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ABSTRACT

The similarity between target and source tasks is a crucial quantity for theoretical
analyses and algorithm designs in transfer learning studies. However, this quan-
tity is often difficult to be precisely captured. To address this issue, we make a
boundedness assumption on the task similarity and then propose a mathematical
framework based on the minimax principle, which minimizes the worst-case ex-
pected population risk under this assumption. Furthermore, our proposed minimax
problem can be solved analytically, which provides a guideline for designing robust
transfer learning models. According to the analytical expression, we interpret
the influences of sample sizes, task distances, and the model dimensionality in
knowledge transferring. Then, practical algorithms are developed based on the
theoretical results. Finally, experiments conducted on image classification tasks
show that our approaches can achieve robust and competitive accuracies under
random selections of training sets.

1 INTRODUCTION

The goal of the transfer learning is to solve target tasks by the learning results from some source tasks.
In order to study the fundamental aspects of the transfer learning problems, it is important to define
and quantify the similarity between source and target tasks (Pan & Yang, 2009). While it is assumed
that the source and target tasks are kind of similar in transfer learning problems (Weiss et al., 2016),
the joint structures and similarity between the tasks can only be learned from the training data, which
is challenging to be practically computed due to the limited availability of the labeled target samples.
Therefore, in order to conduct meaningful theoretical analyses, it is often necessary to make extra
assumptions, such as the linear combination of learning results (Ben-David et al., 2010) and linear
regression transferring (Kuzborskij & Orabona, 2013), which could be limited in many applications.

As such, in this paper, we attempt to theoretically study the transfer learning by only assuming
that the similarity between the source and target tasks is bounded, which is a weaker assumption,
and is often valid in transfer learning problems. Under such an assumption, the minimax principle
can be applied (Verdu & Poor, 1984) for estimating the target distribution. Based on this principle,
the estimator minimizes the worst-case expected population risk (EPR) (Jin et al., 2018) under the
bounded task distance constraint, which maintains robustness against the weak assumption. Practi-
cally, many empirical works have also followed the minimax setting and verify its validness (Zhang
et al., 2019), while the theoretical analyses appear to be rather behind. The main challenge of
analyzing general minimax problems in transfer learning is due to the difficulty of computing the
expectations of the population risk under popular distance measures, such as the Kullback–Leibler
(K-L) divergence (Thomas & Joy, 2006).

To deal with this difficulty, we adopt the widely used χ2-distance and Hellinger distance (Csiszár &
Shields, 2004) as the distance measure between data distributions of the tasks, and present a minimax
formulation of transfer learning. By adopting such measures, the proposed minimax problems can
be analytically solved. In particular, we show that the optimal estimation is to linearly combine the
learning results of two tasks, where the combining coefficient can be computed from the training data.
This provides a theoretical justification for many existing analyzing framework and algorithms (Ben-
David et al., 2010; Garcke & Vanck, 2014). Note that the recent work (Tong et al., 2021) also
analytically evaluates the combining coefficients, which rely on the underlying task distributions that
are not available for real applications. Our work essentially provides the combining coefficient that
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are both theoretical optimal and computable from data, which can be more appealing in practical
applications.

Moreover, the analyses of the minimax transfer learning problem on discrete data can be extended
to the continuous data for real applications. In the continuous case, we consider similar transfer
learning scheme as in (Nguyen et al., 2020), which transfers the topmost layer of the neural networks
between source and target tasks. In particular, we show the analytical solution of optimal weights in
the topmost layer, which is again a linear combination of the weights of the source and target problem.
Furthermore, we propose the transfer learning algorithm guided by the theoretical results, where the
robustness and performances of the algorithms are validated by several experiments on real datasets.

The contribution of this paper can be summarized as follows:

• We make mild assumptions of the task distance and propose a minimax framework for
analyzing transfer learning. Additionally, we establish the analytical solutions of the
minimax problems in the discrete data space.

• We extend the analyses to continuous data and establish similar results for the learning
models with neural networks. Furthermore, we apply our theoretical results to develop
robust transfer learning algorithms.

• The experiments in real datasets validate our proposed algorithms, where our approaches
can have higher robustness and competitive accuracy.

Due to the space limitations, the proofs of theorems are presented in the supplemental materials.

2 PROBLEM FORMULATION

2.1 NOTATIONS AND DEFINITIONS

We denote X and Y as the random variables of data and label with domains X and Y , respectively.
For ease of illustration, the data X is set as a discrete random variable in section 2 and section 3.

We consider the transfer learning problem that has a target task and a source task, denoted as task
T and S, respectively. For each task i = T, S, there are ni training samples {(x(i)

ℓ , y
(i)
ℓ )}ni

ℓ=1 i.i.d.
generated from the underlying joint distributions P (i)

XY with1 P
(i)
XY (x, y) > 0, for all (x, y) ∈ X × Y .

The empirical distributions P̂ (i)
XY (i = T, S) of the samples are defined as

P̂
(i)
XY (x, y) ≜

1

ni

ni∑
ℓ=1

1{x(i)
ℓ = x, y

(i)
ℓ = y},

where 1{·} denotes the indicator function (Feller, 2008) and let Pn be the set of all the possible
empirical distributions supported by X × Y with n samples.

In this paper, we employ the following two distance measures for probability distributions, which are
also widely used in statistics (Csiszár & Shields, 2004), and more convenient in our analyses.

Definition 2.1 (Referenced χ2-distance). Let R(z), P (z), and Q(z) be the distributions supported
by Z . The χ2-distance between P (z) and Q(z) referenced by R(z) is defined as follows,

χ2
R(P,Q) ≜

∑
z∈Z

(P (z)−Q(z))
2

R(z)
. (1)

Definition 2.2 (Hellinger Distance). Let P (z) and Q(z) be the distributions supported by Z , The
Hellinger distance between P (z) and Q(z) is defined as follows.

H2(P,Q) ≜
1

2

∑
z∈Z

(√
P (z)−

√
Q(z)

)2
, and H(P,Q) ≜

√
H2(P,Q). (2)

1This assumption comes from the fact that in practice such joint distributions are typically modeled by some
positive parameterized families, e.g., the softmax function.
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2.2 MINIMAX FORMULATION

Since estimating the similarity between target and source tasks from data is challenging, we attempt
to only make the assumption that the distance between two tasks is bounded by some constant D
under a distance measure d(·, ·), i.e.,

d
(
P

(T )
XY , P

(S)
XY

)
≤ D. (3)

Based on this assumption, we consider a minimax formulation for estimating the target distribution
with estimator QXY (P̂

(T )
XY , P̂

(S)
XY ), where the notation represents that the estimator QXY is a function

of the empirical distributions P̂ (T )
XY and P̂

(S)
XY .

