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Abstract—We present Factorized Diffusion Policy (FDP), a mod-
ular framework that models complex action distributions as com-
positions of specialized diffusion components. Each component
captures a distinct behavioral mode, and together they represent
the full multimodal distribution. This structure enables inter-
pretable sub-skill learning and supports flexible task adaptation
by fine-tuning or adding new components. Across simulated and
real-world robotic tasks, FDP outperforms monolithic and MoE-
based baselines, achieving 24% higher multitask success and
34% improvement in adaptation. Website: factorized-diffusion-
policy.github.io.

I. INTRODUCTION

Recent progress in large-scale imitation learning has enabled
training general-purpose robot policies from diverse demon-
strations. Yet, fitting a single model to complex, multimodal
tasks remains a challenge – monolithic diffusion policies
struggle to generalize and adapt without forgetting.

Modular methods, such as Mixture-of-Experts (MoE), offer
scalability by distributing skills across components. However,
existing approaches often suffer from routing instability, over-
lapping expert roles, and lack of probabilistic grounding.

We propose Factorized Diffusion Policy (FDP), which rep-
resents the policy as a composition of diffusion compo-
nents. Each module specializes in a behavioral mode and is
softly combined through observation-dependent score aggre-
gation—avoiding hard selection and improving training stabil-
ity. FDP builds on compositional diffusion modeling, where
sampling from the product of distributions provides both a
principled foundation and interpretable constraint satisfaction.

The modular design enables efficient adaptation to new tasks
by adding or fine-tuning selected components. We demonstrate
strong multitask and adaptation performance across Meta-
World, RLBench, and real-world settings.

II. RELATED WORKS

Diffusion Models for Robotics. Diffusion models offer
stable training and flexible generation, and have recently
been applied to policy learning [1], grasp synthesis [2], and
planning [3]. Diffusion Policy (DP) [1] showed that these
models can learn effective single-task visuomotor control from
demonstrations.
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Fig. 1: Overview of FDP. (a) Given an observation ot, multiple diffusion ex-
perts predict score estimates εi(aK

t ,ot) at each denoising step. A lightweight
router network computes observation-dependent weights {wi}, which are used
to compose the final score as a weighted sum (see (c)). The composed score
guides the iterative denoising process over K steps to generate an action at.
(b) This compositional structure enables FDP to model complex multimodal
distributions and supports modular adaptation via selective tuning or addition
of diffusion components.

Multitask Imitation and Modularity. Multitask poli-
cies often rely on monolithic architectures [4] or language-
conditioning [5], which limit scalability and adaptability.
MoE-based methods such as SDP [6] and MoDE [7] improve
modularity but suffer from expert imbalance and reduced
interpretability.

In contrast, FDP uses continuous score aggregation to com-
bine component outputs, ensuring balanced optimization and
clearer specialization. FDP supports modular growth through
new components while preserving previously learned skills –
enabling scalable and interpretable multitask policy learning.

III. FDP: FACTORIZED DIFFUSION POLICY

We propose FDP, a modular policy architecture designed
to scale to diverse manipulation tasks and enable efficient
adaptation to new ones. Instead of relying on a monolithic
diffusion model, we factorize the policy into multiple diffusion
components, each modeling a distinct sub-mode of the multi-
modal action distribution. At inference time, these components
are composed via a lightweight observation-conditioned router
(Fig. 1).

We represent the policy distribution as a product of com-
ponent distributions: p(at|ot) ∝

∏
i pi(at|ot)wt,i , where pi is

parameterized by a diffusion model, and wt,i are observation-
dependent weights predicted by the router. This formulation
enables soft composition: rather than selecting a discrete

https://factorized-diffusion-policy.github.io/
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Fig. 2: Simulation environments. We evaluate FDP on 10 MetaWorld tasks
and 6 RLBench tasks.
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(a) Real-world workspace. (b) Illustration of hang-X (c) Illustration of cube-X

Fig. 3: Real-world setup and task illustrations. (a) Workspace setup with
a UR5e arm, Robotiq gripper, and RealSense D415 camera. (b) High-level
illustrations. Example rollouts can be found in Fig. 4.

subset of experts as in MoE-based policies, all components
contribute to the final output in a differentiable way. As a
result, training is more stable, and each component specializes
through consistent optimization.

Each pi is trained using standard DDPM objectives [8],
where the noise prediction networks are optimized jointly
using a combined score-matching loss. The router is trained
end-to-end alongside the diffusion modules to predict the
mixing weights.

This modular structure also enables data-efficient task adap-
tation. To adapt to a new task, we freeze the original com-
ponents and introduce a new diffusion module, initialized via
upcycling [9]. Only the new module and the router are updated
during adaptation, preserving prior capabilities while extend-
ing the policy to new tasks without catastrophic forgetting.

Together, this design offers a stable, interpretable, and
scalable approach to multitask policy learning and adaptation.
We show that FDP outperforms both monolithic and MoE-
based diffusion baselines across a wide range of tasks in
simulation and the real world. Full details can be found in
Appendix C.

IV. EXPERIMENTS

In this section, we aim to empirically investigate several
key questions regarding our proposed policy architecture:
(1) Whether factorizing the complex action distribution into
simpler distributions captured by smaller diffusion models can
improve overall policy learning and performance. (2) Whether
the modular structure of FDP, composed of multiple diffusion-
based expert modules, facilitates more efficient and effective
task transfer and adaptation. (3) How different adaptation
strategies compare, highlighting trade-offs such as data effi-
ciency, policy performance, and compute.

