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Abstract

There are some studies aiming to solve long-tailed
classification from the perspective of feature learn-
ing. Recent work proposes to learn the balanced
representation by fixing the linear classifier as
Equiangular Tight Frame (ETF), since they ar-
gue what matters in classification is the structure
of the feature, instead of their directions. Hold-
ing a different view, in this paper, we show that
features with fixed directions may be harmful to
the generalization of models, even if it is com-
pletely symmetric. To avoid this issue, we pro-
pose Representation-Balanced Learning Frame-
work (RBL), which introduces orthogonal ma-
trices to learn directions while maintaining the
geometric structure of ETF. Theoretically, our
contributions are two-fold: 1). we point out that
the feature learning of RBL is insensitive toward
training set label distribution, it always learns a
balanced representation space. 2). we provide a
generalization analysis of proposed RBL through
training stability. To analyze the stability of the
parameter with orthogonal constraint, we propose
a novel training stability analysis paradigm, Tivo-
Parameter Model Stability. Finally, our method
is extremely simple in implementation but shows
great superiority on several benchmark datasets.

1. Introduction

Generally, real-world visual classification tasks suffer from
long-tailed distribution data, where a few categories (head
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(a) The training and validation accuracies.

(b) Features visualization on training set at epoch 30. Left: initial-
ization A. Right: initialization B.

Figure 1: Two toy experiments to illustrate feature learning and
generalization of Fixed. A two-layer deep model and a linear
classifier are trained to solve a long-tailed classification problem
with 2-dimensional feature and 3 classes. In (b), points and lines
indicate sample feature and model weight respectively.

class) contribute to major observations of datasets, while
other classes (tail class) only contain a few samples. For
example, iNaturalist2018 (Van Horn et al., 2018) is a large-
scale dataset, which contains more than 8K categories. In
this dataset, the head class has several thousand images,
whereas the tail class may only have no more than one
hundred images. In this setting, training a well-performed
model is very hard, because the model will be overwhelmed
by head classes and underfit the tail classes.

Most previous methods solve the long-tailed problem
through data-resampling based and loss-reweighing based
methods, which improve the performance of tail classes at
the expense of sacrificing head class performance (Kang
et al., 2019). Recently, Neural Collapse (NeurCol) (Papyan
et al., 2020) phenomenon has raised increasing attention in
deep learning community. It can provide a different perspec-
tive for long-tailed learning. NeurCol phenomenon happens
on classifiers trained over a label-balanced dataset: after
the cross entropy loss reaches its minimum, features of the
classifier (last layer activations of the deep model) would
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(a) The NeurCol phenomenon. There are 30 samples for each class. A GIF animation can be found HERE.
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(b) The feature learning of our framework. Each class has 100, 10, 1 samples respectively. A GIF animation can be found HERE.

Figure 2: Two numerical simulation experiments to illustrate the feature learning of classification. In experiments, a linear classifier was
trained to solve a classification problem with 2-dimensional feature and 3 categories. To simulate the model with infinite fitting ability, we
directly update the features in R?. The pictures from left to right record the location of the model weight and sample feature in R? during
the optimization process. In each picture, points and lines indicate sample feature and model weight respectively. Implementation details

of experiments in this figure could be found in Appendices.

learn a completely symmetric structures. Specifically, sam-
ple features within the same class and the corresponding
weight vector of linear classifiers would collapse to its class
center, and centers of every class would form the structure
of Equiangular Tight Frame (ETF). As the last picture of
Fig.2 (a) illustrated, after the training converges, every class
is highly symmetric for others in the feature space.

Due to ETF’s elegant property, an existing work Fixed (Yang
et al., 2022b) proposes to learn from ETF directly. They ar-
gue that the deep model can learn features with any direction,
hence learning directly fixed ETF can achieve satisfactory
performances. We take a different view on this. Fig.1 shows
two results of Fixed with different initialization of ETF. We
see the first generalizes better than the second, even though
both of them lead to NeurCol and learn ETF features. Based
on this observation, we argue the bad initialization of ETF
is harmful to the generalization of the deep model. Since
it only requires the model push samples in the randomly
generated direction, rather than making it learn a direction.
To overcome this problem, we propose a Rrepresentation-
Balanced Learning Framework (RBL). The feature learning
of our framework can be divided into two steps: 1) generate
the balanced features space and 2) use a learnable orthog-
onal matrix to register the sample features and balanced
features.

First Step Before training, we generate the balanced feature
space. Directly generating ETF is the best option. Unfortu-
nately, ETF exists only for sparse combinations of a number
of class C' and feature dimension d (Sustik et al., 2007).

We argue that the equiangular property is the key point to
solving long-tailed problems, so we turn to the second best.
We generate the max(C, d)-dimensional trivial ETF (trivial
ETF always exists), then construct an equiangular structure
from it.

Second Step Same as Fixed, we fix the linear classifier to
be the balanced feature that we generate in advance so that
the deep model could learn directly from the ETF. To avoid
fixed features damaging the learning, we introduce rota-
tion operation. As shown in Fig.2 (b), during training, we
keep balanced feature being a rigid body and only perform
rotation on it.

In theory, we analyze our method from the perspectives of
feature learning and generalization. We prove our frame-
work could achieve balanced feature space, Regular Simplex,
regardless of whether the dataset is balanced or not. Mean-
while, we use training stability to analyze generalization
performances of our method. The stability analysis of our
framework is different from previous analysis since our
framework contains two parts of parameters, one is param-
eterized orthogonal matrices and the another is the weight
of deep model. During training, they follow different rules
to be updated. To this end, we propose a novel training
stability analysis paradigm, Two-Parameter Model Stability,
which divides the model parameter into two parts to derive
model stabilities (Lei & Ying, 2020).

To sum up, our contributions are as follows:
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* We propose Representation-Balanced Learning Frame-
work, which can lead to NeurCol phenomenon even in
long-tailed scenarios.

* We propose Two-Parameter Model Stability, and
present a generalization analysis for our framework.

* A series of empirical studies demonstrate the effective-
ness of our method.

2. Preliminary

In this section, we introduce Neural Collapse phenomenon
and give the definition of Simplex Equiangular Tight Frame
(Simplex ETF). Papyan et al. (2020) has found NeurCol
phenomenon in the training for deep classifier. Here, for a
classification problem with C' classes, a classifier with d-
dimensional feature is defined as § = arg max;[M f(x)];,
where M = [Mj,...,Mc]T € RE*4 s the linear classi-
fier, z is a data point and f(-) € R? is the deep feature
extractor. Given a balanced dataset, we denote the i-th sam-
ple in y-th category as x, ;. They found as the cross entropy
loss (over a label balanced dataset) converging to the min-
imum, the last-layer activations of model, i.e., f(x) show
amazing simplicity geometrically:

NC1 Variability Collapse All samples belonging to the
same class converge to the class mean: || f(x,,;) —

f(zy)ll = 0,Vy,Vi where f(z,) = Ave; (f(zy,:))
denotes the class-center of y-th class;

NC2 Convergence to Self Duality The samples and classi-
fier belonging to the same class converge to the same:
1f(@y,i) — Myl| — 0,Vy,Vi;

NC3 Convergence to Simplex ETF The classifier weight
converges to the vertices of Simplex Equiangular Tight
Frame (ETF);

NC4 Nearest Classification The learned classifier behaves
like the nearest classifier, i.e., given any sample x in
dataset, arg max, (M, f(x)) — argmin, ||f(x) —

fy)ll-

NC1-2 and NC4 tells us the classifier would cluster samples
from the same category together in the feature space. And
NC3 states that feature of different classes would collapse
to Simplex ETF. Here is the definition of Simplex ETF.