Minimax Formulation:

min
QXY (P̂

(T )
XY ,P̂

(S)
XY )

max
P

(S)
XY :d(P

(T )
XY ,P

(S)
XY )≤D

E
[
d
(
P

(T )
XY , QXY

)]
, (4)

where the expectation is taken over all possible P̂
(T )
XY and P̂

(S)
XY in PnT

and PnS
.

This formulation can be divided into two parts: (1) for given estimator QXY , we consider the
largest expected population risk (EPR) of the distance between the underlying target distribution
and the estimator; (2) we find the best estimator QXY as the function of training data that could
minimize the worst risk. Note that the empirical distributions are sufficient statistics for the underlying
distributions (Van der Vaart, 2000). We therefore consider QXY as the function of both empirical
distributions. Accordingly, the EPR of the derived estimator under the true similarity is always smaller
than the result of formulation (4). In other word, we design an estimator that has an upper-bounded
EPR and it thus leads to robustness.

Notice that the formulation (4) is generally difficult to be solved analytically due to: (i) the distance
measure d(·, ·) can cause difficulty in computation, e.g., the logarithm function in the K-L divergence;
(ii) the expectations over P̂ (T )

XY and P̂
(S)
XY follow the multinomial distribution (Csiszár, 1998), i.e.,

the probability of the empirical distribution P(P̂ (i)
XY ;P

(i)
XY ) ∝ exp(−niD(P̂

(i)
XY ∥P

(i)
XY )), which is

complicated to analyze. To address the issue (i), we choose the χ2-distance and Hellinger distance,
which are more convenient to be analyzed in minimax problems. Moreover, for the issue (ii), we
propose to study the surrogate problem which replaces the expectation computation in (4) by the
integral ∫∫

d
(
P

(T )
XY , QXY

) ∏
i=T,S

exp
(
−nid

(
P̂

(i)
XY , P

(i)
XY

))
dP̂

(i)
XY . (5)

Note that (5) is the asymptotic approximation of the expectation over multinomial distributions with
the additional surrogation that the exponent in (5) can be chosen different from the K-L divergence.
Such asymptotic approximation is also applied for theoretical analyses in high dimensional statis-
tics (Morris, 1975). Then, the goal of this paper is to study the following minimax problems for
transfer learning.

Formulation 1 (referenced χ2-distance):

min
QXY (P̂

(T )
XY ,P̂

(S)
XY )

max
P

(S)
XY :χ2

R(P
(T )
XY ,P

(S)
XY )≤D2

E
[
χ2
R(P

(T )
XY , QXY )

]
, (6)

where the expectation is the integral over

P
(
P̂

(i)
XY ;P

(i)
XY

)
∝ exp

(
−ni

2
χ2
R

(
P̂

(i)
XY , P

(i)
XY

))
, i = T, S. (7)

Note that the referenced-χ2 distance can be recognized as an asymptotic approximation of K-L
divergence by Lemma A.1 in Appendix A. Here the reference distribution R is selected as P̂ (S)

XY .2

Formulation 2 (Hellinger distance):

min
QXY (P̂

(T )
XY ,P̂

(S)
XY )

max
P

(S)
XY :H(P

(T )
XY ,P

(S)
XY )≤D

E
[
H2
(
P

(T )
XY , QXY

)]
, (8)

2Since the source samples are sufficient, with high probability, all the entries of P̂ (S)
XY are positive.

3



Under review as a conference paper at ICLR 2023

where the expectation is the integral over

P
(
P̂

(i)
XY ;P

(i)
XY

)
∝ exp

(
−2niH

2
(
P̂

(i)
XY , P

(i)
XY

))
, i = T, S. (9)

Note that Hellinger distance provides a lower bound of the K-L divergence with Lemma A.2 in
Appendix A, and thus Formulation 2 computes a lower bound of the population risk in (4).

3 ANALYSES FOR DISCRETE DATA

In this section, we provide the analytical solutions of the formulations (6) and (8). Similar minimax
estimation problems have been studied in early works (Trybula, 1958; Berry, 1990). We now directly
give the detailed expressions and the proof is provided in the supplementary material.

3.1 ANALYTICAL SOLUTION OF FORMULATION 1

Theorem 3.1. Let Q(1)
XY be the estimator that achieves the minimax solution of problem (6) and then3

Q
(1)
XY (x, y) = (1− α1)P̂

(T )
XY (x, y) + α1P̂

(S)
XY (x, y), (10)

for all (x, y) ∈ X × Y , where

α1 ≜
nS

nT + nS

(
1−

I |X||Y|
2

(nTnSDD1

nT+nS
)

I |X||Y|
2 −1

(nTnSDD1

nT+nS
)

D

D1

)
, (11)

and D1 ≜
√
χ2
R(P̂

(T )
XY , P̂

(S)
XY ). Specifically, Iν(·) denotes the modified Bessel function of the first

kind with order ν (Abramowitz et al., 1988), whose definition is in Appendix B.

In the remaining parts of this paper, we denote for ease of presentation Jν(x) ≜ I ν
2
(x)/I ν

2−1(x).

Theorem 3.1 implies that linearly combining the learning results of different tasks is a preferable
method for robust transfer learning, which is also widely used in existing algorithms and theoretical
frameworks (Ben-David et al., 2010). Moreover, these works intuitively assume it, whereas we
provide a theoretic support that could help explain the rationality.
Remark 3.2. To help understand the related factors contained in (11), we consider a special regime
that ν ≫ x, where Jν(x) ∼ x/ν. Then the expression of (11) can be approximated by

α1 ∼
nS

nT + nS

(
1− nTnSD

2

(nS + nT )|X ||Y|

)
. (12)

This result is consistent with Eq.(6) in (Tong et al., 2021) under this special regime as explained in
Appendix C. The coefficient α1, which represents the requirement of source samples, is positively
associated with the model dimensionality |X ||Y|, which comes from that we learn all the |X ||Y|
entries of the target distribution, and negatively associated with the target sample size nT and task
distance D. These relationships are examined in the experimental part. We also provide an interesting
geometric explanation of this pattern, which is shown in Appendix C.

3.2 ANALYTICAL SOLUTION OF FORMULATION 2

In the following, we provide the solution of problem (8) based on Hellinger distance.

Theorem 3.3. Let Q(2)
XY be the estimator that achieves the minimax solution of problem (8) and then4

Q
(2)
XY (x, y) =

[
(1− α2)

√
P̂

(T )
XY (x, y) + α2

√
P̂

(S)
XY (x, y)

]2
,

for all (x, y) ∈ X × Y , where

α2 =
nS

nT + nS

(
1− D

D2
J|X ||Y|

(
4nSnTDD2

nT + nS

))
,

and D2 ≜ H(P̂
(T )
XY , P̂

(S)
XY ).

Accordingly, we can also achieve a similar interpretation of the affecting factors as in section 3.1.
3This solution actually requests D/

√
1/nT + 1/nS ≤

√
|X ||Y|, which can be easily guaranteed.

