Under review as a conference paper at ICLR 2025

SHARPER ANALYSIS OF DATA ECHOING AND NEW
COMMUNICATION-EFFICIENT ALGORITHM FOR DATA
PARALLELISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Over the past decade, breakthroughs in both general-purpose and specialized hard-
ware have propelled the success of large-scale machine learning. However, the
advancements in general-purpose hardware are not keeping pace with those in
specialized hardware. Consequently, operations conducted on the general-purpose
hardware have become the primary performance bottleneck. Notably, data loading
significantly lags behind the gradient computation during training. To address this
issue, the technique of data echoing has been introduced in practice, whereby the
current batch of samples is reused for gradient computation to minimize idle time
while waiting for new data. However, this approach can lead to overfitting on the
current batch, and it remains unclear whether convergence benefits from this prac-
tice. In this paper, we provide a sharper analysis on a stochastic formulation of data
echoing and show that it obtains linear speedup proportional to the number of reuse
times. Additionally, we investigate the impact of the communication bottleneck
in data parallelism to data echoing, and propose a new communication-efficient
data echoing algorithm via reducing the frequency of model averaging. We then
show that it is possible to perform data echoing without additional communication
cost with data parallelism. Finally, we perform empirical experiments to verify
our analysis on the data echoing and the proposed efficient algorithm for data
parallelism.

1 INTRODUCTION

From the introduction of AlexNet (Krizhevsky et al.,2009), which is often considered as a milestone
of the modern deep learning era, to the recent surge in large foundation language models such as
OpenAI’s GPT-4 (OpenAl 2024) and Google’s Gemini (Gemini Team, [2024)), the field of artificial
intelligence has experienced rapid evolution through the training of increasingly large models. A key
driving factor behind this is the improvement of the specialized hardware such as GPU (Nickolls et al.,
2010) and TPU (Jouppi et al., |2017), which can perform highly parallelism matrix computations
and enable fast gradient computation to the large-scale model. Meanwhile, CPU-bound operations
have emerged as a major performance bottleneck. As datasets cannot fit entirely into the memory of
GPUs/TPUs, data must be loaded dynamically during training. However, the speed of data loading
cannot keep pace with the computation demands. As illustrated in Figure[T} reaching the maximum
FLOPS rate requires a specific level of arithmetic intensity, defined as the ratio of total FLOPS to
the data movement needed to support those operations. In modern GPU training, the arithmetic
intensity tends to be low due to slow data transfers, which hinders the system from achieving its peak
FLOPS rate. To alleviate this bottleneck, the data echoing technique was proposed by |Choi et al.
(2019), whereby the current batch of examples in memory are reused for gradient computation to
minimize idle time while waiting for new data. More specifically, given the following optimization
problem: min,cga f(z) == Eeop[f(2z;€)], and a minibatch B; ~ D of samples are loaded to the
GPU memory at training step ¢, then we perform M steps of gradient descent for this batch of data:

x%mﬂ) :x,(fm) —an(mEm);Bt),me [M] (1)
where, a:,EO) =z and x4y = ;vEM). In|Choi et al.{(2019), the authors empirically demonstrate that

data echoing reduces the number of loading operations required to achieve a target accuracy. However,
although with empirical success, the theoretical benefits of the algorithm are still under-explored.

Under review as a conference paper at ICLR 2025

Data echoing is a type of biased stochastic gradient
descent method, as the sequence of states xim), m €
[M] for a given time step ¢ are updated based on
correlated (same) examples. As a result, the conver-
gence analysis of data echoing is very challenging.
The pioneer work by |Agarwal et al.| (2020) studied
the convergence property of data echoing with sta-

(Normalized) FLOPS Rate

Data Loading Speed 5

bility analysis (Hardt et al.,|2015)), and showed that Data Loading Speed 4
- . Data Loading Speed 3
for convex problems with bounded gradient, the data- Data Loading Speed 2

echoed algorithms achieve linear speedup w.r.z. the
curvature term. But the dominant statistical term does
not benefit from echoing. In this work, we move one
step further and show that for a type of stochastic Fjgure 1: (Normalized) FLOPS Rate vs
data-echoed algorithm, the statistical term also ben- A rithmetic Intensity under different Data
efits from echoing and obtains linear speedup. More [gading Speed levels. For Data Loading
specifically, we demonstrate the linear speedup with gpeed 4, a higher value of i indicates a faster
a type of shifted state analysis to the gradient estima- 1oading speed. Refer to Section [B-T] for more
tion bias. Recall that in|Agarwal et al.|(2020), the bias getails on how this figure was generated.

of Vf(z{"™:B,) is bounded w.rt. f(z\™). Since

2™ and B, are correlated, only the following bound can be got |V f(z\"™; B;) — Vf(z{"™)|| < B
given that the gradient of f(x) is bounded by a constant B. In contrast, we perform a different

analysis by bounding |V £(z{"™); B_,) — V £(z{"™)||. Given that B,_, is independent from =™
for sufficiently large 7, E[V f(z\"; Bi_,)] = Vf(z{™). If 2™ is close to 2\, we can bound
IV £(@\™: B,_) — V £(z{™)]|| given the function f is smooth.

T

Data Loading Speed 1

Arithmetic Intensity

Besides, we also investigate the data echoing algorithm in the data parallelism setting. To speed up
the training of large-scale models, it is common to divide the examples across different nodes. In each
training step, nodes first compute gradients in parallel and then average these gradients collectively.
Note that the communication volume of the average step is at the order of O(dK) (d is the number of
model parameters and K is the number of nodes), which is comparable to that of the data loading.
As a result, the benefit of doing data echo could disappear in the data parallelism setting, where the
amount of communication among GPU/TPU nodes increase as more gradient steps are performed.
To tackle this challenge, we propose a new communication-efficient data echoing algorithm in the
data parallelism setting. More specifically, for each training step ¢, nodes only average gradients with
a predefined probability p(©) > 0. By carefully selecting the value of p(°), we show that it is possible
to eliminate the communication overhead when we apply data echoing with data parallelism.

‘We summarize the contributions of our work as follows:

* We propose a stochastic formulation of data echoing and provide a sharper analysis which
demonstrates that it achieves linear speedup with respect to the number of reuse steps after
an initial burn-in period;

* We propose a new communication-efficient data echoing algorithm that enables data paral-
lelism without introducing communication overhead;

* We propose a practical cosine diminishing schedule for data loading probability and validate
its effectiveness through numerical experiments on a variety of benchmark datasets and deep
learning models.

Notations. V f(x) denotes the first-order derivatives of the function f(x) w.r.t. variable x. £ denotes
a random sample and V f(x; £) is the stochastic estimate V f(z). O(-) is the big O notation (O(-)
omits the logarithmic terms), and hides the logarithmic terms. || - || denotes the ¢5 norm for vectors
and the spectral norm for matrices, respectively. (-,-) denotes the Euclidean inner product. [K]
denotes the set of {1,2, ..., K'}. For a random variable X, E[X] denotes its expectation.