Definition 2.1 (Simplex Equiangular Tight Frame (Pa-
pyan et al., 2020)). A Simplex ETF is a collection of points
in R® specified by the columns of

* C 1 T
M* =aR C—1<I CM>

where I € RC*C is the identity matrix, I € R is the all-
one vector, R € R?“(d > () is an orthogonal projection
matrix, o € R is a scale factor.

3. Methodology

In this section, we propose Representation-Balanced Learn-
ing Framework, which aims to learn a balanced represen-
tation space in long-tailed scenarios. We provide its code
implementation in Appendices.E.

3.1. Generation of Balanced Feature

Different from Fixed (Yang et al., 2022b), we do not use
Simplex ETF as the balanced feature, because Simplex ETF
only exists when feature dimension d is larger than class
number C'. In fact, we argue a sets of feature that meets
equiangular property is enough for feature learning. There-
fore, the requirement of Simplex ETF for any C and d is
unnecessary. We define that the Simplex ETF with the same
space dimension and vectors number as trivial ETF:

Definition 3.1 (Trivial Equiangular Tight Frame). A
trivial ETF is a collection of points in R

c 1,

where [ is the identity matrix and I is the ones vector.

M* =

Obviously, a C-dimensional trivial ETF can be seen as a
Simplex ETF that has C' vectors in R®. In classification
problems, if the number of classes C'is smaller than feature
dimension d, we select C' vectors in d-dimensional trivial
ETF as the balanced feature. It is reasonable because the
subset of ETF still meets equiangular condition. In another
case that C' > d, we directly generate trivial ETF in R®.
When performing feature learning, we use linear transfor-
mation to transform the feature dimension d into C'. In this
way, we obtain features that satisfy equiangular property
for any number of classes and feature dimension.

3.2. Representation-Balanced Learning

Notations We define symbols first. Denote the sample
space as X x ), where X is the data space and ) is
the label space. We assume ) = {1,...,C}, where C
is the number of classes. Let the long-tailed training set
be S = {(zi,y:)}}L,, where z; € X is the data point and
y; € Y is the label. Denote f(-; w) the deep model, where
w is the model parameter. Assume the feature f(x;w) is a
d-dimensional vector.

Framework Remember in Neural Collapse phenomenon,
the class feature will coincide with the classifier weight of
the corresponding category. To make f(-; w) learn balanced
feature space M ™, the plain idea is fixing the linear classifier
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as M* when performing training. However, this approach
may harm the feature learning of the model, since f(x;w)
is expected to learn a completely fixed matrix. To avoid this
issue, we introduce a learnable orthogonal matrix R (refer
to next subsection for optimization in SO(n)) to register
M* and f(x; w).

1 e,
NS ep(flogit(e)], )
s.t. logit(x;) = M*Rf(x;; w)

min L(w,R,S) :=
w,R

ey
where M ™ is the balanced feature we generate in advance
and R is the orthogonal matrix. According to the number of
categories C' and feature dimension d, the sizes of M™* and
R are designed specifically. If C' < d, M™* is a C' x d matrix
and R is d x d orthogonal matrix, where every row of M™*
is the vector in d-dimensional trivial ETF. When C' > d,
we generate C'-dimensional trivial ETF as M* and let R
be the C' x d orthogonal projection matrix. The R is for
preservation of equiangular of M*. In this way, f(x;w) is
no longer only learning from M*, but learning from M*’s
direction.

Post-Hoc Logit Adjustment In the analysis of the next sec-
tion, we would prove that optimization framework (1) could
lead to NeurCol even in the long-tailed scenarios. However,
feature learning of our framework can only learn balanced
features, and it still requires proper decision-making for
full play to its abilities (Kang et al., 2019). To this end,
we perform Logit Adjustment when the model performs
classification.

arg max [M*Rf(x;w) — margin], )

i€y

Logit Adjustment (Menon et al., 2020) is a simple but ef-
fective method for long-tailed learning. It adds margins
before Softmax to make the loss function Fisher Consis-
tent, which means the model trained by Logit Adjustment
over a long-tailed dataset could minimize balanced error
consistently. Since margins in loss function will influence
the feature learning, we use post-hoc Logit Adjustment,
which is subtracting margins when performing classification.
Here, we follow the configuration of Balanced Softmax (Ren
etal., 2020), set margin as [log(N1/N), ..., log(N¢ /N)|T,
where NNV, is the number of samples in category ¢ of training
set.

3.3. Optimization in Lie Group

So far, we have proposed Representation-Balanced Learn-
ing Framework. In our framework, we use rotation parame-
terized by an orthogonal matrix to preserve the equiangular
property of M*. In the specific implementation, we can
use a block of orthogonal matrices to represent orthogonal
projection matrix. Therefore, the question becomes how to

optimize an orthogonal matrix. Suppose we need a matrix
that lies in SO(d) to represent rotation. SO(d) is the special
orthogonal group, i.e., Lie Group

SO(d) = {A € R”NATA =T,det A =1}

Note that the standard SGD can not assure that R always
be in SO(d) during training. We address this issue in an
algebra way (Lezcano-Casado & Martinez-Rubio, 2019).
Consider the Lie Algebra so(d) formed by skew-matrices

so(d) = {A € R™4A + AT = 0}

In the theory of Lie Group, there exists a well-known con-
clusion between the structure of the SO(d) and so(d), i.e.,
exponential mapping on matrix exp{-} : so(d) — SO(d)
is a homomorphism of Lie Group SO(d). The mapping
exponential of matrix exp(-) is defined as

A2
exp(A):I—i-A—l-?—i-...

Therefore, the optimization in SO(d) could be transformed
into optimization in so(d):

. A=exp{B} .
I A = 1 B
Aemlen(d) oss(A) Bgtf(ld) oss(exp{B}) (3)

Note that both sides of (3) have the same minimum. Since
exp(-) is a surjective mapping, once one obtains the solution
of right, the other side could be found by the mapping A =
exp(B). Furthermore, the Lie Algebra so(d) is isomorphic
to a linear space. The isomorphism mapping is given by
#(A) : A~ A — AT, Consequently, the constraint of
SO(d) could be eliminated.

—ex BT
min loss(A) AzepBoB)

A€S0(d) min dloss(exp(B - B7TY)

BERIX
“)

In the above formulation, the optimization with orthogonal
constraint is transformed into the optimization in R%*?, For
the right side of (4), we could use standard optimization
techniques such as SGD and Adam.

4. Theoretical Analysis

In this section, we analyze our framework from feature
learning and generalization. All proofs in this section could
be found in Appendices.

4.1. Feature Learning

Before studying the feature learning of RBL, we have to
mention the work of (Graf et al., 2021). Different from the
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experimental observations (NeurCol and ETF feature) of
(Papyan et al., 2020), the optimal feature obtained by them
through inequalities is also symmetrical, yet it is not ETF,
but Regular Simplex. The relationship between ETF and
Regular Simplex in algebra is very complex (Fickus et al.,
2018). However, to the best of our knowledge, no works
study their relationship in feature learning. The following
lemma can fill this void:

Lemma 4.1 (Regular Simplex). Consider a c-equiangular
ETF {¢; Y., where (¢;, ;) = ¢ foranyi, j(i # j). Define
its means as ¢ = 5 Zf’;l Ci. Then the frame {¢; — (}$,
forms a Regular Simplex, which means

C

(1.3 ~0) =0

i=1
(82).[1G — <l = VN (C.e), Vi (equalnorm)
(83).(¢; — ¢, ¢ — ¢) = A(C,¢), Vi # j (equiangular)

where

(zero mean)

A(Cvc):C—W
and
N(C,c)zl—w.