4It requests D/
√

1/4nT + 1/4nS ≤
√

|X ||Y|.
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4 CONTINUOUS CASE AND ALGORITHM

In this section, we extend the previous analyses of discrete data to continuous data, which conform to
the practical setting. In such cases, the previously adopted empirical distributions can not be seen as
valid observations due to the infinite cardinality |X |, where most of the possible data are not sampled.

In order to apply the previous analyzing framework, we consider the retrain-head method (Nguyen
et al., 2020), which is a commonly used transfer learning technique. With this method, a pre-trained
network is prepared for extracting the feature of the data and then the topmost layer (known as
“head”) can be retrained with observed samples. Under such a setting, we can recognize the weights
in retrained topmost layers as the observations from the corresponding tasks. Note that compared
with the cardinality of the large data space, the topmost layer has much fewer parameters.

In detail, a pre-trained network is composed of two parts of networks: (a) the previous layers whose
input is data x and output is the d-dimensional features f(x) ∈ Rd, and (b) the topmost layer for
linear classification, with weights g(y) ∈ Rd of each label y. Each task provides the learned weights
to estimate the optimal weights for the target task. Moreover, the learned weights are decided by
the model proposed for describing the data. For theoretical analyses, we provide the discriminative
models for χ2-distance and Hellinger distance, where thereupon we can design practical algorithms.
For convenience, we use notation h to represent the topmost layer in section 4.2.

4.1 REVISED FORMULATION 1 AND MM-χ2 ALGORITHM

When χ2-distance is chosen as the distance measure, we consider the discriminative model for the
target distribution in the factorization form

Q
(f ,g)
Y |X (y|x) ≜ P

(T )
Y (y)

(
1 + fT(x)g(y)

)
, (13)

which provides the probability of each label y ∈ Y for any data x. Such a model has been introduced
in factorization machines (Rendle, 2010) and is commonly used in natural language processing
problems (Levy & Goldberg, 2014).

Under the pre-trained feature extractor f∗(·), the learned weights of topmost layers can be derived
by minimizing the distance between the empirical distribution and the model. For computation, we
avoid using the joint distribution as the reference and define the χ2-distance measure referenced by
the product marginal distribution, i.e., χ2

M (·, ·) ≜ χ2

P
(T )
X P

(T )
Y

(·, ·). Then, the learned weights ĝi of

each task i = T, S can be defined as

ĝi ≜ argming χ2
M

(
P̂

(i)
XY , P

(T )
X Q

(f∗,g)
Y |X

)
. (14)

Now ĝT and ĝS are the observations to generate the minimax solution, where the expectations can be
defined as gi(y) = E[ĝi(y)]. Note that the parameters of gT are just the topmost weights we hope to
achieve. Then, the minimax problem can be defined as follows [cf. (6)]:

g∗ = argmin
g(ĝT ,ĝS)

max
gS∈G

E
[
χ2
M (P

(T )
X Q

(f∗,gT )
Y |X , P

(T )
X Q

(f∗,g)
Y |X )

]
, (15)

where G ≜
{
g : χ2

M (P
(T )
X Q

(f∗,gT )
Y |X , P

(T )
X Q

(f∗,g)
Y |X ) ≤ D2

}
.

We can directly apply Theorem 3.1 and obtain the following theorem.

Theorem 4.1. When the empirical distributions P̂ (T )
XY and P̂

(S)
XY follow the density function (7), the

minimax solution as defined in (15) is 5

g∗ = (1− α̃1)ĝT + α̃1ĝS , (16)
where

α̃1 =
nS

nT + nS

(
1− D

D̃1

Jd|Y|

(
nTnSDD̃1

nT + nS

))
.

and D̃2
1 ≜ χ2

M (P
(T )
X Q

(f∗,ĝT )
Y |X , P

(T )
X Q

(f∗,ĝS)
Y |X ).

5In practice, when the assumption D/
√

1/nT + 1/nS <
√

d|Y| does not hold, the estimator can still
provide a sub-optimal solution.
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Algorithm 1 Minimax χ2-Algorithm (MM-χ2)

1: Input: target and source data samples {(x(i)
l , y

(i)
l )}ni

l=1 (i = T, S), learning rate η
2: Randomly initialize α, f∗, g∗

3: repeat
4: (f∗, g∗)← (f∗, g∗)− η∇(f ,g)L1(α,f

∗, g∗)

5: α← nS

nT+nS

(
1− D

D̃1
Jd|Y|

(
nTnSDD̃1

nT+nS

))
6: until f∗, g∗ converge
7: return f∗, g∗

Accordingly, we can design an algorithm based on Theorem 4.1. Despite the theoretical analyses
where the feature extractor is fixed, our algorithm jointly optimizes the feature extraction f and the
topmost layers g, which is a typical retraining procedure. It is proved that the linearly combined
weights (16) can be achieved by minimizing the linearly combined training loss with the same
coefficient. We therefore define

L1(α,f , g) ≜ (1− α)χ2
M

(
P̂

(S)
XY , P

(T )
X Q

(f ,g)
Y |X

)
+ αχ2

M

(
P̂

(T )
XY , P

(T )
X Q

(f ,g)
Y |X

)
. (17)

Then, the MM-χ2 algorithm is given in Algorithm 1. In practice, the loss L1(α,f , g), the related
quantities D, and D̃1 in Theorem 4.1 can be estimated by the empirical means of the features of
samples. Detailed implementations are provided in the supplementary material. With the f∗ and g∗

computed by Algorithm 1, the predicted label ŷ(x) for sample x is given by the maximum a posterior
(MAP) decision rule with ŷ(x) = argmaxy∈Y Q

(f∗, g∗)
Y |X (y|x).

4.2 REVISED FORMULATION 2 AND MM-HEL ALGORITHM

When Hellinger distance is chosen as the distance measure, we consider the discriminative model for
the target distribution in the following form. For each i = T, S,√

Q̃
(i,f ,h)
Y |X (y|x) ≜

√
P

(i)
Y (y)

(
1 + fT(x)h(y)

)
. (18)

This model is a deformation of (13), which makes the model trainable under Hellinger distance.
Similarly, under the pre-trained feature extractor f∗, the learned weights ĥi of each task i = T, S
can be defined as

ĥi ≜ argmin
h

H2
(
P̂

(i)
XY , P

(i)
X Q̃

(i,f∗,h)
Y |X

)
. (19)

Now ĥT and ĥS are the observations to generate the minimax solution, where the expectations can
be defined as hi(y) = E[ĥi(y)], i = T, S. The minimax problem can be defined as follows [cf. (8)]:

h∗ ≜ argmin
h(ĥT ,ĥS)

max
hS∈H

E
[
H2
(
P

(T )
X Q̃

(T,f∗,hT )
Y |X , P

(T )
X Q̃

(T,f∗,h)
Y |X

)]
, (20)

where H ≜
{
h : 1

2

∑
y∈Y

∥∥∥√P
(T )
Y (y)Λ

1
2

ThT (y) −
√

P
(S)
Y (y)Λ

1
2

Sh(y)
∥∥∥2 ≤ D2

}
, and Λi ≜

E
P

(i)
X

[f∗(X)f∗T(X)], for i = T, S.

