 104

Theory, which posits that human minds process in- 105

formation through two separate but interconnected 106

systems: one for physical skills and the other for 107

verbal and visual practice. The shared attention 108

layers in ChatVLA facilitate the exchange of mutu- 109

ally beneficial knowledge between understanding 110

and control tasks, while the separate MLP layers 111

process learned knowledge independently. 112

We evaluate ChatVLA across three dimensions: 113

conversational ability (visual question answering), 114

general multimodal understanding, and general 115

robot control. Specifically, we assess its conversa- 116

tional ability on established datasets like TextVQA 117

and DocVQA, where it achieves competitive per- 118

formance compared to existing VLMs. Further- 119

more, ChatVLA demonstrates strong multimodal 120

understanding capabilities on general visual and 121

textual benchmarks, including MMMU, MME, and 122

MMStar. Notably, compared to state-of-the-art 123

VLA methods like ECoT, our method achieves 124

a 6x performance improvement on MMMU and 125

boosts performance on MMStar from 0 to 47.2, us- 126

ing 3.5x fewer parameters in the VLM backbone. 127

Finally, we evaluate ChatVLA on 25 real-world 128

robot tasks encompassing diverse skills like pick- 129

ing, placing, pushing, and hanging, across multi- 130

ple environments such as bathrooms, kitchens, and 131

tabletops. In this multi-task setting, our method out- 132

performs state-of-the-art VLA methods like Open- 133

VLA. These results validate the effectiveness of 134

our approach, showcasing the potential of a single 135

unified method for both multimodal understanding 136

and robot control. 137

In summary, our contributions are the following: 138

• We provide an in-depth analysis of exist- 139

ing VLA approaches under rigorous settings, 140

demonstrating their limitations in achieving 141

satisfactory performance across both multi- 142

2



modal understanding and robot control.143

• We introduce ChatVLA, a simple yet effective144

framework that unifies conversational ability,145

multimodal understanding, and robot control146

within a single neural network.147

• We conduct extensive experiments to evaluate148

ChatVLA’s performance on various question-149

answering and general understanding bench-150

marks.151

• We perform extensive real-world robot exper-152

iments, encompassing 25 diverse tasks in re-153

alistic home environments (tabletop, kitchen,154

and bathroom), demonstrating ChatVLA’s su-155

perior performance in real-world robot control156

scenarios.157

2 Related Work158

Multimodal understanding Multimodal Large159

Language Models (MLLMs) (Lu et al., 2024;160

Awadalla et al., 2023; Laurençon et al., 2023; Liu161

et al., 2023b,a; Wang et al., 2024a; Chen et al.,162

2024c; Zhu et al., 2024c; Ma et al., 2024; Zhou163

et al., 2024; Zhu et al., 2024a; Luo et al., 2024;164

Chen et al., 2024c; Li et al., 2023a; Dai et al., 2023;165

Chen et al., 2024b; Karamcheti et al., 2024) have166

significantly advanced the field of multimodal un-167

derstanding by integrating visual and linguistic in-168

formation to achieve holistic scene comprehension.169

MLLMs have demonstrated excellent performance170

on tasks requiring cross-modal alignment, such as171

visual question answering (VQA), image caption-172

ing, and spatial reasoning. This success stems from173

their ability to map visual features to semantic rep-174

resentations through sophisticated adapter designs.175

However, current MLLMs lack a connection to the176

physical world, preventing them from interacting177

with environments and humans. This work aims to178

bridge this gap, enabling vision-language models179

to also act.180

Vision-langauge-action models in robot learn-181

ing. Vision-language-action models (VLAs) form a182

growing body of research that leverages pre-trained183

vision-language models (VLMs) as a backbone to184

enable both language comprehension and observa-185

tional understanding. These methods typically fine-186

tune large pre-trained VLMs to predict robot ac-187

tions (Brohan et al., 2023b; Li et al., 2023b; Huang188

et al.; Wen et al., 2024c; Pertsch et al., 2025; Black189

et al., 2024; Kim et al., 2024; Chi et al., 2023; Zhu190

et al., 2024b; Wang et al., 2024b; Prasad et al.,191

2024; Black et al., 2023a,b; Dasari et al., 2024; 192

Lin et al., 2024; Reuss et al., 2024; Zhao et al., 193

2024; Uehara et al., 2024a,b). These methods have 194

shown strong performance in both simulated and 195

real-world tasks. However, existing VLA models 196

have not demonstrated the ability to perform true 197

multimodal understanding. Based on our experi- 198

ments, we find that these models lack this capa- 199

bility. In contrast, our work proposes a unified 200

approach that enables a single network to effec- 201

tively handle both multimodal understanding and 202

robot control. 203

3 Methodology 204

This section provides a thorough discussion of our 205

framework. Section 3.1 presents formal definitions. 206

Section 3.2 details our motivation and empirical re- 207

sults demonstrating how existing vision-language- 208

action models (VLAs) suffer from catastrophic 209

forgetting, thus hindering the unification of multi- 210

modal understanding and robot control. Section 3.3 211

proposes a simple solution to address this problem. 212

3.1 Formal Definition 213

Consider two distinct scenarios: robot control 214

and multimodal understanding. In the context 215

of robot control, we typically construct a dataset 216

of demonstrations Drobot = {τi}Ni=1, where 217

each demonstration τi comprises a sequence 218

of state-action pairs. The state s consists of 219

an observation (image) v and an instruction 220

(text) t, such that s = (v, t). We can repre- 221

sent the sequence of state-action pairs as τi = 222

{((v1, t1), a1), ((v2, t2), a2), . . . , ((vT , tT ), aT )}, 223

where each tuple ((vj , tj), aj) represents the state 224

at timestep j and the corresponding action taken, 225

and T is the length of the demonstration. These 226

demonstrations are typically provided by a human 227

expert. 228

For multimodal understanding and visual con- 229

versation tasks, we have a dataset Dv−t = {ϕi}Mi=1, 230

where each data sample ϕi consists of a visual im- 231

age vi and a corresponding question (or caption) in 232

textual form ti, i.e., ϕi = {(vi, ti)}. Here, M rep- 233

resents the total number of such image-text pairs. 234

The notation v − t denote visual-text data. 235

The overarching goal of our work is to develop a 236

general model π capable of addressing both embod- 237

ied control and multimodal understanding. For em- 238

bodied control, this involves learning a policy that 239

models the joint distribution of robot actions given 240
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Figure 2: Analysis of how training data influences VLA performance on control and understanding tasks. (a)
We use three different sets of training data, corresponding to the three main training approaches for VLA models.
(b) The experimental results are presented for five real-world robot tasks across three settings. (c) The results on
VQA and multimodal understanding benchmarks.