Lem. 4.1 tells how to construct Regular Simplex from ETF
geometrically. Based on this conclusion, we give the follow-
ing theorem:

Theorem 4.2 (Feature Learning of Framework (1)). As-
sume the feature f(-;-) has d dimension and maximum norm
is p. M* = [m¥, - mZ|T isa C x d matrix, where each
row vector m; comes from a c-equiangular ETF. Consider
the training set S = {(x;,y;) }}., with C categories,

‘C(w7R’S) Zlog <1+(C_1)exp[_CW}>

holds. The equality holds if and only if for any (x;,y;) € S,
such that

Rf@iw) - p"e 2
Iy w) =
P /N(C.0

where M* = & Zle m]T.
Remark 4.3. During training, the features gradually are
pushed against the spherical surface with radius p, and an-
gles between any two classes get larger and larger. Finally,
once the features in every class achieve the equiangular
property, i.e., collapse to the corresponding class vector in
Regular Simplex, the loss function would reach the above
lower bound.

Based on the above theorem, we know our framework can
learn the balanced feature space, ¢.e., Regular Simplex, and
lead to NeurCol phenomenon in long-tailed learning.

4.2. Two-Parameter Model Stability

Then, we turn to explore generalization of our framework by
stability (Hardt et al., 2016; Lei & Ying, 2020). Recall that
a part of weights of RBL is parameterized as an orthogonal
matrix by substitution techniques. Therefore, the standard
analysis of model stability can not be applied to RBL. To this
end, we extend the previous analysis paradigm (Lei & Ying,
2020) to propose Two-Parameter Model Stability, which
analyzes model stability by splitting the model parameter
into two parts. During optimization, two parts of parameters
are performed with different update rules.

First, we consider the common case, i.e., both parameters
are updated without any constraints. Define the loss function
g(x;w; T), where x is a sample and w, T are the model
parameters. Given a dataset S = {x;}¥,, the SGD update
rule of ming, 7 E,csg(@; w; T) is given by

Definition 4.4 (Update Rule of Two-Parameter Model).

W1 Wy — 0y Ow, g(@i,; wis My)

Ty1 T — ) Or,g(2i,;wi; Ty)
In the ¢-th iteration, the i;-th data in S are sampled uniformly
to perform optimization. The learning rates of w and T’
are 0 and 1] respectively. And O, g(x;,;w;; M;) and

Or,g(x;,; we; Ty) are the sub-gradients of g(x;,; we; 1)
w.r.tw and T

To obtain the model stabilities of w and 7T, introduce an-
other dataset S = S \{x;}J{&;}, which only differs
i-th sample from S and follows from the same distribu-
tion with S. We denote S = {&;}~. Then for random
algorithm Def. 4.4, we use empirical risks Gs(w;T) =
+ Ziil g(x;;w; T) to bound its stabilities.

Theorem 4.5 (Two-Parameter /; Model Stability). Con-
sider the two groups of parameters (wy, T;) and (w,(f), Tt(i))
trained on S and S from the same starting point by the
update rule Def. 4.4, assume

* g(a;w; T) is nonnegative for any x, w and T

o T'— g(x;w;T) is Ly-smooth for any w and x;

o w > Opg(x;w; T) is Ly-lipschitz for any T and x;
o w — g(x;w;T) is Ly-smooth for any T and x;

o T+ Org(x;w;T) is Lp-lipschitz for any w and .

We denote v = [n}'\/2L7,n?*/2L,,)T and

P I R S o Y
N ontr
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Then, if n] /n® = €1/, holds, the {1, model stabilities of
w and T is given by

N %
Es .4 | % i ITos — T

N [
Egga |3 2 lwee — w2
9 Ut , ,
N > (Ai_]PlplTv + Aé_Jpzpva) Es A [ Gs(wj; Tj)]
j=1

where \1, Ao and py, p, are eigen values and eigen vectors
of F respectively.

Then we consider the Two-Parameter Model Stability with
the one constrained parameter. In our framework, the lin-
ear classifier R is restricted as orthogonal matrices. Sup-
pose we parameterize R € SO(d) (whether R is a square
matrix does not affect the analysis) by the mapping R =
exp (B — BT), where B € R%*?_the SGD update rule of
RBL is given by

Definition 4.6 (Update Rule of Framework (1)).
77;”611” f(:l:lt ; Wt Rt)
Biy1 < Bt — 7]$aBtf($it§wt§ Ry)

T
Tiv1 < Biy1 — By

Wiy < Wy —

Rt+1 — exp(TtH)

Here, f(x;w;R) indicates the loss function, and
we use Fs(w,R) to represent the empirical risk
+ Zfil f(xi; w; R) over S. The update rule of R is not
standard due to the parameterization, while B performs
the standard SGD update. Then ¢; model stability of our
framework is as follows.

Theorem 4.7 (Two-Parameter ¢, Model Stability of
Framework (1)). Consider the two groups of parameters

(wy, Tt) and (wﬁ”,Tf“) trained on S and S from the
same starting point by the update rule Def. 4.6. Then let

w — f(z;w;e), T — f(a;wie’)
of Def.4.6 be
w— g(x;w; T), T — g(x;w; T)

of Def-4.4. Assume Ty lies in a bounded space ) C s0(d)
for all t (see Assumption.D.2 of Appendices for more
details) and all assumptions in Thm.4.5 holds. Denote
M p pTo + NI p,pTv as p(k, j). Then the {1 model
stability of parameter R is given by

E, ZHRM
2H (N L¢Z

REL| <

J) + ha( ))]ESA[ Fs(wijj)}

where hi(j) = (N — 1)
ha(j3) = V2L NI 7',

Remark 4.8. According to Thm.2 (a) of (Lei & Ying, 2020),
once the first order gradient of f(-; w; R) is bounded, one
can obtain the generalization error, which is proportional
to the /1 model stabilities. Thus, if the training set is large
enough, our method can reach a reasonable generalization
result.

LI NR Tt (k, 5)y and

S. Experiments

To illustrate our method’s effectiveness empirically, we con-
duct a series of experiments.

5.1. Dataset

We use several benchmark datasets in our experiments,
including CIFAR10/CIFAR100 (Krizhevsky et al., 2009),
long-tailed ImageNet (Liu et al., 2019a) and long-tailed
Places (Liu et al., 2019b). We use the imbalanced ratio to
represent how imbalanced a dataset is, which is the ratio of
the samples between the most-frequent class and the rarest
class in the dataset.

Long-Tailed CIFAR CIFAR10/CIFAR100 both contain
60000 images of size 32 x 32, where 10000 of them are
for testing and 50000 for training. Note that the labels
in the original CIFAR10/CIFAR100 dataset are uniformly
distributed, so we generate long-tailed versions from the
original data. Refer to experiments of other studies, we
use exponential decay (Cui et al., 2019) to generate long-
tailed training set with 50, 100,200 imbalance ratios for
both datasets, and keep the test sets unchanged.

Long-Tailed ImageNet ImageNet-LT is the long-tailed ver-
sion of ImageNet-1K (Russakovsky et al., 2015). ImageNet-
LT has 1K categories and 115.8K images for training, where
the imbalance ratio is 256. Besides, the valid set and test set
of ImageNet-LT have 20 and 50 images for each category
respectively.