We can directly apply Theorem 3.3 and obtain the following theorem.

Theorem 4.2. When the empirical distrbutions P̂ (T )
XY and P̂

(S)
XY follow the density function (9), the

minimax solution as defined in (20) is

h∗(y) = (1− α̃2)ĥT (y) + α̃2

√
P

(S)
Y (y)/P

(T )
Y (y)Λ

− 1
2

T Λ
1
2

S ĥS(y),

for all y ∈ Y , where

α̃2 =
nS

nT + nS

(
1− D

D̃2

Jd|Y|

(
4nTnSDD̃2

nT + nS

))
, (21)

and D̃2
2 ≜ 1

2

∑
y∈Y

∥∥∥√P
(T )
Y (y)Λ

1
2

T ĥT (y)−
√
P

(S)
Y (y)Λ

1
2

S ĥS(y)
∥∥∥2.
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Algorithm 2 Minimax Hellinger-Algorithm (MM-Hel)

1: Input: target and source data samples {(x(i)
l , y

(i)
l )}ni

l=1 (i = T, S)
2: (f∗,h∗

1,h
∗
2)← argminf ,h1,h2

L2(f ,h1,h2)

3: α← nS

nT+nS

(
1− D

D̃2
Jd|Y|

(
4nTnSDD̃2

nT+nS

))
4: h∗(y)← (1− α)h∗

1(y) + α

√
P

(S)
Y (y)

P
(T )
Y (y)

Λ
− 1

2

T Λ
1
2

Sh
∗
2(y)

5: return f∗,h∗

Similarly, we can design an algorithm based on Theorem 4.2. Note that we cannot apply the
linearly combined training loss in the Hellinger distance setting due to the design of two different
distribution models Q̃(T,f ,h)

Y |X and Q̃
(S,f ,h)
Y |X . We choose jointly training the shared feature extractor f

and individual topmost layers of the target and source task. The training loss is defined as

L2(f ,h1,h2) ≜ H2
(
P̂

(T )
XY , P

(T )
X Q̃

(T,f ,h1)
Y |X

)
+H2

(
P̂

(S)
XY , P

(S)
X Q̃

(S,f ,h2)
Y |X

)
. (22)

Then, the MM-Hel algorithm is given in Algorithm 2. Similarly, we also provide the estimation of the
related quantities in the supplementary material. With the computed f∗ and h∗, the predicted label

ŷ(x) for sample x is given by the MAP decision rule with ŷ(x) = argmaxy∈Y

√
Q̃

(T,f∗, g∗)
Y |X (y|x).

5 EXPERIMENTS

To validate the theoretical analyses in Theorem 3.1 and Theorem 3.3, and the robustness of our
algorithms, we conduct a series of experiments on common datasets for image recognition, including
CIFAR-10 (Krizhevsky et al., 2009), Office-31 and Office-Caltech (Gong et al., 2012b) datasets. For
convenience, different transfer settings are denoted by “source→target”.

5.1 CIFAR-10

We conduct transfer learning experiments on CIFAR-10 dataset in order to verify the theoretical
interpretations of the related factors in Remark 3.2, which mainly cover the sample size and task
distance. Specifically, CIFAR-10 dataset contains 50 000 training images and 10 000 testing images
in 10 classes. We first construct the source tasks and target task by dividing the original CIFAR-
10 dataset into five disjoint sub-datasets, each containing two classes of the original data, which
corresponds to a binary classification task. Then, we choose one as our target task (task 1), and use
the other four as source tasks referred to as task 2, 3, 4, 5, where four corresponding transfer learning
tasks are established.

In each transfer learning task, we use 2000 source images, with 1000 images per binary class. Target
sample size n is set as n = 12, 20, 60, 200 for four sub-tasks. Throughout this experiment, the
feature f is of dimensionality d = 10, generated by GoogLeNet (Szegedy et al., 2015) pre-trained by
ImageNet (Russakovsky et al., 2015), and followed by a fully connected layer.

The accuracies on the target testing images of MM-χ2 and MM-Hel algorithms are summarized in
Table 1 and Table 2. In each task, target samples are randomly picked from the target training set. All
the accuracies and standard deviations are reported over five random selections of target samples.
In detail, we analyze the effect of target sample sizes as in figure 1. figure 1 shows the changes of the
accuracies and coefficient α̃1 as defined in (16) (averaged over 5 tests) of different target sample sizes.
The coefficient α̃1 represents how much the final model relies on the source task. It corresponds to
our interpretation in Remark 3.2 that a larger target sample size could lead to less dependency on
the source task, and meanwhile the accuracies become higher and more stable. We also analyze the
effect of task distances as in figure 2. figure 2 shows the changes of the accuracies and task distance
D̃2 as defined in (21) (averaged over 5 tests) of different source tasks, where a larger task distance
can lead to a worse accuracy and stability.
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Table 1: Accuracies (%) of CIFAR-10 trans-
fer learning tasks based on MM-χ2 algorithm,
where nT represents the target sample size. The
baseline is trained with merely target samples.

Tasks nT = 12 nT = 20 nT = 60 nT = 200

Baseline 77.8±2.7 83.4±1.70 90.0±1.0 93.4±0.7
2 → 1 82.6±1.4 87.9±1.2 90.9±0.7 94.2±0.6
3 → 1 80.2±1.7 85.9±1.4 90.6±1.2 93.9±0.7
4 → 1 79.1±2.2 85.1±1.7 90.0±1.3 93.4±0.8
5 → 1 85.6±1.5 89.7±1.3 91.1±0.7 94.3±0.5

Table 2: Accuracies (%) of CIFAR-10 trans-
fer learning tasks based on MM-Hel algorithm,
where nT represents the target sample size and
it shares the same baseline with Table 1.

Tasks nT = 12 nT = 20 nT = 60 nT = 200

2 → 1 81.5±1.2 88.5±1.1 91.2±0.8 94.9±0.5
3 → 1 81.3±1.7 87.5±1.2 91.2±0.8 94.2±0.6
4 → 1 77.5±1.8 83.9±1.7 90.2±1.0 93.5±0.6
5 → 1 84.2±1.2 90.2±1.1 92.2±0.7 94.7±0.5
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Figure 1: The accuracies and coefficient α̃1

in transferring task 5 → 1 based on MM-χ2

algorithm under different target sample sizes.
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Figure 2: The accuracies and distance measure
D̃2 of target sample size nT = 12 based on
MM-Hel algorithm under different source tasks.