the current visual observation and textual instruc-241

tion: π(at|vt, tt). Simultaneously, for multimodal242

understanding and visual question answering, the243

model should capture the distribution of the text244

(answer or caption) given the visual input: π(t|v).245

Our objective is to create a unified model that can246

effectively learn both distributions, enabling it to247

perform well in both robot control tasks and multi-248

modal understanding scenarios.249

Current VLA research focuses on developing250

more robust and generalizable models for learning251

visuomotor policies (Kim et al., 2024; Black et al.,252

2024; Wen et al., 2024c). Some approaches ex-253

plore chain-of-thought-like reasoning to improve254

policy generation (Zawalski et al., 2024; Wen et al.,255

2024a; Li et al., 2024), while others investigate256

co-training VLA models with visual-textual and257

robot data (Pertsch et al., 2025). In particular, some258

studies report benefits from co-training with visual-259

textual data in laboratory settings (Brohan et al.,260

2023a), while others find it less effective in real-261

world scenarios (Zawalski et al., 2024). Although262

a few works suggest that VLA can maintain con-263

versational ability (Wen et al., 2024a; Brohan et al.,264

2023a), none have thoroughly investigated how this265

ability, along with general multimodal understand-266

ing, is preserved after applying the VLA training267

paradigm. In the following section, we analyze268

different training data setups for VLA, focusing269

specifically on the resulting model’s performance270

in both multimodal understanding and real-world 271

robot control. Our goal is to provide practical guid- 272

ance for building unified models capable of both. 273

3.2 Analysis 274

To understand the capabilities of existing VLA 275

models in terms of multimodal understanding 276

and embodied control, we investigate three dis- 277

tinct training paradigms, each utilizing a different 278

dataset: 1) training solely with robot data, the most 279

prevalent approach in VLA (Black et al., 2024; 280

Awadalla et al., 2023; Kim et al., 2024; Wen et al., 281

2024c), primarily focused on optimizing robot con- 282

trol performance; 2) augmenting robot data with 283

chain-of-thought-like reasoning, aiming to provide 284

auxiliary information that improves both model 285

generalization and robot task performance (Wen 286

et al., 2024a; Zawalski et al., 2024); and 3) co- 287

training with both visual-textual data and robot data. 288

This latter paradigm was pioneered by RT-2 (Bro- 289

han et al., 2023a); however, due to proprietary data 290

and model details, exact replication is challenging. 291

Following RT-2, we used a 3:1 ratio of robot data 292

to visual-text data in this experiment. 293

In this section, we analyze these three train- 294

ing data setups for VLA models. Specifically, 295

we utilize DiffusionVLA, a representative VLA 296

model that supports both language output via au- 297

toregression and action generation via a diffusion 298

model. We evaluate performance on six representa- 299
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tive benchmarks: four focused on visual question300