A. Experiments Setup

We evaluate policies on 16 tasks (Fig. 2) across Meta-
World [10] and RLBench [11]. Demonstrations are generated

Fig. 4: Qualitative real-world rollouts. Each row shows execution for cube-
X (left) and hang-X (right) tasks. Successes are shown in the top row; failure
cases (bottom) illustrate challenges faced by baselines. Enlarged version can
be found in Fig. 7.

by benchmark-provided scripted experts. Real-world experi-
ments use a UR5e arm with a Robotiq gripper and a RealSense
D415 camera (Fig. 3a). We evaluate policies on four distinct
tasks: cube red, cube blue, hang low, and hang high. The
tasks cube-X involve picking up a cube of color X from the
tabletop and placing it into a designated bowl. The hang-X
tasks require the robot to grasp a mug from the tabletop and
precisely hang it on the X branch of a mug stand positioned
on the table. Illustrations and setups of these real-world tasks
are shown in Fig. 3. More details are provided in Appendix D.

B. Implementations

All policies take RGB images and joint angles as input and
predict absolute joint angle trajectories. A history window
of size 2 is used, with 16-step trajectories predicted and 8
steps executed. We use DDPM [8] with 100 diffusion steps
during training and inference. We compare FDP against three
baselines: DP [1], a monolithic diffusion policy; SDP [6],
a MoE-based diffusion policy with observation-conditioned
routing; and MoDE [7], a MoE variant with routing based
on noise levels. Task-specific routing and goal conditioning
are removed for fair comparison. We follow the original con-
figurations used in each baselines, and proportionally reduce
the model size of MoDE to match others. We refer readers
to the original papers for more details on architecture and
training. In FDP, four U-Net diffusion modules are composed.
For adaptation, we adopt the upcycling strategy [9] to initialize
new MoE experts or diffusion components from existing ones.
More details are available in Appendix E.

C. Multitask Learning

We first investigate whether decomposing complex motion
distributions into simpler, behavior-specialized components
can improve policy performance in multitask settings.

Policy MetaWorld RLBench

DP 0.725 0.569
SDP 0.717 0.319

MoDE 0.733 0.394
FDP 0.750 0.638

TABLE I: Multitask learning in simulation. Average success rate on
MetaWorld (door open, drawer open, assembly, window close, peg insert,
hammer) and RLBench (toilet seat up, open box, open drawer, take umbrella
out) tasks. Evaluated over 40 episodes per task. See Table V for full results.

Simulation. We evaluate FDP on six MetaWorld tasks (25
demonstrations each) and four RLBench tasks (50 demonstra-
tions each). All methods are evaluated over 40 rollouts per



task, with results shown in Table I. The DP baseline performs
surprisingly well, particularly on tasks like drawer open,
assembly, and hammer, which primarily involve reaching and
grasping and exhibit fewer multimodal behaviors – making
them easier to solve with a single model. Among modular
baselines, SDP underperforms due to instability common in
training MoE architectures [9]: too few experts limit expres-
siveness, while too many can cause overfitting and noisy
routing. MoDE performs reasonably by routing based on the
noise level, but still inherits instability from MoE training [7].
In contrast, FDP’s compositional structure avoids abrupt rout-
ing decisions by continuously composing diffusion component
outputs via score-weighted aggregation, which enables stable
training and more balanced component specialization of the
multimodal action distributions.

Policy Cube Red Hang Low Avg.

DP 0.700 0.800 0.750
SDP 0.750 0.650 0.700

MoDE 0.700 0.800 0.750
FDP 0.750 0.850 0.800

TABLE II: Real-world multitask success rates. Average over 20 trials. Tasks:
cube red and hang low.

Real-world. We further evaluate our method in real-world
settings on two tasks: cube red (300 demonstrations) and
hang low (200 demonstrations). 20 samples are used for
evaluation, and results are summarized in Table II. The DP
baseline often overfits to specific joint trajectories, failing to
attend to RGB inputs due to the multimodal and perceptually
complex nature of the tasks. By contrast, FDP captures diverse
behavior patterns more effectively by decomposing the action
distribution across interpretable sub-modules. This results in
higher success rates. Fig. 4 shows qualitative failure cases
from baseline methods, which struggle to capture the complex
distribution, resulting in imprecise end-effector poses and
frequent task failures.

D. Task Transfer and Adaptation

In this section, we evaluate the adaptability of FDP in
adapting to novel tasks under limited data. We compare several
adaptation strategies: full-parameter fine-tuning, partial fine-
tuning of the router, observation encoder, and selective module
expansion via new expert components.

Simulation. We evaluate adaptation performance on four
MetaWorld tasks and two RLBench tasks, using 10 and 25
demonstrations per task, respectively. We run 60 evaluations
for MetaWorld and 40 evaluations for RLBench. As shown
in Table III, full-parameter fine-tuning achieves strong per-
formance but is computationally intensive. Partial fine-tuning
– modifying only the router or including the observation en-
coder – offers limited gains. In contrast, adding new modules
(two expert blocks per layer for MoE-based methods and
a new diffusion component for FDP) consistently improves
performance. FDP benefits most from this strategy, leveraging
its compositional structure to reuse prior knowledge while
efficiently learning new behaviors.

Method Policy MetaWorld RLBench

Full Param.