Under review as a conference paper at ICLR 2025

2 RELATED WORK

The term of data echoing is proposed in |Choi et al.|(2019), where authors consider the full training
pipeline of a machine learning algorithm, including reading from the disk, shuffling the data, data
augmentation, batching etc. Then in data echoing, each stage simply reuses the current available data
instead of waiting for operations from the last stage to finish. In our work, we focus on the echoing of
data batches similar to|Agarwal et al.[(2020). |[Agarwal et al.|(2020) is a pioneered work in analyzing
the convergence of data echoing. Its analysis consists of two parts: the first involves establishing
bounds on the progress made with respect to an objective defined over a mini-batch, while the second
part connects the decrease on a batch to the full dataset objective. The first part can be performed
by standard regret analysis in optimization, while the second part utilizes the concept of uniform
stability. Note that|/Agarwal et al.| (2020) considers the set of convex optimization problems with
bounded gradient. We study the general non-convex setting and do not require the bounded gradient
assumption, instead we require a less restrictive bounded bias assumption (Even, [2023)). Our analysis
to data echoing is from the view of Markov chain gradient descent, while our communication-efficient
data echoing algorithm is inspired by the Local Gradient Descent (i.e. FedAvg) (McMahan et al.,
2017). We introduce some recent developments in these two directions below:

Markov-Chain Gradient Descent. Algorithms similar to stochastic gradient descent (Robbins &
Monro, [1951) have achieved significant success in large-scale machine learning. Typically, these
algorithms rely on access to i.i.d. examples to estimate the gradient. However, in some applications
such as decentralized optimization (Johansson et al.,[2007;2010) and reinforcement learning (Sun
et al.,2018), i.i.d. samples may not be readily available or may be costly to obtain. A well-studied
alternative (Johansson et al.| [2007;[2010; Sun et al.| 2018 |Doan et al., [2020; Evenl [2023) involves
sampling examples from a Markov chain. The example sequence in data echoing (Choi et al.,[2019)
can also be viewed as a Markov chain. The convergence of Markov chain gradient descent is analyzed
under various assumptions to the properties of the involved chains. Under the ergodic assumption,
Johansson et al.| (2007) shows that O(e~2) iterations are needed to achieve an € error. |Sun et al.| (2018)
shows for both reversible and non-reversible chains that O(e~(1/(1=9)) ¢ € (0.5, 1) iterations are
needed for non-convex problems. [Even| (2023) improves over the analysis in|Sun et al.|(2018]) by
removing the bounded gradient assumption. Besides the convergence analysis, Wang et al.| (2022)
studied the generalization property of Markov chain gradient descent using the tool of algorithmic
stability (Hardt et al., 2015)); /Adibi et al.|(2024) studied the effect of delayed update to Markov chain
gradient descent.

Local Gradient Descent. The idea of reducing communication cost by performing local gradient
descent is used in Federated Learning (FL) (McMahan et al.l2017), which is a novel paradigm for
performing machine learning tasks over distributed, privacy sensitive data. In FL, communication
is the major performance bottleneck (Wen et al.l 2017) and Local Gradient Descent is proposed to
reduce the frequency of client-server communication. Our communication-efficient data echoing for
data parallelism is inspired by the similar idea. Besides, various compression techniques (Wen et al.,
2017; |Lin et al., 2017} |Stich et al., 2018}, [Karimireddy et al., 2019) can also be applied to reduce
the communication cost and can be combined with data echoing (we leave this as a future work to
explore).

3 STOCHASTIC DATA ECHOING AND A TIGHTER ANALYSIS

In this section, we introduce a new tighter convergence analysis to data echoing. More specifically,
we consider a formulation of stochastic data echoing and view it as a type of Markov Chain gradient
descent. We first introduce some preliminaries of Markov chain in the next subsection.

3.1 PRELIMINARIES OF MARKOV CHAIN

We consider the following finite-state time-homogeneous Markov Chain:

Definition 3.1 (Adapted from Definition 1 in|/Agarwal et al.|(2020)). Let P be an N x N real-valued
matrix. A stochastic process X = {X1, Xa, ...} in a finite state space [M] is a time-homogeneous
Markov chain with transition matrix P if for any k > 0, i,j € [M), 40,41, ...,0m—1 € [M], the

Under review as a conference paper at ICLR 2025

Algorithm 1 Stochastic Data Echoing Algorithm

1: Input: {r;}, learning rates; {p; }, the probability of a example is replaced with a new one; B, the
minibatch size; initialize the variable state as x.

2: fort =1toT do

3: Update the mini-batch B; according to equationfd] i.e. replace each example with probability

bt

4 Compute the stochastic gradient d; = + >z e, V(e 2) with [B| = B

50 Ty = Xy — Npdy

6: end for

7: Return: x, chosen uniformly randomly from {z;}1_;

following conditional independence property holds:
P(X,, =j|Xo =10, X1 = 1) =P(X,, = j| X1 =19) = P

P is the transition matrix of X and the probability distribution T is the stationary distribution of the
stochastic process X if TP = .

A Markov chain is irreducible if there exists some m > 0, s.z. P[’; > 0,4,j € [N]; a Markov chain
is aperiodic if there exists mo > 0 such that for all m > mo, P/; > 0,4, j € [N]; a Markov chain is

reversible if m; P, j = w; P; ;,4,j € [IN]. Note that a irreducible, aperiodic Markov chain obtains a
stationary distribution (Levin & Peres|,2017). We next define the mixing time of a Markov chain:

Definition 3.2 (Adapted from Definition 2.2 in [Even| (2023)). For € > 0, the mixing time Tz (€)
is defined as follows: Tmiz(€) = inf {m > 1|Vmg, dpy (P™mo,) < €}, where dpv is the total-
variation distance.

Note that T7,,,.(¢) has a logarithmic dependence over ¢, where we have 7.(c) <
Timiz 108 (e’l) (Even, 2023). Furthermore, if a Markov chain is reversible, its mixing time is
closely related to the eigenvalue of the transition matrix. Denote the absolute spectral gap of P as
Ap = 1 — mazxesp(p)\{13|Al, where Sp(P) is the spectrum of P. Then for reversible Markov
chain, its mixing time satisfies 7, (€) < D\;l ln(wfn%ne’lﬂ (Even, 2023), where m,,;,, denotes the
minimum element of the stationary distribution 7.

3.2 THE STOCHASTIC DATA ECHOING

We consider the following stochastic optimization objective in this work:

N
min f(2) = Beuplf(#:6)] = 1 3 f(2:6) @

z€ER4

where D is the data distribution and the second equality shows a special case of D be a uniform
distribution over IV data points. We will focus on this finite sum setting in the subsequent discussion
to be compatible with the finite-state Markov chain in Definition [3.1] Note that it is straightforward
to extend our analysis to the general case of D if we extend our definition of Markov chain to the
infinite state spaces. Next, we consider the following stochastic data echoing update:

Tt41 = T — ﬂtvf(ivt; Bt) 3)

where 7, is the learning rate and 3; denotes the mini-batch at step ¢. Different from that in the
stochastic gradient descent where B3; is sampled independently for each step, we assume that B,
correlates with ;. More specifically, suppose we have B; = {z;1, ..., z, 5 }, Where the size of the
minibatch is B. Then we have the following sampling procedure:

“

zy; with prob. 1 — p,
Z. i = .
t+1, & withprob. %5, V& # 2.

where 0 < p < 1, and equation [4] shows z; is not updated with probability 1 — p and otherwise
randomly load a new example from the dataset D. Note that if we set p = ﬁ, then equation [3|is

Under review as a conference paper at ICLR 2025

equivalent to the classical data echoing update in equation [1{in expectation; if we set p = &=L,

N
equation [3]degenerates to the standard stochastic gradient descent.

Following the sampling strategy in equation we get B independent Markov chains {z;},4 € [B].
The transition matrix P of {z;} has diagonal elements of 1 — p and off-diagonal elements of .
We can identify two important properties from the transition matrix. Firstly, since P is irreducible,
aperiodic and reversible, the Markov chains {z;},¢ € [B] have a unique stationary distribution which
is the uniform distribution, i.e. 7, = %, i € [B]. By the definition of stationary distribution, we have
P(z44+ | 2¢) = mas 7 — oo. In other words, for sufficiently large 7, 24, and z; are independent
with each other, and this property plays an important role in our analysis.

