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Abstract

Conformational ensembles of protein structures are immensely important both for
understanding protein function and drug discovery in novel modalities such as
cryptic pockets. Current techniques for sampling ensembles such as molecular dy-
namics (MD) are computationally inefficient, while many recent machine learning
methods do not transfer to systems outside their training data. We propose JAMUN
which performs MD in a smoothed, noised space of all-atom 3D conformations of
molecules by utilizing the framework of walk-jump sampling. JAMUN enables
ensemble generation for small peptides at rates of an order of magnitude faster
than traditional molecular dynamics. The physical priors in JAMUN enables trans-
ferability to systems outside of its training data, even to peptides that are longer
than those originally trained on. Our model, code and weights are available at
https://github.com/prescient-design/jamun.

1 Introduction

Proteins are inherently dynamic entities constantly in motion, and these movements can be vitally
important. They are not well characterized as single structures as has traditionally been the case,
but rather as ensembles of structures drawn from the Boltzmann distribution [30]. Protein dynamics
is required for the function of most proteins, for instance the global tertiary structure motions for
myglobin to bind oxygen and move it around the body [57], or the beta-sheet transition to a disordered
strand for insulin to dissociate and find and bind to its receptor [5]. Similarly, drug discovery on
protein kinases depends on characterizing kinase conformational ensembles [26]. In general the
search for druggable ‘cryptic pockets’ requires understanding protein dynamics [15], and antibody
design is deeply affected by conformational ensembles [23]. However, while machine learning (ML)
methods for molecular structure prediction have experienced enormous success recently, ML methods
for dynamics have yet to have similar impact. ML models for generating molecular ensembles are
widely considered the ‘next frontier’ [11, 57, 91]. In this work, we present JAMUN (Walk-Jump
Accelerated Molecular ensembles with Universal Noise), a generative ML model which advances this
frontier by demonstrating improvements in both speed and transferability over previous approaches.

While the importance of protein dynamics is well-established, it can be exceedingly difficult to
sufficiently sample large biomolecular systems. The most common sampling method is molecular
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Figure 1: (a) Overview of walk-jump sampling in JAMUN. (b) Adding noise to an initial conformation
x(0) to obtain y(0) ∼ pY . (c) One iteration of BAOAB-discretized Langevin dynamics (Equation 3
and Equation 68) starting from y(t) ∼ pY leads to a new sample y(t+1) ∼ pY . (d) Denoising of y(t)

according to Equation 7 gives us new samples x̂(t).

dynamics (MD), which will sample the Boltzmann distribution in the limit of infinite sampling time,
but is limited by the need for very short timesteps of 1-2 femtoseconds in the numerical integration
scheme. Many important protein dynamic phenomena occur on the timescale of milliseconds. As
described by Borhani and Shaw [10], simulating with this resolution is ‘. . . equivalent to tracking the
advance and retreat of the glaciers of the last Ice Age – tens of thousands of years – by noting their
locations each and every second.’ Importantly, there is nothing fundamental about this small time-step
limitation; it is an artifact of high-frequency motions, such as bond vibrations, that have little effect on
protein ensembles [51]. Enhanced sampling methods have been developed in an attempt to accelerate
sampling, but they often require domain knowledge about relevant collective variables, and, more
importantly, do not address the underlying time-step problem [87].

A large number of generative models have been developed to address the sampling inefficiency
problems of MD using machine learning, which we discuss in greater detail in Section 4. The key
requirement is that of transferability: any model must be able to generate conformational ensembles
for molecules that are significantly different from those in its training set. To benchmark this
transferability, we focus on small peptides whose MD trajectories can be run to convergence in a
reasonable amount of time, unlike those for much larger proteins [78].

Here, we propose a new method, JAMUN, that bridges molecular dynamics with score-based learning
in a latent space. This physical prior enables JAMUN to transfer well – just like force fields for
molecular dynamics can – to unseen systems. The key idea is to run Langevin molecular dynamics in
a noisy ‘latent’ space Y ∈ RN×3, instead of the original space X ∈ RN×3 of all-atom 3D positions.
Indeed, Y is constructed by adding a small amount of i.i.d Gaussian noise ε to X:

Y = X + σε (1)

To run this Langevin MD over Y , the crucial component is the score function∇y log pY (y), which
needs to be modelled. (This is identical to how a force field needs to be parametrized in classical
MD). Once the MD trajectory over Y is run, the resulting samples need to be mapped back to clean
data via a denoising procedure.

This framework is actually mathematically described by Walk-Jump Sampling (WJS), as first intro-
duced by Saremi and Hyvärinen [70]. WJS has been used in voxelized molecule generation [62, 63]
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and protein sequence generation [24]. In particular, JAMUN corresponds to a SE(3)-equivariant
Walk-Jump sampler of point clouds.

The WJS framework actually tells us that the score function∇y log pY (y) can be used for denoising
as well, removing the need to learn a separate model. Indeed, this mathematical connection is used to
learn the score function, similar to the training of diffusion models. Unlike diffusion models such as
DDPM [32], however, we only need to learn the score function at a single noise level. The choice of
this noise level is important; we aim to simply smooth out the distribution enough to resolve sampling
difficulties without fully destroying the information present in the data distribution.

In short, the score function ∇y log pY (y) is learned by adding noise to clean data x, and a denoising
neural network is trained to recover the clean samples x from y. This denoiser defines the score
function of the noisy manifold Y which we sample using Langevin dynamics (walk step) and allows
us to periodically project back to the original data distribution (jump step). Crucially, the walk and
jump steps are decoupled from each other.

Rather than starting over from an uninformative prior for each sample as is commonly done in
diffusion [32, 79] and flow-matching [54, 47], JAMUN is able to simply denoise samples from
the slightly noised distribution, enabling much greater sampling efficiency. Appendix A contains
a comparison of JAMUN at a single noise level, against full diffusion which begins the sampling
process at a high noise level.

We train JAMUN on a large dataset of MD simulations of small peptides. We demonstrate that
this model can generalize to a holdout set of unseen peptides. In all of these cases, generation with
JAMUN yields converged sampling of the conformational ensemble faster than MD with a standard
force field, even outperforming several state-of-the-art baselines. These results suggest that this
transferability is a consequence of retaining the physical priors inherent in MD data. Significantly,
we find that JAMUN performs well even for peptides longer than the ones seen in the training set.

2 Methods

2.1 Representing Peptides as Point Clouds

Each point cloud of N atoms can be represented by the tuple (x, h) where x ∈ RN×3 represents
the 3D coordinates of each of the N atoms and h ∈ RD represents atom and covalent bonding
information. h can be easily computed from the amino acid sequence for each peptide, and hence is
not learned or sampled. For clarity of presentation, we omit the conditioning on h in the distributions
and models below. We discuss how our model uses h in Section 2.4.

At sampling time, we assume access to an initial sample x(0) ∈ RN×3 sampled from the clean data
distribution pX . Similarly to how MD simulations of small peptides are commonly seeded, we use
the sequence command in the LEaP program packaged with the Amber force fields to procedurally
generate x(0). In theory, x(0) could also be obtained from experimental data, such as crystallized
structures from the Protein Data Bank [9]. We plan to explore this approach in the future to seed
JAMUN simulations for larger proteins.

2.2 Walk-Jump Sampling

JAMUN operates by performing walk-jump sampling on molecular systems represented as 3D point
clouds. A conceptual overview of the process is illustrated in Figure 1.

Given the initial sample x(0) ∼ pX , walk-jump sampling performs the following steps:

1. Noise the initial structure x(0) to create the initial sample y(0) from the noisy data distribution
pY (Figure 1a):

y(0) = x(0) + σε(0), where ε(0) ∼ N (0, IN×3). (2)

2. Walk to obtain samples y(1), . . . , y(N) from pY using Langevin dynamics which conists of
numerically solving the following Stochastic Differential Equation (SDE) (Figure 1b):

dy = vydt, (3)

dvy = ∇y log pY (y)dt− γvydt+M− 1
2

√
2dBt, (4)
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where vy represents the particle velocity, ∇y log pY (y) is the gradient of the log of the
probability density function (called the score function) of pY , γ is friction, M is the mass,
and Bt is the standard Wiener process in N × 3-dimensions: Bt ∼ N (0, tIN×3). In
practice, we employ the BAOAB solver (Appendix I) to integrate Equation 3 numerically.