DP 0.900 0.800
SDP 0.892 0.763

MoDE 0.917 0.813
FDP 0.917 0.825

Router + Obs. Enc.
SDP 0.833 0.338

MoDE 0.833 0.438
FDP 0.858 0.463

+ New Module
SDP 0.900 0.450

MoDE 0.908 0.600
FDP 0.925 0.850

TABLE III: Adaptation in MetaWorld (door open, drawer open, assembly,
window close, peg insert, hammer) and RLBench (toilet seat up, open box,
open drawer, take umbrella out). Pretrained on tasks in Table I. Full results
in Table VI.

Method Policy Cube Blue Hang High Avg.

Full Param.

DP 0.750 0.850 0.800
SDP 0.700 0.800 0.750

MoDE 0.750 0.800 0.775
FDP 0.850 0.750 0.800

Router + Obs. Enc.
SDP 0.500 0.450 0.475

MoDE 0.500 0.550 0.525
FDP 0.550 0.550 0.550

+ New Module
SDP 0.650 0.550 0.600

MoDE 0.700 0.650 0.675
FDP 0.850 0.850 0.850

TABLE IV: Adaptation in real-world. Evaluated on cube blue and hang
high. Pretrained on cube red and hang low. See Table VII for full results.

Real-world. We further evaluate adaptation on two real-
world tasks, each with 100 demonstrations. 20 samples are
used for evaluation. Results in Table IV echo the simulation
trends. While full-parameter fine-tuning performs reasonably
well, it is resource-intensive. Partial fine-tuning yields modest
improvements. The most effective strategy across all methods
involves introducing new modules. Under this setting, FDP
achieves the best performance, highlighting the advantage of
its modular design for rapid and robust adaptation even in
complex, real-world scenarios.

E. Diffusion Components Analysis

To better understand how modularity manifests in FDP, we
analyze the behavior and specialization of individual diffusion
components. Fig. 5 shows rollout trajectories produced by each
component in two representative MetaWorld tasks: assembly
and hammer. Across both tasks, we observe that different
components specialize in distinct functional stages, such as
alignment, approach, and grasp execution. This consistent divi-
sion of responsibility indicates that FDP naturally decomposes
complex behaviors into distinct, interpretable sub-skills across
its components.

To complement the qualitative analysis, we compute the
pairwise cosine similarity between the score outputs, shown
in Fig. 6, visualize how the learned components relate to each
other during inference. While the components are not com-
pletely orthogonal, we observe noticeable variation between
different pairs, indicating that diffusion components capture



(a) Assembly (b) Hammer

Fig. 5: Rollout trajectories of individual diffusion components in FDP. (a) In assembly,
components 0 and 1 align the robot with the stand, component 2 aligns with the ring, and
component 3 executes the grasp. (b) In hammer, components 0 and 1 align and approach
the pin, component 2 approaches the hammer, and component 3 performs the grasp. Enlarged
version in Fig. 8.
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Fig. 6: Cosine similarity between diffusion component
scores. Each heatmap shows average pairwise similarity for
models with 2–5 components, computed over four RLBench
tasks. Lower similarity indicates more distinct component
behaviors.

distinct, though partially overlapping, aspects of the behavior
distribution.
FDP’s structure contrasts with baseline MoE-based policies.

In MoDE, experts specialize according to diffusion noise levels
rather than task semantics, leading to noise-level specialization
that lacks behavioral interpretability. In SDP, sub-skills emerge
from sets of experts selected across layers, making it difficult
to assign functionality to any single expert. Experts can be
reused across different combinations or ignored altogether.
Furthermore, SDP routers tend to favor a small subset of
experts, leading to poor load balancing and limited diver-
sity [6]. FDP assigns each behavioral mode to a distinct,
standalone diffusion component. This enables clean semantic
separation between modules, avoiding routing instability or
expert redundancy commonly seen in MoE. This modular
design facilitates straightforward analysis, interpretability, and
reuse, contributing to better training stability and more coher-
ent specialization.

V. REAL-WORLD DEPLOYABILITY AND GENERALIZATION

FDP is explicitly designed to enhance generalization and
real-world deployability of robot policies through modularity,
interpretability, and adaptability. Below, we highlight several
ways our design and evaluations align with this goal.

Multitask generalization. FDP demonstrates strong multi-
task performance across diverse tasks in MetaWorld and RL-
Bench, including object reconfiguration, tool use, and contact-
rich manipulation. These tasks require generalizable behav-
ior representations, and our model achieves higher success
rates than monolithic and MoE-based baselines, indicating
improved generalization to a range of task geometries and
dynamics.

Real-world deployment. We evaluate FDP on real-world

tasks using a UR5e arm across four task variants with varied
object shapes, positions, and constraints. FDP successfully
transfers to these settings with minimal tuning, outperforming
baselines and showcasing robustness to real-world perception
and control noise.

Modular adaptation. FDP supports efficient adaptation
to novel tasks by fine-tuning or adding new components
without modifying previously learned ones. This enables real-
time policy updates and skill expansion on deployed systems
without catastrophic forgetting—an essential capability for
long-term, continuously learning robots.

Interpretable structure. The interpretable decomposition
into behavior-specialized modules facilitates debugging, reuse,
and safety analysis in deployed systems. Compared to MoE-
based policies with unclear expert roles, FDP’s design im-
proves transparency and supports modular verification in
safety-critical environments.

Together, these capabilities make FDP a practical framework
for scalable, generalizable, and robust robot control in real-
world applications.

REFERENCES

[1] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, 2024.