Next, we derive the mixing time of the markov chain. We express the transition matrix P as:

P=(1-p)xI+ x (J=1)

p
N -1
where J denotes the matrix whose elements are all ones. Following some standard linear algebra
analysis, we can get P has one eigenvalue of one and NV — 1 eigenvalues of (1 — p — *5) and
following the properties of Markov chain in Sec. we have:

-1
N-—1 1n(Ne_1ﬂ _0 (ln(Ne))
pN p

In the case of p = ﬁ, i.e. the standard data echoing, we have the mixing time is O(M). Therefore, a
lower frequency of data loading leads to a larger mixing time. As the mixing time measures how fast
the state distribution converges to the stationary distribution (uniform distribution in case of echoing),
larger mixing time leads to a larger gradient estimation bias, thus slow down the convergence. Finally,
Algorithmpresents a practical version of our stochastic data echoing algorithm, where we set {p; }
to be a variable and depend on the training step. In the sequel, we will use the term ‘data echoing’ to
refer to this stochastic version without special notation for simplicity.

Tmiz(€) < [Ap In(m b e)] = [

min

3.3 THEORETICAL ANALYSIS OF ALGORITHM/[I]

In this section, we provide theoretical analysis to Algorithm[I] We first state some mild assumptions:
Assumption 3.3 (Example Gradient Smoothness). The function f(x) in equation 2| is possibly
non-convex, f(x;&;),1 € [N]is L-smooth i.e., we have:

IVf(@;&) = VI(y: &)l < Lllx = yll,
forall x,y € R and i € [N].
Assumption 3.4. The function f(x) is bounded from below, i.e., there exists f* = inf,cx f(x).
Assumption 3.5 (Bounded Gradient Dissimilarity). The sample gradients have bounded dissimilarity
to the full gradient, i.e. there exists a constant o such that:

IV f(z;6D) = V()| <o,Vie[N]

As stated in Assumption[3.3] we study the smooth non-convex optimization problems. Assumption[3.4]
guarantees the minimization problem is well-defined. Finally, the bounded gradient dissimilarity
assumption (Assumption [3.5) is weaker compared to the bounded gradient assumption made in (Agar]
wal et al.,[2020). As the sample gradient can be unbounded while still satisfying Assumption [3.5]

A key step in our analysis is using the following shifted descent Lemma to bound one step progress
of Algorithm[T](See LemmalA.4]for proof):

Lemma 3.6 (Shifted Descent Lemma). Under Assumptions Jorallt > 7 > Triw (VTmin),

V< i andn < ﬁ, the one step progress of Algorithmcan be bounded as follows:

E[f(ee1)] < Elf ()] - {£E[|

\7) (xH)Iﬂ +mio? +1280°r2L%0? + n’Lo®

As shown by Lemma the stochastic gradient V f(z; B;) evaluated over the mini-batch B;
leads to a good estimation of V f(z;_,). In fact, for sufficiently large 7, P(B;|z_,) converges
to the stationary distribution, which is the uniform data distribution in our case. As a result, we
have E[V f(xi—-; Bi)] = V f(z:—); then the bias of using V f (x¢; By) to estimate V f(x;_.) is at
the order of |V f(z¢—,) — V f(2¢)|| which can be bounded by variable drift ||z;—, — x| by the
smoothness assumption. See Lemma[A.4]in the appendix for the detailed proof.

Under review as a conference paper at ICLR 2025

Algorithm 2 Communication-Efficient Data-Echoing for Data Parallelism (Comm. Data-Echo)

1: Input: Input: {r,}, learning rates; {p; }, the probability of an example is replaced with a new

one; {pgf) }, the probability of different nodes average local gradients; K, the number of nodes;

B, the minibatch size. Initialize the state xgk) = 21,k € [K] for some state x;.

fort =1toT do
for £ = 1 to K in parallel do
Each node independently update the mini-batch 5; (k) according to equation @
Compute the stochastic gradient d(=E% B ep® Vf(xt iz t)with |Bt(k)\ =L
k k k
517£+)1 = Zg) md§ :
end for
Set xg +)1 % Ly i1 xt +1 with probability p§ o)
end for
Return: z,, chosen uniformly randomly from {z;}7_,

VRIS N R

—_

Remark 3.7. Note that the type of shifted analysis is an existing technique in the Markov chain
gradient descent literature (Sun et al.|, [2018} |Even, 2023)). However, our Lemma@]leads to a tighter
bound to the gradient estimation bias, where our bias term is O(771/ + 1n37?). In contrast, that
state-of-art analysis by (Even, 2023) shows an bound of O(nv? + n*7) (See Sectlon C.1 of (Even,
2023)). For small value 7, our bound is tighter, so our Lemmais useful to the analysis of general
markov chain gradient descent.

Next, we are ready to show the convergence Theorem of Algorithm [T] (The proof is included in

Theorem[A.3):

Theorem 3.8. Under Assumptions we choose 11 = min (256%, %, (C"TC2) 1/2), for some

constants T = O(1/p), then with any choice of minibatch sizes B > 1, the iterates generated from
Algorithm/[I]satisfy:

CoC CoCy\ /2
fZEHfot 2<+cl(0 2)+cz(0)

T T

where Cy = 16(A + 02 /L), Cy = (16 + 16 % 12872L*)0?, Cy = 16L0?, C;) = min (gzar=,). A
denotes the initial sub-optimality. p is the data loading probability; the stochasity comes from the

randomness of the algorithm.

Note that the last term in the above inequality dominates the convergence error for sufficiently large 7'.
2
More precisely, we need 7' > max (Cé,f" , %) . Given this condition hold, to reach an e-stationary
point, we need 7' = O(CyCie?), then the number of data loading operations is O(pBCyC3e~2),
Note that Cjy and Cy does not depend on p, so the number of data loading operations has linear
speedup w.rt. the data loading probability p. Recall that|/Agarwal et al.|(2020) only showed that the
number of data loading operations is O(¢~2) and does not benefit from reusing in-memory batches.
Furthermore, the analysis of |Agarwal et al.|(2020) makes the bounded gradient assumption, while

our analysis requires the weaker bounded gradient dissimilarity (Assumption [3.5) condition.
Remark 3.9. Note that we can not arbitrarily decrease p to 0 in practice, as Theorem [3.8|requires
2
a burn-in stage, i.e. we need T' > max (Cég” : %) recall that C,, = O(77 1), C; = O(7?) and
n-2

7 =0(p~'), so we need at least T = O(p~*) to achieve the speedup effect w.r.z. p.

4 COMMUNICATION-EFFICIENT DATA ECHOING FOR DATA PARALLELISM

In this section, we propose a new communication-efficient data echoing for data parallelism. Suppose
we have K nodes for parallel computation. In data parallelism, at each training step, the mini-batch

B: is divided into K subsets {Bik)7 k € [K]}, and each node evaluates stochastic gradient over a
different subset, i.e. evaluate V f(x¢; Bt(k)). Then a gradient average operation is performed across

Under review as a conference paper at ICLR 2025

Test Accuracy
Test Accuracy
Test Accuracy

- SGD (0.05) yi
55 Data-Echo-(1, 0.25) (0.05) 55 Data-Echo-(1, 0.25) (0.1)
—=- SGD (0.1) ——- SGD (02)

——- Data-Echo-(1, 0.25) (0.1) ——- Data-Echo-(1, 0.125) (0.2)

Test Accuracy
Test Accuracy
Test Accuracy

i/ =="56D (0.02)
i/ Data-Echo-(0.5, 0.25) (0.02)
~— 56D (0.05)
—= Data-Echo-(0.5, 0.25) (0.05)

/ ~=" 56D (000 EC
! Data-Echo-(0.5, 0.25) (0.01) {
i —= SGD (0.02) I
" —— Data-Echo-(0.5, 0.25) (0.02) il

/

i =="56D (0.005) 30
i/ Data-Echo-(0.5, 0.25) (0.005) |
[—=: 5GD (0.01) j
/ ——- Data-£cho-(0.5, 0.25) (0.01) i

1 2 3 4 1 2 3 4 1 2 3 4
Number of Example Loads 1e6 Number of Example Loads 1e6 Number of Example Loads 1e6

Figure 2: Comparison between Data Echoing with Diminishing Load Probability vs SGD. The
learning rate for each algorithm is specified in parentheses, e.g., SGD (0.1) denotes a learning rate
of 0.1. The first row presents results for CIFAR-10 trained on MobileNet-V2, while the second row
shows results for CIFAR-100 trained on ResNet18. Batch sizes of 128, 256, and 512 are shown in the
first, second, and third columns, respectively.

all nodes. The update step of data parallelism is as follows:

T4l = Tt — 7= Z Vf Tt B(k)) (5)

Note that the vanilla data echoing algorithm only reduces the number of data loading operations (as
shown by Theorem [3:8), but the number of training steps 7" is not changed. In the data parallelism
setting, this means the communication cost across the nodes is not reduced, which undermines the
significance of doing data echoing. In fact, one way to mitigate this challenge is by reducing the
frequency of gradient average. More specifically, we perform the average operation with probability
p(©). Recall that the data loading operation is performed with probability p. By setting p{®) < p, the
communication overhead between compute nodes can be eliminated.. In Algorithm 2] we formalize
our communication-efficient data echoing algorithm.