Long-Tailed Places The training set of Places-LT has
62, 500 images for 365 classes, where the most frequently
occured classes have 4, 980 images and the least has 5 im-
ages. The imbalance ratio is 996. The valid and test sets are
balanced and contain 20 and 100 images per class respec-
tively.

5.2. Experimental Setups

Competitors We devide competitors into two technical
routes: 1). Class Balanced Learning inlcuding Class-
Balanced loss (Cui et al., 2019), Calibrated (Xu et al., 2021),
Decoupling-NCM, LWS, cRT, 7-norm (Kang et al., 2019),
seesaw (Wang et al., 2021a), BalancedSoftmax (Ren et al.,
2020), MARC (Wang et al., 2021¢c), LADE (Hong et al.,
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Figure 3: Generalization analysis on CIFAR100. The two
rows show the accuracies of Fixed and our method on train-
ing set and test set in every epoch respectively.
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Figure 4: Generalization analysis on CIFAR100. The two
rows show the cross entropy loss of Fixed and our method
on training set and test set in every epoch respectively.

2021); 2). Contrastive Learning inlcuding TSC (Li et al.,
2022), HCL (Wang et al., 2021b), KCL (Kang et al., 2020).
Besides, we also compare Fixed (Yang et al., 2022b) as
baseline. We implement (Yang et al., 2022b) with our frame-
work, where the orthogonal matrix is fixed during training
and Logit Adjustment is performed during testing.

Implementation details In our methods, dimensions of
the feature is important. To obtain feature with differ-
ent dimensions, a linear layer that transforms feature di-
mensions is added after backbone. Following previous
work, for CIFAR10/100-LT, we use ResNet-32 with 256
feature dimensions as the backbone; for ImageNet-LT, we
use ResNext-50 with 512 feature dimensions as the back-
bone; for Place-LT, we use a pretrained Resnet-152 with
512 feature dimension as the backbone. We utilize SGD
optimization for all experiments. For CIFAR10/100-LT, the
model is trained for 600 epochs with batch size 256. Be-

Table 1: Test accuracies on CIFAR10/100-LT. The best and sec-
ond best results are marked as bold and underline. Rows with }
denote results borrowed from (Wang et al., 2021¢). Results of
other competitors are taken from original papers.

Method CIFAR-10 CIFAR-100

50 100 200 50 100 200
CB 793 746 689 453 396 362

LADE . - - 505 454 -
Calibrated | 84.3 828 785 51.1 455 42.1
cRTY - 820 766 - 500 445
LWS+ - 837 781 - 505 453
BST - 831 790 - 503 459
MARC - 853 811 - 508 474

HCL 854 814 - 519 467 -

TSC 829 797 - 474 438 -
Fixed 87.1 840 802 562 523 472
RBL 87.6 847 812 572 531 489

Table 2: Test accuracies on ImageNet-LT. The best and second
best results are marked as bold and underline. Rows with { denote
results borrowed from (Wang et al., 2021c). Results of other
competitors are taken from original papers.

Method | Many  Medium  Few All
Calibrated - - - 48.4
cRT 61.8 46.2 27.4 49.6
LWS 60.2 47.2 30.3 49.9
Seesaw 67.1 45.2 21.4 50.4
BS+t 62.2 48.8 29.8 514
MARC 60.4 50.3 36.6 52.3
LADE 65.1 489 33.4 53.0
KCL 61.8 494 30.9 51.5
TSC 63.5 49.7 30.4 52.4
Fixed 64.3 47.6 27.2 51.2
RBL 64.8 49.6 34.2 53.3

sides, the learning rate linearly warm up from 0.05 to 0.1
within the first 8 epochs, and then decays to zero in cosine
decay scheme. For ImageNet-LT, we train the model for 200
epochs with batch size 64. The learning rate is set as 0.25
and decays to zeros by cosine decay during training. For
Places-LT, we train the model with learning rate 3.5 X 10-3
and batch size 64 for 30 epochs. For all datasets, the weight
decay and momentum are set as 0.0005 and 0.9. As for data
augmentation, for CIFAR10/100-LT, we perform AutoAug-
ment (Cubuk et al., 2019); for ImageNet-LT, we perform
several common augmentation methods including Random-
Crop, RandomFlip, and ColorJitter; and for Places-LT, we
use RandAug (Cubuk et al., 2020).

5.3. Evaluation protocols

We use balanced accuracy as the evaluation metric. Since
the test dataset in experiments have the same number of
samples for each class, the standard accuracy calculated on
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Table 3: Test accuracies on Places-LT. The best and second best
results are marked as bold and underline. Results of other com-
petitors are taken from original papers.

Method | Many  Medium  Few All

NCM 40.4 37.1 27.3 36.4
cRT 42.0 37.6 24.9 36.7
LWS 40.6 39.1 28,6 376
T-norm 37.8 40.7 31.8 37.9
Marc 39.9 39.8 326 384
BS 41.2 39.8 31.6 387
LADE 42.8 39.0 312 388
Fixed 437 39.7 23.9 380
RBL 44.1 40.7 244  38.8

them is balanced. In addition, we also provide accuracies
over three different subsets of test set: Many-shot, Medium-
shot, and Few-shot. Many-shot subset only consists of the
classes that have more than 100 samples in training set,
while Medium-shot and Few-shot consist of the class that
has 20 ~ 100 samples and less than 20 samples respectively.
Since CIFAR10/100 datasets have no valid set, we report
the highest accuracy on test set. And for ImageNet-LT, we
keep the model with the best performance on valid set, and
report its accuracy metric over entire test set.

5.4. Experimental Results

The performance comparisons are shown in Tab.1, 2 and
3. Except that Fixed is our implementation, all results of
other methods come from the original paper. We have three
observations from the results: 1). Ours generally outper-
forms previous methods, which validates the effectiveness
of our method. 2). In Tab.2, four accuracy results come
from a single experiment, rather than four independent ex-
periments. Therefore, the accuracy result of RBL over ”All”
in Tab.2 can be seen as a weighted average of accuracies
on each subset. Our results on Many, Medium, and Few
shot are not outstanding but still have a high rank compared
with other methods. As a result, it has the highest accuracy
on all test set. This shows that our method is balanced for
head classes and tail classes, could achieve good trade-off
between them. 3). In CIFAR10/100, both Fixed and Ours
can achieve SOTA level, whereas in the larger scale dataset,
ImageNet-LT, Fixed is completely inferior to Ours. This
phenomenon shows that the fixed feature space is far from
enough for long-tailed feature learning.

5.5. Ablation Experiments

We conduct ablation experiments on three long-tailed CI-
FAR100 datasets, and the results are presented in Tab.4,
where Fixed and Learnable Direction denote if the direc-
tion of ETF is learnable and LD denotes the post-hoc Logit
Adjustment. There are three observations:

Table 4: Ablation study on CIFAR100-LT measured by test accu-
racies.

CIFAR100-LT

Method 200 100 50
CE (Baseline) 427 467 51.8
Fixed Direction 41.7  46.5 50.5
Learnable Direction 434 477 529

LD 46.6 514 55.1
Fixed Direction + LD 472 523 56.2
Learnable Direction + LD (RBL) | 489 53.1 57.2

e When LD is removed, the performance rank is Fixed
Direction < CE < Learnable Direction.

¢ Regardless of whether the LD method is used, Learn-
able Direction always outperforms Fixed Direction.