[2] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chal-
vatzaki. SE(3)-DiffusionFields: Learning smooth cost
functions for joint grasp and motion optimization through
diffusion, June 2023. URL http://arxiv.org/abs/2209.
03855. arXiv:2209.03855 [cs].

http://arxiv.org/abs/2209.03855
http://arxiv.org/abs/2209.03855


[3] Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with Diffusion for Flexible
Behavior Synthesis. In Proceedings of the 39th Inter-
national Conference on Machine Learning, pages 9902–
9915. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/janner22a.html. ISSN: 2640-3498.

[4] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa
Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
OpenVLA: An Open-Source Vision-Language-Action
Model, June 2024. URL http://arxiv.org/abs/2406.09246.
arXiv:2406.09246 [cs].

[5] Huy Ha, Pete Florence, and Shuran Song. Scaling
Up and Distilling Down: Language-Guided Robot Skill
Acquisition. In Proceedings of The 7th Conference on
Robot Learning, pages 3766–3777. PMLR, December
2023. URL https://proceedings.mlr.press/v229/ha23a.
html. ISSN: 2640-3498.

[6] Yixiao Wang, Yifei Zhang, Mingxiao Huo, Ran Tian,
Xiang Zhang, Yichen Xie, Chenfeng Xu, Pengliang Ji,
Wei Zhan, Mingyu Ding, and Masayoshi Tomizuka.
Sparse diffusion policy: A sparse, reusable, and flexible
policy for robot learning, 2024. URL https://arxiv.org/
abs/2407.01531.

[7] Moritz Reuss, Jyothish Pari, Pulkit Agrawal, and Rudolf
Lioutikov. Efficient diffusion transformer policies with
mixture of expert denoisers for multitask learning, 2024.
URL https://arxiv.org/abs/2412.12953.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models, 2020. URL https://arxiv.
org/abs/2006.11239.

[9] Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srini-
vasan Iyer, Mike Lewis, Gargi Ghosh, Luke Zettlemoyer,
and Armen Aghajanyan. Moma: Efficient early-fusion
pre-training with mixture of modality-aware experts,
2024. URL https://arxiv.org/abs/2407.21770.

[10] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Avnish Narayan, Hayden Shively, Adithya Bellathur,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning, 2021. URL https://arxiv.
org/abs/1910.10897.

[11] Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. Rlbench: The robot learning bench-
mark & learning environment, 2019. URL https://arxiv.
org/abs/1909.12271.

[12] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion, 2024. URL https://arxiv.org/abs/2303.
04137.

[13] Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning

(ICML-11), pages 681–688. Citeseer, 2011.
[14] Pascal Vincent. A connection between score matching

and denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

[15] Lirui Wang, Jialiang Zhao, Yilun Du, Edward H. Adel-
son, and Russ Tedrake. Poco: Policy composition from
and for heterogeneous robot learning, 2024. URL https:
//arxiv.org/abs/2402.02511.

[16] Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce,
reuse, recycle: Compositional generation with energy-
based diffusion models and mcmc, 2024. URL https:
//arxiv.org/abs/2302.11552.

[17] Jocelin Su, Nan Liu, Yanbo Wang, Joshua B. Tenenbaum,
and Yilun Du. Compositional image decomposition with
diffusion models, 2024. URL https://arxiv.org/abs/2406.
19298.

[18] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional visual generation
with composable diffusion models, 2023. URL https:
//arxiv.org/abs/2206.01714.

[19] Yilun Du and Igor Mordatch. Implicit generation
and modeling with energy based models. In
H. Wallach, H. Larochelle, A. Beygelzimer,
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APPENDIX

A. Background on Diffusion Policy

Our method, FDP, builds upon the diffusion policy frame-
work [12], leveraging U-Net-based denoising models to rep-
resent the conditional action distribution. Diffusion models
are a class of generative models that synthesize samples by
reversing a predefined noise process. Specifically, we adopt
the Denoising Diffusion Probabilistic Model (DDPM) [8] to
model the policy πθ(at|ot), where ot denotes the observation
and at the action.

Sampling begins with a Gaussian noise aK ∼ N (0, I) and
proceeds through a sequence of denoising steps using a noise
prediction network εθ:

ak−1 = αk
(
ak − γk εθ(ak,o, k) +N (0, σ2

kI)
)
, (1)

where αk, γk, and σk define the noise schedule at timestep
k. This denoising process is akin to Stochastic Langevin
Dynamics [13], where εθ approximates the score function
∇ log p(a|o) of an implicit energy-based model [14].

During training, the model learns to predict the added noise.
A clean action trajectory a0 is perturbed by Gaussian noise
ϵk to form a noisy sample ak = a0+ ϵk. The network is then
supervised to reconstruct the noise via a mean squared error
objective:

LMSE =
∥∥ϵk − εθ(a

k,o, k)
∥∥2
2
. (2)

Minimizing this loss teaches the network to recover
the denoising direction, enabling generation of coherent,
observation-conditioned action sequences through iterative re-
finement.

B. Background on Compositional Sampling

Compositional generation with diffusion models has gained
increasing attention in robotics and generative modeling due to
its ability to produce structured, interpretable outputs. By com-
bining modular distributions, this approach offers enhanced
flexibility and expressiveness for tasks such as robot trajectory
generation and image synthesis [15, 16, 17, 18].

