
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHARPER ANALYSIS OF DATA ECHOING AND NEW
COMMUNICATION-EFFICIENT ALGORITHM FOR DATA
PARALLELISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Over the past decade, breakthroughs in both general-purpose and specialized hard-
ware have propelled the success of large-scale machine learning. However, the
advancements in general-purpose hardware are not keeping pace with those in
specialized hardware. Consequently, operations conducted on the general-purpose
hardware have become the primary performance bottleneck. Notably, data loading
significantly lags behind the gradient computation during training. To address this
issue, the technique of data echoing has been introduced in practice, whereby the
current batch of samples is reused for gradient computation to minimize idle time
while waiting for new data. However, this approach can lead to overfitting on the
current batch, and it remains unclear whether convergence benefits from this prac-
tice. In this paper, we provide a sharper analysis on a stochastic formulation of data
echoing and show that it obtains linear speedup proportional to the number of reuse
times. Additionally, we investigate the impact of the communication bottleneck
in data parallelism to data echoing, and propose a new communication-efficient
data echoing algorithm via reducing the frequency of model averaging. We then
show that it is possible to perform data echoing without additional communication
cost with data parallelism. Finally, we perform empirical experiments to verify
our analysis on the data echoing and the proposed efficient algorithm for data
parallelism.

1 INTRODUCTION

From the introduction of AlexNet (Krizhevsky et al., 2009), which is often considered as a milestone
of the modern deep learning era, to the recent surge in large foundation language models such as
OpenAI’s GPT-4 (OpenAI, 2024) and Google’s Gemini (Gemini Team, 2024), the field of artificial
intelligence has experienced rapid evolution through the training of increasingly large models. A key
driving factor behind this is the improvement of the specialized hardware such as GPU (Nickolls et al.,
2010) and TPU (Jouppi et al., 2017), which can perform highly parallelism matrix computations
and enable fast gradient computation to the large-scale model. Meanwhile, CPU-bound operations
have emerged as a major performance bottleneck. As datasets cannot fit entirely into the memory of
GPUs/TPUs, data must be loaded dynamically during training. However, the speed of data loading
cannot keep pace with the computation demands. As illustrated in Figure 1, reaching the maximum
FLOPS rate requires a specific level of arithmetic intensity, defined as the ratio of total FLOPS to
the data movement needed to support those operations. In modern GPU training, the arithmetic
intensity tends to be low due to slow data transfers, which hinders the system from achieving its peak
FLOPS rate. To alleviate this bottleneck, the data echoing technique was proposed by Choi et al.
(2019), whereby the current batch of examples in memory are reused for gradient computation to
minimize idle time while waiting for new data. More specifically, given the following optimization
problem: minx∈Rd f(x) := Eξ∼D[f(x; ξ)], and a minibatch Bt ∼ D of samples are loaded to the
GPU memory at training step t, then we perform M steps of gradient descent for this batch of data:

x
(m+1)
t = x

(m)
t − η∇f(x

(m)
t ;Bt),m ∈ [M] (1)

where, x(0)
t = xt and xt+1 = x

(M)
t . In Choi et al. (2019), the authors empirically demonstrate that

data echoing reduces the number of loading operations required to achieve a target accuracy. However,
although with empirical success, the theoretical benefits of the algorithm are still under-explored.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (Normalized) FLOPS Rate vs
Arithmetic Intensity under different Data
Loading Speed levels. For Data Loading
Speed i, a higher value of i indicates a faster
loading speed. Refer to Section B.1 for more
details on how this figure was generated.

Data echoing is a type of biased stochastic gradient
descent method, as the sequence of states x(m)

t ,m ∈
[M] for a given time step t are updated based on
correlated (same) examples. As a result, the conver-
gence analysis of data echoing is very challenging.
The pioneer work by Agarwal et al. (2020) studied
the convergence property of data echoing with sta-
bility analysis (Hardt et al., 2015), and showed that
for convex problems with bounded gradient, the data-
echoed algorithms achieve linear speedup w.r.t. the
curvature term. But the dominant statistical term does
not benefit from echoing. In this work, we move one
step further and show that for a type of stochastic
data-echoed algorithm, the statistical term also ben-
efits from echoing and obtains linear speedup. More
specifically, we demonstrate the linear speedup with
a type of shifted state analysis to the gradient estima-
tion bias. Recall that in Agarwal et al. (2020), the bias
of ∇f(x

(m)
t ;Bt) is bounded w.r.t. f(x

(m)
t). Since

x
(m)
t and Bt are correlated, only the following bound can be got ∥∇f(x

(m)
t ;Bt)−∇f(x

(m)
t)∥ ≤ B

given that the gradient of f(x) is bounded by a constant B. In contrast, we perform a different
analysis by bounding ∥∇f(x

(m)
t−τ ;Bt−τ)−∇f(x

(m)
t)∥. Given that Bt−τ is independent from x

(m)
t

for sufficiently large τ , E[∇f(x
(m)
t ;Bt−τ)] = ∇f(x

(m)
t). If x(m)

t is close to x
(m)
t−τ , we can bound

∥∇f(x
(m)
t−τ ;Bt−τ)−∇f(x

(m)
t)∥ given the function f is smooth.

Besides, we also investigate the data echoing algorithm in the data parallelism setting. To speed up
the training of large-scale models, it is common to divide the examples across different nodes. In each
training step, nodes first compute gradients in parallel and then average these gradients collectively.
Note that the communication volume of the average step is at the order of O(dK) (d is the number of
model parameters and K is the number of nodes), which is comparable to that of the data loading.
As a result, the benefit of doing data echo could disappear in the data parallelism setting, where the
amount of communication among GPU/TPU nodes increase as more gradient steps are performed.
To tackle this challenge, we propose a new communication-efficient data echoing algorithm in the
data parallelism setting. More specifically, for each training step t, nodes only average gradients with
a predefined probability p(c) > 0. By carefully selecting the value of p(c), we show that it is possible
to eliminate the communication overhead when we apply data echoing with data parallelism.

We summarize the contributions of our work as follows:

• We propose a stochastic formulation of data echoing and provide a sharper analysis which
demonstrates that it achieves linear speedup with respect to the number of reuse steps after
an initial burn-in period;

• We propose a new communication-efficient data echoing algorithm that enables data paral-
lelism without introducing communication overhead;

• We propose a practical cosine diminishing schedule for data loading probability and validate
its effectiveness through numerical experiments on a variety of benchmark datasets and deep
learning models.

Notations. ∇f(x) denotes the first-order derivatives of the function f(x) w.r.t. variable x. ξ denotes
a random sample and ∇f(x; ξ) is the stochastic estimate ∇f(x). O(·) is the big O notation (Õ(·)
omits the logarithmic terms), and hides the logarithmic terms. ∥ · ∥ denotes the ℓ2 norm for vectors
and the spectral norm for matrices, respectively. ⟨·, ·⟩ denotes the Euclidean inner product. [K]
denotes the set of {1, 2, ...,K}. For a random variable X , E[X] denotes its expectation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

The term of data echoing is proposed in Choi et al. (2019), where authors consider the full training
pipeline of a machine learning algorithm, including reading from the disk, shuffling the data, data
augmentation, batching etc. Then in data echoing, each stage simply reuses the current available data
instead of waiting for operations from the last stage to finish. In our work, we focus on the echoing of
data batches similar to Agarwal et al. (2020). Agarwal et al. (2020) is a pioneered work in analyzing
the convergence of data echoing. Its analysis consists of two parts: the first involves establishing
bounds on the progress made with respect to an objective defined over a mini-batch, while the second
part connects the decrease on a batch to the full dataset objective. The first part can be performed
by standard regret analysis in optimization, while the second part utilizes the concept of uniform
stability. Note that Agarwal et al. (2020) considers the set of convex optimization problems with
bounded gradient. We study the general non-convex setting and do not require the bounded gradient
assumption, instead we require a less restrictive bounded bias assumption (Even, 2023). Our analysis
to data echoing is from the view of Markov chain gradient descent, while our communication-efficient
data echoing algorithm is inspired by the Local Gradient Descent (i.e. FedAvg) (McMahan et al.,
2017). We introduce some recent developments in these two directions below:

Markov-Chain Gradient Descent. Algorithms similar to stochastic gradient descent (Robbins &
Monro, 1951) have achieved significant success in large-scale machine learning. Typically, these
algorithms rely on access to i.i.d. examples to estimate the gradient. However, in some applications
such as decentralized optimization (Johansson et al., 2007; 2010) and reinforcement learning (Sun
et al., 2018), i.i.d. samples may not be readily available or may be costly to obtain. A well-studied
alternative (Johansson et al., 2007; 2010; Sun et al., 2018; Doan et al., 2020; Even, 2023) involves
sampling examples from a Markov chain. The example sequence in data echoing (Choi et al., 2019)
can also be viewed as a Markov chain. The convergence of Markov chain gradient descent is analyzed
under various assumptions to the properties of the involved chains. Under the ergodic assumption,
Johansson et al. (2007) shows that O(ϵ−2) iterations are needed to achieve an ϵ error. Sun et al. (2018)
shows for both reversible and non-reversible chains that O(ϵ−(1/(1−q))), q ∈ (0.5, 1) iterations are
needed for non-convex problems. Even (2023) improves over the analysis in Sun et al. (2018) by
removing the bounded gradient assumption. Besides the convergence analysis, Wang et al. (2022)
studied the generalization property of Markov chain gradient descent using the tool of algorithmic
stability (Hardt et al., 2015); Adibi et al. (2024) studied the effect of delayed update to Markov chain
gradient descent.