3. Jump back to pX to obtain samples x̂1, . . . , x̂N (Figure 1c) :

x̂i = x̂(yi) = E[X | Y = yi], (5)

where x̂(·) ≡ E[X | Y = ·] is called the denoiser. It corresponds to the minimizer
(Section H.1) of the ℓ2-loss between clean samples X and samples denoised back from
Y = X + σε.

x̂(·) = argmin
f

EX∼pX ,ε∼N (0,IN×3)
Y=X+σε

[∥f(Y )−X∥2], (6)

where f : RN×3 → RN×3. As shown by Robbins [66], Miyasawa [58] (and Section H.2),
the denoiser x̂ is closely linked to the score∇y log pY :

x̂(y) = y + σ2∇y log pY (y). (7)

Importantly, the score function∇y log pY shows up in both the walk and jump steps, and we need to
approximate this quantity.

2.3 Learning to Denoise

In order to run Walk-Jump Sampling as outlined above, we have the choice of modelling either the
score∇y log pY or the denoiser x̂ as they are equivalent by Equation 7. Following trends in diffusion
models [41, 42], we model the denoiser as a neural network x̂θ(y, σ) ≈ x̂(y) parameterized by model
parameters θ.

Importantly, we only need to learn a model at a single, fixed noise level σ. This is unlike training
diffusion or flow-matching models where a wide range of noise levels are required for sampling. In
particular, the choice of noise level σ for WJS is important because mode-mixing becomes faster as
σ is increased, but the task asked of the denoiser becomes harder.

The denoiser x̂θ thus takes in noisy point clouds y formed by adding noise (at a fixed noise level σ)
to clean point clouds x. The denoiser is tasked to reconstruct back x, given y. To be precise, training
the denoiser x̂θ consists of solving the following optimization problem:

θ∗ = argmin
θ

EX∼pX ,ε∼N (0,IN×3)
Y=X+σε

∥x̂θ(Y, σ)−X∥2 (8)

to obtain θ∗, the optimal model parameters. As is standard in the empirical risk minimization
(ERM) [84] setting, we approximate the expectation in Equation 8 by sampling X ∼ pX and
ε ∼ N (0, IN×3). We minimize the loss as a function of model parameters θ using the first-order
optimizer Adam [44] in PyTorch 2.0 [4, 22].

2.4 Parametrization of the Denoiser Network

We summarize the key features of the denoiser network x̂θ(y, σ) which will approximate x̂(y) in
this section. Note that σ is fixed in our setting, but we explicitly mention it in this section for
clarity. A diagrammatic overview of our model along with specific hyperparameters are presented in
Appendix F.

We utilize the same parametrization of the denoiser as originally proposed by Karras et al. [41, 42]
(in the context of image generation):

x̂θ(y, σ) = cskip(σ)y + cout(σ)Fθ(cin(σ)y, cnoise(σ)), (9)

where Fθ represents a learned network parameterized by parameters θ. In particular, Fθ (Figure 14)
is a geometric graph neural network (GNN) model similar to NequIP [8, 81]. Importantly, Fθ is
chosen to be SE(3)-equivariant, in contrast to existing methods [33, 45, 46] that utilize the E(3)-
equivariant EGNN model [71]. As rightly pointed out by Dumitrescu et al. [20] and Schreiner et al.
[73], E(3)-equivariant models are equivariant under parity, which means that are forced to transform
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Figure 2: A side-by-side comparison of uncapped (left) compared to capped (right) ALA-CYS. The
acetyl (ACE) and N-methyl (NME) capping groups provide steric hindrance and prevent local charge
interactions on the N-terminal and C-terminal ends.

mirrored structures identically. When we experimented with E(3)-equivariant architectures, we
found symmetric Ramachandran plots which arise from the unnecessary parity constraint of the
denoising network. For this reason, TBG [45] and Timewarp [46] use a ‘chirality checker’ to post-hoc
fix the generated structures from their model. For JAMUN, such post-processing is unnecessary
because our model can distinguish between chiral structures.

The coefficients cskip(σ), cout(σ), cin(σ), cnoise(σ) in Equation 9 are normalization functions (from R+

to R) which adjust the effective inputs and outputs to Fθ. They are chosen to encourage re-use of the
input y at low noise levels, but the opposite at high noise levels. Importantly, based on the insight
that Fθ uses relative vectors in the message passing steps, we adjust the values of these coefficients
instead of simply using the choices made in Karras et al. [41, 42], Wohlwend et al. [89], Abramson
et al. [1], as discussed in Appendix G.

In Fθ, edges between atoms are computed using a radial cutoff of 10Å over the noisy positions in
y. The edge features are a concatenation of a one-hot feature indicating bonded-ness and the radial
distance embedded using Bessel functions. As obtained from h, atom-level features are computed
using the embedding of the atomic number (eg. C and N), and the atom name following PDB
notation (eg. CA,CB for alpha and beta carbons). Similarly, residue-level features are obtained using
the embedding of the residue code (eg. ALA, CYS) and concatenated to each atom in the residue.
Importantly, we do not use the sequence index of the residues (eg. 0, 1, . . .) as we found that it hurts
generalization to longer peptide lengths.

3 Datasets

For development, demonstration, and benchmarking against existing models, we use three different
datasets consisting of peptides from 2 to 5 amino acids (AA) long: TIMEWARP 2AA-LARGE and
TIMEWARP 4AA-LARGE from Klein et al. [46], MDGEN 4AA EXPLICIT from Jing et al. [37], and
our own MD data simulated with OpenMM [21]. A summary of these datasets is presented in Table 6.
The differing simulation conditions across these datasets allows us to test the broad applicability
of our approach. We describe these, as well as an internal dataset we use for more realistic setting
analysis in C.

We also use the implicit MD code from Timewarp to generate trajectories for three randomly picked
5AA peptides with codes NRLCQ, VWSPF and KTYDI. We call this dataset UNCAPPED 5AA.
Further details on MD simulation conditions can be found in Appendix C.

4 Related Work and Baseline Models

The goal of building machine learning models that can generate conformational ensembles of
molecular systems is not new. While a full overview of this field is beyond the scope of this work
– see [6] for a recent review – we note a few relevant previous efforts. Boltzmann Generators
[60] introduced the idea that a neural network could be used to transform the underlying data
distribution into an easier-to-sample Gaussian distribution. DiffMD [90] learns a diffusion model over
conformations of small organic molecules from MD17 [14], showing some level of transferability
across C7O2H10 isomers [76]. Timewarp [46] uses a normalizing flow as a proposal distribution in
MCMC sampling of the Boltzmann distribution to approximate the conditional distribution of future
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conformational states x(t+∆t) conditional on the present state x(t). ITO [73] modelled this distribution
using diffusion with a SE(3)-equivariant PaiNN architecture. Equijump [19] extended this idea with
a protein-specific message-passing neural network with reweighting to sample rarer conformations of
fast-folding proteins. Importantly, Timewarp was the first truly transferable Boltzmann generator, but
was still too slow relative to molecular dynamics on unseen systems. Later, Transferable Boltzmann
Generators (TBG) [45] built upon Timewarp by using flow-matching instead of maximum likelihood
estimation and a more efficient continuous normalizing flow architecture.

We discuss a few more related methods and studies in E.

A related problem is that of protein structure prediction, as successfully tackled by the AlphaFold
models [77, 38, 1]. Here, we compare to Boltz-1 [89], an open-source reproduction of AlphaFold3
[1]. Boltz-1 was trained exclusively on static crystalline structures of folded states, without any
dynamics or conformational information, allowing us to evaluate how effectively the conformational
landscape can be inferred from structural data alone.

By fixing covalent bond lengths along the backbone and side chains, AlphaFold2 introduced a ‘frames’
parametrization of protein structures consisting of a roto-translation together with 7 torsion angles
for each residue. MDGen [37] cleverly builds on this parametrization by creating a SE(3)-invariant
tokenization of the backbone torsion angles, relative to a known initial conformation (here, x(0)).
Then, they learn a stochastic interpolant [3] (a generalization of diffusion and flow-matching) over
the trajectories of these tokens. While their overall objective is different from ours – MD trajectory
generation as opposed to Boltzmann distributions – we can compare to their ‘forward simulation’
model. Similarly to AlphaFold2, their SE(3)-invariant tokenization is limited to single-chain proteins
and peptides, but allows for more efficient architectures. On the other hand, JAMUN models all atoms
explicitly with a SE(3)-equivariant network, which makes it far more flexible and easily extendable
to molecules other than proteins, as discussed in the supplement.