¢ Both Fixed and Learnable Direction exhibit substantial
improvements when using LD.

The first finding supports our argument that the fixed feature
can be detrimental to the model’s performance. The second
finding suggests that a learnable rotation matrix is crucial
for improving model performance.

We would like to emphasize and explain the third finding.
The readers might contend that the state-of-the-art perfor-
mance of our method is primarily due to the LD. However,
LD only works during testing and does not affect the training
process. Our approach can only learn a Balanced Feature
with a proper direction, which requires appropriate decision-
making to harness its power. This point is supported by the
work of Kang et al. (2019), which highlights that even if
good features are learned, reasonable long-tailed recognition
performance cannot be achieved without a good decision-
making process in the last layer.

5.6. Generalization Analysis

To study the generalization of our method, we report the
accuracies of RBL and Fixed on CIFAR100 in every epoch.
As shown in Fig.3 and 4, we observe after both methods
converge, their accuracies on training set are almost the
same. Yet, RBL always has higher accuracy on validation
set (CE loss is the same). This indicates that our RBL can
generalize better on unseen data. We hold the opinion that
the generalization of the model may be harmed by the fixed
feature, especially when the model size is limited. Fixed
requires a more powerful feature extractor to compensate
for the fixed feature, since the random generated ETF can
hardly be the best.
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6. Conclusion

In this paper, we argue that in classification problems, both
the structure and direction of features are import. The
Equiangular Tight Frame with fixed directions is totally in-
adequate. In order to learn ETF with arbitrary directions, we
introduce Representation-Balanced Learning Framework,
which can register the angle between ETF and model fea-
tures through learnable orthogonal matrices. Our idea could
be devided into two steps: First, according to different cases
of class number and feature dimension number, we generate
equiangular structrues as the balanced feature to be learned.
Next, to avoid fixed features weakening the learning ability,
we introduce orthogonal matrices to learn both the structure
and direction of ETF. Theoretically, without assuming that
the training set is uniform, we prove that our framework
could achieve same effect to NeurCol phenomenon. To
analyze the generalization performance of our framework,
we propose Two-Parameter Model Stability. It provides
a new perspective to analyze the stability of parameters
with constraint. Finally, we conduct a series experiments to
demonstrate advantages of our method.
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A. Related Work

We give a brief overview of long-tail learning from three perspectives: class-balanced methods, supervised contrastive
learning, and feature learning. More comprehensive overviews of long-tailed learning could be found in (Zhang et al., 2021;
Yang et al., 2022a).

Class-Balanced Methods The sampling-based approach is the most intuitive (Mahajan et al., 2018; Kang et al., 2019;
Wang et al., 2020). The common sampling strategies include instance-balanced sampling and class-balanced sampling.
Instance-balanced sampling samples every instance in datassets with equal probability, while in class-balanced sampling,
every class has an equal probability to be sampled. On the basis of instance-balanced sampling, (Mahajan et al., 2018)
proposes to use the square root of the number of samples as the sampling probability. These methods make training set more
balanced by different sampling schemes, which could improve accuracy of tail classes. However, it is found that there exists
a performance trade-off between head class and tail class for sampling-based methods (Kang et al., 2019). Another idea for
solving the long-tailed problem is to balance the cost of different classes by designing a balanced loss function (Tan et al.,
2020; Cui et al., 2019; Cao et al., 2019; Ren et al., 2020; Menon et al., 2020). From the perspective of data overlay, (Cui
et al., 2019) proposes to measure the volume of datasets by effective number. Effective number is defined as a function of
the number of samples. Then they use effective number to re-weigh the losses of different classes. Further, (Cao et al., 2019)
proposed LDAM loss. It achieves the lower bound of margin-based generalization bound by adding a set of well-designed
margins. Then, (Ren et al., 2020; Menon et al., 2020) point out that existing methods based on loss weighting and margin
modification can not achieve Fisher consistency. Inspired by this, they propose Balanced Softmax and Logit Adjustment
that could minimize balanced error consistently.

Supervised Contrastive Learning Contrastive Learning is an implementation way of Unsupervised Learning, which aims
to learn features by narrowing the distance between similar samples and enlarging the distance between different samples.
SCL (Khosla et al., 2020) pioneered the use of contrastive learning in supervised classification problems. Later, a group
of methods based on Supervised Contrastive Loss were proposed (Cui et al., 2021; Kang et al., 2020; Li et al., 2022; Zhu
et al., 2022; Jiang et al., 2021). The above approaches target to learn balanced feature space to improve the performance
in long-tailed scenes. KCL (Kang et al., 2020) fixes the number of positive samples in each batch to learn the balanced
representation. Paco (Cui et al., 2021) is a contrastive learning framework based on Maco (He et al., 2020). They introduce
parametric class-wise learnable centers, which could enhance the learning for hard examples and imbalanced data. Similarly,
(Li et al., 2022; Zhu et al., 2022) are motivated by (Papyan et al., 2020)’research of features, introduces the concept of
category center in contrastive loss as well. TSC (Li et al., 2022) generates features uniformly distributed on the sphere in
advance as the category center, while BCL (Zhu et al., 2022) uses the classifier weight as the category prototype.

Representation Learning (Kang et al., 2019) pioneers two-stages training in long-tailed learning. They found that only
finetuning the classifier could achieve satisfactory performance. Besides, (Papyan et al., 2020) found Neural Collapse
phenomenon in classification. Specifically, as the cross entropy converges to zeros, the feature that model learned would
form an ETF. which does not vary with dataset scales and backbones. Going a step further, (Graf et al., 2021) obtains a
similar conclusion in theory. Based on their conclusions, TSC and BCL are proposed to learn the balanced feature for
long-tailed learning. The recently proposed fixed (Yang et al., 2022b) proposes to learn ETF directly by fixing the classifier
as ETF. We argue that only ETF structure is not enough for the feature learning of classification. Therefore, we propose
RBL that can learn the ETF with any direction.

B. The proofs of Lem. 4.1 and Thm. 4.2

Before we give the proof of Thm. 4.2, we prove Lem. 4.1 first.

Restatement Of Theorem 4.1. Consider a c-equiangular ETF {(;}$_,, where (C;, ;) = ¢ foranyi,j(i # j). Define its
means as = 5 Zi:l Ci. Then the frame {(; — C}$_, forms a Regular Simplex, which means

c
Z (zero mean)
i=1
(82).11¢G — 5 = VN(C,c),Vi (equalnorm)
(83).(¢i = ¢, ¢ — ) = A(C,e), Vi # j (equiangular)
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where

A(C,c) =c— W
and

N(Cye)=1- W

Proof. (S1) is clear. We prove the equiangular property (S3) first. According to the c-equiangular property of ETF, we
know Vi, j(i # j), (Ci, ¢;) = c. Given any ¢, j(i # j), we have

(G =G =0 =G &) — (¢, G) — (6, ) + (G, €)

c c L C.c

=c— *Z C» Gj) — Z(Ci><k> + C*ZZ@@,CJ
k=1 k=1 k=1v=1

I EICE N ETCA

- 1+(C 1)e

=e- 5

The proof of equalnorm property (S2) is similar. Consider a vector (; — ¢, we have

HCl C”2 <<17 C2> - 2<<Za C_> + <<_-7 E>

1+4(C=1) COA+(C-1)e)
=1-2
c T
_ 1+(C—-1)c
N C
O

Then, we will give the proof of Thm. 4.2.
Restatement of Theorem 4.2. Assume the feature f(-;-) has d dimension and maximum normis p. M* = [m?,--- mE]T

is a C' x d matrix, where each row vector m; comes from a c-equiangular ETF. Consider the training set S = {(x;, yb)}f\il
with C categories,

L(w, R, S) > log <1+(C—1)exp[— W})

holds. The equality holds if and only if for any (x;,y;) € S, such that

mI — M*

o) — o
Ritesw) = v e

Proof. Recall our optimization objective in (1) is

exp([ogi), )
>, exp([logit(x)],)

L R,S):=——

ml}I%I (w, Z
s.t. logit(x;) = M*Rf(mi; )

where R, w is the optimization variables and R is restricted as orthogonal matrix. M™* is pre-computed ETF and keeps fixed
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during training.