Local Gradient Descent. The idea of reducing communication cost by performing local gradient
descent is used in Federated Learning (FL) (McMahan et al., 2017), which is a novel paradigm for
performing machine learning tasks over distributed, privacy sensitive data. In FL, communication
is the major performance bottleneck (Wen et al., 2017) and Local Gradient Descent is proposed to
reduce the frequency of client-server communication. Our communication-efficient data echoing for
data parallelism is inspired by the similar idea. Besides, various compression techniques (Wen et al.,
2017; Lin et al., 2017; Stich et al., 2018; Karimireddy et al., 2019) can also be applied to reduce
the communication cost and can be combined with data echoing (we leave this as a future work to
explore).

3 STOCHASTIC DATA ECHOING AND A TIGHTER ANALYSIS

In this section, we introduce a new tighter convergence analysis to data echoing. More specifically,
we consider a formulation of stochastic data echoing and view it as a type of Markov Chain gradient
descent. We first introduce some preliminaries of Markov chain in the next subsection.

3.1 PRELIMINARIES OF MARKOV CHAIN

We consider the following finite-state time-homogeneous Markov Chain:

Definition 3.1 (Adapted from Definition 1 in Agarwal et al. (2020)). Let P be an N ×N real-valued
matrix. A stochastic process X = {X1, X2, ...} in a finite state space [M] is a time-homogeneous
Markov chain with transition matrix P if for any k ≥ 0, i, j ∈ [M], i0, i1, ..., im−1 ∈ [M], the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Stochastic Data Echoing Algorithm
1: Input: {ηt}, learning rates; {pt}, the probability of a example is replaced with a new one; B, the

minibatch size; initialize the variable state as x1.
2: for t = 1 to T do
3: Update the mini-batch Bt according to equation 4, i.e. replace each example with probability

pt
4: Compute the stochastic gradient dt = 1

B

∑
zt∈Bt

∇f(xt; zt) with |Bt| = B
5: xt+1 = xt − ηtdt
6: end for
7: Return: xa chosen uniformly randomly from {xt}Tt=1

following conditional independence property holds:

P(Xm = j|X0 = i0, ..., Xm−1 = i) = P(Xm = j|Xm−1 = i) = Pi.j

P is the transition matrix of X and the probability distribution π is the stationary distribution of the
stochastic process X if πP = π.

A Markov chain is irreducible if there exists some m > 0, s.t. Pm
i,j > 0, i, j ∈ [N]; a Markov chain

is aperiodic if there exists m0 > 0 such that for all m > m0, Pm
i,j > 0, i, j ∈ [N]; a Markov chain is

reversible if πiPi,j = πjPj,i, i, j ∈ [N]. Note that a irreducible, aperiodic Markov chain obtains a
stationary distribution (Levin & Peres, 2017). We next define the mixing time of a Markov chain:

Definition 3.2 (Adapted from Definition 2.2 in Even (2023)). For ϵ > 0, the mixing time τmix(ϵ)
is defined as follows: τmix(ϵ) = inf {m ≥ 1|∀π0, dTV (P

mπ0, π) ≤ ϵ}, where dTV is the total-
variation distance.

Note that τmix(ϵ) has a logarithmic dependence over ϵ, where we have τmix(ϵ) ≤
τmix log2(ϵ

−1) (Even, 2023). Furthermore, if a Markov chain is reversible, its mixing time is
closely related to the eigenvalue of the transition matrix. Denote the absolute spectral gap of P as
λP = 1 − maxλ∈Sp(P)\{1}|λ|, where Sp(P) is the spectrum of P . Then for reversible Markov
chain, its mixing time satisfies τmix(ϵ) ≤ ⌈λ−1

P ln(π−1
minϵ

−1)⌉ (Even, 2023), where πmin denotes the
minimum element of the stationary distribution π.

3.2 THE STOCHASTIC DATA ECHOING

We consider the following stochastic optimization objective in this work:

min
x∈Rd

f(x) := Eξ∼D[f(x; ξ)] =
1

N

N∑
n=1

f(x; ξi) (2)

where D is the data distribution and the second equality shows a special case of D be a uniform
distribution over N data points. We will focus on this finite sum setting in the subsequent discussion
to be compatible with the finite-state Markov chain in Definition 3.1. Note that it is straightforward
to extend our analysis to the general case of D if we extend our definition of Markov chain to the
infinite state spaces. Next, we consider the following stochastic data echoing update:

xt+1 = xt − ηt∇f(xt;Bt) (3)

where ηt is the learning rate and Bt denotes the mini-batch at step t. Different from that in the
stochastic gradient descent where Bt is sampled independently for each step, we assume that Bt+1

correlates with Bt. More specifically, suppose we have Bt = {zt,1, ..., zt,B}, where the size of the
minibatch is B. Then we have the following sampling procedure:

zt+1,i =

{
zt,i with prob. 1− p,

ξj with prob. p
N−1 , ∀ ξj ̸= zt,i.

(4)

where 0 < p ≤ 1, and equation 4 shows zi is not updated with probability 1 − p and otherwise
randomly load a new example from the dataset D. Note that if we set p = 1

M , then equation 3 is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

equivalent to the classical data echoing update in equation 1 in expectation; if we set p = N−1
N ,

equation 3 degenerates to the standard stochastic gradient descent.

Following the sampling strategy in equation 4, we get B independent Markov chains {zi}, i ∈ [B].
The transition matrix P of {zi} has diagonal elements of 1− p and off-diagonal elements of p

N−1 .
We can identify two important properties from the transition matrix. Firstly, since P is irreducible,
aperiodic and reversible, the Markov chains {zi}, i ∈ [B] have a unique stationary distribution which
is the uniform distribution, i.e. πzi =

1
N , i ∈ [B]. By the definition of stationary distribution, we have

P (zt+τ | zt) → π as τ → ∞. In other words, for sufficiently large τ , zt+τ and zt are independent
with each other, and this property plays an important role in our analysis.

Next, we derive the mixing time of the markov chain. We express the transition matrix P as:

P = (1− p)× I +
p

N − 1
× (J − I)

where J denotes the matrix whose elements are all ones. Following some standard linear algebra
analysis, we can get P has one eigenvalue of one and N − 1 eigenvalues of (1 − p − p

N−1) and
following the properties of Markov chain in Sec. 3.1, we have:

τmix(ϵ) ≤ ⌈λ−1
P ln(π−1

minϵ
−1)⌉ = ⌈N − 1

pN
ln(Nϵ−1)⌉ = O

(
ln(Nϵ−1)

p

)
In the case of p = 1

M , i.e. the standard data echoing, we have the mixing time is Õ(M). Therefore, a
lower frequency of data loading leads to a larger mixing time. As the mixing time measures how fast
the state distribution converges to the stationary distribution (uniform distribution in case of echoing),
larger mixing time leads to a larger gradient estimation bias, thus slow down the convergence. Finally,
Algorithm 1 presents a practical version of our stochastic data echoing algorithm, where we set {pt}
to be a variable and depend on the training step. In the sequel, we will use the term ‘data echoing’ to
refer to this stochastic version without special notation for simplicity.

3.3 THEORETICAL ANALYSIS OF ALGORITHM 1

In this section, we provide theoretical analysis to Algorithm 1. We first state some mild assumptions:
Assumption 3.3 (Example Gradient Smoothness). The function f(x) in equation 2 is possibly
non-convex, f(x; ξi), i ∈ [N] is L-smooth i.e., we have:

∥∇f(x; ξi)−∇f(y; ξi)∥ ≤ L∥x− y∥,
for all x, y ∈ Rd and i ∈ [N].