answering and two providing a broader evaluation301

of multimodal large language models, encompass-302

ing tasks like math and OCR. Furthermore, we303

assess performance on five real-world robot tasks304

covering diverse skills, including hanging, pulling,305

picking, and placing. Following the methodology306

of DiffusionVLA, we generate robot reasoning data.307

For visual-textual data, we randomly sample 54k308

image-text pairs from LLaVA. Further details re-309

garding experimental setup and data processing are310

provided in the Appendix.311

Results on multimodal understanding and312

question-answering benchmark. The experimen-313

tal results are presented in Figure 2. The top-right314

portion of the figure displays performance on six315

benchmarks, encompassing both visual question316

answering (VQA) and general understanding tasks.317

The bottom-right portion of Figure 2 shows the318

average success rate across a total of 112 trials319

conducted on five real-world robot tasks.320

The top-right table includes results for the base321

model, Qwen2-VL (Wang et al., 2024a). Some322

results are intuitive. For example, training the323

model solely on robot data yields a performance of324

0 across all benchmarks. This model completely325

loses its conversational ability, exhibiting only mur-326

muring when asked a question. As expected, the327

smallest performance drop compared to the base328

model occurs when training uses both visual-text329

pairs and robot data. Interestingly, training with330

robot data including reasoning also boosts perfor-331

mance from 0 to a non-negligible level, despite the332

highly structured, template-driven nature of the rea-333

soning phrases within that data. Even though the334

reasoning phrases are similar and structured, explic-335

itly allowing the model to "speak out" significantly336

improves performance on question answering and337

even general understanding.338

Conclusion 1. Our observations suggest that the339

pre-trained VLM component suffers from what ap-340

pears to be catastrophic forgetting. Training solely341

with robot data causes the model to lose previously342

acquired conversational and understanding abili-343

ties. However, our experiments indicate that this344

isn’t necessarily a complete loss of knowledge, but345

rather a misalignment caused by the robot data.346

Training with a fixed reasoning template seems to347

"reactivate" the visual-text alignment, enabling the348

model to engage in conversation and demonstrate349

understanding. In Section 6, we will delve into350

the specific knowledge that is reactivated and dis-351

cuss how future work can further bridge the gap 352

between the base VLM and the VLA model. We 353

term this phenomenon "spurious forgetting." 354

Results on real robot multi-task settings. We 355

further evaluated different approaches to our real 356

robot setup. All methods were trained on 25 real 357

robot tasks, and we selected five diverse tasks, cov- 358

ering skills like pushing, picking, and hanging, for 359

comparison. Details, including the number of trials 360

for each experiment, can be found in the Appendix. 361

Surprisingly, training with only robot data yielded 362

worse performance than incorporating reasoning. 363

This confirms previous findings that leveraging ei- 364

ther visual or textual chain-of-thought enhances the 365

generalization of robot models. Intriguingly, co- 366

training robot data with visual-textual data resulted 367

in a significant performance drop in real-world task 368

success rates. 369

Conclusion 2. The initial observation that incor- 370

porating reasoning into robot data improves per- 371

formance aligns with Dual Coding Theory. This 372

theory posits that physical motor skills and visual- 373

linguistic understanding are not mutually exclusive 374

but rather interconnected, offering overlapping ben- 375

efits. However, the performance of robot control 376

dramatically decreased when visual-text pairs were 377

added to the training data. This suggests that the 378

distinct representations required for action gener- 379

ation and understanding may compete within the 380

shared parameter space. This phenomenon, we 381

named as partial task interference, requires care- 382

ful resolution. A unified system should connect 383

the two data types while simultaneously enabling 384

separable representation learning for each task. 385

3.3 Method: ChatVLA 386

As discussed above, training on robot policy data 387

can interfere with learning of visual-text relation- 388

ships. Furthermore, training exclusively on robot 389

data can diminish visual-textual alignment, leading 390

to a degradation of the model’s conversational abil- 391

ities. Therefore, addressing these two challenges is 392

crucial for successfully unifying both perspectives 393

within a single VLA model. We will first describe 394

the training strategy used to address spurious for- 395

getting, and then outline the general architecture of 396

our method to tackle the second challenge. 397

Phased alignment training. Previously, we 398

identified that spurious forgetting is a key factor 399

in causing VLA to lose its ability to chat and un- 400

derstand scenes. Since the pre-trained VLM is 401

well-trained and excels at visual-related tasks, it 402
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Figure 3: Illustration of the Mixture-of-Experts com-
ponent of ChatVLA. Two distinct expert types process
robot data and visual-text data separately, while shared
self-attention layers facilitate knowledge transfer be-
tween the two domains.

is intuitive that the ability to chat and understand403

scenes can be reactivated with a small amount of404

visual-text pair data. In contrast, robot control tasks405

are much more complex to train, so the priority406

should be to develop an excellent model that excels407

at embodied control tasks. Our training strategy408

is straightforward yet effective. We first train the409

VLA model on robot data. During this training, we410

also include reasoning data to ensure continuous411

alignment between the visual and text components.412

Once the robot data is trained, we co-train both413

visual-text and robot data to help the model retain414

proficiency in both tasks. Specifically, we utilize415

Qwen2-VL-2B as our VLM backbone.416

Mixture of experts. The previous section417

demonstrated the use of phased alignment train-418

ing to address the spurious forgetting problem, en-419

abling the model to retain knowledge from the420

previously trained VLM. However, this approach421

does not fully resolve task interference issues, as422

the model still requires co-training on both visual-423

text and robot data. We introduce the mixture-424

of-expert to resolve the problem, which is in Fig-425

ure 3. Specifically, given xl be the input of the l-th426

block. The input can either belong to the Drobot or427

Dv−l. Notably, we design a dual router, the one to428

deal with tasks regarding multimodal understand-429

ing and conversational (f(FFNv−l)), and the other430

Control-Expert Understanding-
Expert

N×

ViT  +  LoRA

Action Head LLM Head

LLM

Stage 1 :
Train only robot data

Stage 2 :
Co-training

Images

Instruction

Images

Control-Expert Understanding-
Expert

N×

ViT  +  LoRA

Action Head LLM Head

LLM

Instruction

Understanding

Reasoning&ReasoningActions Actions

Figure 4: Training strategy. Our framework is ini-
tially trained on robot data with action trajectories, then
co-trained with visual-text and robot data to maintain
performance in both domains.

learn representation on robot control (f(FFNrobot)). 431

The input is first coming through a multi-head 432

self-attention xl
′
= MHA(xl−1) + xl−1, where 433

MHA(·) represents multi-head self attention. It 434

is then fed into the mixture-of-expert layer, which 435

can be represented as: 436

MoE(xl
′
) =

{
f(FFNv−l)(x

l′), m = 0

f(FFNrobot)(x
l′), 1 ≤ m ≤ Mr

437

This is then added with input from skip connec- 438

tion xl = xl
′
+MoE(xl

′
). Notice that in stage 1 439

training, only the control expert is activated. 440

To differentiate task outputs, we employ distinct 441

system prompts, such as "Answer based on ques- 442

tion" for understanding and conversation tasks, and 443

"Predict robot action" for control tasks. Intuitively, 444

a static MoE architecture applied to the MLP lay- 445

ers can be viewed as a high-dimensional feature 446

extractor that partitions the shared parameter space. 447

This allows each task (e.g., understanding and con- 448

trol) to utilize a substantial portion of dedicated 449

neurons, enabling the model to excel at both. A 450

key advantage of this MoE-like architecture is that 451

during inference, only one path is activated, pre- 452

serving the model parameters of the base model. 453

Our results demonstrate that this straightforward 454

approach leads to simultaneous improvements in 455

understanding, conversation, and control perfor- 456

mance. 457

Why sharing self-attention layers? A prevail- 458

ing solution is a module-level decomposition of 459

components to learn task-specific representation. 460
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Table 1: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and
7 VQA benchmarks. Boldface denotes top-ranked methods, underlined entries signify secondary performers.