4.1 THEORETICAL ANALYSIS OF ALGORITHM[2|

In this section, we study the convergence property of Algorithm 2] Note that the bias of gradient esti-
mation is increased if we reduce the frequency of gradient average, thus slows down the convergence
rate. However, we show its effect to convergence is bounded as long as the interval between two
gradient average operations are bounded. More specifically, we make the following assumption:
Assumption 4.1 (Bounded Gradient Average Interval). The interval between two gradient average
steps are upper-bounded by 1.

Then we are ready to show the convergence Theorem of Algorithm 2] (See Theorem [A3]for proof):
Theorem 4.2. Under Assumptions [3.33:3] and Assumption we choose 1 =
min ﬁ, ﬁll, é, (C(’TC2)1/2 , for some constants T = O(1/p), then with any choice of mini-
batch sizes B > 1, and number of local updates, I > 1, the iterates generated from Algorithm|2|

satisfy:
CoCs CoCa\/?
E 2 Se7+C C
an I < v (B2) va (%
where Co = 16(A + UQ/L) = (32 4+ 16 % 12872L2 + 256 L%(I — 1)?7)0?, Cy = 16Lo?,
Cy, = min (25éLT7 4}41 4) A denotes the initial sub-optimality. The stochasity comes from the

randomness of the algorithm.

Under review as a conference paper at ICLR 2025

The error bound in Theorem [4.2]resembles that in Theorem 3.8} except the additional term 256(1 —
1)2L?7 in the constant C; and the additional regularity to the learning rate where) < 1/(4LI). Note
that the term 256(1 — 1)2L27 bounds the drift of local variables {z\"', k € [K]} (See Lemma|A.1|in
the appendix for more details).

Similar to Theorem to reach an e-stationary point, Theorem needs T = O(e?) (we omit the
constants Cy and C5) and the number of data loading operations is O(pBe~2). Thus Algorithm also
has linear speedup w..t. p. Furthermore, the number of gradient average operations are O (p(®) Be~2).
Note that Theorem 4.2/ allows the I grows at the order of O(T'*/*) without affecting the dominant
term (C only affects the second term of the error bound). So we can set ple) = % < p such that the
communication across compute node is comparable to data loading operations.

5 NUMERICAL EXPERIMENTS

In this section, we perform experiments to verify the efficacy of our proposed algorithms through both
image classification tasks and language modeling tasks. More specifically, for the image classification
task, we use CIFAR-10 (Krizhevsky et al.,2009) and CIFAR-100 (Krizhevsky et al.,[2009) and choose
ResNets (He et al.l|2016)) and MobileNet-V2 (Sandler et al.| | 2018)) models. For the language modeling
task, we use WikiText-2 (Merity et al.,[2016) dataset over the GPT-2 model (Radford et al.,|2019).
All experimental results are averaged over 5 independent runs and we report the average value. Next,
in Section[5.1] we consider the single node setting and focus on the effect of data loading probability
schedule {p;},t € [T]. Then in Section[5.2] we study the multi-node data parallelism setting, where
we test our communication-efficient data echoing algorithm. All experiments are run on a machine
with an Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla A6000 GPUs. The code is written in Pytorch.
We simulate the communication among different GPUs through the Pytorch.distributed package (Li
et al.,[2020).

5.1 RESULTS UNDER SINGLE NODE SETTING

In this section, we examine how the data loading proba-

bility p impacts model training performance. When using % N WJ
a constant p = ﬁ in Algorithm the expected behavior s p/rvww’%*j;i{ii{“i‘ﬁf;_
aligns with classical data echoing with M repeat steps, /f/{’:’//f\’”/_ﬂ/

and we use this constant schedule as the starting point of 7 /7/” ; FistpDecay P e

our experiments. We explore different values of p across
various training settings, including model architecture,

Test Accuracy
o
a

datasets, and learning rates. Following the experimental °1 4

setup in|Choi et al.| (2019), we measure training cost by s 1

the number of example loads, as this metric is more repro- H [
ducible across different hardware compared to wall-clock 50— H 3] ;

time (Ch01 et al.’ 2019) Number of Example Loads 1e6

As shown in Figure] the Data-Echoing algorithm (for

moderately. large p) converges slower tharl the standard Figure 3: Comparison among differ-
SGD algorithm. In fact, when t.he batchsize B is much ent Loading Probability schedule. We
smaller compared to the rlataset size (e.g. 128 comparecl 0 (ain a MobileNet-V2 model on the
SOQOQ in Figure @), reusing Fhe same batch of data during CIFAR-10 dataset using a learning rate
training can lead to overfitting to that specific batch and .

of 0.1 and a batch size of 128.

thus slow down the overall convergence rate. Furthermore,

we observe that the test accuracy converges to a similar

point across different p values, with smaller p values causing slower initial convergence but faster
convergence in the later stages of training. For example, in the third plot of Figure @ Data-Echo
with p = 0.25 converges slower than p = 0.5 in the early training stage, but it catches up and finally
converges to a slightly better accuracy. This observation is consistent to our theoretical analysis. In
Theorem 3.8 we show Algorithm has a ‘burn-in stage’ which is at the order of O(p~*). Naturally,
smaller values of p requires more training steps to show its acceleration effects.

Under review as a conference paper at ICLR 2025

Test A;{uracy
Test A;curacy
Test l\;curacy
Test A;:uvacy

1 2 H 1 2 3 3
Number of Example Loads 16 Number of Example Loads 16

Figure 4: Comparison between Diminishing vs Constant Loading Probability. The left two
figures show results for CIFAR-10 (trained with MobileNet-V2) using learning rates of 0.05 and 0.1,
respectively. The right two figures present results for CIFAR-100 (trained with ResNet-18) using
learning rates of 0.005 and 0.01, respectively. A batch size of 128 is used in all cases.