1 N ) exp ([IOgif(mi)]yq',) }
N ,Zl s { S5 exp ([logit(-’m)]j)

N
:% Zlog (1 + Z exp ([logtt(wl)] [logit(x;))y, ))

=1 J#yi,3€[C]
N

Cc11 1

ZN Zlog (1 + (C—1)exp [m Z [logit(x;)]; — [logit(x;)]y, })
i=1 j#yi jelc]

Zlog (1 +(C—1)exp [ N Z > llogit(ws)); — [logit(x;)]y, D

=1 j#y;,j€[C]

=log <1 + (C — 1) exp [ )N Z Z lOglt :131 [lOgit(xi)]yi}>

i=1j€[C]

The inequalities C1 and C2 follow from Jensen’s inequality. For inequality C1, we know ¢ — exp(¢) is a convex function,
so the equality in C1 holds when

(C1).¥i € [N],3M; € R, Vy € [C](y # ), {zogir(mi)] = M,
y
Then for inequality C2 is due to the convex function t — log(1 + exp(t)). Therefore, the equality in C2 holds when

(€2)3aM eRVie [N, S ([logit(:vi)]yi ~ [logit(;)] j) =M
J#Yi,J€[C]

The function ¢ — log(1 + exp(t)) is monotonically increasing, so next we try to bound vazl > jeioyllogit(z;)]; —
[logit(x;)]y,. To illustrate the role of ETF M*, we denote

loglt(mv) = M*Rf(m’uw) = [mlRf(wh w)7 e 7mCRf(wia w):|T = |:<m,{a Rf($7,W)>, ey <m57 Rf(.’l},, w)>:|T7
then

N N
Z Z [logit(x;)]; — [logit(x;)],, = Z Z Rf xi,w)) — <m5L_,Rf(:ci,w))

N
=C> (M* —m]), Rf(z;,w))
=1

a Y Vad T
> O (" = mi)[|Rf(zi,w)|
i=1
N
Cc4 _
> —Cpy [ —my)|

W}Zire we 1fienoto: % Zle mJT as M*. The inequality C3 follows from the Cauchy-Schwarz inequality, equality holds if
and only i

(C3).vi € [N],3X\; € RT, Rf (@i, w) = N\i(m,, — M*)

The inequality C4 follows from the assumption for feature extractor, with equality if and only if
(C4).vi € [N], || Rf (z;w)| = p
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To explore what the feature f () is look like when the objective function reach its minimum, we check the conditions C1 -
C4 that make the equality hold. We start from C3 and C4. Given a sample (x;, y;), we have

IR (s w)l| = Nillmy, — M*|| = p
For the simplicity of result, we denote 1 — w by N (C,¢) and ¢ — w by A(C, ¢). So, for any i € [N]

T e VA(Co)

Recall Lem. 4.1, we know the sequence of vector {mg — M *}5:1 is also equalnorm and equiangular. Therefore, the
learned feature of the framework is equalnorm and equiangular. Then return to the logit of sample (x;, y;), we have

ity # v, flogi@)] | = m Ao, 51%) = Xy, ) = XA(C.0) = p 7
ify =y, [1ogit(a:i)}y — (mT A\ (mT — M*)) = Aimy, (m? — M*) = \N(C, ) = py/N(C o)
According to the above formula, we derive the values of M; in C1 and M in C2.
A(C,c
M; = MA(C.¢) = pA([(CfC)
M = A(C = A0 ~M(C.0) = (€ - (2~ YRTC0)

C. The Proof of Thm.4.5

Lemma C.1. Assume the map w — f(w) is nonnegative and L-smooth. Then for any w, we have

[[0w f(w)| < V2L f(w)
where Oy, f (w) denote the sub-gradient of w.
Restatement of Theorem 4.5. Consider the two groups of parameters (wy, T;) and (wgi), Tt(i)) trained on S and S
from the same starting point by the update rule

Wip1 — Wy — 1, 0w, 9(X4,; wy; My)

Tis1 < Tp — nf 01, 9(zi, ;w4 Th)

Assume

o The function g(x; w; T) is nonnegative for any x, w and T';

* The function T — g(a; w;T) is Lp-smooth for any w and x;

o The function w +— Oyg(x; w; T) is Ly, -lipschitz for any T and x;
* The function w — g(x;w;T) is Ly,-smooth for any T and x;

* The function T — Org(x; w;T) is {r-lipschitz for any w and x.

We denote

V2L 14 NoLTp N1y L&
°7 [ ZEU\/\/%]’F:[ NN T N_ ,Gs(w;T) = Zg(wi;w;T)
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Then, if nf' /n® = U1 /€., holds, the {1 model stabilities of w and T are given by

B [# S0 1Tt — T ] Lo |

5,8,A | N Zui=1 lI1t+1 t+1 9 B B
1 I\Z/ (1) < N Z ()\i ‘pipiv+ X; 3p2p2TU) Es 4 [ Gs(wj;Tj)]

Eg .4 | 2iz1 Wit = wt+1||} =

where A1, Ay and p,, p, are eigen values and eigen vectors of I respectively.

Proof. First, we analyze ||T}+1 — Tt(i)1|| and ||wi4q — wng separately. Consider ||T}41 — Tt(i)lﬂ. If i, = i, we have

|Tesr = TN <IT = TN+ 08 107, 9(@i5 w0 T,) — )

T 9(Zs; wi”; Tt(l) i

<ITy = TN + 0 110r, g @ wes T1) | + 0 |90 9(Ess wi” s T
<7 = T + V2L ( (@ wi Ty) + g<@;wgi>;Tgi>))

where the last inequality follows from Lem.C.1. If 4; # ¢, we have

| Ter = TN <IT = T | + 0] 07, 9(i,; w0 Ty) — 8,

<|Ty — TN + 0 107, 9(@,; e Th) — O, 9(@iwe T ||+

@ 9(Ti,; w1

0 0, 9@ wes T) = Ogo gl w1
<N = TN+ 0f LTy = T+ 0] Cullwy — |
=Lt LT = T + ] €, — w0}
Recall the update rule 4.4 uniformly samples a data from S and S() for every iteration. The probability of selecting the i-th

data is % Combining two cases with expectations, we have

Es,s0,a [ITer = T ] < (0 + ===l L1)Es 0 alT = T + == CuEs 500 allwe = w(?|

5
+ % 2Ly Eg 51,4 (\/g(ici;’wt;Tt) + g(@%“’@%ﬁ“)) o
Note that S and S follow from the same distribution, So
Eg s6,a [||Tt+1 - Tt@ﬂq <1+ %ntTLT)ES,S(”,A”Tt T + %nﬂwlﬁasam\\w —wl| ©
+ %\/En;‘rEs,sm,Av g(xi;wy; Tt)
According to the symmetry of two arguments, we know
ES,SM,A [H'thrl - wﬁlll} <(1+ %W?Lw)Es,sw,A”wt - wgi)H + %UZ%T]ES,SW,AHTt - Tt(i)” o