A core theoretical insight is that aggregating diffusion
scores is equivalent to sampling from the product of the
underlying probability distributions. Let p1, p2, . . . , pn be a
set of component distributions. Their product distribution is
given by:

pproduct(x) ∝
n∏
i=1

pi(x), (3)

which assigns high probability to samples that are simultane-
ously likely under all component distributions – i.e., it captures
their intersection.

In the energy-based formulation, each pi(x) ∝
exp(−Ei(x)), and their product yields a new energy-based
model:

pproduct(x) ∝ exp

(
−

n∑
i=1

Ei(x)

)
[19]. (4)

Sampling from pproduct can be performed using Langevin dy-
namics. Starting from an initial noisy sample xK ∼ N (0, I),
the iterative update is:

xk−1 = xk − γk∇xEproduct(x
k) + ξk (5)

= xk − γk
∑
i

∇xEi(x
k) + ξk, (6)

where γk is the step size and ξk ∼ N (0, σ2
kI) adds stochas-

ticity to improve exploration. One can bridge EBM and score-
matching diffusion [16].

Compositional sampling enables several practical benefits. It
enhances robustness by enforcing agreement across component
models, which helps reduce uncertainty and improves sample
fidelity. Moreover, it facilitates modular design – indepen-
dently trained components can be integrated at inference
time, promoting scalability across diverse tasks and data
domains [15, 16].

C. FDP: Factorized Diffusion Policy

We aim to develop a modular policy architecture that scales
to diverse manipulation tasks and supports efficient adaptation
to new ones. Traditional monolithic policies struggle with
the complexity and multimodality of real-world action dis-
tributions, while modular alternatives like Mixture-of-Experts
(MoE) suffer from training instability and poor expert in-
terpretability. Our proposed FDP, which directly factorizes
the policy into a set of composable diffusion models. Each
component captures a distinct behavioral mode, and the final
action is produced via a weighted aggregation of these mod-
ules conditioned on the current observation (Fig. 1).

1) Probabilistic Policy Modeling: We factorize the action
distribution as the product of a set of composed distributions

p(at|ot) ∝
∏
i

pi(at,i|ot)wt,i , (7)

where {wt,i} are observation-dependent weights associated
with each component distribution. Intuitively, p(at|ot) repre-
sents the intersection (logical AND) of individual distributions,
assigning high likelihood to samples commonly favored by
all component distributions. Moreover, each diffusion compo-
nent pi(at,i|ot) can be interpreted as imposing a behavioral
constraint (e.g., collision avoidance, precise grasping) [20].
The composed distribution thus captures the intersection of
constraints, naturally framing action generation as constraint
satisfaction while maintaining a probabilistic interpretation.

Denoising Diffusion Probabilistic Model (DDPM) frame-
work [8] is adopted to model each component distribution
pi(at,i|ot). To sample from each component, we start from
a noisy action sample aKt,i ∼ N (0, I), and iteratively refine it
using a noise prediction network εθi(a

k
t,i,ot, k), progressively

denoising over k steps:

ak−1
t,i = αk

(
akt,i − γk εθi(akt,i,ot, k) +N (0, σ2

kI)
)
, (8)

where αk, γk, and σk define the noise schedule. This process
closely resembles Stochastic Langevin Dynamics [13], with
εθi estimating the score function ∇ log pi(at,i|ot) [14].



Training of DDPM minimizes the mean squared error
(MSE) between the true added noise ϵk and the network
prediction:

LMSE = ∥ϵk − εθ(a
0
t,i + ϵk,ot, k)∥22, (9)

where a0t,i is a clean trajectory sample valid under distri-
bution pi(at,i|ot). Minimizing this loss teaches the network
to progressively denoise noisy actions conditioned on obser-
vations.

2) Compositional Sampling and Routing: We next dis-
cuss how can we sample from the actual action distribution
p(at|ot) given DDPM formulation of component distributions
{pi(at,i|ot)}, as well as how to automatically discover each
component distribution and optimize corresponding diffusion
models jointly.

One way of viewing the composition of distributions is
through the lens of energy-based models (EBM) [19]. Assume
weights {wt,i} are given, and each weighted component
distribution is parameterized as pi(at,i|ot) ∝ e−wt,iEi , then
the actual action distribution can be expressed as p(at|ot) ∝
e−

∑
i wt,iEi [19]. Therefore, iterative sampling can be per-

formed via Langevin dynamics:

ak−1
t = akt − γk

∑
i

wt,i∇ak
t
Ei(a

k
t ,ot) + ξk, (10)

where γk controls the step size and ξk introduces Gaussian
noise. Note that we can bridge EBM with score-matching
diffusion models [15, 16, 18, 17], which updates Equ. 10 as

ak−1
t = akt − γk

∑
i

wt,i εθi(a
k
t ,ot, k) + ξk. (11)

To optimize diffusion components jointly, we update MSE
loss in Equ. 9 to

LMSE = ∥ϵk −
∑
i

wt,i εθi(a
0
t + ϵk,ot, k)∥22, (12)

where a0t is a demonstration trajectory sample. Then all
diffusion components are optimized jointly end-to-end.

The weights {wt,i} are predicted by a lightweight
observation-conditioned neural network, referred to as router,
which is optimized along with other diffusion components.
This brings the last piece of FDP architecture. The pseudocode
for training and inference are provided in Algo. 1 and Algo. 2.