Test Accuracy
Test Accuracy
Test Accuracy

——- SGD-8K (0.1)
Data-Echo-8k (0.1)

——- Comm Data-Echo-8k (0.1)

— SGD-BK (0.2)
Data-Echo-8k (0.2)

—— Comm Data-Echo-8k (0.2)

SGD-2K (0.1)

Data-Echo-2k (0.1)

——- Comm Data-Echo-2k (0.1)

— SGD-2K (0.2)
Data-Echo-2k (0.2)

—— Comm Data-Echo-2k (0.2)

——- SGD-4K (0.1)
Data-Echo-4K (0.1) /

——- Comm Data-Echo-4k (0.1)

— SGD-4K (0.2)
Data-Echo-4k (0.2)

—— Comm Data-Echo-4k (0.2)

Test Accuracy
Test Accuracy
Test Accuracy

——- SGD-8K (0.1)
Data-Echo-8k (0.1)

~~- Comm Data-Echo-8k (0.1)

— SGD-8K (0.2)
Data-Echo-8k (0.2)

—— Comm Data-Echo-8k (0.2)

== SGD-4K (0.1)
Data-Echo-ak (0.1)

——- Comm Data-Echo-4k (0.1)

— SGD-4K (0.2)
Data-Echo-4k (0.2)

—— Comm Data-Echo-4k (0.2)

—= 5GD-2K (0.1)
Data-Echo-2k (0.1)

—=: Comm Data-Echo-2k (0.1)

— SGD-2K (0.2)
Data-Echo-2k (0.2)

—— Comm Data-Echo-2k (0.2)

1 2 3 4 0 2 3 4 1 2 3 4
Number of Example Loads 1e6 Number of Example Loads le6 Number of Example Loads 1e6

Figure 5: Comparison between Communication-Efficient Data Echoing vs SGD. Data-Echo and
Comm. Data-Echo use the same p schedule, with p(®) set equal to p, ensuring that the communication
cost for Comm. Data-Echo matches that of vanilla SGD. The top row presents results for CIFAR-10
trained on MobileNet-V2, while the bottom row shows results for CIFAR-100 trained on ResNet-18.

To mitigate this challenge, we propose a diminishing schedule for the data loading probability p.
More specifically, we adopt the following cosine schedule:

Er
= Pmin T (Pmaz — Pmin)COS | =05 (6)
PE =D (p Prmin) (2 B)

where E (F,,4.) are the number of epochs (max epochs) and 0 < Pin < Pmaz < 1. We use
Data-Echo (Pmazx, Pmin) to denote the data echoing using this cosine schedule. As shown by the
results in Figure [d] data-echoing using the cosine schedule outperforms that using constant data
loading probability p.

Note that it is also possible to use other diminishing schedules for the data loading probability p. As
shown in Figure[3] we compare the cosine schedule with two more types of schedules: Linear Decay
and Multi-Step Decay. For Linear decay, p is decreased from p,,,q, tO ppin linearly throughout
training, while for multi-step decay, we decrease the value of p at 0.5F,,,,, and 0.75E,,,,, by half,
respectively. In Figure 3] the multi-step accuracy curve has a big drop when we decrease the p, which
could be caused by the sudden change of input data distribution, and this observation motivates us
to use a smoother decaying schedule for p. As for linear decay schedule, it is slightly worse than
the cosine schedule. Note that this suggests that the linear decay schedule might decrease the value
of p too fast compared to the cosine schedule. In the remainder of experiments, we will focus on
the cosine schedule. Finally, in Figure 2] (the image classification tasks) and Figure[7 (the language
modeling task), we verify the effectiveness of the cosine schedule under different settings and we
observe that the data echoing with cosine decay schedule consistently outperforms SGD.

Under review as a conference paper at ICLR 2025

Test Accuracy
Test Accuracy
Test Accuracy

a-Echo (p° =0.25p)
a-Echo (p° = 0.5p)

2 3 4 2 3 4
Number of Example Loads 1le6 Number of Example Loads 1e6

Figure 6: Ablation study of the model average probability p(©). We vary the ratio between p(¢)
and p. The results are for the MobileNet-V2 trained on the CIFAR-10 dataset with learning rate 0.1.
We use batchsize 2048, 4096 and 8192 from left to right.

Figure 7: Numerical Results for the Language Modeling Task. The two figures on the left illustrate
results for the single-node setting with learning rates of 5 x 10~5 and 10~*, respectively. The curves
are labeled in the format ‘method-batchsize (p schedule)’. The two figures on the right correspond to
the multi-node setting with batch sizes of 48 and 64, respectively, where the curve labels follow the
format ‘method-batch size (p'°) schedule)’. All results are based on training for 30 epochs.

5.2 RESULTS UNDER DATA PARALLELISM SETTING

In this section, we show that our Comm. Data-Echo (Algorithm 2 can effectively reduce communica-
tion cost of data echoing in data parallelism while still keeping its benefit in reducing the number of
data loading operations. We run experiments with 4 nodes and evenly divide the data to each node at
each step. Firstly, in Figure we set p(¢) = p, i.e. we set the probability of performing data loading
the same as performing gradient average at each step. As a result, the amount of communication
among GPUs needed for data echoing and SGD are the same (in expectation) given same number of
data loading operations. Then we observe in Figure 3| that the Comm. Data Echo gets comparable
performance as the vanilla data echoing while outperform the vanilla SGD, which effectively verify
the effectiveness of Comm. Data Echo. Next, in Figure@ we further study how the choice p(®) affects
the training performance, where we vary the value of p(°) in the range of (0.25p, 2p). As shown in
the figure, we can set p(©) as low as 0.67p while still outperforming the vanilla SGD. Finally, the
results shown in the right two figures of Figure[7]also verify the effectiveness of our Comm. Data
Echo in reducing the communication overhead of data echoing.

6 CONCLUSION

In this work, we explore the properties of the data echoing technique. First, we provide a tighter
analysis of data echoing, demonstrating that its stochastic formulation achieves linear speedup with
respect to data loading probability. Next, we examine the application of data echoing in the context of
data parallelism and propose a novel algorithm that reduces the frequency of model averaging, thereby
improving communication efficiency. Theoretically, we show that our communication-efficient data
echoing algorithm lowers the communication cost in data parallelism while preserving the benefit of
reduced data loading operations. Finally, we empirically validate the effectiveness of data echoing
and introduce a cosine diminishing schedule for data loading probability. We also conduct extensive
numerical experiments to confirm the efficacy of our communication-efficient algorithm in the data
parallelism setting.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For theoretical results, we state all assumptions in Section [3.3]and Section[4.1] and the detailed proof
of all lemmas and theorems is included in the appendix. For numerical results, we describe the details
including datasets, models, and various hyper-parameters choices.

REFERENCES

Arman Adibi, Nicold Dal Fabbro, Luca Schenato, Sanjeev Kulkarni, H. Vincent Poor, George
J. Pappas, Hamed Hassani, and Aritra Mitra. Stochastic approximation with delayed updates:
Finite-time rates under Markovian sampling. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
Li (eds.), Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research, pp. 2746-2754. PMLR, 02-04 May
2024. URL https://proceedings.mlr.press/v238/adibi24a.html.

Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, and Cyril Zhang. Stochastic optimization
with laggard data pipelines. Advances in Neural Information Processing Systems, 33:10282—-10293,
2020.

Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. Faster neural network
training with data echoing, 2019.

Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness, 2020.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes. In International
Conference on Machine Learning, pp. 9412-9439. PMLR, 2023.

Google Gemini Team. Capabilities of gemini models in medicine. arXiv preprint arXiv:2404.18416,
2024. URL https://arxiv.org/abs/2404.18416.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Bjorn Johansson, Maben Rabi, and Mikael Johansson. A simple peer-to-peer algorithm for distributed
optimization in sensor networks. In 2007 46th IEEE Conference on Decision and Control, pp.
47054710, 2007. doi: 10.1109/CDC.2007.4434888.

Bjorn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient method
for distributed optimization in networked systems. SIAM Journal on Optimization, 20(3):1157—
1170, 2010. doi: 10.1137/08073038X. URL https://doi.org/10.1137/08073038X!

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pp. 1-12. IEEE, 2017.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252-3261. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

David A. Levin and Yuval Peres. Markov Chains and Mixing Times. American Mathematical Society,
Providence, RI, 2 edition, 2017. ISBN 978-1-4704-2962-1.

11

https://proceedings.mlr.press/v238/adibi24a.html
https://arxiv.org/abs/2404.18416
https://doi.org/10.1137/08073038X

Under review as a conference paper at ICLR 2025

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experiences
on accelerating data parallel training. Proceedings of the VLDB Endowment, 13(12):3005-3018,
August 2020. ISSN 2150-8097. doi: 10.14778/3415478.3415530. URL http://dx.doil
org/10.14778/3415478.3415530.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda. Queue, 6(2):40-53, 2010.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 — 407, 1951. doi: 10.1214/a0ms/1177729586. URL |https:
//doi.org/10.1214/aoms/1177729586.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. arXiv
preprint arXiv:1809.07599, 2018.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent, 2018.