5.2 OFFICE-31

Office-31 dataset contains images of 31 categories with 3 sub-datasets, including Amazon (A, 2817
images), Dslr (D, 498 images), and Webcam (W, 795 images). Six transferring tasks can be established
as A→D, A→W, D→W, D→A, W→A, and W→D. We adopt the transfer learning setting in (Tzeng
et al., 2015), illustrated as follows. Specifically, 3 target samples per category are used for training,
and the training sample size (per category) for source task is set to 20 or 8, depending on whether the
source task is Amazon or not.

In this experiment, the feature f is extracted by the VGG-16 (Simonyan & Zisserman, 2014) network
pre-trained on the ImageNet, succeeded by fully connected layers, and the output is 64-dimensional.
We introduce the UDDA (Motiian et al., 2017) algorithm as the typical baseline and the iterative
linear combination method (Tong et al., 2021) (ILCM) for comparison, which employs a similar
linear combination method.

Table 3 summarizes test accuracies under different transfer settings, where all reported accuracies and
standard deviations are averaged over five train-test splits. The results indicate that our algorithms
generally have higher robustness and competitive accuracies.

5.3 OFFICE-CALTECH

Office-Caltech dataset is composed of 10 categories, divided as four sub-datasets: Amazon (A,
958 images), Caltech (C, 1123 images), Webcam (W, 295 images), and Dslr (D, 157 images). We
focus on the six transfer settings depending on C, i.e., A→C, W→C, D→C, C→A, C→W, and
C→D. The train-test split is as introduced in (Gong et al., 2012a). The feature f is based on the
pre-trained DeCAF network (Donahue et al., 2014), succeeded by fully connected layers, and the
output dimension is d = 10.

Table 4 shows the performances in comparison with CPNN (Ding et al., 2018) and ILCM (Tong et al.,
2021) algorithms, where CPNN is chosen as the baseline to be consistent with ILCM.
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Table 3: Test accuracies for target tasks under different transfer settings on Office-31.

Method A→D A→W D→W D→A W→A W→D

UDDA 89.0±1.2 88.2±1.0 96.4±0.8 71.8±0.5 72.1±1.0 97.6±0.4
ILCM 90.0±1.4 87.3±1.1 96.5±1.0 72.4±1.0 72.1±0.9 97.2±0.4
MM-χ2 (Ours) 90.2±0.6 87.5±0.5 96.7±0.5 72.9±0.8 72.2±0.6 97.6±0.3
MM-Hel (Ours) 89.8±0.5 88.1±0.4 96.0±0.5 72.2±0.5 72.0±0.4 97.5±0.4

Table 4: Test accuracies for target tasks under different transfer settings on Office-Caltech.

Method A→C W→C D→C C→A C→W C→D

CPNN 74.3±0.6 72.1±0.8 66.6±0.8 86.2±0.5 86.0±0.5 79.9±0.7
ILCM 80.3±0.7 72.9±0.7 72.2±0.9 88.4±0.7 85.9±0.5 83.5±0.9
MM-χ2 (Ours) 79.9±0.7 73.5±0.5 71.7±0.7 90.1±0.5 86.8±0.5 84.0±0.7
MM-Hel (Ours) 79.2±0.3 72.7±0.5 72.1±0.6 88.5±0.4 85.5±0.4 83.5±0.5

6 RELATED WORKS

6.1 MINIMAX ESTIMATOR OF BOUNDED NORMAL MEAN

Minimax estimator is a significant theme in statistical decision theory, which deals with the problem
of estimating a deterministic parameter in a certain family (Hodges & Lehmann, 2012). Under
the special setting of bounded normal mean, many works study the analytical solution when the
centers of Gaussian observations are restricted, including analytical solution for 1-dimensional
observations (Casella & Strawderman, 1981), high-dimensional observations (Berry, 1990; Marchand
& Perron, 2002). Moreover, the objective function can also be measured by norms other than mean
square error (Bischoff et al., 1995), which allows the applications in machine learning scenarios and
help derive the solutions of this paper’s formulations.

6.2 SELECTION OF DISTANCE MEASURE

In this paper, we select χ2-distance and Hellinger distance as the distance measure in (3), which
help analytically solve the minimax problem. These two measurements are both from the family
of f -divergence (Csiszár & Shields, 2004) and are widely-used in machine learning. Specifically,
χ2-distance can lead to the typical alternating conditional expectation algorithm (Xu & Huang, 2020).
Hellinger distance is also used to evaluate the domain adaptation in transfer learning (Baktashmotlagh
et al., 2014; 2016). Moreover, most existing measurements with non-linear functions, e.g, K-L
divergence containing the logarithm function, could be ill-defined, as explained in section 2.2.

6.3 MINIMAX TRANSFER LEARNING AND ROBUSTNESS

Minimax principle has been widely-used in transfer learning to promote the robustness of algo-
rithms (Verdu & Poor, 1984). The most common empirical method is connected to the adversarial
learning methods (Shafahi et al., 2019), including maximizing the training loss of adversarial classi-
fier (Tzeng et al., 2017) and maximizing the discrepancy between classifiers’ outputs (Saito et al.,
2018). Meanwhile, transfer learning settings can naturally imply minimax optimization problems
in view of the relationship between target and source tasks (Zhang et al., 2019). Recent researches
reveal that the maximization can succeed over the constraints on the distribution shift (Lei et al.,
2021), the similarity between neaural network parameters (Kalan et al., 2020), and optional source
tasks (Cai & Wei, 2021).

7 CONCLUSION

This paper introduces a minimax framework for transfer learning based on the assumption of task
distance. We provide the analytical solution of the minimax problem and characterize the roles of
sample sizes, task distance, and model dimensionality in knowledge transferring. In addition, we
develop robust transfer learning algorithms based on theoretical analyses. Experiments on practical
tasks show the robustness and effectiveness of our proposed algorithms.
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A APPROXIMATION OF K-L DIVERGENCE

Firstly, we provide the following approximation of K-L divergence, under the assumption that R(z),
P (z), and Q(z) are close to each other.

Lemma A.1. Suppose that |P (z) − R(z)| < ϵ and |Q(z) − R(z)| < ϵ for each z ∈ Z , where
ϵ/|Z| ≪ 1, K-L divergence between P (z) and Q(z) can have the following approximation

D (P∥Q) =
1

2
χ2
R(P,Q) +O(ϵ3). (23)

Proof.

D (P∥Q) =
∑
z∈Z
−P (z) log

Q(z)

P (z)

=
∑
z∈Z
−P (z) log

(
1 +

Q(z)− P (z)

P (z)

)
=
∑
z∈Z
−P (z)

(
Q(z)− P (z)

P (z)
− (Q(z)− P (z))2

2P 2(z)

)
+O(ϵ3)

=
∑
z∈Z

(Q(z)− P (z))2

2P (z)
+O(ϵ3)

=
∑
z∈Z

(Q(z)− P (z))2

2(R(z) + P (z)−R(z))
+O(ϵ3)

=
1

2

∑
z∈Z

(Q(z)− P (z))2

R(z)
+O(ϵ3).