Several models build upon AlphaFold2 to sample conformational ensembles, discussed further in E.
One such method is BioEmu– technically only a backbone-only model, but their repository provides
an additional side-chain reconstruction step using H-Packer [86], allowing comparison to the all-atom
models. As seen in Figure 3, the side-chain reconstruction can be quite expensive, because of the
lack of support for batched inference with H-Packer.

5 Metrics

We adopt the analysis methods of MDGen [37]. In particular, we compare models by projecting their
sampled distributions of all-atom positions onto a variety of variables: pairwise distances, dihedral
angles of backbone (known as Ramachandran plots) and sidechain torsion angles, TICA (time-lagged
independent coordinate analysis) projections, and metastable state probabilities as computed by
Markov State Models (MSMs) fit with PyEMMA [72]. TICA [59] is a popular dimensionality
reduction method for larger molecules which aims to extract slow collective degrees of freedom from
a trajectory [61, 75]. As is standard practice, all TICA projections and MSMs are estimated using the
reference MD data.

6 Experiments

Here, we compare to several of these state-of-the art methods on our benchmark datasets: 1. TBG
[45] on TIMEWARP 2AA-LARGE, 2. MDGen [37] on MDGEN 4AA-EXPLICIT, and 3. Boltz-1 [89]
and BioEmu [52] on UNCAPPED 5AA.

Figure 3 contains a summary of the sampling efficiencies for different models, averaged over the
corresponding test sets peptides. While the TBG model can technically produce reweighted samples,
we run it in the un-reweighted mode, making it a Boltzmann emulator which is almost 10× faster in
practice. This allows for a fair comparison to JAMUN.

Due to the different simulation conditions across the datasets shown in Table 6, we train a different
JAMUN model for each dataset. However, the same noise level of σ = 0.4Å is applied for training
and sampling on all datasets. In fact, all training hyperparameters are kept identical across datasets.
We trained each JAMUN model for 3 days on 2 NVIDIA RTX A100 GPUs with 40 GB memory,
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Model Time per Sample Number of Samples Total Time

TBG 720ms 5, 000 60min
MDGen 6ms 10, 000 1min
Boltz-1 360ms 10, 000 60min
BioEmu 15ms 10, 000 2.5min

BioEmu + H-Packer 4320ms 10, 000 720min

JAMUN (2AA) 2ms 100, 000 3min
JAMUN (4AA) 3ms 100, 000 5min
JAMUN (5AA) 8ms 100, 000 12.5min

CAPPED 2AA 40ms 60, 000 40min
MDGEN 4AA-EXPLICIT 11ms 1, 000, 000 180min

UNCAPPED 5AA 108ms 100, 000 180min

Figure 3: Comparison of (approximate and batched) sampling times per test peptide for baseline
models (top), baseline MD simulations (middle) and JAMUN. All models and baselines were run on
a single NVIDIA RTX A100 GPU, except for MDGEN 4AA-EXPLICIT which was simulated on a
single NVIDIA T4 GPU, as mentioned in Jing et al. [37].

Figure 4: Across both TIMEWARP 2AA-LARGE (left) and TIMEWARP 4AA-LARGE (right), MSM
state probabilities for JAMUN samples (on the y-axis) and those for the reference MD trajectories (on
the x-axis) across all test peptides are strongly correlated. The perfect sampler will obtain an R2 of 1.

although competitive results can be obtained by training for only 1 day. Our denoiser model is built
with the e3nn library [25], and contains approximately 10.5M parameters.

This scale of noise (σ = 0.4Å) is large enough to result in significant disruption of structure, leading
to the smoothed Gaussian convolved ‘walk’ manifold. However, the scale is also small enough to
avoid atoms ‘swapping’ position, for instance, or pairs of bonded atoms ending up very far from
each other with reasonable probability. Indeed, as shown in Figure 8a, we find that higher noise
levels (such as σ = 0.8Å) result in samples with broken topologies, while lower noise levels (such as
σ = 0.2Å) require many more sampling steps to explore the entire conformational landscape.

6.1 Results on TIMEWARP 2AA-LARGE and TIMEWARP 4AA-LARGE

First, we show that JAMUN samples similar states as the reference MD data. Indeed, Figure 4 shows
that the metastable state probabilities over JAMUN sampled trajectories match very well with those
over the reference MD data on the TIMEWARP 2AA-LARGE and TIMEWARP 4AA-LARGE datasets.

Table 1 shows that on TIMEWARP 2AA-LARGE, JAMUN outperforms TBG when run for equal
amounts of time (based on Figure 3), and is only slightly worse when TBG is run for 20× longer.

In Figure 5a and Figure 5b , we visualize the TICA-0,1 projections and Ramachandran plots for
randomly chosen test peptides from TIMEWARP 2AA-LARGE, highlighting that TBG misses certain
basins that JAMUN is able to sample.
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Trajectory Backbone Torsions Sidechain Torsions All Torsions TICA-0 TICA-0,1 Metastable Probs

JAMUN 0.130± 0.020 0.185± 0.044 0.165± 0.030 0.177± 0.053 0.260± 0.052 0.155± 0.063
TBG 0.083± 0.028 0.115± 0.045 0.105± 0.038 0.122± 0.051 0.225± 0.070 0.101± 0.046
TBG (20× shorter) 0.203± 0.070 0.235± 0.073 0.225± 0.071 0.240± 0.072 0.484± 0.073 0.124± 0.054

JAMUN 0.159± 0.060 0.210± 0.057 0.187± 0.054 0.257± 0.111 0.353± 0.120 0.262± 0.118
Reference (10× shorter) 0.100± 0.035 0.092± 0.027 0.095± 0.025 0.234± 0.068 0.332± 0.067 0.286± 0.066
Reference (100× shorter) 0.227± 0.062 0.254± 0.060 0.240± 0.051 0.444± 0.131 0.569± 0.108 0.482± 0.138
MDGen 0.129± 0.039 0.089± 0.032 0.107± 0.028 0.228± 0.092 0.320± 0.087 0.233± 0.093

JAMUN 0.196± 0.027 0.196± 0.013 0.197± 0.010 0.336± 0.049 0.440± 0.048 0.250± 0.075
Ref. (10× shorter) 0.118± 0.013 0.150± 0.032 0.135± 0.015 0.430± 0.077 0.504± 0.079 0.460± 0.051
Ref. (100× shorter) 0.272± 0.062 0.307± 0.023 0.290± 0.039 0.555± 0.070 0.678± 0.034 0.601± 0.112
Boltz-1 0.425± 0.033 0.402± 0.036 0.411± 0.029 0.457± 0.050 0.584± 0.026 0.483± 0.047
BioEmu 0.329± 0.013 0.489± 0.024 0.420± 0.018 0.415± 0.092 0.597± 0.026 0.321± 0.018

Table 1: Comparison of Jenson-Shannon distances between JAMUN and baselines, both benchmark
models and reference MD trajectories, averaged over test peptides in each dataset. Baselines are
shortened to represent comparable sampling time to Jamun. First, compared with TBG for TIMEWARP
2AA-LARGE. Note that TBG (20× shorter) has a similar sampling time as JAMUN. Second, with
MDgen and MD trajectories (shortened by a factor of 10 and 100) for the MDGEN 4AA-EXPLICIT.
Third, for generalization, reference MD (shortened by a factor of 10 and 100), Boltz-1 and BioEmu,
for three test peptides in UNCAPPED 5AA.

a) b)

Figure 5: Results for 4 randomly chosen test peptides on TIMEWARP 2AA-LARGE: (a) Ramachan-
dran plots, and (b) TICA-0,1 projections.

6.2 Results on MDGEN 4AA-EXPLICIT

Table 1 shows that JAMUN is very competitive with MDGen on the JSD metrics. In fact, the TICA
projections in Figure 6 shows that MDGen is missing some basins that JAMUN is able to sample,
while the Ramachandran plots show an example where JAMUN hallucinates a basin.

Figure 7 shows the significant speedups in backbone and sidechain torsion decorrelation times
for JAMUN compared to the reference MD data. This matches our intuition about taking ‘larger’
integrator steps in the smoothed manifold of the noisy latent space.