Method Params
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

Multimodal Large Language Models

Janus 1.3B 30.5 37.6 1338.0 482 30.3 69.4 — — — 52.8 — — —
DeepSeek-VL 1.3B 32.2 39.9 — 409 27.6 64.6 — — — 51.5 — — —

Qwen2-VL 2B 41.1 48.0 1872.0 809 41.7 74.9 79.7 88.57 61.37 74.7 73.5 18.1 62.9
SmolVLM 2.3B 38.8 41.7 — 656 39.5 — 72.7 81.6 — 64.2 — — —
LLaVA-Phi 2.7B — — 1335.1 — — 59.8 48.6 — — — — — —

MobileVLM-V2 3B — — 1440.5 — — 63.2 57.5 — — — — — —
MoE-LLaVA 3.6B — — 1431.3 — — 68 57 — — — — — —
Phi-3-Vision 4.2B 40.4 — — — — 80.5 70.9 — — 76.7 81.4 — —
LLaVA-1.5 7B 34.2 — 1510.7 — — 64.3 58.2 — — 63.1 55.0 — —

DeepSeekVL 7B 36.6 — — 456 — 73.2 — — — — — — —
LLaVA-Next 8B 36.4 — — — — 79.7 55.7 — — 66.9 65.8 — —

Vision-Language-Action Models

OpenVLA 7B 0 0 0 0 0 0 0 0 0 0 0 0 0
ECoT 7B 5.4 0 0 12 0.9 — 0 0 0 0 0 1.7 0

DiVLA 2B 17.2 21.1 186.5 294 9.0 — 7.5 15.2 14.7 43.1 17.2 6.2 25.2
ChatVLA(Ours) 2B 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0

Table 2: Long-horizon real robot tasks with direct prompting. The task is completed in a sequence. The Avg.
Len. denotes the average success length of the model. Task 1: Sort toys. Task 2: Stack building blocks. Task 3:
Place the toy in the drawer. Task 4: Clean building blocks to the box.

Method
Task 1 Task 2 Task 3 Task 4

1 2 3 4 Avg. Len. 1 2 Avg. Len. 1 2 3 Avg. Len. 1 2 Avg. Len.

Octo 0.23 0.08 0.00 0.00 0.08 0.29 0.14 0.21 0.11 0.11 0.11 0.11 0.50 0.17 0.33
OpenVLA 0.15 0.08 0.00 0.00 0.06 0.43 0.14 0.29 0.22 0.11 0.11 0.15 0.50 0.33 0.42

ChatVLA(Ours) 0.92 0.69 0.31 0.23 0.54 0.86 0.43 0.64 1.00 1.00 1.00 1.00 0.83 0.67 0.75

However, based on our experiments in Appendix,461

we believe that understanding and robot control462

tasks share representations that are beneficial to463

both. For example, a typical robot control scenario464

requires the model to understand the scene, recog-465

nize objects, determine their locations, and then466

translate this information into actions. These high-467

dimensional representations share similar semantic468

concepts. Therefore, the interconnected nature of469

these two tasks is crucial for simultaneously im-470

proving performance on both understanding and471

control.472

4 Experiment473

In this section, we conduct a series of experiments474

to evaluate the performance of ChatVLA across a475

range of embodied control and multi-modal under-476

standing tasks. More ablation studies and discus-477

sions are presented in Appendix (Section 6).478

4.1 Results on Multimodal Understanding479

and Visual-Question Answering480

We evaluate the visual question answering abil-481

ities of ChatVLA using Vlmevalkit (Duan482

et al., 2024) on TextVQA (Singh et al.,483

2019), DocVQA (Mathew et al., 2021), In-484

foVQA (Mathew et al., 2022), AI2D (Kemb-485

havi et al., 2016), ChartQA (Masry et al., 2022),486

MTVQA (Tang et al., 2024), and RealorldQA (Re- 487

alWorld Team, 2024). We also tested against more 488

challenging benchmarks designed for MLLMs, i.e., 489

MMMU (Yue et al., 2024), MMStar (Chen et al., 490

2024a), MME (Fu et al., 2023), OCRBench (Liu 491

et al., 2024), HallBench (Guan et al., 2024) and 492

MMBench (Liu et al., 2023c). As delineated in 493

Table 1, ChatVLA demonstrates competitive per- 494

formance relative to existing VLMs across multiple 495

benchmarks. Notably, in VQA tasks, our frame- 496

work achieves a notable performance of 71.2 on 497

TextVQA, surpassing current SOTA VLAs by sub- 498

stantial margins. Specifically, it outperforms ECoT 499

and DiVLA by relative improvements of 9.2x and 500

9.5x over these baseline models. The model ex- 501

hibits particularly strong capabilities in multimodal 502

reasoning tasks requiring complex cross-modal in- 503

tegration. On the MMStar benchmark, ChatVLA 504

attains a score of 37.4, demonstrating 2.2x and 6.9x 505

performance enhancements over DiVLA and ECoT 506

respectively. 507

4.2 Results on Real Robot Tasks 508

The embodied control performance of ChatVLA is 509

evaluated on 25 realworld manipulation tasks and 510

can be divided into three categories according to the 511

granularity of the language instructions. A more 512

detailed description of these tasks can be found in 513
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Table 3: Long-horizon real robot tasks with high-level policy model. The task is completed in a sequence. The
Avg. Len. denotes the average success length of the model. Task 5-8: Move the block to the basket then put the toy
into the drawer. Task 9-10: Move two blocks to the basket sequentially. Task 11-13: Prepare the breakfast for me.

Method
Task 5-8 Task 9-10 Task 11-13

1 2 3 4 Avg 1 2 Avg 1 2 3 Avg

Octo 0.42 0.25 0.17 0.08 0.23 0.33 0.22 0.28 0.15 0.08 0.00 0.08
OpenVLA 0.42 0.33 0.33 0.17 0.31 0.44 0.22 0.33 0.23 0.08 0.00 0.10

ChatVLA(Ours) 1.00 0.92 0.92 0.92 0.94 0.89 0.78 0.83 0.69 0.54 0.54 0.59

Table 4: Real robot multi-tasking. We evaluated our model in a multi-task setting across diverse scenes, including
bathrooms, kitchens, and tabletops. These tasks also encompassed a range of skills.