Assumption 3.4. The function f(x) is bounded from below, i.e., there exists f∗ = infx∈X f(x).
Assumption 3.5 (Bounded Gradient Dissimilarity). The sample gradients have bounded dissimilarity
to the full gradient, i.e. there exists a constant σ such that:

∥∇f(x; ξ(i))−∇f(x)∥ ≤ σ, ∀ i ∈ [N]

As stated in Assumption 3.3, we study the smooth non-convex optimization problems. Assumption 3.4
guarantees the minimization problem is well-defined. Finally, the bounded gradient dissimilarity
assumption (Assumption 3.5) is weaker compared to the bounded gradient assumption made in (Agar-
wal et al., 2020). As the sample gradient can be unbounded while still satisfying Assumption 3.5.

A key step in our analysis is using the following shifted descent Lemma to bound one step progress
of Algorithm 1 (See Lemma A.4 for proof):
Lemma 3.6 (Shifted Descent Lemma). Under Assumptions 3.3-3.5, for all t ≥ τ ≥ τmix(νπmin),
ν < 1

4 and η < 1
256Lτ , the one step progress of Algorithm 1 can be bounded as follows:

E[f(xt+1)] ≤ E[f(xt)]−
η

16
E
[∥∥∥∇f(xt−τ)∥2

]
+ ην2σ2 + 128η3τ2L2σ2 + η2Lσ2

As shown by Lemma 3.6, the stochastic gradient ∇f(xt;Bt) evaluated over the mini-batch Bt

leads to a good estimation of ∇f(xt−τ). In fact, for sufficiently large τ , P (Bt|xt−τ) converges
to the stationary distribution, which is the uniform data distribution in our case. As a result, we
have E[∇f(xt−τ ;Bt)] ≈ ∇f(xt−τ); then the bias of using ∇f(xt;Bt) to estimate ∇f(xt−τ) is at
the order of ∥∇f(xt−τ) − ∇f(xt)∥ which can be bounded by variable drift ∥xt−τ − xt∥ by the
smoothness assumption. See Lemma A.4 in the appendix for the detailed proof.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Communication-Efficient Data-Echoing for Data Parallelism (Comm. Data-Echo)
1: Input: Input: {ηt}, learning rates; {pt}, the probability of an example is replaced with a new

one; {p(c)t, }, the probability of different nodes average local gradients; K, the number of nodes;

B, the minibatch size. Initialize the state x
(k)
1 = x1, k ∈ [K] for some state x1.

2: for t = 1 to T do
3: for k = 1 to K in parallel do
4: Each node independently update the mini-batch B(k)

t according to equation 4;
5: Compute the stochastic gradient d(k)t = K

B

∑
z
(k)
t ∈B(k)

t
∇f(x

(k)
t ; z

(k)
t) with |B(k)

t | = B
K

6: x
(k)
t+1 = x

(k)
t − ηtd

(k)
t

7: end for
8: Set x(k)

t+1 = 1
K

∑K
j=1 x

(j)
t+1 with probability p

(c)
t

9: end for
10: Return: xa chosen uniformly randomly from {xt}Tt=1

Remark 3.7. Note that the type of shifted analysis is an existing technique in the Markov chain
gradient descent literature (Sun et al., 2018; Even, 2023). However, our Lemma 3.6 leads to a tighter
bound to the gradient estimation bias, where our bias term is O(ην2 + η3τ2). In contrast, that
state-of-art analysis by (Even, 2023) shows an bound of O(ην2 + η2τ) (See Section C.1 of (Even,
2023)). For small value η, our bound is tighter, so our Lemma 3.6 is useful to the analysis of general
markov chain gradient descent.

Next, we are ready to show the convergence Theorem of Algorithm 1 (The proof is included in
Theorem A.5):

Theorem 3.8. Under Assumptions 3.3-3.5, we choose η = min
(

1
256Lτ ,

1
4 ,
(
C0C2

T

)1/2)
, for some

constants τ = O(1/p), then with any choice of minibatch sizes B ≥ 1, the iterates generated from
Algorithm 1 satisfy:

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

where C0 = 16(∆+σ2/L), C1 = (16+16 ∗ 128τ2L2)σ2, C2 = 16Lσ2, Cη = min
(

1
256Lτ ,

1
4

)
. ∆

denotes the initial sub-optimality. p is the data loading probability; the stochasity comes from the
randomness of the algorithm.

Note that the last term in the above inequality dominates the convergence error for sufficiently large T .
More precisely, we need T ≥ max

(
C2

1C0

C2
, C0

C2
ηC

3
2

)
. Given this condition hold, to reach an ϵ-stationary

point, we need T = O(C0C
3
2ϵ

−2), then the number of data loading operations is O(pBC0C
3
2ϵ

−2),
Note that C0 and C2 does not depend on p, so the number of data loading operations has linear
speedup w.r.t. the data loading probability p. Recall that Agarwal et al. (2020) only showed that the
number of data loading operations is O(ϵ−2) and does not benefit from reusing in-memory batches.
Furthermore, the analysis of Agarwal et al. (2020) makes the bounded gradient assumption, while
our analysis requires the weaker bounded gradient dissimilarity (Assumption 3.5) condition.
Remark 3.9. Note that we can not arbitrarily decrease p to 0 in practice, as Theorem 3.8 requires
a burn-in stage, i.e. we need T ≥ max

(
C2

1C0

C2
, C0

C2
ηC

3
2

)
, recall that Cη = O(τ−1), C1 = O(τ2) and

τ = O(p−1), so we need at least T = O(p−4) to achieve the speedup effect w.r.t. p.

4 COMMUNICATION-EFFICIENT DATA ECHOING FOR DATA PARALLELISM

In this section, we propose a new communication-efficient data echoing for data parallelism. Suppose
we have K nodes for parallel computation. In data parallelism, at each training step, the mini-batch
Bt is divided into K subsets {B(k)

t , k ∈ [K]}, and each node evaluates stochastic gradient over a
different subset, i.e. evaluate ∇f(xt;B(k)

t). Then a gradient average operation is performed across

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Comparison between Data Echoing with Diminishing Load Probability vs SGD. The
learning rate for each algorithm is specified in parentheses, e.g., SGD (0.1) denotes a learning rate
of 0.1. The first row presents results for CIFAR-10 trained on MobileNet-V2, while the second row
shows results for CIFAR-100 trained on ResNet18. Batch sizes of 128, 256, and 512 are shown in the
first, second, and third columns, respectively.

all nodes. The update step of data parallelism is as follows:

xt+1 = xt −
ηt
K

K∑
k=1

∇f(xt;B(k)
t) (5)

Note that the vanilla data echoing algorithm only reduces the number of data loading operations (as
shown by Theorem 3.8), but the number of training steps T is not changed. In the data parallelism
setting, this means the communication cost across the nodes is not reduced, which undermines the
significance of doing data echoing. In fact, one way to mitigate this challenge is by reducing the
frequency of gradient average. More specifically, we perform the average operation with probability
p(c). Recall that the data loading operation is performed with probability p. By setting p(c) ≤ p, the
communication overhead between compute nodes can be eliminated.. In Algorithm 2, we formalize
our communication-efficient data echoing algorithm.

4.1 THEORETICAL ANALYSIS OF ALGORITHM 2

In this section, we study the convergence property of Algorithm 2. Note that the bias of gradient esti-
mation is increased if we reduce the frequency of gradient average, thus slows down the convergence
rate. However, we show its effect to convergence is bounded as long as the interval between two
gradient average operations are bounded. More specifically, we make the following assumption:
Assumption 4.1 (Bounded Gradient Average Interval). The interval between two gradient average
steps are upper-bounded by I .

Then we are ready to show the convergence Theorem of Algorithm 2 (See Theorem A.3 for proof):
Theorem 4.2. Under Assumptions 3.3-3.5 and Assumption 4.1, we choose η =

min
(

1
256Lτ ,

1
4LI ,

1
4cν

,
(
C0C2

T

)1/2)
, for some constants τ = O(1/p), then with any choice of mini-

batch sizes B ≥ 1, and number of local updates, I ≥ 1, the iterates generated from Algorithm 2
satisfy:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

where C0 = 16(∆ + σ2/L), C1 = (32 + 16 ∗ 128τ2L2 + 256L2(I − 1)2τ)σ2, C2 = 16Lσ2,
Cη = min

(
1

256Lτ ,
1

4LI ,
1
4

)
. ∆ denotes the initial sub-optimality. The stochasity comes from the

randomness of the algorithm.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The error bound in Theorem 4.2 resembles that in Theorem 3.8, except the additional term 256(I −
1)2L2τ in the constant C1 and the additional regularity to the learning rate where η < 1/(4LI). Note
that the term 256(I − 1)2L2τ bounds the drift of local variables {x(k)

t , k ∈ [K]} (See Lemma A.1 in
the appendix for more details).