We perform an analysis of the physical validity and the energy of JAMUN samples in Appendix B.
In summary, we find that JAMUN samples pass all Posebusters [12] checks at a rate of ≈ 94.7% and
have energies close to the ground truth MD for randomly selected 20 unseen peptides.

6.3 Assessing Generalization over Peptide Lengths with UNCAPPED 5AA

JAMUN’s graph neural network architecture enables it to operate on molecules of larger sizes than
it was originally trained on. Thus, we test whether JAMUN can generalize to peptides of lengths
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Figure 6: MDGEN 4AA-EXPLICIT results: (left) TICA-0,1 projections for 4 randomly chosen test
peptides; (right) Ramachandran plots for JAMUN and MDGen on a randomly chosen test.
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Figure 7: MDGEN 4AA-EXPLICIT results: Speedup defined as ratio of decorrelation time his-
togrammed for all test backbone (left) and sidechain (right) torsions.

beyond its training set. This is a challenging task, and one that we believe conformational generation
models have not been adequately benchmarked on. Unfortunately, neither TBG nor MDGen transfer
to UNCAPPED 5AA due to fixed-length positional embeddings, despite our best efforts. In particular,
we initialized the positional embeddings to support longer peptides, but this resulted in broken
topologies in the resulting samples. Instead, we choose Boltz-1 and BioEmu which support sampling
on UNCAPPED 5AA to compare against JAMUN trained on TIMEWARP 4AA-LARGE.

Surprisingly, we find that the JAMUN model trained only on 4AA peptides can accurately predict
ensembles for 5AA peptides. Figure 8b and Figure 11 show that JAMUN is able to recover most
states and even reproduce relative probabilities. Interestingly, the same experiment does not work if
we train on TIMEWARP 2AA-LARGE instead, suggesting that the 2AA reference MD data may not
be informative enough to generalize from.

On the other hand, we find that Boltz-1 is unable to sample the diversity of peptide conformations.
This is not entirely surprising as Boltz-1 was not trained on any MD data, as we noted before. Further,
Boltz-1 also utilizes a common pair representation across all diffusion samples, as computed by its
Pairformer stack. The pair representation intuitively represents the residue-wise distance matrix,
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Figure 8: (left) Comparing noise sensitivity for an example test peptide GCSL for JAMUN, sampled
identically, showing the tradeoff between slower mode mixing at σ = 0.2Å) and broken topologies at
σ = 0.8Å. (right) TICA-0,1 projections for three test peptides in UNCAPPED 5AA.

and thus encodes a significant portion of the geometry. Keeping this representation fixed possibly
prevents the sampling of large conformational changes.

Surprisingly, BioEmu also seems to struggle in this setting, even when considering distributions of
backbone torsion angles only. This suggests that BioEmu cannot capture the relative flexibility of
smaller peptides, even when trained on MD data for much larger proteins.

Quantitatively, Table 1 shows that JAMUN significantly outperforms Boltz-1 and BioEmu on the
metrics from Section 5. As seen in Figure 3, JAMUN is roughly 5× faster than Boltz-1, and is
roughly 60× faster than BioEmu when we perform side-chain reconstruction with H-Packer.

7 Conclusion

We present JAMUN, a walk-jump sampling model for generating ensembles of molecular confor-
mations, outperforming the state-of-the-art TBG model, and competitive with the performance of
MDGen with no protein-specific parametrization. This represents an important step toward the
ultimate goal of a transferable generative model for protein conformational ensembles. Performing
MD in the noised space gives the model a clear physics interpretation, and allows faster decorrelation
(and hence, sampling) than classical MD.

The model has some limitations that motivate future work. While it is highly transferable in the space
of two to five amino acid peptides, scaling up is likely to require more exploration and intensive data
generation in future work. Additionally, while the current SE(3)-equivariant denoiser architecture
works well, further development of the denoising network could speed up sampling. Alternative jump
methods, such as multiple denoising steps (à la diffusion), could also serve to sharpen generation.
Lastly, a promising direction that has not yet been explored is the application of classical enhanced
sampling methods, such as metadynamics, for traversing the noisy space.
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[52] S. Lewis, T. Hempel, J. Jiménez-Luna, M. Gastegger, Y. Xie, A. Y. K. Foong, V. G. Satorras,
O. Abdin, B. S. Veeling, I. Zaporozhets, Y. Chen, S. Yang, A. Schneuing, J. Nigam, F. Barbero,
V. Stimper, A. Campbell, J. Yim, M. Lienen, Y. Shi, S. Zheng, H. Schulz, U. Munir, C. Clementi,
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] In the abstract, our claims are that JAMUN is able to generate ensembles faster
than traditional methods and recent ML methods, and can generalize outside its training data.
Figure 3 shows the comparison of sampling times for JAMUN and all baselines. Table 1
and Table 1 show that JAMUN is able to outperform TBG, Boltz-1 and BioEmu in terms of
efficiency in sampling the conformational space in total wall-clock time. Table 1 shows that
JAMUN is competitive with the recently proposed peptide-specific MDGen model in terms
of sampling quality. Section 6.3 shows that JAMUN is able to generalize to 5AA peptides,
even when trained only on 4AA peptides, which is out of the reach of models such as TBG
and MDGen. For these 5AA peptides, JAMUN is able to outperform Boltz-1 and BioEmu
which were trained on crystal structures and MD data of much larger protein structures
respectively.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] The key limitation of the paper is described in Section 7, that JAMUN is
transferable across 2-5 amino acid long peptides, but the model has not been tested on
longer peptides and full proteins. The SE(3)-equivariant denoiser works well, but further
development of the denoising network could speed up sampling to match up to MDGen.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] The main contribution of our work is not theoretical. We largely build upon
the theoretical framework of Walk-Jump Sampling as developed by [70]. For completeness,
we re-derive all key theoretical results in Appendix H and re-derive the Langevin dynamics
update in Appendix J.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] We provide details about the training and sampling of JAMUN in Section 2.2,
with details of the denoiser in Section 2.4 and Appendix F. We also provide code to
reproduce our results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] The code was submitted in accordance with the (https://nips.cc/
public/guides/CodeSubmissionPolicy) which includes scripts to reproduce the re-
sults in the paper. Section 3 includes the description of the data used within the paper.
The TIMEWARP 2AA-LARGE, TIMEWARP 4AA-LARGE, and MDGEN 4AA-EXPLICIT
datasets are available to the public under an MIT licence. We are in the legal process of
sharing the CAPPED 2AA dataset for public use.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] The data splits are described in Section 3, and were chosen to allow a
comparison to existing baseline models. The parametrization and the hyperparameters of
our model are described in Section 2.4 and Appendix F. We also provide code to reproduce
our results.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] Our metrics are averaged over the test dataset, where we report the mean and
1-sigma errors for all JSD metrics.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] We provide the compute details for training JAMUN in Section 6 and
sampling JAMUN and all baseline models in Figure 3.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] We have made our best effort to conform to NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] This paper presents work whose goal is to advance the field of accelerated
sampling of protein conformations. Due to the niche field of study, we do not believe that
there are any negative societal impacts that arise directly from our work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] The authors do not foresee any ways in which this model could be misused.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] Yes, we credit all authors for creating the benchmark datasets: Klein et al.
[46] for TIMEWARP 2AA-LARGE and TIMEWARP 4AA-LARGE, and Jing et al. [37] for
MDGEN 4AA-EXPLICIT available under the MIT license. We have respected their terms
of use.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] The new CAPPED 2AA dataset is described in Section 3 and Appendix C.
We are in the legal process of releasing this dataset for public use.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] This paper did not involve crowdsourcing or research with human subjects..

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] This paper does not involve crowdsorcing or research with humans. The data
was all collected in silico.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] The authors did not use LLMs in the core research methods.

19



A Comparison of Walk-Jump Sampling Against Full Diffusion

Section 6 contains a comparison of JAMUN with existing baselines, but does not directly address
the comparison of the techinique of walk-jump sampling with standard diffusion. We perform this
comparison here; we fix the JAMUN architecture and directly compare walk-jump sampling (at a
single noise level) to full diffusion (which samples a range of noise levels from very large to very
small).