Secondly, we consider Hellinger distance is closely connected with K-L divergence as the lower
bound, which is explained in the following lemma.

Lemma A.2. Let P (z), and Q(z) be the distribution supported by Z . We have

D (P∥Q) ≥ 2H2(P,Q). (24)

The proof of this lemma is easy to find and omitted here.
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B PROOF OF THEOREM 3.1 AND THEOREM 3.3

First, the regular definition of the modified Bessel functions of the first kind is

Iν(x) =

∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)(2m+ν)

,

where Γ(·) denotes the gamma function.

To solve the minimax problem (6) and (8), we apply the minimax estimation of a bounded normal
mean vector Berry (1990). The following lemma is a direct extension of the bounded normal mean
results.

Lemma B.1. Given two observations y ∼ N (x, σ2
1Ik) and w ∼ N (z, σ2

2Ik), where Ik denotes the
k × k identity matrix, their centers satisfy ∥x− z∥ ≤ D, and D/

√
σ2
1 + σ2

2 ≤
√
k. Let x̂∗ be the

minimax estimator for the following minimax problem, e.g.,

x̂∗ = argmin
x̂(y,w)

max
z:∥x−z∥2≤D2

E[∥x̂(y,w)− x∥2]. (25)

Then, the expression of x̂∗ is

x̂∗ =
σ2
1

σ2
1 + σ2

2

w +
σ2
2

σ2
1 + σ2

2

y +
σ2
1

σ2
1 + σ2

2

I k
2
( D
σ2
1+σ2

2
∥y −w∥)

I k
2−1(

D
σ2
1+σ2

2
∥y −w∥)

D

∥y −w∥
(y −w). (26)

Proof. First, we derive the posterior MMSE estimator for x under the uniform prior distribution on
the surface of the sphere.

Lemma B.2 (MMSE estimator). When the means and variances are finite, the MMSE estimator for
parameter x of observation y is uniquely defined and is given by

x̂(y) = E[x|y]. (27)

The likelihood of the observation y, w is

P (y,w|x, z) = P (y|x)P (w|z) ∝ exp

(
− (y − x)2

2σ2
1

)
exp

(
− (z −w)2

2σ2
2

)
. (28)

Let π(x|z) be the uniform prior distribution on the surface of the sphere in k dimensions with center
at z and radius D. Let t ≜ x− z, and we denote the prior as π(t) = 1{∥t∥=D}(t).

Under such a prior distribution,

P(y,w|x) ∝
∫
Rk

exp

(
− (y − x)2

2σ2
1

)
exp

(
− (z −w)2

2σ2
2

)
1{∥x−z∥=D}(x− z)dz. (29)

Then, the posterior distribution is

P (x|y,w) ∝
∫
Rk

exp

(
− (y − x)2

2σ2
1

)
exp

(
− (z −w)2

2σ2
2

)
1{∥x−z∥=D}(z)dz

∝
∫
Rk

exp

(
− (x− y)2

2σ2
1

)
exp

(
− (x− (w + t))2

2σ2
2

)
1{∥t∥=D}(t)dt

∝
∫
Rk

exp

(
−1

2

(
1

σ2
1

+
1

σ2
2

)(
x− σ2

2y + σ2
1(w + t)

σ2
1 + σ2

2

)2
)

· exp
(
−1

2

(y − (w + t))2

σ2
1 + σ2

2

)
1{∥t∥=D}(t)dt. (30)
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Therefore, the Bayes estimator of the posterior is

x̂∗ = E [x|y,w]

= A

∫
Rk

x

∫
Rk

exp

(
−1

2

(
1

σ2
1

+
1

σ2
2

)(
x− σ2

2y + σ2
1(w + t)

σ2
1 + σ2

2

)2
)

· exp
(
−1

2

(y − (w + t))2

σ2
1 + σ2

2

)
1{∥t∥=D}(t)dtdx

= A

∫
Rk

∫
Rk

x exp

(
−1

2

(
1

σ2
1

+
1

σ2
2

)(
x− σ2

2y + σ2
1(w + t)

σ2
1 + σ2

2

)2
)

· exp
(
−1

2

(y − (w + t))2

σ2
1 + σ2

2

)
1{∥t∥=D}(t)dxdt

= A′
∫
Rk

σ2
2y + σ2

1(w + t)

σ2
1 + σ2

2

exp

(
−1

2

(y − (w + t))2

σ2
1 + σ2

2

)
1{∥t∥=D}(t)dt

=
σ2
2y + σ2

1w

σ2
1 + σ2

2

+
σ2
1

σ2
1 + σ2

2

A′
∫
Rk

t exp

(
−1

2

(y − (w + t))2

σ2
1 + σ2

2

)
1{∥t∥=D}(t)dt

=
σ2
2y + σ2

1w

σ2
1 + σ2

2

+
σ2
1

σ2
1 + σ2

2

I k
2
( D
σ2
1+σ2

2
∥y −w∥)

I k
2−1(

D
σ2
1+σ2

2
∥y −w∥)

D

∥y −w∥
(y −w), (31)

where A and A′ are the normalization constants.

Then, we will prove that x̂∗ is the minimax estimator. Specifically , we prove that σ2
2y + σ2

1w is
independent of y−w. Since both two r.v.s are normal, we only need to prove Cov(σ2

2y+ σ2
1w,y−

w) = 0, i.e.,

Cov(σ2
2y + σ2

1w,y −w) = σ2
2Var(y) + σ2

1Var(w) = σ2
1σ

2
2 − σ2

1σ
2
2 = 0. (32)

We then define the risk function

Rx̂∗(t) ≜ E

(σ2
2y + σ2

1w

σ2
1 + σ2

2

+
σ2
1

σ2
1 + σ2

2

I k
2
( D
σ2
1+σ2

2
∥y −w∥)

I k
2−1(

D
σ2
1+σ2

2
∥y −w∥)

D

∥y −w∥
(y −w)− x

)2


=
2σ2

1σ
2
2

σ2
1 + σ2

2

+

(
σ2
1

σ2
1 + σ2

2

)2

· Ey−w∼N (t,σ2
1+σ2

2)

( I k
2
( D
σ2
1+σ2

2
∥y −w∥)

I k
2−1(

D
σ2
1+σ2

2
∥y −w∥)

D

∥y −w∥
(y −w)− t

)2
 . (33)

Lemma B.3 (Minimax Theorem Marchand & Perron (2002)). The unique Bayes estimator x̂∗ is also
the unique minimax estimator when

max
t

Rx̂∗(t) =

∫
Rx̂∗(t)dπ(t).