Similar to Theorem 3.8, to reach an ϵ-stationary point, Theorem 4.2 needs T = O(ϵ−2) (we omit the
constants C0 and C2) and the number of data loading operations is O(pBϵ−2). Thus Algorithm 2 also
has linear speedup w.r.t. p. Furthermore, the number of gradient average operations are O(p(c)Bϵ−2).
Note that Theorem 4.2 allows the I grows at the order of O(T 1/4) without affecting the dominant
term (C1 only affects the second term of the error bound). So we can set p(c) = 1

I ≤ p such that the
communication across compute node is comparable to data loading operations.

5 NUMERICAL EXPERIMENTS

In this section, we perform experiments to verify the efficacy of our proposed algorithms through both
image classification tasks and language modeling tasks. More specifically, for the image classification
task, we use CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009) and choose
ResNets (He et al., 2016) and MobileNet-V2 (Sandler et al., 2018) models. For the language modeling
task, we use WikiText-2 (Merity et al., 2016) dataset over the GPT-2 model (Radford et al., 2019).
All experimental results are averaged over 5 independent runs and we report the average value. Next,
in Section 5.1, we consider the single node setting and focus on the effect of data loading probability
schedule {pt}, t ∈ [T]. Then in Section 5.2, we study the multi-node data parallelism setting, where
we test our communication-efficient data echoing algorithm. All experiments are run on a machine
with an Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla A6000 GPUs. The code is written in Pytorch.
We simulate the communication among different GPUs through the Pytorch.distributed package (Li
et al., 2020).

5.1 RESULTS UNDER SINGLE NODE SETTING

Figure 3: Comparison among differ-
ent Loading Probability schedule. We
train a MobileNet-V2 model on the
CIFAR-10 dataset using a learning rate
of 0.1 and a batch size of 128.

In this section, we examine how the data loading proba-
bility p impacts model training performance. When using
a constant p = 1

M in Algorithm 1, the expected behavior
aligns with classical data echoing with M repeat steps,
and we use this constant schedule as the starting point of
our experiments. We explore different values of p across
various training settings, including model architecture,
datasets, and learning rates. Following the experimental
setup in Choi et al. (2019), we measure training cost by
the number of example loads, as this metric is more repro-
ducible across different hardware compared to wall-clock
time (Choi et al., 2019).

As shown in Figure 4, the Data-Echoing algorithm (for
moderately large p) converges slower than the standard
SGD algorithm. In fact, when the batchsize B is much
smaller compared to the dataset size (e.g. 128 compared to
50000 in Figure 4), reusing the same batch of data during
training can lead to overfitting to that specific batch and
thus slow down the overall convergence rate. Furthermore,
we observe that the test accuracy converges to a similar
point across different p values, with smaller p values causing slower initial convergence but faster
convergence in the later stages of training. For example, in the third plot of Figure 4, Data-Echo
with p = 0.25 converges slower than p = 0.5 in the early training stage, but it catches up and finally
converges to a slightly better accuracy. This observation is consistent to our theoretical analysis. In
Theorem 3.8, we show Algorithm 1 has a ‘burn-in stage’ which is at the order of O(p−4). Naturally,
smaller values of p requires more training steps to show its acceleration effects.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Comparison between Diminishing vs Constant Loading Probability. The left two
figures show results for CIFAR-10 (trained with MobileNet-V2) using learning rates of 0.05 and 0.1,
respectively. The right two figures present results for CIFAR-100 (trained with ResNet-18) using
learning rates of 0.005 and 0.01, respectively. A batch size of 128 is used in all cases.

Figure 5: Comparison between Communication-Efficient Data Echoing vs SGD. Data-Echo and
Comm. Data-Echo use the same p schedule, with p(c) set equal to p, ensuring that the communication
cost for Comm. Data-Echo matches that of vanilla SGD. The top row presents results for CIFAR-10
trained on MobileNet-V2, while the bottom row shows results for CIFAR-100 trained on ResNet-18.

To mitigate this challenge, we propose a diminishing schedule for the data loading probability p.
More specifically, we adopt the following cosine schedule:

pE = pmin + (pmax − pmin)cos

(
Eπ

2Emax

)
(6)

where E (Emax) are the number of epochs (max epochs) and 0 < pmin < pmax < 1. We use
Data-Echo (pmax, pmin) to denote the data echoing using this cosine schedule. As shown by the
results in Figure 4, data-echoing using the cosine schedule outperforms that using constant data
loading probability p.

Note that it is also possible to use other diminishing schedules for the data loading probability p. As
shown in Figure 3, we compare the cosine schedule with two more types of schedules: Linear Decay
and Multi-Step Decay. For Linear decay, p is decreased from pmax to pmin linearly throughout
training, while for multi-step decay, we decrease the value of p at 0.5Emax and 0.75Emax by half,
respectively. In Figure 3, the multi-step accuracy curve has a big drop when we decrease the p, which
could be caused by the sudden change of input data distribution, and this observation motivates us
to use a smoother decaying schedule for p. As for linear decay schedule, it is slightly worse than
the cosine schedule. Note that this suggests that the linear decay schedule might decrease the value
of p too fast compared to the cosine schedule. In the remainder of experiments, we will focus on
the cosine schedule. Finally, in Figure 2 (the image classification tasks) and Figure 7 (the language
modeling task), we verify the effectiveness of the cosine schedule under different settings and we
observe that the data echoing with cosine decay schedule consistently outperforms SGD.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Ablation study of the model average probability p(c). We vary the ratio between p(c)

and p. The results are for the MobileNet-V2 trained on the CIFAR-10 dataset with learning rate 0.1.
We use batchsize 2048, 4096 and 8192 from left to right.

Figure 7: Numerical Results for the Language Modeling Task. The two figures on the left illustrate
results for the single-node setting with learning rates of 5× 10−5 and 10−4, respectively. The curves
are labeled in the format ‘method-batchsize (p schedule)’. The two figures on the right correspond to
the multi-node setting with batch sizes of 48 and 64, respectively, where the curve labels follow the
format ‘method-batch size (p(c) schedule)’. All results are based on training for 30 epochs.

5.2 RESULTS UNDER DATA PARALLELISM SETTING

In this section, we show that our Comm. Data-Echo (Algorithm 2) can effectively reduce communica-
tion cost of data echoing in data parallelism while still keeping its benefit in reducing the number of
data loading operations. We run experiments with 4 nodes and evenly divide the data to each node at
each step. Firstly, in Figure 5, we set p(c) = p, i.e. we set the probability of performing data loading
the same as performing gradient average at each step. As a result, the amount of communication
among GPUs needed for data echoing and SGD are the same (in expectation) given same number of
data loading operations. Then we observe in Figure 5 that the Comm. Data Echo gets comparable
performance as the vanilla data echoing while outperform the vanilla SGD, which effectively verify
the effectiveness of Comm. Data Echo. Next, in Figure 6, we further study how the choice p(c) affects
the training performance, where we vary the value of p(c) in the range of (0.25p, 2p). As shown in
the figure, we can set p(c) as low as 0.67p while still outperforming the vanilla SGD. Finally, the
results shown in the right two figures of Figure 7 also verify the effectiveness of our Comm. Data
Echo in reducing the communication overhead of data echoing.

6 CONCLUSION

In this work, we explore the properties of the data echoing technique. First, we provide a tighter
analysis of data echoing, demonstrating that its stochastic formulation achieves linear speedup with
respect to data loading probability. Next, we examine the application of data echoing in the context of
data parallelism and propose a novel algorithm that reduces the frequency of model averaging, thereby
improving communication efficiency. Theoretically, we show that our communication-efficient data
echoing algorithm lowers the communication cost in data parallelism while preserving the benefit of
reduced data loading operations. Finally, we empirically validate the effectiveness of data echoing
and introduce a cosine diminishing schedule for data loading probability. We also conduct extensive
numerical experiments to confirm the efficacy of our communication-efficient algorithm in the data
parallelism setting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For theoretical results, we state all assumptions in Section 3.3 and Section 4.1, and the detailed proof
of all lemmas and theorems is included in the appendix. For numerical results, we describe the details
including datasets, models, and various hyper-parameters choices.

REFERENCES

Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev Kulkarni, H. Vincent Poor, George
J. Pappas, Hamed Hassani, and Aritra Mitra. Stochastic approximation with delayed updates:
Finite-time rates under Markovian sampling. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
Li (eds.), Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research, pp. 2746–2754. PMLR, 02–04 May
2024. URL https://proceedings.mlr.press/v238/adibi24a.html.

Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang. Stochastic optimization
with laggard data pipelines. Advances in Neural Information Processing Systems, 33:10282–10293,
2020.

Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. Faster neural network
training with data echoing, 2019.