We train a diffusion model with the same JAMUN architecture on TIMEWARP 2AA. We then sample
from this model using both diffusion (specifically, the ODE sampler with a noise schedule of 64
steps from 0.01Å to 10Å using the Heun second order method as recommended by EDM [41]) and
walk-jump sampling. We compare the Jensen-Shannon divergence (JSD) of the backbone torsions
averaged over the TIMEWARP 2AA test set as a function of number of samples and number of
function evaluations (NFE):

Figure 9: Comparison between diffusion, walk-jump and the ground truth MD in terms of JS
divergence of backbone torsions to the full ground truth MD distributions, as a function of (left)
number of samples and (right) number of function evaluations.

Sampler Number of Samples NFE JSD-Backbone Torsions ↓
Walk-Jump 3149 6298 0.1501
Diffusion 3149 399923 0.1363

Walk-Jump 200000 400000 0.0496
Diffusion 200000 25400000 0.0460

Table 2: Comparison of walk-jump and diffusion sampling with the same model. Diffusion obtains a
better JSD metric than walk-jump sampling, but at the cost of ≈ 30 more sampling time.

Table 2 contains a summary of the key comparison. Essentially, we find that walk-jump sampling is
faster with only minor loss in fidelity; because it works in a partially noised space, instead of having
to generate every sample from an uninformative Gaussian prior over many steps.

B Physical Validity and Energy Analysis

Here, we perform a physical validity analysis on the generated JAMUN samples, using the popular
Posebusters [12] package. We randomly selected 20 unseen test peptides from the MDGEN 4AA-
EXPLICIT dataset for this analysis.

We see that the bond lengths are correctly captured with high probability by JAMUN. Furthermore,
the overall quality of the JAMUN samples is high. For a finer-grained view into the performance
across the 20 test peptides, we report the empirical CDFs of the pass rates:

Next, we compute the force field energies for JAMUN samples. We add hydrogen atoms using
OpenMM’s PDBFixer [21], and compute energies using the amber14 force field. We find that the
energies of the JAMUN samples overlap well with those of the reference MD samples:
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Posebusters Metric Average Pass Rate

Valid Bond Lengths 97.0%
Valid Bond Angles 99.4%

Internal Steric Clash 100.0%
Internal Energy 97.5%

Overall 94.7%

Table 3: Average pass rates for Posebusters metrics on JAMUN samples.

Posebusters Pass Rate > 90% > 92% > 94% > 96% > 98% 100%

Valid Bond Lengths 20
20

18
20

17
20

14
20

10
20

5
20

Valid Bond Angles 20
20

20
20

20
20

20
20

18
20

14
20

Internal Steric Clash 20
20

20
20

20
20

20
20

20
20

20
20

Internal Energy 20
20

19
20

19
20

17
20

10
20

5
20

Overall 19
20

14
20

13
20

11
20

6
20

2
20

Table 4: Empirical CDF of pass rates across 20 test peptides.

C Data Details

The TIMEWARP and MDGEN datasets consist of ‘uncapped’ peptides, whose termini are zwitterionic
amino and carboxyl groups, as shown in the left panel of Figure 2. These are not ideal analogues of
amino acids in proteins due to local charge interactions as well as lack of steric effects.

We also create a similar dataset called CAPPED 2AA of 2AA peptides by adding ACE (acetyl) and
NME (N-methyl amide) caps, a common practice in molecular dynamics simulations of very small
peptides. As illustrated in the right panel of Figure 2, these caps introduce additional peptide bonds
with the first and last residues. These peptide bonds remove the need for the zwitterion, while the
methyl group provides some steric interactions. These capping groups increase the complexity of the
modelling task, but ensure a more realistic distribution of conformations. We choose the same splits
as in TIMEWARP 2AA-LARGE. Since we simulated this data ourselves, we can also measure the
wall-clock speed-ups of JAMUN relative to MD on this dataset.

We ensure that our unbiased molecular dynamics runs are converged or representative by comparing
against biased molecular dynamics runs using Non-Equilibrium Umbrella Sampling (NEUS) [18, 83],
a trajectory stratification based enhanced sampling algorithm. The protein is represented by the
amber99sbildn force field [64]. The simulations are performed at 300 K with the BAOAB integrator
[50] in OpenMM [21]; LINCS is used to constrain the lengths of bonds to hydrogen atoms [31];
Particle Mesh Ewald is used to calculate electrostatics [16]; the step size was 2 fs. The systems are
solvated with TIP3P water models and equilibrated under NVT and NPT ensembles for 100ps each.

For the 2AA datasets, the training set consists of 50% of all possible 2AA peptides. For the 4AA
datasets, the generalization task is much harder, because the number of 4AA peptides in the training
sets is less than 1% and 2% respectively of the total number of possible 4AA peptides.

D Results for CAPPED 2AA

D.1 Further Results on internally simulated data

Here, we compute the ratio of the decorrelation times for the backbone and sidechain torsions in
JAMUN and the reference MD data. Figure 10 highlights how sampling in the smoothed space Y
compared to the original space X enables much faster decorrelation.

In Table 7, we compare JAMUN to the reference MD, shortened by a factor of 10 along the variables
mentioned in Section 5, using the Jensen-Shannon distance to the full reference MD data. JAMUN
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Sequence MDGEN 4AA-EXPLICIT JAMUN

FHSE −675.6± 20.1 −633.2± 113.3
FKKL −699.0± 24.0 −562.5± 192.1
FLRH −1272.7± 18.9 −1198.5± 129.3
FSDP −697.5± 23.7 −687.6± 91.5
FSRK −1333.0± 21.9 −1349.9± 0.0
GCIC −557.5± 21.4 −538.8± 56.4
GGHN −905.3± 21.9 −821.3± 129.6
GLIL −743.3± 20.7 −711.6± 71.8
HELI −794.2± 25.5 −780.6± 73.5
HENV −1156.9± 17.3 −1123.4± 148.7
HTIQ −762.9± 17.0 −726.8± 105.8
IAMI −428.0± 15.3 −426.8± 74.8
IDRH −1416.8± 18.1 −722.8± 2608.1
IHNV −845.4± 21.1 −864.4± 48.8
IMRY −1230.7± 23.6 −1100.6± 207.0
INVH −793.6± 22.9 −745.3± 128.6
IPGD −611.5± 15.0 −582.5± 55.2

Table 5: Force field energies (in (kJmol−1) comparison between samples from MDGEN 4AA-
EXPLICIT and JAMUN.

Dataset Peptide Length Capped? Force Field Solvent Model Temperature # Train # Validation # Test

TIMEWARP 2AA-LARGE 2 ✗ amber14 Implicit Water 310K 200 80 100
CAPPED 2AA 2 ✓ amber99sbildn Explicit Water 300K 200 80 100

TIMEWARP 4AA-LARGE 4 ✗ amber14 Implicit Water 310K 1459 379 182
MDGEN 4AA-EXPLICIT 4 ✗ amber14 Explicit Water 350K 3109 100 100

UNCAPPED 5AA 5 ✗ amber14 Implicit Water 310K − − 3
CREMP 4AA 4 ✗ GFN2-xTB Explicit Chloroform 300K 15842 1000 1000

Table 6: A short description of the simulation conditions across the different datasets.

outperforms this shortened MD trajectory across all metrics, even though it takes approximately 2×
longer to sample than JAMUN, from Figure 3.

Trajectory Backbone
Torsions

Sidechain
Torsions

All
Torsions TICA-0 TICA-0,1 Metastable

Probs

JAMUN 0.291± 0.119 0.320± 0.108 0.304± 0.112 0.351± 0.130 0.438± 0.117 0.264± 0.108
Reference (10× shorter) 0.447± 0.057 0.406± 0.071 0.424± 0.056 0.557± 0.043 0.564± 0.041 0.543± 0.073

Table 7: Comparison of Jenson-Shannon distances between JAMUN and the reference MD (shortened
by a factor of 10), averaged over the test peptides in CAPPED 2AA. Note that this shortened reference
MD takes 2× longer to sample as JAMUN.