Let R′(t) ≜ E(y−w)∼N (t,σ2
1+σ2

2)

[(
I k
2
( D

σ2
1+σ2

2
∥y−w∥)

I k
2
−1

( D

σ2
1+σ2

2
∥y−w∥)

D
∥y−w∥ (y −w)− t

)2
]

.

Lemma B.4 (Berry (1990)). When D/
√
σ2
1 + σ2

2 ≤
√
k,

max
t

R′(t) =

∫
R′(t)dπ(t) (34)

Based on Lemma B.3 and Lemma B.4, x̂∗ is the minimax estimator.
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Lemma B.1 reveals that when two Gaussian observations contain a prior knowledge that their centers
have a maximum distance, the optimal estimator is a linear combination of the observations, where
the combining coefficient is related to the variances of the two observations, the maximum center
distance, and the dimension of observations.

For Formulation 1 (6), we can define a random vector u,v ∈ R|X ||Y|, where for all (x, y) ∈ X × Y ,

u(x, y) ≜
P̂

(T )
XY (x, y)√
R(x, y)

, (35)

and

v(x, y) ≜
P̂

(S)
XY (x, y)√
R(x, y)

. (36)

Their centers are u0(x, y) ≜ P
(T )
XY (x,y)√
R(x,y)

and v0(x, y) ≜ P
(S)
XY (x,y)√
R(x,y)

. According to (7), we have

u ∼ N (u0,
1
nT

I|X ||Y|) and v ∼ N (v0,
1
nS

I|X ||Y|) , and problem (6) can be re-defined as

min
w(u,v)

max
v0:∥v0−u0∥2≤D2

E
[
∥u0 −w∥2

]
. (37)

With Lemma B.1, we derive Theorem 3.1.

For Formulation 2 (8), we can define a random vector u,v ∈ R|X ||Y|, where for all (x, y) ∈ X × Y ,

u(x, y) ≜
√
P̂

(T )
XY (x, y), (38)

and

v(x, y) ≜
√

P̂
(S)
XY (x, y). (39)

Their centers are u0(x, y) ≜
√
P

(T )
XY (x, y) and v0(x, y) ≜

√
P

(S)
XY (x, y). According to (9), we have

u ∼ N (u0,
1

2nT
I|X ||Y|) and v ∼ N (v0,

1
2nS

I|X ||Y|) , and problem (8) can be re-defined as

min
w(u,v)

max
v0:

1
2∥v0−u0∥2≤D2

E
[
1

2
∥u0 −w∥2

]
. (40)

With Lemma B.1, we derive Theorem 3.3.

C INTERPRETATION OF THEOREM 3.1

Firstly, Remark 3.2 leads to that α1 ≃ nS

nT+nS

(
1− nTnSD2

(nS+nT )|X ||Y|

)
. Considering that |X ||Y| ≪ D2,

we have

α1 ≃
nS

nT + nS

1

1 + nTnSD2

(nS+nT )|X ||Y|
=

|X ||Y|
nT

|X ||Y|
nT

+ |X ||Y|
nS

+D2
, (41)

which is close to Eq.(6) in Tong et al. (2021).

A geometric explanation for Theorem 3.1 can be depicted in figure 3, where the entire space represents
all the distributions supported by X × Y . Two balls centered at the target and source distributions
represent the empirical distribution sets PnT

and PnS
. In particular, the radii of the balls show the

variances of the empirical distributions, which are inversely proportional to the sample sizes. The area
with a deeper color contains those paracentral empirical distributions, which have higher probability
according to (7). In addition, the distance between the centers is determined by the task distance
assumption. The minimax problem (6) is meant to find estimator Q(1)

XY , which is closest to the target
distribution in average, where the dash line implies the linear family of P̂ (T )

XY and P̂
(S)
XY . When the

target sample size increases, the blue ball will shrink. When distance D increases, two balls will
be farther away. Then, P̂ (T )

XY would be closer to the target distribution, which implies a smaller
coefficient α1.
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Figure 3: A geometrical explanation of the minimax setting (6). Two balls centered at the underlying
distributions represent all possible empirical distributions.

D PROOF OF THEOREM 4.1 AND THEOREM 4.2

Without loss of generality, we assume E
P

(T )
X

[f(X)] = 0. It can be easily guaranteed by deducting
the average feature when computing the feature of each x.

We denote ΛT ≜ E
P

(T )
X

[f∗(X)f∗T(X)] and ΛS ≜ E
P

(S)
X

[f∗(X)f∗T(X)].

D.1 REVISED FORMULATION 1

For revised Formulation 1 (15), first, we give the expression of ĝi as defined in (14) Tong et al. (2021)

ĝi(y) =
1

P
(T )
Y (y)

Λ−1
T

(∑
x∈X

P̂
(i)
XY (x, y)f

∗(x)

)
. (42)

Then, we can define a random vector u,v ∈ Rd|Y|, where

u ≜

[√
P

(T )
Y (1)Λ

1
2

T ĝ
T
T (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

T ĝ
T
T (|Y|)

]T
, (43)

and

v ≜

[√
P

(T )
Y (1)Λ

1
2

T ĝ
T
S (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

T ĝ
T
S (|Y|)

]T
. (44)

Their centers are

u0 ≜

[√
P

(T )
Y (1)Λ

1
2

Tg
T
T (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

Tg
T
T (|Y|)

]T
, (45)

and

v0 ≜

[√
P

(T )
Y (1)Λ

1
2

Tg
T
S (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

Tg
T
S (|Y|)

]T
. (46)

With (7), we have

u ∼ N (u0,
1

nT
Id|Y|), v ∼ N (v0,

1

nS
Id|Y|). (47)

Problem (15) can be re-defined as

min
w(u,v)

max
v0:∥v0−u0∥2≤D2

E
[
∥u0 −w∥2

]
, (48)

and thus Theorem 4.1 is proved.
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D.2 REVISED FORMULATION 2

For revised Formulation 2 (15), we give the expression of ĥi as defined in (19),

ĥi(y) =
1√

P
(i)
Y (y)

Λ−1
i

(∑
x∈X

√
P̂

(i)
XY (x, y)P

(i)
X (x)f∗(x)

)
. (49)

Then, we can define a random vector u,v ∈ Rd|Y|, where

u ≜

[√
P

(T )
Y (1)Λ

1
2

T ĥ
T
T (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

T ĥ
T
T (|Y|)

]T
, (50)

and

v ≜

[√
P

(S)
Y (1)Λ

1
2

S ĥ
T
S (1), · · · ,

√
P

(S)
Y (|Y|)Λ

1
2

S ĥ
T
S (|Y|)

]T
. (51)

Their centers are

u0 ≜

[√
P

(T )
Y (1)Λ

1
2

Th
T
T (1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

Th
T
T (|Y|)

]T
, (52)

and

v0 ≜

[√
P

(S)
Y (1)Λ

1
2

Sh
T
S (1), · · · ,

√
P

(S)
Y (|Y|)Λ

1
2

Sh
T
S (|Y|)

]T
. (53)

With (7), we have

u ∼ N (u0,
1

2nT
Id|Y|), v ∼ N (v0,

1

2nS
Id|Y|). (54)

Problem (15) can be re-defined as

min
w(u,v)

max
v0:

1
2∥v0−u0∥2≤D2

E
[
1

2
∥u0 −w∥2

]
, (55)

and the optimal estimator is

(1− α̃2)u+ α̃2. (56)

Note that w here refers to the vector[√
P

(T )
Y (1)Λ

1
2

Th
T(1), · · · ,

√
P

(T )
Y (|Y|)Λ

1
2

Th
T(|Y|)

]T
.