Method
Bathroom Kitchen Tabletop

Avg
Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20 Task 21 Task 22 Task 23 Task 24 Task 25

Octo 3/11 0/6 1/9 0/7 0/11 3/11 1/7 2/9 1/7 2/13 2/9 3/7 18/107
OpenVLA 2/11 0/6 2/9 1/7 1/11 4/11 2/7 1/9 1/7 4/13 0/9 2/7 20/107

ChatVLA(Ours) 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7 55/107

the Appendix (Section 6). We conducted 528 trials514

on a real robot to evaluate the model’s ability.515

Long-horizon tasks with direct prompting.516

The model is asked to execute tasks directly from517

language instruction(e.g., "Sort toys"). The four518

tasks were evaluated within a toy scenario con-519

structed on a desktop setup. Challenging tasks of520

this category include Task 1, where all toys are521

randomly placed in varying poses, and Task 3, re-522

quiring the integrated skills of open, pick, and close.523

Our method demonstrates substantial advantages524

in executing tasks directly from high-level descrip-525

tions across all evaluated scenarios. The approach526

maintains consistent performance in multi-step se-527

quences, achieving a 0.54 average success length in528

Task 1 (6.75× higher than Octo) and perfect success529

rates throughout Task 3’s three-step sequence.530

Long-horizon tasks with high-level planner.531

The model receives intermediate commands that532

specify the current sub-task objectives (e.g., "pick533

object and place to target location"). The primary534

challenge in this evaluation stems from the substan-535

tial variations between sub-tasks, which involve:536

(1) diverse object types (e.g., plates, cups, bread),537

(2) multiple required skills (e.g., pick-place,flip),538

(3) varying location heights (e.g. top/bottom shelf539

positions) as visually demonstrated in the bottom-540

right panel of Fig.1. These variations form a rigor-541

ous testbed for assessing the model’s ability to in-542

tegrate object manipulation, spatial reasoning, and543

interference adaptation. This requirement is clearly544

reflected in the experimental results shown in Table545

3, where our method outperforms OpenVLA and546

Octo across all task configurations.547

Cross-skill multi-tasking. These tasks require 548

the integration of multiple manipulation skills (e.g., 549

pick, place, push and hang) across various real- 550

world environments, specifically categorized into 551

three test domains: bathroom scenarios (Tasks 552

14-17), kitchen environments (Tasks 18-19), and 553

tabletop configurations (Tasks 20-25). As demon- 554

strated in Table 4, ChatVLA achieves superior per- 555

formance compared to both Octo and OpenVLA 556

across all task categories. The model exhibits par- 557

ticularly strong performance in challenging bath- 558

room and kitchen tasks, where robotic arm oper- 559

ations are constrained to a severely limited spa- 560

tial range. This experimental setup inherently in- 561

troduces substantial safety considerations during 562

model evaluation, consequently establishing rigor- 563

ous requirements for the operational precision and 564

system robustness of the assessed models. 565

5 Conclusion 566

Integrating embodied control and multimodal un- 567

derstanding in Vision-Language-Action (VLA) 568

models is challenging, as current methods often 569

compromise one for the other. We identified key 570

limitations: robot-only training degrades conversa- 571

tional ability, while visual-text co-training dimin- 572

ishes control performance due to spurious forget- 573

ting and task interference. To address this, we 574

introduce ChatVLA, a unified framework combin- 575

ing Phased Alignment Training and a Mixture-of- 576

Experts architecture. ChatVLA achieves competi- 577

tive VQA and general understanding performance 578

while excelling at real-world robot control (25 tasks 579

across diverse scenes). 580
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Limitations581

Our work explores the unification of multimodal582

understanding and robot control. This is the first583

study on this topic, aiming to spark discussion and584

advance the field. However, there are several lim-585

itations. First, while we identified that spurious586

forgetting can be mitigated with visual-text data,587

it is crucial to select a representative dataset that588

can reactivate all misaligned visual-text links in589

the model. In our work, the data was randomly se-590

lected, but we believe that curating a more targeted591

dataset could significantly enhance model perfor-592

mance. Additionally, our work does not include593

tasks of extended duration, like those presented in594

Pi0 (e.g., laundry folding). Increasing the complex-595

ity of robotic tasks may complicate optimization,596

requiring careful refinement of both the training597

strategy and neural architectures.598
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6 Appendix926