Puyu Wang, Yunwen Lei, Yiming Ying, and Ding-Xuan Zhou. Stability and gen-
eralization for markov chain stochastic gradient methods. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 37735-37748. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
f1le/f61538f83b0f19f9306d9d801cl5f4lc-Paper-Conference.pdf.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Tern-
grad: Ternary gradients to reduce communication in distributed deep learning. arXiv preprint
arXiv:1705.07878, 2017.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM, 52(4):65-76, 2009.

12

http://dx.doi.org/10.14778/3415478.3415530
http://dx.doi.org/10.14778/3415478.3415530
https://arxiv.org/abs/2303.08774
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://proceedings.neurips.cc/paper_files/paper/2022/file/f61538f83b0f19f9306d9d801c15f41c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f61538f83b0f19f9306d9d801c15f41c-Paper-Conference.pdf

Under review as a conference paper at ICLR 2025

A PROOF FOR CONVERGENCE THEOREM

In this section, we provide proof to our convergence theorem Theorem 3.8]and Theorem 4.2} Since
the single node setting (Theorem [3.8)) can be viewed as a special case of the data-parallelism setting
(Theorem3.8)), we first prove Theorem[4.2]in Section[A.T|and then provide the proof for Theorem [4.2]
in Section for completeness.

A.1 PROOF OF CONVERGENCE THEOREM UNDER DATA-PARALLELISM SETTING

We define ¢, be the time step when nodes average model states, T; = %Zle :cgk),
d;, = % Zszl dik). We define the filtration F; as the sigma algebra generated by iterates
25 L (F) 25 ag

> R

Fy = U(J;gk),xék), ... ,xgm, forall k € [K]).

Next, we bound the error accumulated via the iterates generated by the local updates of Algorithm 2]
Lemma A.1 (Local State Drift). Under Assumption then for the choice of stepsize n < ﬁll, the
iterates mgk) foreach k € [K] generated from Algorithmsatisfy:
T K .
3 = STE|a" - 2)? < a1 - 1)20%T
t=1"" k=1
where the expectation is w.r.t the stochasticity of the algorithm.

(k)

ts—1

Proof. Note thatatt = t,_; with s € [S], mgk) = 1y, for all k, therefore, we have Zszl ||
Z7,_,||?> = 0. Moreover, for t € [t,_1 + 1,%, — 1], with s € [S], we have:

t—1 t—1

O o (5 - 3)|

l=ts_1 l=ts_1

T

@ 27 - 52 g By L~) ||
<= D @Y - V) - = Y@ - Vi)
k=1 é:tl,l j=1
2 || N UNY
25 X (VAR - = Ve
k=1"¢=F,_, j=1
() 2 2 K t—1 / 2
< IS Y @ - s
k=1 f:fS,I
9 2 K t—1 1 K) 2
TR X <Vf(x§’“))KZVf(x§”)> ™
k=1"y¢=F,_, j=1

where (a) is by the generalized triangle inequality; (b) is based on the property of separating mean
and variance.

Taking expectation on both sides and let us next consider each term of equation [7]above separately,
we have for any k € [K] from the first term of equation [7|above

t—1 2 t—1

> @ -vian| @ ¥ B

L=ts_1 t

2
W -V <u-net @

L=ts_1

13

Under review as a conference paper at ICLR 2025

where we use the independent sampling property and bounded gradient bias assumption.

Next, we consider the second term of equation [7|for any k& € [K], we have:

K
DY (s - g s

2

k=1 =g, _ j=1
t—1 K . 1 K 2
SIS ZEHW@@)= 2 Vi)
l=ts_1 k=1 j=1
t—1 K) K K 2
<(I-1)) {ZZEHVJ"(Q:,SM) V()| +ZZEHKZ(Vf() = Vi)]
t=t,_, “ k=1 k=1 j=1
t—1 K
<4LX(I-1) STE|2 -z ©

where we use the generalized triangle inequality and the bounded gradient bias assumption.

Substituting equation [8]and equation [9)in equation [7]and taking expectation on both sides we get:

K
1 k) - _
= O Ela® — @l < 20’(1 - 1)%0% + 807121 Z ZEHx -
k=1 0=ty
Summing both sides from t = ,_1 to £, — 1, we get:
ts—1 te—1 t—1 1 K
k k _
3 ZEM) 3|2 < 202(1 — 1)20°T + SLA(I — 1)1 Z 3 KZIEHx() 3|2
t= ta 1 5 1 ts 1
(a) ts— 1 K
(k
< 2m2(I —1)%02T + 8L2(I — nQI = ZEth) 3y)?

—ls—1

where (a) uses that fact that t < ¢, — land t; —t,_; < I forall s € [S}
Finally, summing over s € [S] and using T' = ST we get:

Z ZEnx““’ z|* < 21 - 1)%0 2T+8L21“2 ZEHN’ z|?
t=1

t=1
Rearranging the terms, we get
K

T
1
(1-8L2P*p) Y~ ZEHx(k) — 3|2 < 292(I — 1)%62T
t=1 =

Finally, using the fact that n < 77 we have 1 — 8L2I%n? > 1/2. Multiplying, both sides by 2 we
get

T 1 K

k _
3 I STE|a - 2)? < 4?1 - 1)%0%T
t=1 k=1

Therefore, the lemma is proved. O

Lemma A.2 (Shifted Descent Lemma). Forallt > 7 > Tyiw(VTmin), v < i andn < ﬁ, the
one step progress can be bounded as follows:

E[f(Z441)] < E[f(:i) — —IE[HVf Te—r)|l] + 2n20? + 128723 L% 6?% + n? Lo?

1 - nL _
+ 4772L3§ Z ngk) —) + a Z ng’i) -
k=1 k=1
t—1

Pt S LS]

{=maz(t—7,0) k=1

2

14

Under review as a conference paper at ICLR 2025

Proof. By the smoothness of f, we have:

2
B/ (@esn)] < B[(50) ~ n(VF(2).d0) + L)]

I
&=

K
1 . °L -
[£(@) = (V@) = VI B)) + A2 o)
k=1
For the second term in the above inequality, we split it into three terms:
(Vi ;5 = (v5(v) g >
va (k . B! k Z k k)
+ (VF(@) = V(@) ZVf 22 BM))

K
(V@5 0 (VF) - Vi B9))

- ()
For the first term in equation [[Tjwe have:
E[(Vi@), % ki VI)| =B [(ViG), g EVf(2: B
- ;Ef”[\vmtT)||2+\\;kZiE[Vf @, B~ [V - iE[Vf o 5[]
z;Eﬂ_f[\w@_»n%H}(fjlmw BB o vt »;; BV s B
-2l S Bl - Y mv sG]
> Er, ,HVf T ||2+H*ZE i B 2 vra »—é? e B
7] _ _ (12)

Then we use the property that the distribution of B; is close to the stationary distribution conditioned
on Fy_r, ie. [Pz, = j) — mj| <wmjwhent > T > Ty (VTmin), then for the difference term in
the above inequality, we have:

Er . [|Vi(Er) BV i@ B[

B[t X | T @G- -]

zt,i,0€[B] jJE[N]

<o [h $ 2 sferecef] Lo pfereo

zt,i,9€[B] JE[N]

2
+ 21/202}

where the first inequality is by the generalized triangle inequality and the second inequality is by the
Jensen inequality over Lo norm, while in (a), we use the bounded bias assumption, substitute this

15

Under review as a conference paper at ICLR 2025

back to equation and use the condition that v < i, to have:

B[(P a0 & 3wt))