2
+ vV 2Ly Eg sy, a4/ 9(@i; we; Ty)
We combine (6) and (7) to derive

Eg st allTer1 — Tfi?)ln
| Essoallwer — w4l
F v

1+ Nl T L, NoiyTy, Es,s0.4l| T — T T\2Lr ] 2
< N—JIV '1)72 ’ 1 %—qt w 5,5¢ )’AH k t(z)H + an 2LT 7ES,S(1')’A |: g(m27wt;Tt):|
| Ty mhr + 5 M Lw Eg st allwe —w;”|| Tt w | N

(®)
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Recall that T} and Tt(i) is equal when ¢ = 1, solve the recursion to obtain

i t
Es S(i) A||Tt+1 - Tt(+)1 H 2 t—j
54, : < — E F*77vEg gy 4 g(wiéwﬁTj) ©)
Eg s allwitr — w§-21|| N =

To make F' a symmetric matrix, let n /n¥ = {1 /£, Then for F, we have the following unitary decomposition

L+ Mool Ly Btale, } [Al 0 } {pT ]
= , 10
[ nglnzueT 1+%§177§0Lw [Py, Do) 0 Mo pg (10)

where A1, A2 and p,, p, are eigen values and eigen vectors of F’ respectively. Then We bring (10) into (9) to yield

Es s allTer1 — Tt(i)1||

t
2 )
] L s |t 05T

t t—7
2 X700 Ty
:NZ[pth] { 10 )\é—j ] [ . :|ES,S(¢>,A { g(wi;w.ﬁTj)}
j=1

Es,s,allwirn — wily|
p3v
2 o : ‘
N > ()‘fiﬂplplT“ + At{JPQPgU) Eg s a [ g(mi; wj; Tg)}
j=1
The final conclusion follows from the sum of ¢ = 1,..., N and the Jensen inequality. O

D. The Proof of Thm.4.7

Lemma D.1. For any two square matrix X and Y with the same dimension, we have
XY = X < Y el YTl X1

where || - || indicates any matrix norm.

Before we begin the proof of theorem, we make a necessary assumption as follow.

Assumption D.2. Consider the optimization of Def.4.6, assume T; € 2 for any ¢, where {2 C so(n) is the auxiliary
parameter space. Suppose €2 is a bounded set, satisfying

O10p,f (@i wi Be) = Op,(f@iwis RN - o(IT: = T
ax max : - - : , max —————— | = L ,
T e HaBtf(wit;wt;Rt) —BBt(f(wit;wt;Rt))TH T, €Q ||11f 7Tt(1)|| ¢

Bye{B ernXn|T=5,- B} 9eq

for any x;, and w,, where ¢(a) is the mapping a — ae®. And we denote maxrecq el”ll as H(Q).

Then, formally, we propose our stability analysis for Representation-Balanced Learning.

Lemma D.3. Consider the two groups of parameters (w;, R;) and (wgi), Rgi)) trained on S and S from the same starting
point by the update rule

W1 < Wy — 0, Ow, [T, we; Ry)
Biy1 < By — nfagtf(wit;wt; Ry)
Tiy1 < By — By,

Riy1 + exp(Tiy1)

Assume

e Assumption D.2 holds.

e The function T — f(x;w; el is nonnegative and Lr-smooth for any x and w.

17
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We have

t
B ZHRM Rl <@ Z E ZHTM T+

5

. 1on, .
2\/2LTH(Q)L¢;N171€717]J SEA[ N;f(wﬁwj;Rj)]

Proof. First, we consider |Ry+1 — R§21 |l. When i; = i, we have

1Rees = REL = [ Res = R+ Re — B + RO — R, |
< |[Ry = RO|| + | Ress — Roll + |RY — R,

Then we turn to ||R1 — Relf,

[Rit1 — Ryl = [le"+ — ™|
= |lexp (By — B} — n{ 0p, f(xs;wi; Ry) + nf (0, f(zi;we; Ry))T) — eBt_BtTH
< |0/ (B, f (@i wi; Re)) — nf (O, f (235w Re))" |
exp [|In/ (0, f(zi;wi; Re)) — 0/ (0, f (5w R)" || exp [|B: — B |]

where the inequality is due to Lem.D.1. Then, we denote maxzcq ell”ll as () and ¢(a) as the map a — ae?®
1R = Rell* < 6 (n] 10, £ (@is wis Be) = (O, f (i wis R))T | JH(Q) < HQ)Lon] |0r, (s wis By

The above inequality follows from the bounded parameter space {2 in Assumption.D.2:

¢(105, f (@i wi; Re) — O, (f (@i wi; Re)) ")
Bie{Bier<d1=B,~BT} |0, f(@i; wi; Ry) — Op, (f (@i wi; Ry))T||

< Ly, forany T; € Q

And ||R§i) — R,Eﬁzl || is similar, we have
|RE)) = RN < H@Q) Lonf 000 f (@35 wi”; B
Next, we consider the case that i; # i, we have
|Res1 — RO = || exp(Tisr) — exp(T))
= [lexp(Tyr1 — T3y + T) — exp(T))]]
< | Tia = TP lexp [ Tusn = T | exp [ITS ] (an

<o (ITis = T ) ()
< HQLol|Tur ~ T

() ) .
U =T, ) Lgs. We combine two cases with

where the last inequality is due to the assumption that MaXy, 1) cq QI
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expectations,
G B IR =R < 55 B (IR = RO 4 S H@Le B (T~ T3]+
H(Q) Lyn! R ; :
N LE (107, £ (@53 w03 Rl + 10500 f G0 RO
1 (1) N-1 (i)
= 5o E IR - RO+ Sm@Le B (1T - T+
2H(Q)Lgn
T“SSQ)A[MT, (3500 )|
! RO+ M1 70
< —
<y & IR RO+ T B (T - T+

2\/2LTH( )Ld,’f]tT ~ :
N 5751(@)714{ f(wwwtaRt)}

where the last inequality follows from Lem.C.1. To solve the recursion, we multily N**! on both sides
(121 = 7]+

N B[R - RO <N

5.5, (17 = BV + NV = )R Ly

SS<>A SSU

NtQ\/EH(Q)qu??;F E [ f(iz'th;Rt)]

5,50, A

And then, take a summation for ¢ from 1 to ¢,

|Resr = RELN] <HE@Lo(N —1ZN”1SSUA[II s = TEA )+

SS( A =
2V2LrH(QLs YN T B[ f (s wgs Ry)]
TH(Q) qb; Mg o f(@i;w;; Ry)
Then we take a summation for ¢ = 1,..., N to derive the on-average model stability,

t

[NZHRM RO SHOQLo(N = )Y NI E [Zn =T+

SSA = 5,5,A
t | N
I 2LrH(Q)Ly S NIt = Bisw; Ry)|
T H(2) ¢>Z HJSSA N - f( j
: o (12
SHOLH(N —1) Y N/~ E [NZHTJ-H—T;&HM
= 5,5,A Py
1N
2/ 2L H(Q L¢ZNJ t= I;TSISEA[ NZf(fci;wj;Rj)]
j=1 i=1
The last inequality follows from Jensen inequality. O

Through the Lem.D.3, we give the model stability of orthogonal matrix R in our framework.