Compared to discrete MoE routing, our compositional ap-
proach avoids routing instability and expert imbalance [9]
by assigning continuous, observation-dependent weights to all
components, rather than selecting a hard subset. In MoE,
only a few experts are activated at each step, which can
lead to underutilization of some experts and overfitting or
saturation in others, especially when routing distributions are
sharp or poorly calibrated. In contrast, our method aggregates
contributions from all components via soft score-weighted
composition, ensuring all modules remain active during opti-
mization. Additionally, because all components participate in
every training step, they receive gradient signals consistently,
which encourages functional specialization.

3) Multitask Learning and Adaptation: Multitask Learn-
ing. This factorization is particularly well-suited for multitask
imitation learning, where action distributions are inherently
multimodal due to diverse object properties, contact dynamics,
and task goals. In contrast to monolithic policies that must
capture all modes simultaneously, FDP distributes complexity
evenly across diffusion components, each modeling a coherent
subspace of behaviors. Unlike MoE policies, where skills may
span combinations of experts across layers, our formulation
yields interpretable and disentangled sub-skills.

Adapting to New Tasks. The modularity of FDP also
enables efficient adaptation to unseen tasks. Instead of re-
training the full model, we adapt by introducing a new diffu-
sion component εθnew , initialized via upcycling [9] – copying
weights from existing components. The updated score function
becomes:

εadapt(a
k
t ,ot, k) =

∑
i

wi εθi(a
k
t ,ot, k)+wnew εθnew(a

k
t ,ot, k),

(13)
where only εθnew and the new router are updated during adap-
tation, using the training loss in Equ. 9. All previously trained
components {εθi} are frozen. Freezing existing components
ensures that the optimization focuses solely on capturing novel
task dynamics without disrupting existing capabilities, thereby
mitigating catastrophic forgetting. Such selective adaptation
significantly reduces the number of trainable parameters and
the amount of supervision required. In contrast, MoE mod-
els, where overlapping expert roles make modular reuse and
analysis more difficult.

Finally, FDP supports heterogeneous architectures – dif-
fusion models can vary in architecture and size, enabling
scalable allocation of computation to match task complexity.
This extensibility makes FDP broadly applicable in diverse
and evolving robotic domains.

D. Experiment Setup

Simulation. We evaluate FDP on two widely used robotic
manipulation benchmarks: MetaWorld [10] and RLBench [11],
each based on a distinct physics engine. MetaWorld, built on
MuJoCo [21], offers 50 diverse tasks; we select 10 represen-
tative ones focused on object reconfiguration and tool use.
RLBench, running on CoppeliaSim [22], includes over 100
tasks; we select 6 involving contact-rich and articulated-object
interactions. In total, we evaluate across 16 tasks (see Fig. 2).
Expert demonstrations are generated using the scripted policies
provided by each benchmark.

Real-world. Real-world experiments are conducted using a
UR5e robotic arm equipped with a Robotiq soft gripper and
a front-facing RealSense D415 camera (Fig. 3a). All objects
are custom-designed and 3D printed to ensure controlled and
reproducible conditions. We consider four real-world tasks:
cube red, cube blue, hang low, and hang high. The cube-X
tasks require picking up a colored cube from the table and
placing it in a target bowl. The hang-X tasks involve grasping
a mug and precisely hanging it on the corresponding branch of
a mug stand. Task setups and illustrations are shown in Fig. 3.



Algorithm 1 FDP Training

Require: Dataset D, Denoisers {εθi}, ROUTERψ
1: while not converged do
2: Sample (a,o) ∼ D and noise ϵk

3: {wi} ← ROUTERψ(o)

4: L ←
∥∥ϵk −∑i wi εθi(a+ ϵk,o, k)

∥∥2
2

5: ∀i, θi ← θi +∇θiL
6: ψ ← ψ +∇ψL
7: end while
8: return {εθi}

Algorithm 2 FDP Inference

Require: Denoisers {εi}, ROUTER, Observation ot
1: {wt,i} ← ROUTER(ot)
2: aKt ← N (0, I)
3: for k ← K,K − 1, ..., 1 do
4: ∇ak ←

∑
i wt,i εi(a

k
t ,ot, k)

5: ak−1
t ← akt − γk∇ak +N (0, σkI)

6: end for
7: at ← a0t
8: return at

E. Implementation Details

Overview. All policies take RGB images and joint angles
as input and predict trajectories of absolute joint angles. A
history window of size 2 is used, and each model predicts a
16-step trajectory, from which the first 8 actions are executed.
We adopt the DDPM framework [8] with 100 diffusion steps
during both training and inference. All models are trained
for the same number of gradient steps. No task identity
is provided—there is no task-conditioning or task-specific
routing in any policy.

Baselines. We compare against three existing approaches.
DP [1] is a monolithic U-Net-based policy without modular
structure. SDP [6] introduces a Mixture-of-Experts (MoE)
architecture with expert selection based on observations.
MoDE [7] also uses an MoE design but routes experts based on
the diffusion noise level. For fair comparison, we remove task-
specific routers from SDP and task-goal conditioning from
MoDE, ensuring that all baselines rely solely on observations.
We follow original architecture configurations: four experts per
layer with two selected per forward pass, and proportionally
reduce MoDE model size to match the others. For additional
architectural and training details, we refer readers to the
respective papers.
FDP. Our method, FDP, explicitly factorizes the policy

into four U-Net-based diffusion components. These modules
are trained jointly and composed through score aggregation
using mixture weights generated by a two-layer MLP router
conditioned on observations.