E Related Work

Protein structure prediction only requires prediction of a few folded states, and is usually trained
on crystallized structures of proteins which can be quite different from their native states. The
size of these proteins are significantly larger than the peptides we study here. On the other hand,
conformational ensemble generation requires many samples from the Boltzmann distribution to
capture the effects of solvent atoms and intramolecular interactions, even if dynamics is not modelled
explicitly. Research has found that protein structure prediction models tend to struggle with capturing
this diversity, especially when sampling the conformations of flexible domains [69, 13, 2] and rarer
conformations [48] not found in the Protein Data Bank (PDB) [9]. Another issue is that the quality
of these models’ predictions can be dependent on multiple sequence alignment (MSA) information,
a preprocessing step where sequence databases are queried for similar protein sequences which
indicate evolutionary conservation patterns as a supplementary input to the model. In fact, some of
the first attempts to sample alternative conformations of proteins with AlphaFold2 were performed
by subsampling [17], clustering [88] or manipulating MSA information [29]. Sequence-to-structure
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Figure 10: Speedups defined as the ratio between decorrelation times between the reference MD and
JAMUN for backbone (left) and sidechain (right) torsions for all test peptides in CAPPED 2AA.

Figure 11: Ramachandran plots for test peptides NRLCQ, VWSPF and KTYDI in UNCAPPED 5AA.

models such as ESMFold [53] which do not require MSA information can be faster but tend to produce
less physically accurate structures, as noted by Lu et al. [55]. Unfortunately, MSA information can be
quite unreliable for small peptides due to the presence of many hits. In fact, popular MSA software
suites such as MMseqs2 [80] querying will, by default, simply return an empty MSA for the peptides
we study here. Nevertheless, previous research [67] has shown that AlpahFold2 can still learn an
accurate energy function for protein structures without MSA co-evolution information.

Jussupow and Kaila [39] finds that AlphaFold2’s predicted local distance difference test (pLDDT) and
predicted aligned error (PAE) scores correlate with local protein dynamics and global conformational
flexibility respectively. They use these scores to parametrize an additional harmonic potential for
coarse-grained MD with the MARTINI [56] force field. AlphaFlow [36] develops flow-matching
over the quotient space of 3D positions modulo rotations to learn a distribution over 3D positions of
the β-carbon atoms, outperforming MSA subsampling with AlphaFold2 over the Protein Data Bank
(PDB) [9]. Distributional Graphormer [92] parametrizes a diffusion model over α-carbon positions,
also trained on the PDB. Str2Str [55] proposes a noising-denoising process along a range of noise
levels for sampling backbone atom coordinates, followed by regression of side-chain coordinates
with the rotamer-based FASPR [35] packgae. BioEmu [52] is a diffusion model built using the
EvoFormer stack from AlphaFold2 [38]. BioEmu is pretrained on 200 million protein structures from
the AlphaFold Protein Structure Database [85] and finetuned on over 200ms of MD data, which are
orders of magnitude larger than the datasets we benchmark here.

A predecessor of many of the models discussed in 4, ‘Two for One’ [7] showed that the score learned
by diffusion models can be used for running molecular dynamics simulations. However, as they
choose the noise level for the score function close to 0, the molecular dynamics is effectively run
in the original space X , not in the latent space Y as JAMUN does, which again limits the effective
timestep of simulation.
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There have also been efforts to build ML models for taking longer MD time-steps [46, 74, 34] and
for approximating conformations of large proteins [92, 36]. These methods rely on hand-crafted
featurizations (eg. backbone torsion angles). In practice, this has made generalization to unseen
molecules challenging for these models as well. The above models are often classified either as
Boltzmann Generators or Boltzmann Emulators. Boltzmann Generators are guaranteed to draw
unbiased samples from the Boltzmann distribution, while Boltzmann Emulators do not have this
guarantee. Strictly speaking, JAMUN is a Boltzmann Emulator.

JAMUN is a walk-jump sampling method which uses an SE(3)-equivariant neural network for
denoising. WJS is built on the seminal work of Neural Empirical Bayes [70], and has been used in
voxelized molecule generation [62, 63] and protein sequence generation [24]. Our work is the first to
our knowledge to apply walk-jump sampling to point clouds.

F Overview of Denoiser

The denoiser is a SE(3)-equivariant graph neural network. The graph is defined by a radial cutoff of
10Å in y. The overall computation performed by the denoiser is shown in Figure 12, with the initial
embedding, message-passing and output head blocks shown in Figure 13, Figure 14 and Figure 15
respectively.

For all datasets, we train and sample with σ = 0.4 Å. For the Langevin dynamics (Equation 68), we
set M = 1, friction of γ = 1.0 and a step size of ∆t = σ.

Figure 12: Overview of the denoiser network x̂θ. The submodule Fθ sees input atom coordinates
ỹ = cin(σ)y and outputs predicted atom coordinates y′, which gets scaled and added to a noise-
conditional skip connection to finally obtain x̂θ(y).

The hidden features h(n) for n = 0, . . . , 4 contain 120 scalar and 32 vector features per atom. We
use spherical harmonics up to l = 1 for the tensor product.

We use the Adam optimizer with learning rate .002. Models are trained with a batch size of 32 over 2
NVIDIA RTX A100 GPUs.
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Figure 13: Overview of the initial embedder in the denoiser network, creating initial features h(0) at
each atom and edge.

Figure 14: Overview of a single SE(3)-equivariant message-passing block (indexed by n) in the
denoiser network. There are four such blocks iteratively updating the atom features from h(0) to
h(4). The atom coordinates denoted by ỹ = cin(σ)y (and hence, the edge features) are unchanged
throughout these blocks.

Figure 15: Overview of the output head, which predicts the coordinates y′ = Fθ(cin(σ)y, cnoise(σ)).
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G Normalization

As the noise level σ is increased, y = x + σε where ε ∼ N (0, IN×3) expands in space. Let ỹ
represent the ‘normalized’ input y, as seen by the network Fθ:

ỹ = cin(σ)y (10)
To control the expansion of y, cin(σ) is chosen such that the following property holds:

E(i,j)∼Uniform(E)
ε∼N (0,IN×3)

[∥ỹi − ỹj∥2] = 1 at all noise levels σ. (11)

Note that here, we define E such that Note that this is distinct from the normalization chosen by
[41, 42], which normalizes ∥y∥ directly. The intuition behind this normalization is that the GNN
model Fθ does not operate on atom positions y directly, but instead uses the relative vectors yi − yj
to account for translation invariance, and controlling this object directly ensures that the topology of
the graph does not change with varying noise level σ.

To achieve this, we compute:

cin(σ) =
1√

C + 6σ2
(12)

where C = E(i,j)∼Uniform(E) ∥xi − xj∥2 can be easily estimated from the true data distribution. The
full derivation can be found in Section G.1.

As the input is now appropriately normalized, the target output of the network Fθ should also be
appropriately normalized. A full derivation, found in Section G.2, leads to:

cskip(σ) =
C

C + 6σ2
(13)

cout(σ) =

√
C · 6σ2

C + 6σ2
(14)

cnoise(σ) = log10 σ (15)

The noise normalization is a scaled version of the recommendation of 1
4 lnσ for images in Karras

et al. [41, 42].

G.1 Input Normalization

Fix an (i, j) ∈ E from Equation 11. As εi, εj
iid∼ N (0, I3), we have εi − εj ∼ N (0, 2I3) from

the closure of the multivariate Gaussian under linear combinations. Thus, for each component
d = 1, 2and3, we have: (εi − εj)(d) ∼ N (0, 2) and hence:

Eε∼N (0,IN×3)[(xi − xj)
T (εi − εj)] =

3∑
d=1

(xi − xj)(d)E[(εi − εj)(d)] = 0 (16)

Eε∼N (0,IN×3)[∥εi − εj∥2] =
3∑

d=1

E[(εi − εj)
2
(d)] = 6 (17)

We can now compute:

Ez[∥ỹi − ỹj∥2]
= cin(σ)

2Eε[∥yi − yj∥2]
= cin(σ)

2Eε[∥xi − xj + σ(εi − εj)∥2]

= cin(σ)
2
(
∥xi − xj∥2 + 2σEε[(xi − xj)

T (εi − εj)] + σ2Eε[∥εi − εj∥2]
)

= cin(σ)
2
(
∥xi − xj∥2 + σ2Eε[∥εi − εj∥2]

)
= cin(σ)

2
(
∥xi − xj∥2 + 6σ2

)
. (18)
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Now, taking the expectation over all (i, j) ∈ E uniformly:

E(i,j)∼Uniform(E)
ε∼N (0,IN×3)

[∥ỹi − ỹj∥2] = E(i,j)∼Uniform(E)[Eε[∥ỹi − ỹj∥2]]