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness, 2020.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes. In International
Conference on Machine Learning, pp. 9412–9439. PMLR, 2023.

Google Gemini Team. Capabilities of gemini models in medicine. arXiv preprint arXiv:2404.18416,
2024. URL https://arxiv.org/abs/2404.18416.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Bjorn Johansson, Maben Rabi, and Mikael Johansson. A simple peer-to-peer algorithm for distributed
optimization in sensor networks. In 2007 46th IEEE Conference on Decision and Control, pp.
4705–4710, 2007. doi: 10.1109/CDC.2007.4434888.

Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient method
for distributed optimization in networked systems. SIAM Journal on Optimization, 20(3):1157–
1170, 2010. doi: 10.1137/08073038X. URL https://doi.org/10.1137/08073038X.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 1–12. IEEE, 2017.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

David A. Levin and Yuval Peres. Markov Chains and Mixing Times. American Mathematical Society,
Providence, RI, 2 edition, 2017. ISBN 978-1-4704-2962-1.

11

https://proceedings.mlr.press/v238/adibi24a.html
https://arxiv.org/abs/2404.18416
https://doi.org/10.1137/08073038X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experiences
on accelerating data parallel training. Proceedings of the VLDB Endowment, 13(12):3005–3018,
August 2020. ISSN 2150-8097. doi: 10.14778/3415478.3415530. URL http://dx.doi.
org/10.14778/3415478.3415530.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda. Queue, 6(2):40–53, 2010.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. arXiv
preprint arXiv:1809.07599, 2018.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent, 2018.

Puyu Wang, Yunwen Lei, Yiming Ying, and Ding-Xuan Zhou. Stability and gen-
eralization for markov chain stochastic gradient methods. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 37735–37748. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/f61538f83b0f19f9306d9d801c15f41c-Paper-Conference.pdf.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Tern-
grad: Ternary gradients to reduce communication in distributed deep learning. arXiv preprint
arXiv:1705.07878, 2017.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

12

http://dx.doi.org/10.14778/3415478.3415530
http://dx.doi.org/10.14778/3415478.3415530
https://arxiv.org/abs/2303.08774
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://proceedings.neurips.cc/paper_files/paper/2022/file/f61538f83b0f19f9306d9d801c15f41c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f61538f83b0f19f9306d9d801c15f41c-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF FOR CONVERGENCE THEOREM

In this section, we provide proof to our convergence theorem Theorem 3.8 and Theorem 4.2. Since
the single node setting (Theorem 3.8) can be viewed as a special case of the data-parallelism setting
(Theorem 3.8), we first prove Theorem 4.2 in Section A.1 and then provide the proof for Theorem 4.2
in Section A.2 for completeness.

A.1 PROOF OF CONVERGENCE THEOREM UNDER DATA-PARALLELISM SETTING

We define t̄s be the time step when nodes average model states, x̄t = 1
K

∑K
k=1 x

(k)
t ,

d̄t = 1
K

∑K
k=1 d

(k)
t . We define the filtration Ft as the sigma algebra generated by iterates

x
(k)
1 , x

(k)
2 , . . . , x

(k)
t as

Ft = σ(x
(k)
1 , x

(k)
2 , . . . , x

(k)
t , for all k ∈ [K]).

Next, we bound the error accumulated via the iterates generated by the local updates of Algorithm 2.

Lemma A.1 (Local State Drift). Under Assumption 4.1, then for the choice of stepsize η ≤ 1
4LI , the

iterates x(k)
t for each k ∈ [K] generated from Algorithm 2 satisfy:

T∑
t=1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 4η2(I − 1)2σ2T

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Note that at t = t̄s−1 with s ∈ [S], x(k)
t = x̄t, for all k, therefore, we have 1

K

∑K
k=1 ∥x

(k)
t̄s−1

−
x̄t̄s−1

∥2 = 0. Moreover, for t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S], we have:

1

K

K∑
k=1

∥x(k)
t − x̄t∥2 =

1

K

K∑
k=1

∥∥∥x(k)
t̄s−1

− x̄t̄s−1
−
(t−1∑

ℓ=t̄s−1

ηd
(k)
ℓ −

t−1∑
ℓ=t̄s−1

ηd̄ℓ

)∥∥∥2
=

η2

K

K∑
k=1

∥∥∥ t−1∑
ℓ=t̄s−1

(
d
(k)
ℓ − d̄ℓ

)∥∥∥2
(a)

≤ 2η2

K

K∑
k=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

[d
(k)
ℓ −∇f(x

(k)
ℓ)− 1

K

K∑
j=1

(d
(j)
ℓ −∇f(x

(j)
ℓ))]

∥∥∥∥2

+
2η2

K

K∑
k=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

(
∇f(x

(k)
ℓ)− 1

K

K∑
j=1

∇f(x
(j)
ℓ)

)∥∥∥∥2
(b)

≤ 2η2

K

K∑
k=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

(d
(k)
ℓ −∇f(x

(k)
ℓ))

∥∥∥∥2

+
2η2

K

K∑
k=1

∥∥∥∥ t−1∑
ℓ=t̄s−1

(
∇f(x

(k)
ℓ)− 1

K

K∑
j=1

∇f(x
(j)
ℓ)

)∥∥∥∥2 (7)

where (a) is by the generalized triangle inequality; (b) is based on the property of separating mean
and variance.

Taking expectation on both sides and let us next consider each term of equation 7 above separately,
we have for any k ∈ [K] from the first term of equation 7 above

E
∥∥∥∥ t−1∑

ℓ=t̄s−1

(d
(k)
ℓ −∇f(x

(k)
ℓ))

∥∥∥∥2 (a)
=

t−1∑
ℓ=t̄s−1

E
∥∥∥∥d(k)ℓ −∇f(x

(k)
ℓ)

∥∥∥∥2 ≤ (I − 1)σ2 (8)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where we use the independent sampling property and bounded gradient bias assumption.

Next, we consider the second term of equation 7 for any k ∈ [K], we have:
K∑

k=1

E
∥∥∥∥ t−1∑

ℓ=t̄s−1

(
∇f(x

(k)
ℓ)− 1

K

K∑
j=1

∇f(x
(j)
ℓ)

)∥∥∥∥2

≤ (I − 1)

t−1∑
ℓ=t̄s−1

K∑
k=1

E
∥∥∥∥∇f(x

(k)
ℓ)− 1

K

K∑
j=1

∇f(x
(j)
ℓ)

∥∥∥∥2

≤ (I − 1)

t−1∑
ℓ=t̄s−1

[
2

K∑
k=1

E
∥∥∇f(x

(k)
ℓ)−∇f(x̄ℓ)

∥∥2 + 2

K∑
k=1

E
∥∥∥∥ 1

K

K∑
j=1

(∇f(x̄ℓ)−∇f(x
(j)
ℓ))

∥∥∥∥2]

≤ 4L2(I − 1)

t−1∑
ℓ=t̄s−1

K∑
k=1

E
∥∥x(k)

ℓ − x̄ℓ

∥∥2 (9)

where we use the generalized triangle inequality and the bounded gradient bias assumption.

Substituting equation 8 and equation 9 in equation 7 and taking expectation on both sides we get:

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 2η2(I − 1)2σ2 + 8η2L2(I − 1)

t−1∑
ℓ=t̄s−1

1

K

K∑
k=1

E∥x(k)
ℓ − x̄ℓ∥2

Summing both sides from t = t̄s−1 to t̄s − 1, we get:
t̄s−1∑

t=t̄s−1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 2η2(I − 1)2σ2I + 8L2(I − 1)η2

t̄s−1∑
t=t̄s−1

t−1∑
ℓ=t̄s−1

1

K

K∑
k=1

E∥x(k)
ℓ − x̄ℓ∥2

(a)

≤ 2η2(I − 1)2σ2I + 8L2(I − 1)η2I

t̄s−1∑
t=t̄s−1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2

where (a) uses that fact that t ≤ t̄s − 1 and ts − ts−1 ≤ I for all s ∈ [S].

Finally, summing over s ∈ [S] and using T = SI we get:
T∑

t=1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 2η2(I − 1)2σ2T + 8L2I2η2

T∑
t=1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2

Rearranging the terms, we get

(1− 8L2I2η2)

T∑
t=1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 2η2(I − 1)2σ2T

Finally, using the fact that η ≤ 1
4LI we have 1− 8L2I2η2 ≥ 1/2. Multiplying, both sides by 2 we

get
T∑

t=1

1

K

K∑
k=1

E∥x(k)
t − x̄t∥2 ≤ 4η2(I − 1)2σ2T

Therefore, the lemma is proved.