Adaptation. For the + New Module strategy, we adopt the
upcycling approach [9], where new components are initialized
by copying weights from randomly selected existing modules.
In SDP and MoDE, adaptation involves adding two new
upcycled expert blocks per MoE layer, FDP adds one new
U-Net diffusion component.

F. Additional Results on Multitask Learning

We provide detailed results for multitask learning across all
MetaWorld and RLBench tasks evaluated in our experiments.
Table V shows per-task success rates and overall averages over
40 evaluation rollouts per task. While most baselines perform
reasonably well on simpler tasks such as door open and drawer
open, they tend to underperform on tasks that require more

precise coordination or complex spatial reasoning (e.g., peg
insert, take umbrella out). Our method, FDP, consistently
achieves strong performance across all tasks, benefiting from
its modular structure and better sub-skill decomposition.

In particular, on RLBench tasks, where action distributions
are more multimodal and contact-rich, FDP outperforms others
by a significant margin. This suggests improved capacity for
modeling diverse behaviors and generalizing across complex
task structures.

To further illustrate the advantages of our approach, Fig. 4
presents qualitative comparisons of real-world rollouts. Suc-
cessful trials are shown in the top rows, while failure cases
(bottom rows) highlight common errors made by baseline
methods, such as imprecise end-effector poses and grasp fail-
ures. FDP consistently produces robust and accurate execution
across task variants.

G. Additional Results on Task Adaptation

We report detailed task-wise results for adaptation experi-
ments in both simulation and real-world settings.

Tables VI and VII present full adaptation results for
both simulation and real-world settings. In simulation, FDP
achieves the highest average success rate across both Meta-
World and RLBench when using the + New Module adaptation
strategy, indicating its superior ability to incorporate new task
knowledge without disrupting prior components.

Notably, FDP achieves strong performance even when only
the router and observation encoder are updated, outperforming
SDP and MoDE by a significant margin. This implies that
the component distributions in FDP are more reusable and
interpretable than those in other modular methods, which often
rely on entangled expert combinations.

In real-world experiments, we observe similar trends: FDP
consistently performs better or matches the best baseline
across various adaptation settings. These results highlight
FDP ’s practical advantages for continual learning and real-
world deployment, where quick adaptation to novel tasks with
limited supervision is critical.

H. Diffusion Components Analysis

We provide enlarged visualizations of rollout trajectories
for each diffusion component in FDP to complement the
compressed figure shown in the main paper (Fig. 5). As



Fig. 7: Qualitative real-world rollouts. Each row shows execution for cube-X (left) and hang-X (right) tasks. Successes are shown in the top row; failure
cases (bottom) illustrate challenges faced by baselines.

MetaWorld
Policy Door Open Drawer Open Assembly Window Close Peg Insert Hammer Avg.

DP 0.900 1.000 1.000 0.950 0.250 0.250 0.725
SDP 0.900 1.000 1.000 1.000 0.200 0.200 0.717

MoDE 1.000 1.000 0.950 1.000 0.200 0.250 0.733
FDP 1.000 1.000 1.000 1.000 0.250 0.250 0.750

RLBench
Policy Toilet Seat Up Open Box Open Drawer Take Umbrella Out Avg.

DP 0.500 0.825 0.800 0.100 0.569
SDP 0.425 0.775 0.025 0.050 0.319

MoDE 0.450 0.500 0.475 0.150 0.394
FDP 0.500 0.900 0.800 0.350 0.638

TABLE V: Multitask learning evaluation on MetaWorld and RLBench. We report average success rate over 40 samples.

MetaWorld RLBench
Method Policy Door Close Drawer Close Disassemble Window Open Avg. Toilet Seat Down Close Box Avg.

Full
Parameter

DP 1.000 1.000 0.600 1.000 0.900 0.900 0.700 0.800
SDP 0.933 1.000 0.633 1.000 0.892 0.950 0.575 0.763

MoDE 1.000 1.000 0.667 1.000 0.917 0.925 0.700 0.813
FDP 1.000 1.000 0.667 1.000 0.917 0.800 0.850 0.825

Router
SDP 0.733 0.000 0.000 0.067 0.200 0.200 0.025 0.113

MoDE 0.000 0.000 0.000 0.267 0.067 0.100 0.000 0.050
FDP 0.867 0.667 0.000 0.067 0.400 0.150 0.000 0.075

+ Observation
Encoder

SDP 1.000 1.000 0.333 1.000 0.833 0.525 0.150 0.338
MoDE 0.933 1.000 0.400 1.000 0.833 0.675 0.200 0.438
FDP 1.000 0.933 0.500 1.000 0.858 0.650 0.275 0.463

+ New
Module

SDP 1.000 1.000 0.600 1.000 0.900 0.675 0.225 0.450
MoDE 1.000 1.000 0.633 1.000 0.908 0.825 0.375 0.600
FDP 1.000 1.000 0.700 1.000 0.925 0.925 0.775 0.850

TABLE VI: Adaptation evaluation on MetaWorld and RLBench. Pretrained on tasks shown in Table V. We report average success rate on 60 MetaWorld
samples and 40 RLBench samples.

depicted in Fig. 8, each component learns to specialize in
a distinct sub-skill, validating the modular structure of our
approach.

In the assembly task, components 0 and 1 guide the robot
to align with the assembly stand, component 2 adjusts the
end-effector position to align with the ring, and component
3 performs the grasping motion. In the hammer task, com-
ponents 0 and 1 coordinate to align and approach the pin,
component 2 transitions the arm toward the hammer, and
component 3 executes the grasp. Notably, each component
displays temporally consistent behavior, and their combined
outputs lead to successful task execution. This clear division of

responsibility reflects meaningful behavioral decomposition,
with each component contributing a targeted motion primitive.