= cin(σ)
2
(
E(i,j)∼Uniform(E) ∥xi − xj∥2 + 6σ2

)
(19)

Let C = E(i,j)∼Uniform(E) ∥xi − xj∥2, which we estimate from the true data distribution. Then, from
Equation 19 and our intended normalization given by Equation 11:

cin(σ) =
1√

C + 6σ2
(20)

G.2 Output Normalization

The derivation here is identical that of [41, 42], but with our normalization. The denoising loss at a
single noise level is:

L(x̂θ, σ) = EX∼pX
Eε∼N (0,IN×3)[∥x̂θ(X + σε, σ)−X∥2] (21)

which gets weighted across a distribution pσ of noise levels by (unnormalized) weights λ(σ):

L(x̂θ) = Eσ∼pσ
[λ(σ)L(x̂θ, σ)]

= Eσ∼pσ
EX∼pX

Eε∼N (0,IN×3)[λ(σ) ∥x̂θ(X + σε, σ)−X∥2]

= Eσ∼pσ
EX∼pX

EY∼N (X,σ2IN×3)[λ(σ) ∥x̂θ(Y, σ)−X∥2]

= Eσ∼pσEX∼pX
EY∼N (X,σ2IN×3)[λ(σ) ∥cskip(σ)Y + cout(σ)Fθ(cin(σ)Y, cnoise(σ))− x∥2]

= Eσ∼pσ
EX∼pX

EY∼N (X,σ2IN×3)

[
λ(σ)cout(σ)

2

∥∥∥∥Fθ(cin(σ)Y, cnoise(σ))−
x− cskip(σ)Y

cout(σ)

∥∥∥∥2
]

= Eσ∼pσ
EX∼pX

EY∼N (X,σ2IN×3)

[
λ(σ)cout(σ)

2 ∥Fθ(cin(σ)Y, cnoise(σ))− F∥2
]

(22)

where:

F (y, σ) =
x− cskip(σ)y

cout(σ)
(23)

is the effective training target for the network Fθ. We want to normalize F similarly as the network
input:

E(i,j)∼Uniform(E)
ε∼N (0,IN×3)

[∥Fi − Fj∥2] = 1 at all noise levels σ. (24)

Again, for a fixed (i, j) ∈ E, we have:

Eε ∥Fi − Fj∥2 =
Eε ∥(xi − xj)− cskip(σ)(yi − yj)∥2

cout(σ)2

=
Eε ∥(1− cskip(σ))(xi − xj)− cskip(σ)σ · (εi − εj)∥2

cout(σ)2

=
(1− cskip(σ))

2 ∥xi − xj∥2 + cskip(σ)
2 · 6σ2

cout(σ)2
(25)

and hence:

E(i,j)∼Uniform(E)
ε∼N (0,IN×3)

[∥Fi − Fj∥2] = 1

=⇒
(1− cskip(σ))

2 · C + cskip(σ)
2 · 6σ2

cout(σ)2
= 1

=⇒ cout(σ)
2 = (1− cskip(σ))

2 · C + cskip(σ)
2 · 6σ2 (26)
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where C was defined above. Now, to minimize cout(σ) to maximize reuse and avoid amplifying
network errors, as recommended by Karras et al. [41, 42]:

d

dcskip(σ)
cout(σ)

2 = 0

=⇒ −2(1− cskip(σ)) · C + 2cskip(σ) · 6σ2 = 0

=⇒ cskip(σ) =
C

C + 6σ2
(27)

Substituting into Equation 26, we get after some routine simplification:

cout(σ) =

√
C · 6σ2

C + 6σ2
(28)

The noise normalization is chosen as cnoise(σ) = log10 σ, a scaled version of the recommendation of
1
4 lnσ for images in Karras et al. [41, 42].

From Equation 22, we set λ(σ) = 1
cout(σ)2

to normalize the loss at at all noise levels, as in Karras et al.
[41, 42].

G.3 Rotational Alignment

As described in Algorithm 1, we use the Kabsch-Umeyama algorithm [40, 82] to rotationally align y
to x before calling the denoiser.

Algorithm 1 Rotational Alignment with the Kabsch-Umeyama Algorithm

Require: Noisy Sample y ∈ RN×3, True Sample x ∈ RN×3.
H ← xT y ▷ H ∈ R3×3

U, S, V T ← SVD(H) ▷ U, V ∈ R3×3

R∗ ← Udiag[1, 1,det(U) det(V )]V T

return y(R∗)T

Note that both y and x are mean-centered to respect translational equivariance:

N∑
i=1

yi = 0⃗ ∈ R3 (29)

N∑
i=1

xi = 0⃗ ∈ R3 (30)

so there is no net translation.

H Proofs of Theoretical Results

For completeness, we prove the main theoretical results here, as first established by Robbins [66],
Miyasawa [58], Saremi and Hyvärinen [70].

H.1 The Denoiser Minimizes the Expected Loss

Here, we prove Equation 6, rewritten here for clarity:

x̂(·) ≡ E[X | Y = ·] = argmin
f :RN×3→RN×3

EX∼pX ,ε∼N (0,IN×3)
Y=X+σε

[∥f(Y )−X∥2] (31)
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First, we can decompose the loss over the domain RN×3 of Y :

EX∼pX ,ε∼N (0,IN×3)
Y=X+σε

[∥f(Y )−X∥2] = EX∼pX ,Y∼pY
[∥f(Y )−X∥2] (32)

=

∫
RN×3

∫
RN×3

∥f(y)− x∥2 pX,Y (x, y)dxdy (33)

=

∫
RN×3

∫
RN×3

∥f(y)− x∥2 pY |X(y | x)pX(x)dx︸ ︷︷ ︸
l(f,y)

dy (34)

=

∫
RN×3

l(f, y)dy (35)

where l(f, y) ≥ 0 for all functions f and inputs y. Hence, any minimizer f∗ must minimize the local
denoising loss l(f∗, y) at each point y ∈ RN×3. For a fixed y ∈ RN×3, the loss l(f, y) is convex as
a function of f(y). Hence, the global minimizer can be found by finding the critical points of l(f, y)
as a function of f(y):

∇f(y)l(f, y) = 0 (36)

=⇒ ∇f(y)

∫
RN×3

∥f(y)− x∥2 pY |X(y | x)pX(x)dx = 0 (37)

=⇒
∫
RN×3

2(f∗(y)− x)pY |X(y | x)pX(x)dx = 0 (38)

Rearranging:

f∗(y) =

∫
RN×3 x pY |X(y | x)pX(x)dx∫
RN×3 pY |X(y | x)pX(x)dx

(39)

=

∫
RN×3 x pY |X(y | x)pX(x)dx

pY (y)
(40)

=

∫
RN×3

x
pY |X(y | x)pX(x)

pY (y)
dx (41)

=

∫
RN×3

x pX|Y (x | y)dx (42)

= E[X | Y = y] (43)
= x̂(y) (44)

by Bayes’ rule. Hence, the denoiser as defined by Equation 5 is indeed the minimzer of the denoising
loss:

x̂(·) ≡ E[X | Y = ·] = argmin
f :RN×3→RN×3

EX∼pX ,ε∼N (0,IN×3)
Y=X+σε

[∥f(Y )−X∥2] (45)

as claimed.

H.2 Relating the Score and the Denoiser

Here, we rederive Equation 7, relating the score function∇ log pY and the denoiser x̂.

Let X ∼ pX defined over RN×3 and η ∼ N (0, IN×3). Let Y = X + ση, which means:

pY |X(y | x) = N (y;x, IN×3) =
1

(2πσ2)
3N
2

exp

(
−∥y − x∥2

2σ2

)
(46)

Then:

E[X | Y = y] = y + σ2∇y log pY (y) (47)
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To prove this:

∇ypY |X(y | x) = −y − x

σ2
pY |X(y | x) (48)

=⇒ (x− y)pY |X(y | x) = σ2∇ypY |X(y | x) (49)

=⇒
∫
RN×3

(x− y)pY |X(y | x) pX(x)dx =

∫
RN×3

σ2∇ypY |X(y | x) pX(x)dx (50)

By Bayes’ rule:

pY |X(y | x)pX(x) = pX,Y (x, y) = pX|Y (x|y)pY (y) (51)

and, by definition of the marginals:∫
RN×3

pX,Y (x, y)dx = pY (y) (52)

For the left-hand side, we have:∫
RN×3

(x− y)pY |X(y | x)pX(x)dx =

∫
RN×3

(x− y)pX,Y (x, y)dx (53)

=

∫
RN×3

xpX,Y (x, y)dx−
∫
RN×3

ypX,Y (x, y)dx (54)

= pY (y)

(∫
RN×3

xpX|Y (x | y)dx− y

∫
RN×3

pX|Y (x | y)dx
)

(55)
= pY (y) (E[X | Y = y]− y) (56)

For the right-hand side, we have:

σ2

∫
RN×3

∇ypY |X(y | x)pX(x)dx = σ2∇y

∫
RN×3

pY |X(y | x)pX(x)dx (57)

= σ2∇y

∫
RN×3

pX,Y (x, y)dx (58)

= σ2∇ypY (y) (59)

Thus,

pY (y) (E[X | Y = y]− y) = σ2∇ypY (y) (60)

=⇒ E[X | Y = y] = y + σ2∇ypY (y)

pY (y)
(61)

= y + σ2∇y log pY (y) (62)

as claimed.