Restatement of Theorem 4.7. Consider the two groups of parameters (wy, R;) and (wgi), Rgi)) trained on S and S
from the same starting point by update rule

Wiy 4 Wi — 0y O, [ (T4, w15 Ry)
Bii1 = By —0f 0B, f(wi,;we; Ry)
Tyy1 < Biyn — By,

Riy1 + exp(Tiy1)
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Then let w — f(x;w;e’) and T — f(x;w;eT) in Lem.D.3 be w — g(x;w;T) and T — g(x;w;T) in Thm.4.5.
Assume Assumption.D.2 and all assumptions in Thm.4.5 hold. Denote p(k,j) = )\]ffj piplv+ )\12@7] Do v. Then the {4
model stability of parameter R is given by

%Z hi(5) + ha(j ))ESA{ Fs(wj, R; )}

EL Z |Ress = REL | <

where h1(j) = (N — 1) f ]H I\ p(k, j) a"dh2(j):\/mNjitnj'

Proof. The main idea of this theorem is to plug Thm.4.5 into Lem.D.3. Consider the unbounded E , ¢ 5 |:||Tj+1 — Tj(i)l ||] ,
accoring to the Thm.4.5, we know,

N
1
ZNJ 1 E ST - T
=1

5,8,A
SN J j—k_ T j—k_ T 1 "
§2;Nj ; [)‘1 P1P1V + Ay " PaPa ’UL]ES,A N;f(muwk;]%k)
Combine the conclusion of Thm.D.3 with (13) to derive the result.
¢ N
SSA N Z [Rev1 — REHH < QMH(Q)quZletl%S’A[ Z (Zs;w;; R }JF
j= im1
t i N . 1 N
2H(Q)Ly(N — ;NJ = 2; {)\j p1p1v+)\J p2p2v ESA N;f (z;; wi; Ry)
t L
=2@H(Q)L¢;Nﬂ—t—1m£[ ¥ O (@i )+
¢ t—jt1 N
2H(QY)Ly(N — Z Nk—t=2 {)\k IppTv + X5 pypl v} Es A Z (x;;wj; R
j=1 k=1 im1
We label hy (5) = (N — 1) S22 N¥=t=1p(k, j); and ha(j) = v/2Lp N7~'n;. By merging coefficient, we derive
¢
E, [ N Z I~ B | < P S () + o) Es.a | Esten )
i=
O

E. PyTorch implementation of Qur Method

To show all details of our method, we release the source code of our framework implemented by Pytorch. Our approach is
very simple in implementation, only need more than 20 lines code. Here, we provide two versions of implementation, as
shown in Code.1 and 2. The first is implemented by the geotorch library (Lezcano-Casado, 2019), which could perform
optimization on manifolds easily. Another version is implemented without using other third-party libraries. Both versions
are valid to reproduce experimental results. We recommend using the first since the former is more concise.

F. Details of Fig.2

In Fig.2, we design a toy experiment to simulate feature learning in classification, where the classification problem contains
3 categories. In the experiment of NeurCol Phenomenon, we set every class to have 30 samples. And in the experiment of
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class RBL (nn.Module) :
N
Args:
backbone (nn.Module) : deep model for feature
feature_num (int) : backbone's feature dimension
class_num (int) : the number of classes
_cls num list (list) : numbers of sample in each class

Examples:
>>> import torchvision.models as models
>>> feature_dim = 512
>>> class_dim = 1000
>>> resnetl8 = models.resnetl8 (num _classes=feature_dim) .cuda ()
>>> model = RBL (resnetl8, feature_dim, class_dim, torch.arange(class_dim, 0, -1)).cuda()
>>> pred = model (torch.randn (1, 3, 224, 224).cuda())
>>> print (pred.shape)
torch.Size([1, 1000])

mon

def _ _init__ (self, backbone, feature_num, class_num, _cls_num_list):
super (RBL, self).__init__ ()
self.feature_num = feature_num
self.class_num = class_num
self.backbone = backbone
self.margin = torch.log(torch.Tensor (_cls_num_list) / sum(_cls_num_list)) .cuda(

if feature_num < class_num:

self.rotate = nn.Linear(class_num, feature_num, bias=False)

self.register_buffer ("ETF", self.generate ETF (dim=class_num))
else:

self.rotate = nn.Linear (feature_num, feature_num, bias=False)

self.register_buffer ("ETE", \

self.generate_ETF (dim=feature_num) [:, :self.class_num])

geotorch.orthogonal (self.rotate, "weight")

def generate_ETF (self, dim):
return torch.eye(dim, dim) - torch.ones(dim, dim) / dim

def forward(self, x):
logit = self.backbone(x) @ self.rotate.weight @ self.ETF
return logit if self.training else logit - self.margin

Code 1: PyTorch implementation of our framework using geotorch library (Lezcano-Casado, 2019).

class PLPostHocModel (nn.Module) :
def _ init__ (self, backbone, triv, feature_num, class_num, _cls_num_list):
super (PLPostHocModel, self).__init__ ()
self.feature_num = feature_num
self.class_num = class_num
self.backbone = backbone
_cls_num_list = torch.Tensor (_cls_num_list)
self.margin = torch.log(_cls_num_list / torch.sum(_cls_num_list)).cuda()

if feature_num < class_num:
self.register_buffer ("ETF", self.generate_ETF (dim=class_num))
self.rotate = nn.Linear (class_num, class_num, bias=False)
else:
self.register_buffer ("ETF", self.generate_ETF (dim=feature_num)\
[:, :self.class_num])
self.rotate = nn.Linear (feature_num, feature_num, bias=False)

def generate_ ETF (self, dim):
return torch.eye(dim, dim) - torch.ones(dim, dim) / dim

def encode_rotate(self):
if self.feature_num < self.class_num:
return torch.linalg.matrix_exp(self.rotate.weight - self.rotate.weight.T)\
[:self.feature_num, :]
return torch.linalg.matrix_exp(self.rotate.weight - self.rotate.weight.T)

def forward(self, x):
logit = self.backbone(x) @ self.encode_rotate() @ self.ETF

return logit if self.training else logit - self.margin

def forward_feature(self, x):
return self.backbone (x)

Code 2: PyTorch implementation of our framework without third-party libraries.
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our framework, we set three classes has 100, 10, 1 samples respectively. Both experiments follow the common paradigm of
classification, using cross entropy loss and SGD optimization. To simulate the deep feature extractor, we let every sample
also could be optimized. Besides, when performing optimization updates, we projection the sample feature and classifier’s
weight into a sphere to constrain their maximum norm. This constraint for tne maximal norm is needed, which makes
NeurCol phenomenon more obvious. As shown in Fig.5 (a), if we eliminate this constraint, the feature may not achieve
complete NeurCol phenomenon. Before it reach the symmetry structrues, the excessively large norm makes the loss fast
converge, and feature learning stops due to the vanishing gradient. Besides, one can find that in Fig.5 (b), our framework
still could learn relatively balanced features. We attribute this to the fixed norm of classifier weights in our framework. In
the situation that the norm of classifier weights is fixed, our framework needs to reduce losses through “’pushing” sample
features as far as possible in the direction of corresponding classifier weight.

iteration = 0, CE = 1.122 iteration = 30, CE = 0.995 iteration = 60, CE = 0.814 iteration = 100, CE = 0.470 iteration = 200, CE = 0.020 iteration = 300, CE = 0.006
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(a) The NeurCol phenomenon. There are 30 samples for each class.
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(b) The feature learning of our framework. Each class has 100, 10, 1 samples respectively.

Figure 5: Experiments without constraint of maximal norm.
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