Lemma A.2 (Shifted Descent Lemma). For all t ≥ τ ≥ τmix(νπmin), ν < 1
4 and η < 1

256Lτ , the
one step progress can be bounded as follows:

E[f(x̄t+1)] ≤ E
[
f(x̄t)−

η

16
E
[∥∥∥∇f(x̄t−τ)∥2

]
+ 2ην2σ2 + 128τ2η3L2σ2 + η2Lσ2

+ 4η2L3 1

K

K∑
k=1

∥x(k)
t − x̄t∥2 +

ηL2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2
+ 128τη3L4

t−1∑
ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. By the smoothness of f , we have:

E[f(x̄t+1)] ≤ E
[
f(x̄t)− η⟨∇f(x̄t), d̄t⟩+

η2L

2
∥d̄t∥2

]
= E

[
f(x̄t)− η

〈
∇f(x̄t),

1

K

K∑
k=1

∇f(x
(k)
t ;B(k)

t)
〉
+

η2L

2
∥d̄t∥2

]
(10)

For the second term in the above inequality, we split it into three terms:

〈
∇f(x̄t),

1

K

K∑
k=1

∇f(x
(k)
t ;B(k)

t)
〉
=
〈
∇f(x̄t−τ),

1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
〉

+
〈
∇f(x̄t)−∇f(x̄t−τ),

1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
〉

+
〈
∇f(x̄t),

1

K

K∑
k=1

(
∇f(x

(k)
t ;B(k)

t)−∇f(x
(k)
t−τ ;B

(k)
t)
)〉

(11)

For the first term in equation 11,we have:

E
[〈

∇f(x̄t−τ),
1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
〉]

= EFt−τ

[〈
∇f(x̄t−τ),

1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

〉]
=

1

2
EFt−τ

[∥∥∥∇f(x̄t−τ)∥2 +
∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2 − ∥∥∥∇f(x̄t−τ)−
1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2]
≥ 1

2
EFt−τ

[∥∥∥∇f(x̄t−τ)∥2 +
∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2 − 2
∥∥∥∇f(x̄t−τ)−

1

K

K∑
k=1

E[∇f(x̄t−τ ;B(k)
t)]

∥∥∥2
− 2
∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]− 1

K

K∑
k=1

E[∇f(x̄t−τ ;B(k)
t)]

∥∥∥2]
≥ 1

2
EFt−τ

[∥∥∥∇f(x̄t−τ)∥2 +
∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2 − 2
∥∥∥∇f(x̄t−τ)−

1

K

K∑
k=1

E[∇f(x̄t−τ ;B(k)
t)]

∥∥∥2
− 2L2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2] (12)

Then we use the property that the distribution of Bt is close to the stationary distribution conditioned
on Ft−τ , i.e. |P(zt,i = j)− πj | ≤ νπj when t ≥ τ ≥ τmix(νπmin), then for the difference term in
the above inequality, we have:

EFt−τ

[∥∥∥∇f(x̄t−τ)− E[∇f(x̄t−τ ;Bt)]
∥∥∥2]

≤ EFt−τ

[1
B

∑
zt,i,i∈[B]

∥∥∥ ∑
j∈[N]

(P(zt,i = j)− πj)∇f(x̄t−τ , j)
∥∥∥2]

≤ EFt−τ

[1
B

∑
zt,i,i∈[B]

ν2
∑
j∈[N]

πj

∥∥∥∇f(x̄t−τ , j)
∥∥∥2] (a)

≤ EFt−τ

[
2ν2
∥∥∥∇f(x̄t−τ)

∥∥∥2 + 2ν2σ2
]

where the first inequality is by the generalized triangle inequality and the second inequality is by the
Jensen inequality over L2 norm, while in (a), we use the bounded bias assumption, substitute this

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

back to equation 12 and use the condition that ν < 1
4 , to have:

E
[〈

∇f(x̄t−τ),
1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
〉]

≥ 1

2
EFt−τ

[1
2

∥∥∥∇f(x̄t−τ)∥2 +
∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2 − 2L2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2 − 4ν2σ2
]

≥ 1

4
E
[∥∥∥∇f(x̄t−τ)∥2

]
+

1

2

∥∥∥ 1

K

K∑
k=1

E[∇f(x
(k)
t−τ ;B

(k)
t)]

∥∥∥2 − L2

K

K∑
k=1

E
[∥∥∥x(k)

t−τ − x̄t−τ

∥∥∥2]− 2ν2σ2

(13)

Next for the second term of equation 11, we have:

〈
∇f(x̄t)−∇f(x̄t−τ),

1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
〉
≥ −

∥∥∥∇f(x̄t)−∇f(x̄t−τ)
∥∥∥× ∥∥∥ 1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
∥∥∥

≥ −1

2
(τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥d̄ℓ∥∥∥2 + ∥∥∥ 1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
∥∥∥2)

≥ −1

2
(2τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥ 1

K

K∑
k=1

∇f(x
(k)
ℓ)
∥∥∥2 + 2τ2η2L2σ2 +

∥∥∥ 1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
∥∥∥2)

≥ −1

2

(
4τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(x̄ℓ)
∥∥∥2 + 2τ2η2L2σ2

+ 4τη2L4
t−1∑

ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2 + ∥∥∥ 1

K

K∑
k=1

∇f(x
(k)
t−τ ;B

(k)
t)
∥∥∥2)

and for the third term in equation 11:

〈
∇f(x̄t),

1

K

K∑
k=1

(
∇f(x

(k)
t ;B(k)

t)−∇f(x
(k)
t−τ ;B

(k)
t)
)〉

≥ − 1

K

K∑
k=1

∥∥∥ t−1∑
ℓ=max(t−τ,0)

ηLd
(k)
ℓ

∥∥∥× ∥∥∥∇f(x̄t)
∥∥∥

≥ − 1

K

K∑
k=1

(16τη2L2
t−1∑

ℓ=max(t−τ,0)

∥∥∥d(k)ℓ

∥∥∥2 + 1

32

∥∥∥∇f(x̄t)
∥∥∥2)

≥ − 1

K

K∑
k=1

(32τη2L2
t−1∑

ℓ=max(t−τ,0)

∥∥∥∇f(x
(k)
ℓ)
∥∥∥2 + 1

32

∥∥∥∇f(x̄t)
∥∥∥2 + 32τ2η2L2σ2)

≥ −(64τη2L4
t−1∑

ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2
+ 64τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(x̄ℓ)
∥∥∥2 + 1

32

∥∥∥∇f(x̄t)
∥∥∥2 + 32τ2η2L2σ2)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Combine everything together, we have for equation 11:〈
∇f(x̄t),

1

K

K∑
k=1

∇f(x
(k)
t ;B(k)

t)
〉

≥ 1

4
E
[∥∥∥∇f(x̄t−τ)∥2

]
− 2ν2σ2 − 128τη2L4

t−1∑
ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2 − L2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2
− 128τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(x̄ℓ)
∥∥∥2 − 1

32

∥∥∥∇f(x̄t)
∥∥∥2 − 64τ2η2L2σ2

]
(14)

Finally for the last term in equation 10, we have:

η2L

2
∥d̄t∥2 =

η2L

2
∥ 1

K

K∑
k=1

∇f(x
(k)
t ;B(k)

t)∥2 ≤ η2L∥ 1

K

K∑
k=1

∇f(x
(k)
t)∥2 + η2Lσ2

≤ 2η2L3 1

K

K∑
k=1

∥x(k)
t − x̄t∥2 + 2η2L∥∇f(x̄t)∥2 + η2Lσ2 (15)

Plug equation 14 and equation 15 to equation 10, we have:

E[f(x̄t+1)] ≤ E
[
f(x̄t)−

η

4
E
[∥∥∥∇f(x̄t−τ)∥2

]
+ 2ην2σ2 + 64τ2η3L2σ2 + η2Lσ2

+ 128τη3L2
t−1∑

ℓ=max(t−τ,0)

∥∥∥∇f(x̄ℓ)
∥∥∥2 + (4η2L+

η

32
)
∥∥∥∇f(x̄t)

∥∥∥2
+ 4η2L3 1

K

K∑
k=1

∥x(k)
t − x̄t∥2 +

ηL2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2
+ 128τη3L4

t−1∑
ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2] (16)

In this last step we bound ∥∇f(x̄s)∥2, t− τ ≤ s ≤ t w.r.t. ∥∇f(x̄t−τ)∥2. For any s ∈ [t− τ, t]:

∥∇f(x̄s)∥2 ≤ 2∥∇f(x̄t−τ)∥2 + 2∥∇f(x̄s)−∇f(x̄t−τ)∥2

≤ 2∥∇f(x̄t−τ)∥2 + 2τL2η2
s−1∑

ℓ=max(t−τ,0)