Thus, Theorem 4.1 is proved.

E DETAILS OF ALGORITHM IMPLEMENTATIONS

E.1 ALGORITHM 1

Here we provide the details of the loss function L1(α,f , g) in line 4 of Algorithm 1, the quantity D

and the quantity D̃1 in line 5. Our main procedures follow the results in Xu & Huang (2020)

As for the zero-mean assumption of f∗, which results in zero-mean weights g, we first define
f̃(X) ≜ f(X)− E

P̂
(T )
X

[f(X)] and g̃(Y ) ≜ g(Y )− E
P̂

(T )
Y

[g(Y )].

Then, we define Λ̂f and Λ̂g as the covariance matrices of features on target samples:

Λ̂f ≜ E
P̂

(T )
X

[f̃(X)f̃T(X)], (57)

Λ̂g ≜ E
P̂

(T )
Y

[g̃(Y )g̃T(Y )]. (58)
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In our implementations, all the computations in terms of the underlying distribution are replaced
by the corresponding empirical distributions. As proved in Xu & Huang (2020), minimizing
χ2
M (P̂

(i)
XY , P̂

(T )
X Q̂

(f ,g)
Y |X ) (Q̂(f ,g)

Y |X (y|x) ≜ P̂
(T )
Y (y)

(
1 + fT(x)g(y)

)
) is equivalent to maximizing

H(i)(f , g) ≜ E
P̂

(i)
XY

[f̃T(X)g̃(Y )]− 1

2
tr(Λ̂f Λ̂g), (59)

where i = T, S. Then, line 4 in Algorithm 1 can be implemented by

L1(α,f , g)← (1− α)H(T )(f , g) + αH(S)(f , g). (60)

Meanwhile, the distance bound D is also estimated from samples. As the simplest way, we let
D = D̃1 (D can actually be adjusted), where

D̃2
1 = χ2

M (P
(T )
X Q

(f∗,ĝT )
Y |X , P

(T )
X Q

(f∗,ĝS)
Y |X )

←
∑
y∈Y

P̂
(T )
Y (y)

(
E
P̂

(T )

X|Y =y

[f̃(X)]− E
P̂

(S)

X|Y =y

[f̃(X)]

)T

Λ̂−1
f

(
E
P̂

(T )

X|Y =y

[f̃(X)]− E
P̂

(S)

X|Y =y

[f̃(X)]

)
.

(61)

E.2 ALGORITHM 2

Here we provide the details of the loss function L2(f ,h1,h2) in line 2 of Algorithm 2, the quantity
D and the quantity D̃2 in line 3.

Similarly, we define f̃1(X) ≜ f(X) − E
P̂

(T )
X

[f(X)], f̃2(X) ≜ f(X) − E
P̂

(S)
X

[f(X)], h̃1(Y ) ≜

h1(Y )− E
P̂

(T )
Y

[g1(Y )], and h̃2(Y ) ≜ h2(Y )− E
P̂

(S)
Y

[h2(Y )].

Then the covariance matrices are

Λ̂f1
≜ E

P̂
(T )
X

[f̃1(X)f̃T
1 (X)], (62)

Λ̂f2
≜ E

P̂
(S)
X

[f̃2(X)f̃T
2 (X)], (63)

Λ̂g1
≜ E

P̂
(T )
Y

[g̃1(Y )g̃T
1 (Y ), (64)

Λ̂g2
≜ E

P̂
(S)
Y

[g̃2(Y )g̃T
2 (Y ). (65)

Still, all the computations in terms of the underlying distribution are replaced by the corresponding
empirical distributions. Considering the local approximation that P (i)

XY (x, y) ∼ P
(i)
X (x)P

(i)
Y (y) , the

Hellinger distance loss function H2
(
P̂

(T )
XY , P

(T )
X Q̃

(T,f ,h1)
Y |X

)
can be implemented by maximizing

H̃(T )(f ,h1) =
∑

x∈X ,y∈Y
P̂

(T )
XY (x, y)f̃

T
1 (x)g̃1(y)−

1

2
tr(Λ̂f1Λ̂g1). (66)

Similarly,

H̃(S)(f ,h2) =
∑

x∈X ,y∈Y
P̂

(S)
XY (x, y)f̃

T
2 (x)g̃2(y)−

1

2
tr(Λ̂f2

Λ̂g2
). (67)

Line 2 in Algorithm 2 can be implemented by

L2(f ,h1,h2)← H̃(T )(f ,h1) + H̃(S)(f ,h2). (68)

We let D = D̃2 (D can actually be adjusted), where

D̃2
2 =

1

2

∑
y∈Y

∥∥∥∥√P
(T )
Y (y)Λ

1
2

T ĥT (y)−
√
P

(S)
Y (y)Λ

1
2

S ĥS(y)

∥∥∥∥2

← 1

2

∑
y∈Y

∥∥∥∥√P̂
(T )
Y (y)Λ̂

1
2

f1
h̃1(y)−

√
P̂

(S)
Y (y)Λ̂

1
2

f2
h̃2(y)

∥∥∥∥2 , (69)
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and

ΛT ← Λ̂f1
, (70)

ΛS ← Λ̂f2
. (71)

Specifically, to compute the value of Bessel functions, we make the following approximations when
needed. When x≪ ν, Jν(x) ∼ x/v. When x≫ ν, Jν(x) ∼ (2x− ν)/(2x).

F INSTRUCTION FOR CODES

We provide code examples in “supplementary material.zip”. In the folder “./cifar10”, we provide
the code examples on CIFAR-10 dataset for feature extraction (construct feature vectors.py),
MM-χ2 algorithm (mmchi2.py), and MM-Hel algorithm (mmhel.py). Folder “./office-31/feature”
contains the features of Office-31 dataset. Folder “./office-31/minimax” contains the code examples
for Office-31 dataset, including the feature extraction code (feature extract 4096.py), MM-χ2

algorithm (oc atod vgg16 4096 chi2.py), and MM-Hel algorithm (oc atod vgg16 4096 hel.py).
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