6.1 Implement Details927

Robot setup. We utilize a 7-Degree-of-Freedom928

Franka Emika robot equipped with a Robotiq grip-929

per. The robot system includes two ZED 2 cameras930

positioned on the left and right sides, along with a931

ZED Mini wrist-mounted camera. Data collection932

is performed using teleoperation equipment at a933

frequency of 15 Hz.934

Data details. For visual-text data, we use935

LLaVA-1.5 (Liu et al., 2023a) dataset for co-936

training. Following the data ratio mentioned in937

ECoT, we use set the ratio of visual-text data to938

robot data as 1:3. Using robot data, we evaluated939

our method on 25 real-world robot tasks, including940

long-horizon tasks with direct prompting. The data941

was randomly sampled from the LLaVA fine-tuning942

dataset. We hypothesize that carefully curated data943

is crucial for mitigating spurious forgetting, a topic944

we plan to explore in future work. We use the945

image resolution of 320 × 240, with three camera946

views for robotic data.947

Training Details. We use Qwen2-VL-2B as our948

VLM backbone and the set of action head follows949

DiVLA (Wen et al., 2024b). We train our ChatVLA950

using a phased alignment training, as is discussed951

in Section 3.3. In the first stage, we train our model952

on robot data of 25 tasks, only activating the control953

expert and its corresponding action head, using the954

learning rate of 2e-5. In the second stage, we co-955

train both visual-text data and robot data using the956

same learning rate of 2e-5. The total training cost957

is 320 GPU hours.958

6.2 Ablation Study959

How important is mixture-of-experts in VLA?960

This section investigates whether the MoE mecha-961

nism in VLA is crucial for enabling VLA models962

with both multi-modal understanding ability and963

robotic controlling ability. Specifically, using the964

exact same training configuration, we compare the965

baseline model with that removing the MoE mod-966

ule. The experimental results are presented in Ta-967

ble 5 and Table 6. As is shown in the two tables,968

robot control performance decreased to 14% of969

the original model’s capability, while multi-modal970

understanding retained only 70% of its original971

performance. This stark contrast highlights the crit-972

ical role of MoE in mitigating task interference, as973

proposed in Section 3.2.974

Is a two-stage training paradigm necessary?975

This section investigates whether a two-stage train- 976

ing paradigm is necessary for achieving both ef- 977

fective robot control and robust multimodal un- 978

derstanding. Specifically, under identical training 979

settings, we evaluate two ablated variants of our 980

method: (1) a model trained only in the first stage 981

using robot data, and (2) a model trained solely in 982

the second stage using both robot data and visual- 983

text data. The results are summarized in Table 7 984

and Table 8. 985

As shown, removing the second stage leads to a 986

slight decrease in robot control performance (down 987

to 70% of the original) but causes a dramatic col- 988

lapse in multi-modal understanding, retaining only 989

25% of the full model’s capability. Conversely, 990

skipping the first stage and training the model 991

only in the second stage results in a more pro- 992

nounced degradation in robot control (dropping 993

to 57%), while multi-modal understanding remains 994

relatively preserved at 70%. These findings in- 995

dicate that both stages play critical roles in our 996

ChatVLA. 997

Could the same architecture scale to larger 998

LLM backbones seamlessly? We have conducted 999

experiments on the larger Qwen2-VL-7B model. 1000

The experimental results are presented in Table 1001

9 and Table 10. The results demonstrate that the 1002

architecture can seamlessly scale to larger model 1003

sizes, showing performance improvements in both 1004

multi-modal understanding and robot control. How- 1005

ever, due to the limited robotic data, the perfor- 1006

mance improvement in robot control tasks is lim- 1007

ited. We believe that with an increase in the data 1008

scale, using a larger backbone will lead to more 1009

significant performance gains. 1010

Will this recipe suitable for different base 1011

models? We trained a new version of ChatVLA 1012

using PaliGemma-3B (Beyer et al., 2024) as our 1013

VLM backbone. The results are shown in Table 12 1014

The results indicate that while the performance of 1015

our model is influenced to some extent by the ca- 1016

pabilities of the backbone, it demonstrates compet- 1017

itive performance compared with existing VLMs 1018

across multiple benchmarks. 1019

6.3 Discussion 1020

Can robot data effectively enhances the model’s 1021

ability in multimodal understanding? We evalu- 1022

ate our method on a recent robotic multimodal un- 1023

derstanding benchmark: Embodied Reasoning QA 1024

Evaluation Dataset (ERQA), which is presented by 1025

Gemini Robotics (Team et al., 2025). 1026
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Table 5: Ablation Study of Mixture of Experts on Understanding tasks: Evaluation on 6 Multimodal Under-
standing benchmarks and 7 VQA benchmarks. We use bold to denote top-ranked methods.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

Static MoE 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
3B Dense Model 26.8 37.3 1165.6 407 27.7 37.4 44.9 57.2 35.6 49.5 46.1 1.7 55.4

Table 6: Ablation Study of Mixture of Experts on Real Robot tasks: The embodied control performance is
evaluated on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting.
Task 5-13 are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real
family scenes, including bathrooms, kitchens, and tabletops.

Method
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
Static MoE 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7

3B Dense Model 4/52 2/14 2/15 3/12 11/48 4/18 10/39 1/11 0/6 1/9 0/7 0/11 2/11 1/7 0/9 0/7 2/13 0/9 3/7

Table 7: Ablation Study of training stages on Understanding task: Evaluation on 6 Multimodal Understanding
benchmarks and 7 VQA benchmarks. We use bold to denote top-ranked methods.

Stage 1 Stage 2
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

✓ 10.0 11.7 426 187 19.6 11.3 21.4 18.9 15.3 24.8 13.0 0.3 32.2
✓ 27.2 32.2 1032.6 265 31.2 30.7 39.3 32.3 16.6 45.2 24.1 1.7 49.8

✓ ✓ 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0

Table 8: Ablation Study of training stages on Real Robot tasks: The embodied control performance is evaluated
on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting. Task 5-13
are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real family
scenes, including bathrooms, kitchens, and tabletops.

Stage 1 Stage 2
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
✓ 21/52 6/14 12/15 4/12 46/48 13/18 24/39 5/11 2/6 3/9 3/7 2/11 5/11 3/7 3/9 3/7 3/13 4/9 7/7

✓ 13/52 5/14 10/15 3/12 27/48 10/18 17/39 5/11 0/6 1/9 2/7 1/11 3/11 3/7 2/9 2/7 4/13 2/9 4/7

✓ ✓ 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7

Table 9: Performance of Scaling up to 7B on Understanding Tasks: Evaluation on 6 Multimodal Understanding
benchmarks and 7 VQA benchmarks.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

ChatVLA (2B) 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
ChatVLA (7B) 50.7 60.5 1877.3 807 46.5 80.7 79.8 86.2 67.9 78.4 67.0 18.6 66.1

Table 10: Performance of Scaling up to 7B on Real Robot tasks: The embodied control performance is evaluated
on 25 real-world manipulation tasks. Task 1-4 are long-horizon real robot tasks with direct prompting. Task 5-13
are long-horizon real robot tasks with high-level planner. Task 14-25 are under multi-task setting in real family
scenes, including bathrooms, kitchens, and tabletops.