∥d̄ℓ∥2

≤ 2∥∇f(x̄t−τ)∥2 + 4τL2η2
s−1∑

ℓ=max(t−τ,0)

(
1

K

K∑
k=1

∥∇f(x
(k)
ℓ)∥2 + σ2)

≤ 2∥∇f(x̄t−τ)∥2 + 4τL2η2
s−1∑

ℓ=max(t−τ,0)

(
2

K

K∑
k=1

∥∇f(x
(k)
ℓ)−∇f(x̄ℓ)∥2 + 2||∇f(x̄ℓ)∥2 + σ2)

≤ 2∥∇f(x̄t−τ)∥2 + 8τL4η2
t−1∑

ℓ=max(t−τ,0)

1

K

K∑
k=1

∥x(k)
ℓ − x̄ℓ∥2

+ 8τ2L2η2 max
ℓ∈[t−τ,t]

||∇f(x̄ℓ)∥2 + 4τ2L2η2σ2

By setting η < 1
4Lτ , we have:

max
ℓ∈[t−τ,t]

||∇f(x̄ℓ)∥2 ≤ 4∥∇f(x̄t−τ)∥2 + 16τL4η2
t−1∑

ℓ=max(t−τ,0)

1

K

K∑
k=1

∥x(k)
ℓ − x̄ℓ∥2 + 8τ2L2η2σ2

Plug this inequality back to equation 16 and used the condition that η < 1
256Lτ , τ ≥ 1:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E[f(x̄t+1)] ≤ E
[
f(x̄t)−

η

16
E
[∥∥∥∇f(x̄t−τ)∥2

]
+ 2ην2σ2 + 128τ2η3L2σ2 + η2Lσ2

+ 4η2L3 1

K

K∑
k=1

∥x(k)
t − x̄t∥2 +

ηL2

K

K∑
k=1

∥∥∥x(k)
t−τ − x̄t−τ

∥∥∥2
+ 128τη3L4

t−1∑
ℓ=max(t−τ,0)

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2] (17)

This completes the proof of the lemma.

Theorem A.3. Under Assumptions 3.3-3.5 and Assumption 4.1, we choose η =

min
(

1
256Lτ ,

1
4LI ,

1
4cν

,
(
C0C2

T

)1/2)
, for some constants τ = O(1/p), then with any choice of mini-

batch sizes B ≥ 1, and number of local updates, I ≥ 1, the iterates generated from Algorithm 2
satisfy:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

where C0 = 16(∆ + σ2/L), C1 = (32 + 16 ∗ 128τ2L2 + 256L2(I − 1)2τ)σ2, C2 = 16Lσ2,
Cη = min

(
1

256Lτ ,
1

4LI ,
1
4

)
. ∆ denotes the initial sub-optimality.

Proof. Summing the result of Lemma A.2 for t = [τ + 1, τ + T] and multiplying both sides by
16/ηT we get:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ 16E[f(x̄τ+1)− f∗]

ηT
+ 16(2ν2 + 128τ2η2L2 + ηL)σ2

+ 32τL2 1

T

τ+T∑
t=1

1

K

K∑
k=1

∥∥∥x(k)
ℓ − x̄ℓ

∥∥∥2
≤ 16E[f(x̄τ+1)− f∗]

ηT
+ 16(2ν2 + 128τ2η2L2 + ηL)σ2

+
128L2(I − 1)2τ(T + τ)

T
η2σ2

where in the second inequality, we use Lemma A.2.

As for x̄τ+1, follow Eq. 10, for η < 1
L we have:

E[f(x̄t+1)− f(x̄t)] ≤ E
[η
2

∥∥∥∇f(x̄t)−
1

K

K∑
k=1

∇f(x
(k)
t ;B(k)

t)
∥∥∥2]

≤ η

2

1

K

K∑
k=1

E
[∥∥∥∇f(x̄t)−∇f(x

(k)
t ;B(k)

t)
∥∥∥2]

≤ ηL2 1

K

K∑
k=1

E
[∥∥∥x̄t − x

(k)
t

∥∥∥2]+ ησ2

Then we sum the above inequality for t ∈ [τ] and combine with Lemma A.1 to have:

E[f(x̄τ+1)]− f(x1) ≤ 4η3τ(I − 1)2L2σ2 + ησ2τ ≤ σ2/L

where the last inequality follows the condition of η < 1
256Lτ and η < 1

4LI . Then we have:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ 16(∆ + σ2/L)

ηT
+ 16(2ν2 + 128τ2η2L2 + ηL)σ2 + 256L2(I − 1)2τη2σ2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where we simplify the last term by τ ≤ T . Next, we define ν = cνη for some constant cν > 0,
and the constant C0 = 16(∆ + σ2/L), C1 = (32c2ν + 16 ∗ 128τ2L2 + 256L2(I − 1)2τ)σ2 and
C2 = 16Lσ2, then the above inequality can be simplified as:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ C0

ηT
+ C1η

2 + C2η

By the condition of Lemma A.2, where ν < 1
4 and η < 1

256Lτ , and the condition of Lemma A.1,
where η ≤ 1

4LI , we set η to be:

η = min

(
1

256Lτ
,

1

4LI
,

1

4cν
,

(
C0C2

T

)1/2
)

Suppose we denote Cη = min
(

1
256Lτ ,

1
4LI ,

1
4cν

)
, then we have:

1

T

T∑
t=1

E∥∇f(x̄t)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

so the last term is the dominant term for sufficiently large T , more precisely, if T satisfies:

T ≥ max

(
C2

1C0

C2
,

C0

C2
ηC

3
2

)
the last term is the dominant term. More specially, since Cη = O(τ−1) and C1 = O(τ2), we need

T = O(τ4). Meanwhile, we have τ = τmix(νπmin) ≤ ln(N2ν−1)
p = ln(N2η−1)

p , where we set
cν = 1 in the last equality, so we have τ = O(p−1). This completes the proof of the theorem.

A.2 PROOF OF CONVERGENCE THEOREM UNDER SINGLE NODE SETTING

Lemma A.4 (Shifted Descent Lemma - Single Node). For all t ≥ τ ≥ τmix(νπmin), ν < 1
4 and

η < 1
256Lτ , the one step progress can be bounded as follows:

E[f(xt+1)] ≤ E
[
f(xt)−

η

16
E
[∥∥∥∇f(xt−τ)∥2

]
+ ην2σ2 + 128τ2η3L2σ2 + η2Lσ2

]
Proof. By the smoothness of f , we have:

E[f(xt+1)] ≤ E
[
f(xt)− η

〈
∇f(xt),∇f(xt;Bt)

〉
+

η2L

2
∥∇f(xt;Bt)∥2

]
(18)

For the second term in the above inequality, we split it into three terms:〈
∇f(xt),∇f(xt;Bt)

〉
=
〈
∇f(xt−τ),∇f(xt−τ ;Bt)

〉
+
〈
∇f(xt)−∇f(xt−τ),∇f(xt−τ ;Bt)

〉
+
〈
∇f(xt),

(
∇f(xt;Bt)−∇f(xt−τ ;Bt)

)〉
(19)

For the first term in equation 19,we have:

E
[〈

∇f(xt−τ),∇f(xt−τ ;Bt)
〉]

= EFt−τ

[〈
∇f(xt−τ),E[∇f(xt−τ ;Bt)]

〉]
=

1

2
EFt−τ

[∥∥∥∇f(xt−τ)∥2 +
∥∥∥E[∇f(xt−τ ;Bt)]

∥∥∥2 − ∥∥∥∇f(xt−τ)− E[∇f(xt−τ ;Bt)]
∥∥∥2] (20)

Then we use the property that the distribution of Bt is close to the stationary distribution conditioned
on Ft−τ , i.e. |P(zt,i = j)− πj | ≤ νπj when t ≥ τ ≥ τmix(νπmin), then for the difference term in

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

the above inequality, we have:

EFt−τ

[∥∥∥∇f(xt−τ)− E[∇f(xt−τ ;Bt)]
∥∥∥2]

≤ EFt−τ

[1
B

∑
zt,i,i∈[B]

∥∥∥ ∑
j∈[N]

(P(zt,i = j)− πj)∇f(xt−τ , j)
∥∥∥2]

≤ EFt−τ

[1
B

∑
zt,i,i∈[B]

ν2
∑
j∈[N]

πj

∥∥∥∇f(xt−τ , j)
∥∥∥2] (a)

≤ EFt−τ

[
2ν2
∥∥∥∇f(xt−τ)

∥∥∥2 + 2ν2σ2
]

where in (a), we use the bounded bias assumption, plug this back to equation 20 and use the condition
that ν < 1

4 , to have:

E
[〈

∇f(xt−τ),∇f(xt−τ ;Bt)
〉]