I Numerical Solvers for Langevin Dynamics

As mentioned in Section 2.2, solving the Stochastic Differential Equation corresponding to Langevin
dynamics is often performed numerically. In particular, BAOAB [49, 51, 68] refers to a ‘splitting
method’ that solves the Langevin dynamics SDE by splitting it into three different components
labelled by A, B and O below:

dy = vydt︸︷︷︸
A

(63)

dvy = M−1∇y log pY (y)dt︸ ︷︷ ︸
B

− γvydt+
√
2γM− 1

2 dBt︸ ︷︷ ︸
O

(64)
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where both y, vy ∈ Rd. This leads to the following update operators:

A∆t

[
y
vy

]
=

[
y + vy∆t

vy

]
(65)

B∆t

[
y
vy

]
=

[
y

vy +M−1∇y log pY (y)∆t

]
(66)

O∆t

[
y
vy

]
=

[
y

e−γ∆tvy +M− 1
2

√
1− e−2γ∆tB

]
(67)

where B ∼ N (0, Id) is resampled every iteration. As highlighted by Kieninger and Keller [43], the
A and B updates are obtained by simply discretizing the updates highlighted in Equation 63 by the
Euler method. The O update refers to a explicit solution of the Ornstein-Uhlenbeck process, which
we rederive for completeness in Appendix J.

Finally, the iterates of the BAOAB algorithm are given by a composition of these update steps,
matching the name of the method:[

y(t+1)

v
(t+1)
y

]
= B∆t

2
A∆t

2
O∆tA∆t

2
B∆t

2

[
y(t)

v
(t)
y

]
(68)

J The Ornstein-Uhlenbeck Process

For completeness, we discuss the distributional solution of the Ornstein-Uhlenbeck process, taken
directly from the excellent Leimkuhler and Matthews [51]. In one dimension, the Ornstein-Uhlenbeck
Process corresponds to the following Stochastic Differential Equation (SDE):

dvy = −γvydt+
√

2γM− 1
2 dBt (69)

Multiplying both sides by the integrating factor eγt:

eγtdvy = −γeγt(vydt+ eγt
√
2γM− 1

2 dBt (70)

=⇒ eγt(dvy + γvydt) = eγt
√
2γM− 1

2 dBt (71)

and identifying:

eγt(dvy + γvydt) = d(eγtvy) (72)

We get after integrating from t1 to t2, two adjacent time steps of our integration grid:

d(eγtvy) = eγt
√
2γM− 1

2 dBt (73)

=⇒
∫ t2

t1

d(eγtvy) =

∫ t2

t1

eγt
√
2γM− 1

2 dBt (74)

=⇒ eγt2vy(t2)− eγt1vy(t1) =
√
2γM− 1

2

∫ t2

t1

eγtdBt (75)

Now, for a Wiener process Bt, if g(t) is a deterministic function,
∫ t2
t1

g(t)dBt is distributed as

N
(
0,
∫ t2
t1

g(t)2dt
)

by Itô’s integral. Thus, applying this result to g(t) = eγt, we get:

eγt2vy(t2)− eγt1vy(t1) =
√

2γM− 1
2N

(
0,

e2γt2 − e2γt1

2γ

)
(76)

=⇒ vy(t2) = e−γ(t2−t1)vy(t1) +
√
2γM− 1

2 e−γt2N
(
0,

e2γt2 − e2γt1

2γ

)
(77)

= e−γ(t2−t1)vy(t1) +
√
2γM− 1

2

√
1− e2γ(t1−t2)

2γ
N (0, 1) (78)

= e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, 1) (79)
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In the N × 3 dimensional case, as the Wiener processes are all independent of each other, we directly
get:

vy(t2) = e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, IN×3) (80)

Setting ∆t = t2 − t1, we get the form of the O operator (Equation 65) of the BAOAB integrator in
Appendix I.

K Parallelizing Sampling with Multiple Independent Chains

Our sampling strategy batches peptides in order to increase throughput. Another potential method to
increase throughput (but which we did not employ for the results in this paper) is to sample multiple
chains in parallel.

This can be done by initializing multiple chains: y(0)1 , . . . , y
(0)
Nch

, where:

y
(0)
ch = x(0) + σε

(0)
ch (81)

where ε(0)ch
iid∼ N (0, IN×3) for ch = 1, . . . , Nch are all independent of each other. Then, the chains can

be evolved independently withindependent walk steps (Equation 3) and denoised with independent
jump steps (Equation 7). This independence allows batching over the y

(t)
ch over all chains ch at each

iteration t.

Note that at t = 0, the chains are correlated as they are all initialized from the same x(0). However, if
the number of samples per chain is large enough, the chains are no longer correlated, as they have
now mixed into the stationary distribution.

L Model transferability exploration using Macrocycles

One of the most important aspects of JAMUN is its highly general input, a point cloud, unlike other
protein ensemble models that are frequently more bespoke, using dihedral or frame representations.
While this may be a slight disadvantage for us in the protein space, it also makes us extremely flexible
and easily transferable to other modalities. Here, we demonstrate that on macrocyclic peptides with
several non-canonical residues.

The exploration of conformational ensembles in macrocyclic peptides is crucial due to their emerging
role as therapeutic modalities. These molecules present significant challenges in computational
modeling because of their conformational diversity and inherent geometric constraints. In fact,
molecular dynamics trajectories for these molecules are particularly slow as good classical forcefields
are unavailable and it is necessary to use quantum mechanical calculations to compute forces.
Macrocyclic peptides are also extremely unwieldy in their ”open”, most common conformations,
forming hydrogen bond networks with water. However, those macrocycles that are able to occupy
smaller ”crumpled” conformations are greasy and able to permeate through biological membranes,
making them more suitable for biodelivery. Here, as an example, we use macrocycles from the
CREMP dataset [28], generate ensembles with the CREST protocol [65], and benchmark the resulting
conformers against the RINGER model [27]. Figure 16 illustrates the transferability of JAMUN to
macrocyclic peptides.

It is clear that we are able to recover most basins sampled, even though it does seem like there are
new basins uncovered. We note that our outputs look significantly more diffusive than the ground
truth. The main reason for this is that the CREST data is clustered and filtered to represent the local
minima, whereas JAMUN is designed to sample entire distributions. In some sense, the data is strictly
not complete for the task JAMUN is designed for. It is impressive that in spite of this JAMUN learns
enough from the denoising ”jump” step with very local data to still perform the Langevin dynamics
”walk” step and sample multiple basins.

We find that for 4-mers, which is what we trained our model for, we are able to recover all the sampled
basins. We also attempt to run inference for 5 and 6-mers with the same model to test generalizability.

While this is a preliminary study, it points to the potential of JAMUN being used universally, not just
for proteins, and in particular shows that it is effective even in a low-data regime.
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Figure 16: Macrocycle results trained on 4AA: 3D image of the (a) CREMP (green) and (b) JAMUN
(cyan) MeS.MeS.V.L macrocycle. (c) Ramachandran plot for CREMP, JAMUN, and RINGER
samples of the 4AA MeS.MeS.V.L macrocycle. (d) Ramachandran plot for CREMP, JAMUN, and
RINGER samples of the 5AA F.Q.L.G.Met macrocycle.(e) Ramachandran plot for CREMP and
JAMUN the 6AA Mes.T.Q.Mei.V.W macrocycle.
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