Method
Long-horizon Tasks Multi Tasks in Real Family Scenes

T1 T2 T3 T4 T5-8 T9-10 T11-13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
ChatVLA (2B) 28/52 9/14 15/15 9/12 45/48 15/18 23/39 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7
ChatVLA (7B) 33/52 10/14 15/15 11/12 48/48 17/18 28/39 8/11 4/6 7/9 4/7 4/11 8/11 5/7 7/9 5/7 7/13 6/9 7/7

Table 11: Performance of different VLM backbone on Understanding Tasks: Evaluation on 6 Multimodal
Understanding benchmarks and 7 VQA benchmarks.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

PaliGemma-3B 34.9 48.3 1686.1 614 32.2 65.6 73.0 78.0 40.5 68.3 54.2 13.7 54.2
ChatVLA (PaliGemma-3B) 35.3 48.0 1679.4 653 33.4 64.8 72.4 76.6 41.9 68.1 56.5 12.8 55.3
ChatVLA (Qwen2-VL-2B) 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0
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Table 12: Performance on Embodied Reasoning Task

Method Embodied Reasoning QA (ERQA)
Qwen2-VL-2B 27.5
ChatVLA(2B) 33.5

We specifically chose this dataset because 28%1027

of the questions involve multiple images, requir-1028

ing the integration of concepts across them, which1029

makes these questions significantly challenging.1030

The results show that our model improves by1031

6% on ERQA compared to our VLM backbone1032

Qwen2-VL-2B, proving that the inclusion of robot1033

data effectively enhances the model’s ability in1034

multimodal understanding. Specifically, we fur-1035

ther analyze the results in 8 subcategories. The1036

results show that our model achieved 37.83% ac-1037

curacy in the multi-view reasoning category, far1038

surpassing Qwen2-VL-2B’s accuracy of 13.51%.1039

This demonstrates that robot data primarily con-1040

tributes to the model’s multimodal understanding1041

by improving cross-scene adaptability (e.g., vary-1042

ing lighting/object layouts) and multi-perspective1043

analysis. Therefore, the model approximates the1044

level of human-like visual understanding necessary1045

for navigation and interaction within physical envi-1046

ronments.1047

What vision-language data are preferred? In1048

stage 2, we employed the llava-1.5 (Liu et al.,1049

2023a) dataset for co-training, which allowed the1050

model to achieve compatible results on both VQA1051

and MLLM benchmarks compared to Qwen2-VL.1052

However, we argue that the remaining performance1053

gap is attributed to the limitations of the visual-1054

textual data used. To explore this further, we con-1055

ducted an in-depth analysis of the results between1056

ChatVLA and Qwen2-VL on the MMMU dataset,1057

as illustrated in Fig. 5.1058

The MMMU dataset is divided into six cate-1059

gories, and ChatVLA’s performance is slightly1060

lower than Qwen2-VL in three of them: art,1061

medicine, and social science. A closer inspec-1062

tion of the results for the corresponding subcat-1063

egories reveals that the performance discrepancies1064

primarily occur in five specific domains: art the-1065

ory, lab medicine, pharmacy, literature, and psy-1066

chology. These fields are relatively narrow in1067

scope and involve specialized knowledge that is1068

difficult to obtain. Upon reviewing the compo-1069

sition of the llava dataset, we were surprised to1070

find that its subdatasets, including COCO, GQA,1071

OCR-VQA, TextVQA, and VisualGenome, lack1072

the expert knowledge required for these domains, 1073

which likely contributed to the observed perfor- 1074

mance drop. 1075

This finding also highlights the considerable po- 1076

tential of our model: with more appropriate expert 1077

data for training, we believe that we can achieve 1078

significantly better performance in multimodal un- 1079

derstanding. 1080

What is the appropriate ratio of visual-text 1081

data to robot data? While co-training with visual- 1082

text data, we followed the settings discussed in 1083

ECOT (Zawalski et al., 2024) and set the overall 1084

visual-text data to robot data ratio at 1:3. However, 1085

whether other data ratios are beneficial or detrimen- 1086

tal to multimodal understanding and robot tasks 1087

still requires attention. Therefore, under the same 1088

number of steps, we modified the ratio of visual- 1089

text data to robot data in co-training to 1:1 and 3:1, 1090

respectively. The results of the three setups are 1091

shown in Table 13. 1092

Surprisingly, a smaller amount of visual-text 1093

data resulted in better performance. This aligns 1094

with the discussion in the previous subsection and 1095

the broader discussion in the paper, which suggests 1096

that even a limited amount of visual-text data is 1097

sufficient to reactivate visual-text alignment and 1098

bridge the gap between the base VLM and the VLA 1099

model. 1100

6.4 Evaluation Metrics 1101

The calculation method for long-horizon tasks is 1102

as follows: One point is awarded for each success- 1103

fully completed step. After all steps of the task are 1104

executed, the total score is calculated. Addition- 1105

ally, "Avg. Len." represents the average success 1106

length of the model. This means that for multiple 1107

executions of the long-sequence tasks, the lengths 1108

of the sequences in which the model achieved suc- 1109

cess are recorded. Then, the average value of these 1110

lengths is calculated to obtain the "Avg. Len.", 1111

which serves as an important indicator to evaluate 1112

the performance of the model in handling long- 1113

sequence tasks in terms of the length of successful 1114

operation sequences. 1115

6.5 Robot task 1116

The embodied control performance of ChatVLA 1117

is evaluated on 25 real world manipulation tasks. 1118

Long-horizon tasks with direct prompting. As 1119

is shown in 6, all the tasks of this category are set 1120

under a real world toy scene. 1121
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Figure 5: Comparison with Qwen2-VL on MMMUval.