≥ 1

2
EFt−τ

[1
2

∥∥∥∇f(xt−τ)∥2 +
∥∥∥E[∇f(xt−τ ;Bt)]

∥∥∥2 − 2ν2σ2
]

≥ 1

4
E
[∥∥∥∇f(xt−τ)∥2

]
+

1

2

∥∥∥E[∇f(xt−τ ;Bt)]
∥∥∥2 − ν2σ2 (21)

Next for the second term of equation 19, we have:〈
∇f(xt)−∇f(xt−τ),∇f(xt−τ ;Bt)

〉
≥ −

∥∥∥∇f(xt)−∇f(xt−τ)
∥∥∥× ∥∥∥∇f(xt−τ ;Bt)

∥∥∥
≥ −1

2
(2τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(xℓ)
∥∥∥2 + 2τ2η2L2σ2 +

∥∥∥∇f(xt−τ ;Bt)
∥∥∥2)

and for the third term in equation 19:〈
∇f(xt),

(
∇f(xt;Bt)−∇f(xt−τ ;Bt)

)〉
≥ −

∥∥∥ t−1∑
ℓ=max(t−τ,0)

ηL∇f(xℓ;Bℓ)
∥∥∥× ∥∥∥∇f(xt)

∥∥∥
≥ −(16τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(xℓ;Bℓ)
∥∥∥2 + 1

32

∥∥∥∇f(xt)
∥∥∥2)

≥ −(32τη2L2
t−1∑

ℓ=max(t−τ,0)

∥∥∥∇f(xℓ)
∥∥∥2 + 1

32

∥∥∥∇f(xt)
∥∥∥2 + 32τ2η2L2σ2)

Combine everything together, we have for equation 19:〈
∇f(xt),∇f(xt;Bt)

〉
≥ 1

4
E
[∥∥∥∇f(xt−τ)∥2

]
− ν2σ2 − 128τη2L2

t−1∑
ℓ=max(t−τ,0)

∥∥∥∇f(xℓ)
∥∥∥2 − 1

32

∥∥∥∇f(xt)
∥∥∥2 − 64τ2η2L2σ2

]
(22)

Finally for the last term in equation 18, we have:

η2L

2
∥∇f(xt;Bt)∥2 ≤ η2L∥∇f(xt)∥2 + η2Lσ2 (23)

Plug equation 22 and equation 23 to equation 18, we have:

E[f(xt+1)] ≤ E
[
f(xt)−

η

4
E
[∥∥∥∇f(xt−τ)∥2

]
+ ην2σ2 + 64τ2η3L2σ2 + η2Lσ2

+ 128τη3L2
t−1∑

ℓ=max(t−τ,0)

∥∥∥∇f(xℓ)
∥∥∥2 + (η2L+

η

32
)
∥∥∥∇f(xt)

∥∥∥2] (24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In this last step we bound ∥∇f(xs)∥2, t− τ ≤ s ≤ t w.r.t. ∥∇f(xt−τ)∥2. For any s ∈ [t− τ, t]:

∥∇f(xs)∥2 ≤ 2∥∇f(xt−τ)∥2 + 2∥∇f(xs)−∇f(xt−τ)∥2

≤ 2∥∇f(xt−τ)∥2 + 2τL2η2
s−1∑

ℓ=max(t−τ,0)

∥∇f(xℓ;Bl)∥2

≤ 2∥∇f(xt−τ)∥2 + 4τL2η2
s−1∑

ℓ=max(t−τ,0)

(∥∇f(xℓ)∥2 + σ2)

≤ 2∥∇f(xt−τ)∥2 + 4τ2L2η2 max
ℓ∈[t−τ,t]

||∇f(xℓ)∥2 + 4τ2L2η2σ2

By setting η < 1
4Lτ , we have:

max
ℓ∈[t−τ,t]

||∇f(xℓ)∥2 ≤ 4∥∇f(xt−τ)∥2 + 8τ2L2η2σ2

Plug this inequality back to equation 24 and used the condition that η < 1
256Lτ , τ ≥ 1:

E[f(xt+1)] ≤ E
[
f(xt)−

η

16
E
[∥∥∥∇f(xt−τ)∥2

]
+ ην2σ2 + 128τ2η3L2σ2 + η2Lσ2

]
(25)

This completes the proof of the lemma.

Theorem A.5. Under Assumptions 3.3-3.5, we choose η = min
(

1
256Lτ ,

1
4 ,
(
C0C2

T

)1/2)
, for some

constants τ = O(1/p), then with any choice of minibatch sizes B ≥ 1, the iterates generated from
Algorithm 1 satisfy:

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

where C0 = 16(∆+σ2/L), C1 = (16+16 ∗ 128τ2L2)σ2, C2 = 16Lσ2, Cη = min
(

1
256Lτ ,

1
4

)
. ∆

denotes the initial sub-optimality.

Proof. Summing the result of Lemma A.4 for t = [τ + 1, τ + T] and multiplying both sides by
16/ηT we get

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ 16E[f(xτ+1)− f∗]

ηT
+ 16(ν2 + 128τ2η2L2 + ηL)σ2

As for f(xτ+1), follow Eq. 18, for η < 1
L we have:

E[f(xt+1)− f(xt)] ≤ E
[η
2

∥∥∥∇f(xt)−∇f(xt;Bt)
∥∥∥2] ≤ ησ2

Then we sum the above inequality for t ∈ [τ] to have:

E[f(xτ+1)]− f(x1) ≤ ησ2τ ≤ σ2/L

where the last inequality follows the condition of η < 1
256Lτ . Suppose we denote the initial sub-

optimality as ∆ = f(x1)− f∗, then we have:

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ 16(∆ + σ2/L)

ηT
+ 16(ν2 + 128τ2η2L2 + ηL)σ2

Next, we define ν = cνη for some constant cν > 0, and the constant C0 = 16(∆ + σ2/L),
C1 = (16c2ν + 16 ∗ 128τ2L2)σ2 and C2 = 16Lσ2, then the above inequality can be simplified as:

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C0

ηT
+ C1η

2 + C2η

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

By the condition of Lemma A.4, where ν < 1
4 and η < 1

256Lτ , we set η to be:

η = min

(
1

256Lτ
,

1

4cν
,

(
C0C2

T

)1/2
)

Suppose we denote Cη = min
(

1
256Lτ ,

1
4cν

)
, then we have:

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ C0

CηT
+ C1

(
C0C2

T

)
+ C2

(
C0C2

T

)1/2

so the last term is the dominant term for sufficiently large T , more precisely, if T satisfies:

T ≥ max

(
C2

1C0

C2
,

C0

C2
ηC

3
2

)
the last term is the dominant term. More specially, since Cη = O(τ−1) and C1 = O(τ2), we need

T = O(τ4). Meanwhile, we have τ = τmix(νπmin) ≤ ln(N2ν−1)
p = ln(N2η−1)

p , where we set
cν = 1 in the last equality, so we have τ = O(p−1). This completes the proof of the theorem.

B MORE DETAILS ABOUT EXPERIMENTS

B.1 MORE DETAILS OF FIGURE 1

In Figure 1, we measure the FLOPS rate vs Arithmetic Intensity under different data loading speed
levels. In particular, the term "arithmetic intensity" comes from the Roofline model (Williams et al.,
2009) of the computer systems community. Formally, Arithmetic Intensity is the ratio of total floating-
point operations (FLOPS) to the total data movement (Bytes) required to support those FLOPS. The
main observation from the figure is: For a given data loading speeding, a certain arithmetic intensity
is necessary to reach the maximum FLOPS rate.

We perform synthetic experiments to get Figure 1. More specifically, we train a ResNet-18 model to
fit the CIFAR-10 dataset on an A5000 GPU. Firstly, we vary the arithmetic intensity by changing
the number of gradient steps (denoted as k) performed for each sample. In other words, we perform
k consecutive gradient steps for each sample loaded to the memory. Note that by the definition of
arithmetic intensity, it increases as the value of k increases. As for the data loading speed, we repeat
the data loading operation i times per sample to achieve different levels of loading speed. Increase
the value of i leads to slower data loading

22

	Introduction
	Related Work
	Stochastic Data Echoing and A Tighter Analysis
	Preliminaries of Markov Chain
	The Stochastic Data Echoing
	Theoretical Analysis of Algorithm 1

	Communication-Efficient Data Echoing for Data Parallelism
	Theoretical Analysis of Algorithm 2

	Numerical Experiments
	Results under Single Node Setting
	Results under Data Parallelism Setting

	Conclusion
	Proof for Convergence Theorem
	Proof of Convergence Theorem under Data-Parallelism Setting
	Proof of Convergence Theorem under Single Node Setting

	More Details about Experiments
	More Details of Figure 1