> Lg 2 s 2L 5 [, 2 o

_zfu{zuvf~n+HKzEw; TS S{ MR
k

> —E|||V BV (@™ B9 L ¢ *) _ 9,202

> Ja|vsanr] + 3| et sO] - 3 a2t

(13)

Next for the second term of equation [IT] we have:

<Vf(ft) =V (&), % in xi’“)T,B(k) > HVf Z) — Vf(Z_,) H I va aF T’B(k))H
k=1

1 = N GITONE
st $ Al | St
k=1

L=maz(t—T7,0

1 272 = 1 = (k) 2 2,272 2 1 & (k) (k) 2
> P Y |2 e rertrret + | 2 S vre®)|
L=maz(t—T,0) k=1 k=1
t—1 N
> —— <47'772L2 Z HVf(.f()H + 27292 L2052

L=max(t—T,0)

t—1 K

1 2

et S S e [vrettnt)
k=1

{=maz(t—7,0)

and for the third term in equation [TT}

(Vi) ;i (V15 B = Vr (a5 B)))
1 K o t—1
o IR L

k=1 ¢=maz(t—T,0)
K t—1 9 9
N (G2 SR 'l R L AEA]
k=1 {=maz(t—T,0)
1 = 272 = ONIE 2. 272 2
> X 2(32777 L Z ‘Vf(a?e)H ‘Vf H +327°n*L°0?)
k=1 L=max(t—T,0)
t—1 1K
—(647n?L* Z Ve ’ - mzH
{=maz(t—T,0) k=1
t—1
+eamP? Y HW H 32HVf H + 32722 [20?)

{=maz(t—T,0)

16

Under review as a conference paper at ICLR 2025

Combine everything together, we have for equation [TT}

(71600, 3 w1161 580)

t—1 2

L2
[HVf DIF] = 20202 — 128t > *ZH ® _z, H = o, = s
L=max(t—T,0) k=1 k=1
t—1
1Pty HVf(;i)H2 1 ‘Vf(:i:)H2 - 647-2772L202} (14)
¢ 3 t
{=maz(t—T,0)
Finally for the last term in equation [T0] we have:
L, 5 (k
=l = ||—Zw B <Ll Zw P +n’Lo®
<L~ Z o) —2|* + 207 LIV £ (@) +n* Lo® (15)
Plug equation [[4]and equation @ to equation [I0] we have:
Bl (@) < E[£(@0) - TE[| V1@)I?] + 207%0% + 64702 L20% 4 3 Lo
t—1
R A HVf %, H + (Lt o HVf
{=mazx(t—T,0)
| K
k) - k
+4n2L3E;H$§ oz + ZHxﬁ b,
t—1 1)
sismtLt Y Z |2 = @] (16)

L=maz(t—T,0) k=1
In this last step we bound ||V f(Z,)|?,t — 7 < s < t wrt. ||V f(Z,_,)||?. Forany s € [t — 7, 1]:
IVf@)? <20V f(@e—r)II” +2[VF(s) = VF(@e—r)|?

s—1
Vi@ PR S P
{=maz(t—T,0)
s—1 1 K
_ k
<2AVI@- P+l Y (2 2 IV + o)
{=maz(t—7,0) k=1
s—1
<OV AT Y
{=maz(t—7,0)
t—1
<AV s Y

L=max(t—7,0)

+ 872 L2n? 19T IV £ (z0)||* + 47%L2n

IV £ @) = W f (@)% + 2|V f (@) + 0?)

= o

3 M= 11

=[=

12§ — 2,2

By setting n < we have:

4L7‘
t—1 K

2y 2 4 2 i (k) =~ 2 272 2 2

jmaz [VF@)I? < VF @I #1670 30 3~ + 87 Lo
L=max(t—T,0) k=1

Plug this inequality back to equatlonﬁ and used the condition that n < 256 72> L

17

Under review as a conference paper at ICLR 2025

E[f(Z131)] < E[f(j;t) _ —]E{HVf Zo)|] o202 + 128728 L2602 + nLo?

K - nL? K-
+ 4772[/3? kZ:l Hx,(5))% + Na Z Ha:g_)r — T
t—1

+128rP Lt Y Z H _ & H } (17)

{=maz(t—7,0) k 1

2

This completes the proof of the lemma. O

Theorem A.3. Under Assumptions B3W3.3] and Assumption we choose n =

. 1/2
min (25&7, ﬁll, i, (COTCQ) /),for some constants T = O(1/p), then with any choice of mini-
batch sizes B > 1, and number of local updates, I > 1, the iterates generated from Algorithm|2|

satisfy:
CoC: CoC\ /2
—ZEHVf)II? < +cl(OTQ)+02(°T2>

where Cy = 16(A + ¢?/L), C1 = (32 + 16 x 12872L% + 256L%(I — 1)?1)0?, Oy = 16Lo?,
Cy = min (256LT7 4£1’ 4) A denotes the initial sub-optimality.

Proof. Summing the result of Lemmal[A.2|for ¢ = [r + 1,7 + T] and multiplying both sides by
16/nT we get:

E:MWf n?_mmﬂ%;”_f]+m@ﬁ+¢%#ﬁL%wa2
n

T+T

+327L21 S = ZH (’“Ler
t=1

16E[f(Z,41) —
< W0B @) = /1 16(2v* 4 1287°n°L* + nL)o”

< T
128L%(I — 1)%7(T
8L*() T(T +7) o’
T
where in the second inequality, we use Lemma[A2]
As for z 1, follow Eq. forn < % we have:
n 1o
E[f (@1) = f(@0)] < E[3]|V @) - 2 > Vi8]

K 12
e 2Bl =] e
Then we sum the above inequality for ¢ € [7] and combine with Lemma to have:

Eﬂf(ir+a)]—-f(x1)§§4n37(1-—1)2L2024-n027 <o’/L
where the last inequality follows the condition of 7 < 256 = andn < m Then we have:
T
1 16(A +0?/L
T SRV < w +16(20% 4+ 128729°L? + nL)o? + 256 L2 (1 — 1)2110?
— n

18

Under review as a conference paper at ICLR 2025

where we simplify the last term by 7 < T'. Next, we define v = ¢, 7 for some constant ¢, > 0,
and the constant Cy = 16(A + 02/L), C1 = (32¢2 + 16 x 12872L? + 256 L?(I — 1)*7)0? and
Cy = 16 Lo?, then the above inequality can be simplified as:

ZEHW)7 < +Cm + Con

By the c0nd1t10n of Lemma , where v < 7 Landn <
where n < we set 1) to be:

Y G S S S (T A
= 956L7 4LI 4¢,’ \ T

L _1 1) then we have:
) 4ey,

206 7= and the condition of Lemma

4LI’

256LT° 4L1

C,C: CyCy\ /2
e o () ()

so the last term is the dominant term for sufficiently large 7', more precisely, if T satisfies:

c2Cy Gy
Cy ' C2C3

Suppose we denote C;, = min (

T>max(

the last term is the dominant term. More specially, since C,, = O(77!) and C; = O(7?), we need

2. -1 2 -1
) < ln(Np”) — ln(Np”) where we set

¢, = 1 in the last equality, so we have 7 = O(p~!). This completes the proof of the theorem. [

T = O(7*). Meanwhile, we have 7 = Tyi0 (VTmin

A.2 PROOF OF CONVERGENCE THEOREM UNDER SINGLE NODE SETTING

Lemma A.4 (Shifted Descent Lemma - Single Node). For allt > T > Tpix (VTmin), v < % and
n < 256%, the one step progress can be bounded as follows:

E[f(z141)] < E[f(x) — —E{HVf 2| } +2o? + 12872 L2602 + n2L02]

Proof. By the smoothness of f, we have:

Elf ()] < E[f(0) —n(F). Vi@ B)) + TEIVs@aBZ] as)
For the second term in the above inequality, we split it into three terms:
(VH@) Vi@ B)) = (VE(@er). Vi (wiriB))
+ (V@) = Vi) Vi(wi-ri B))
+ (V@) (VI (@i B) = V(e B))) (19)
For the first term in equation [I9 we have:
E[(VF@er), Vi@ e B0))] =Er_ [(V@er) BV (i B)])]
= 2B, [V + (B e B~ [V I BV e8] 0

Then we use the property that the distribution of B; is close to the stationary distribution conditioned
on Fy_r,ie. |P(z,; = j) — mj| <wmjwhent > T > Ty (VTmin), then for the difference term in

19

Under review as a conference paper at ICLR 2025

the above inequality, we have:
2
Es,_. ||V i(@e-r) ~ BV flarrs B]

B lp X |5 ®lei=i)-m) Vi

zt,i,9€[B] jE[N]

SE}LT[Z Z 7erVf (Tp—ry H } < Ex,_ T{?z/ HVf(xt,T) ’

zt,i,1€[B] JEIN

+ 2V2O'2:|

where in (a) we use the bounded bias assumption, plug this back to equation 20]and use the condition
that v < , to have:

E[(V(@is), V@i B))]
%EfH [%va(xt,T)HZ + |[ELV f@eri B

2
’ — 2u202}

2
’ — 202 21)

\Y]

R e

Next for the second term of equation[T9] we have:

(V@) = VI @er), VE@eriB)) 2 = || VF @) = V(i)

< | v s

1. oy 2 2 272 2 2
> _5(27-77 L > HVf(mg)H +27°n°L%0* + va(ﬂft—T;Bt)H)
{=maz(t—T,0)

and for the third term in equation [T

(Vi) (V@i B) = Vi(wiri B)))

>—| X wLVi@aB| x||Vi@)

{=maz(t—7,0)

o Y Vit + Lvsea|)

{=maz(t—T,0)

t—1
—@mPrr Y HVf (¢ H + = ‘Vf ; H + 32722 L%02)
{=maz(t—7,0

Combine everything together, we have for equation[T9

(V@) V@i B.))

1 t—1 2 1)
Z [HVf i)l } —v20? —128°L Z HVf(a:g)‘ — ﬁHVf(xt)H — 647%0*L20?
=maz(t—r,
(22)

Finally for the last term in equation [T8] we have:

2

n“L

5 IV F @i B)I* < n* LIV f(20)]* + n* Lo (23)
Plug equation [22]and equation 23]to equation[I8] we have:

Elf(@e+1)] < E[f(z) = TE||Vf(@ir)|?] +m20? + 64727 L2 + Lo

pustrr S [wsen| +orre Dvse] es

{=maz(t—T,0)

20

Under review as a conference paper at ICLR 2025

In this last step we bound ||V f(z5)[|?,t — 7 < s < t wrt. |V f(24—,)||>. Forany s € [t — 7,¢]:
IV f(@)lI? < 20V fze—r) P + 2|V f(25) = V f (o)

s—1
<2AVf(z) P+ 277 Y V(s B
{=maz(t—7,0)
s—1

<2AVF(@)® +arLP? Y (IVf(@)]® +07)
{=maz(t—T,0)

< 2V @I +4r L2 mas [V f)|+ 472 LR

By setting n < 17—, we have:

4L’T‘
maz V(o> <419 (i) + 872 L
€

T>1:

Plug this inequality back to equatlonand used the condition that n < 256 T T 2

E[f(@e1)] < E[f(ae) = 1eE[|[VS @) I2] + 20 +1287%0° L% +2Lo?| @25)

This completes the proof of the lemma. O

Theorem A.5. Under Assumptions we choose 1 = min (ﬁ, i, (COTC2)1/2>, for some

constants T = O(1/p), then with any choice of minibatch sizes B > 1, the iterates generated from
Algorithm(]|satisfy:

CoC: CoCy\ '
2 ov2 ov“2
TZEIIfot e grra (92) e (952)

where Cy = 16(A + 02 /L), Cy = (16 + 16 % 12872L*)0?, Cy = 16L0?, C;) = min (s, 7)- A
denotes the initial sub-optimality.

Proof. Summing the result of Lemma fort = [t + 1,7 + T and multiplying both sides by
16/nT we get

T
1 16E[f(zr41) — f*
i;E:EHVme)Wzg [f“;;” f]-+1mp2+1287%fL2+nLy¥

As for f(241), follow Eq.[18] for n < + we have:

2
E[f(@e1) — f(2)] < E[7| V(@) = V@ B)|| | <o
Then we sum the above inequality for ¢ € [7] to have:

E[f(zr41)] = f(21) < 77027 < 02/L

where the last inequality follows the condition of 1 <
optimality as A = f(x1) — f*, then we have:

256 sEar=+ Suppose we denote the initial sub-

T
1 2 16(A+02/L) 2 2. 272 2
il < 2\ 7

T glE”Vf(xt)H S T +16(v° +1287°n°L* + nL)o

Next, we define v = ¢,7 for some constant ¢, > 0, and the constant Cy = 16(A + 02/L),
C1 = (16¢2 + 16 * 12872 L?)0? and Cy = 16Lo?, then the above inequality can be simplified as:

Cy
*Z]EHVf)|1? < i Cin” 4 Can

t=1

21

Under review as a conference paper at ICLR 2025

By the condition of Lemma where v < % and n < we set 7) to be:

_1
256LT°

71 = min 1 i CoCh v
1= 256L7 4c, \ T

—mi 11 .
Suppose we denote C;, = min (256 7 To,), then we have:

- 1/2
%E E|Vi@)P < 22 10 (COCQ> + 0 <C°C2>
t=1

=T T T

so the last term is the dominant term for sufficiently large 7', more precisely, if 7" satisfies:

C3Cy Cy
T>
_max(G ,072703
the last term is the dominant term. More specially, since C;, = O(7~!) and C; = O(7?), we need
2 -1 2. —1
T = O(7*). Meanwhile, we have T = Ty (VTmin) < ln(NpV) — ln(an) where we set

¢, = 1 in the last equality, so we have 7 = O(p~1). This completes the proof of the theorem. [

B MORE DETAILS ABOUT EXPERIMENTS

B.1 MORE DETAILS OF FIGURE[]]

In Figure [T we measure the FLOPS rate vs Arithmetic Intensity under different data loading speed
levels. In particular, the term "arithmetic intensity" comes from the Roofline model (Williams et al.,
2009)) of the computer systems community. Formally, Arithmetic Intensity is the ratio of total floating-
point operations (FLOPS) to the total data movement (Bytes) required to support those FLOPS. The
main observation from the figure is: For a given data loading speeding, a certain arithmetic intensity
is necessary to reach the maximum FLOPS rate.

We perform synthetic experiments to get Figure|l| More specifically, we train a ResNet-18 model to
fit the CIFAR-10 dataset on an A5S000 GPU. Firstly, we vary the arithmetic intensity by changing
the number of gradient steps (denoted as k) performed for each sample. In other words, we perform
k consecutive gradient steps for each sample loaded to the memory. Note that by the definition of
arithmetic intensity, it increases as the value of k increases. As for the data loading speed, we repeat
the data loading operation ¢ times per sample to achieve different levels of loading speed. Increase
the value of 7 leads to slower data loading

22

	Introduction
	Related Work
	Stochastic Data Echoing and A Tighter Analysis
	Preliminaries of Markov Chain
	The Stochastic Data Echoing
	Theoretical Analysis of Algorithm 1

	Communication-Efficient Data Echoing for Data Parallelism
	Theoretical Analysis of Algorithm 2

	Numerical Experiments
	Results under Single Node Setting
	Results under Data Parallelism Setting

	Conclusion
	Proof for Convergence Theorem
	Proof of Convergence Theorem under Data-Parallelism Setting
	Proof of Convergence Theorem under Single Node Setting

	More Details about Experiments
	More Details of Figure 1