This visualization confirms that the learned components
are functionally interpretable and behaviorally distinct. Unlike
MoE-based baselines, where experts are reused across skills
in entangled ways, our method enables disentangled, reusable
skill modules.

I. Scaling of Number of Diffusion Components

We study how the number of diffusion components in FDP
affects multitask performance. Experiments are conducted on
selected tasks from MetaWorld (door close, drawer close,



(a) Assembly (b) Hammer

Fig. 8: Rollout trajectories of individual diffusion components in FDP. (a) In assembly, components 0 and 1 align the robot with the stand, component
2 aligns with the ring, and component 3 executes the grasp. (b) In hammer, components 0 and 1 align and approach the pin, component 2 approaches the
hammer, and component 3 performs the grasp. Checkout videos on factorized-diffusion-policy.github.io.

Method Policy Cube Blue Hang High Avg.

Full
Parameter

DP 0.750 0.850 0.800
SDP 0.700 0.800 0.750

MoDE 0.750 0.800 0.775
FDP 0.850 0.750 0.800

Router
SDP 0.000 0.100 0.050

MoDE 0.100 0.050 0.075
FDP 0.050 0.100 0.075

+ Observation
Encoder

SDP 0.500 0.450 0.475
MoDE 0.500 0.550 0.525
FDP 0.550 0.550 0.550

+ New
Module

SDP 0.650 0.550 0.600
MoDE 0.700 0.650 0.675
FDP 0.850 0.850 0.850

TABLE VII: Adaptation evaluation in real-world. Pretrained on tasks shown
in Table II. We report average success rate on 20 samples.

# Comp MetaWorld RLBench

2 0.867 0.544
3 0.900 0.588
4 0.913 0.638
5 0.913 0.644
6 0.917 0.650
7 0.919 0.656

TABLE VIII: Multitask performance of FDP with different numbers of
components on MetaWorld and RLBench. Performance improves up to 4
components and plateaus thereafter.

disassemble, window open) and RLBench (toilet seat up, open
box, open drawer, take umbrella out). As shown in Table VIII,
increasing the number of components from 2 to 4 consistently
improves performance, indicating greater expressiveness and
better sub-skill specialization. Beyond 4 components, perfor-
mance plateaus, suggesting diminishing returns. Overall, 4
components provide a good trade-off between model complex-
ity and performance for the tasks considered. We recommend
using 4 components as a reasonable starting point, though
some hyperparameter tuning may improve performance.

J. Scaling of Number of Demonstrations

Multitask Learning. We evaluate how FDP benefits from
increasing amounts of demonstration data. As shown in
Fig. 9a, performance improves steadily with more demon-
strations. FDP consistently outperforms baselines, with par-
ticularly large gains on RLBench where complex, contact-rich
interactions make effective decomposition especially valuable.

Task Adaptation. We analyze how adaptation performance
scales with the number of demonstrations, and compare the
proposed + New Module strategy with full-parameter fine-
tuning. As shown in Fig. 9b, both strategies benefit from
more data, but + New Module achieves comparable or better
performance with even fewer demonstrations (on RLBench).
This highlights the strength of our modular design in enabling
data-efficient adaptation while avoiding the cost and potential
catastrophic forgetting associated with updating all model
parameters.

https://factorized-diffusion-policy.github.io/
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Fig. 9: Performance scaling with number of demonstrations. (a) Multitask
learning success rate of FDP across tasks listed in Table I. (b) Task adaptation
performance on tasks from Table III.

K. Training Convergence

We compare the training efficiency of FDP against MoDE
and SDP by analyzing convergence curves on validation tra-
jectories. Specifically, we track the mean squared error (MSE)
loss used during diffusion training, measured over validation
episodes across training epochs. Results are shown in Fig. 10
for both MetaWorld and RLBench tasks.
FDP consistently achieves lower validation MSE in fewer

epochs, indicating faster convergence. MoDE converges more
slowly, while SDP shows higher variance and slower reduction
in loss, likely due to instability in expert selection and poor
load balancing during training. These results support our
claim that continuous score composition in FDP improves
optimization stability compared to discrete Mixture-of-Expert
(MoE) methods.

Fig. 10: Training convergence curves. Mean squared error (MSE) loss
over training epochs for RLBench and MetaWorld tasks. FDP consistently
converges faster and more stably than MoDE and SDP, indicating improved
training efficiency and optimization stability.

L. Rollout Visualizations

We present additional qualitative results to illustrate the
behavior of our policy FDP across diverse manipulation tasks
in both simulation and real-world. Fig. 11 shows rollout
sequences captured from different stages of task execution.
These filmstrips visualize the robot’s actions from the ini-
tial observation to successful task completion. Tasks involve

reaching, aligning, grasping, and manipulating articulated or
occluded objects. The qualitative rollouts reinforce the quan-
titative findings and further validate that compositional policy
factorization leads to coherent, interpretable, and reusable
behavior modules.



Fig. 11: Example rollout sequences for various tasks. Each filmstrip visualizes the trajectory execution of a policy on a specific manipulation task, highlighting
the key interaction stages from initial observation to task completion. Checkout videos on factorized-diffusion-policy.github.io.

https://factorized-diffusion-policy.github.io/
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