Table 13: Understanding task: Evaluation on 6 Multimodal Understanding benchmarks and 7 VQA benchmarks.
We use bold to denote top-ranked methods.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

1:1 36.1 44.7 1426.9 691 36.2 72.6 82.9 54.0 65.382 62.6 10.0 57.9
3:1 35.3 45.3 1399.5 726 36.4 72.7 83.6 54.3 67.0 63.2 10.3 58.8
1:3 37.4 47.2 1435.2 729 39.9 71.2 83.3 53.3 67.6 59.9 11.5 57.0

• Task 1: Sort toys. On the desktop, there are1122

two toy animals with random positions and1123

postures, as well as two building blocks. The1124

robotic arm needs to place all the animals on1125

the desktop in the box on the left and all the1126

building blocks in the basket on the right.1127

• Task 2: Stack cubes. The robotic arm first1128

needs to pick up the orange building block1129

from the right side and stack it on the yellow1130

building block in the middle. Then, it needs1131

to pick up the smallest pink square and stack1132

it on the orange building block that was just1133

stacked.1134

• Task 3: Place the toy in the drawer. The1135

drawer is closed. Therefore, the robotic arm1136

first needs to rotate and pull open the drawer.1137

Then, it should pick up the toy on the table1138

and place it into the drawer. Finally, close the1139

gripper to shut the drawer.1140

• Task 4: Clean building blocks to the box. The1141

robotic arm needs to put the building blocks1142

on the table into the box on the right side one 1143

by one until there are no more building blocks 1144

on the table. 1145

Long-horizon tasks with high-level planner. 1146

The settings are shown in 7. 1147

• Task 5: Move the orange block to the basket. 1148

The robotic arm needs to pick up the building 1149

block next to the doll on the table and place it 1150

into the box on the right side. 1151

• Task 6: Open the drawer. The robotic arm 1152

needs to rotate and grip the drawer handle, 1153

and then move parallel to the right to open the 1154

drawer. 1155

• Task 7: Put the toy into it. The robotic arm 1156

needs to pick up the toy in the middle and 1157

place it into the open drawer. 1158

• Task 8: Close the drawer. The robotic arm 1159

needs to close the gripper and gently push 1160

the open drawer to the left until the drawer is 1161

closed. 1162
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Task 1 Sort toys

Task 2 Stack cubes

Task 3
Place the 
toy in the 
drawer

Task 4

Clean 
building 
blocks to 
the box.

Long-horizon tasks with direct prompting

Figure 6: Settings of Long-horizon tasks with direct
prompting

• Task 9: Move semi-circle building-block to1163

basket. The robotic arm needs to pick up the1164

semi-circular building block and place it into1165

the basket on the right side.1166

• Task 10:Move rectangle building-block to bas-1167

ket. The robotic arm needs to pick up the1168

rectangle building block and place it into the1169

basket on the right side.1170

• Task 11: Get the plate and place it on the table-1171

cloth. The robotic arm needs to pick up the1172

pink plate from the upper part of the shelf on1173

the right side and then place it on the table-1174

cloth at the center of the table.1175

• Task 12: Flip the cup and place it on the table-1176

cloth. The robotic arm needs to go to the bot-1177

tom layer of the shelf on the right side, grip1178

the mug, then turn it over and place it on the1179

tablecloth in the middle of the table.1180

• Task 13: Move the bread to the plate. The1181

robotic arm needs to grip the bread from the1182

bread basket on the left side and place it on1183

the plate that was just taken down.1184

Cross-skill multi-tasking. The settings are1185

shown in 8.1186

• Task 14:Put the soap to the soap box. This is a1187

bathroom task. The robotic arm needs to pick1188

up the soap from the left side of the washbasin1189

and place it into the soap dish on the right side1190

of the washbasin.1191

• Task 15:Pick up the cup and hang it on the 1192

shelf. This is a bathroom task. The robotic 1193

arm needs to pick up the cup from the sink 1194

and hang it on the shelf in front of the mirror. 1195

• Task 16:Pick up the tooth-paste and put it on 1196

the table. This is a bathroom task. The robotic 1197

arm needs to pick up the toothpaste from the 1198

sink and place it on the table. 1199

• Task 17:Remove the towel from the shelf. 1200

This is a bathroom task. The robotic arm 1201

needs to take down the towel hanging on the 1202

shelf and place it on another towel. 1203

• Task 18:Move the bread from the pot to the 1204

plate. This is a kitchen task. The robotic arm 1205

needs to pick up the bread from the pot and 1206

place it on the plate. 1207

• Task 19:Pick up the bread from the refriger- 1208

ator. This is a kitchen task. The robotic arm 1209

needs to find the bread in the refrigerator and 1210

pick it up. 1211

• Task 20:Move the banana onto the plate. The 1212

robotic arm needs to pick up the banana at a 1213

random position and place it on the plate in 1214

the middle. 1215

• Task 21: Move the bread to the empty plate. 1216

The robotic arm needs to ignore the distrac- 1217

tions, grip the bread, and then find the empty 1218

one among the two plates in front of it, and 1219

put the bread into that plate. 1220

• Task 22:Hang on the cup. The robotic arm 1221

needs to pick up the mug and hang it on the 1222

shelf on the left side. 1223

• Task 23:Move the tennis ball to the tennis can. 1224

The robotic arm needs to pick up the tennis 1225

ball and lift it up to place it into the tennis ball 1226

can. 1227

• Task 24:Stack the green cube onto the pink 1228

cube. The robotic arm needs to pick up the 1229

green cube on the right and stack it on top of 1230

the square on the left side. 1231

• Task 25:Take away the lid of the box and put it 1232

on the table. The robotic arm needs to pick up 1233

the lid that is covering the box on the left side 1234

of the table and place the lid on the tabletop 1235

in the middle. 1236
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and hang it on 
the shelf.

Task 16

Pick up the tooth-
paste and put it on 
the table

Task 17

Remove the 
towel from the 
shelf.

Task 18

Move the bread 
from the pot to 
the plate.

Task 19

Pick up the 
bread from the 
refrigerator.

Task 20

Move the banana 
onto the plate.

Task 22

Take away the lid of 
the box and put it 
on the table.

Task 21

Move the bread to 
the empty plate.

Task 24

Move the tennis ball 
to the tennis can.

Task 23

Hang on the cup.

Task 25

Stack the green 
cube onto the 
pink cube.

Figure 8: Settings of Cross-skill multi-tasking.
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