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Abstract. Data annotation is always an expensive and time-consuming
issue for deep learning based medical image analysis. To ease the need of
annotations, domain adaptation is recently introduced to generalize neu-
ral networks from a labeled source domain to unlabeled target domain
without much performance degradation. In this paper, we propose a novel
target domain self-supervision for domain adaptation by constructing an
edge generation auxiliary task to assist primary segmentation task so as
to extract better target representation and improve target segmentation
performance. Besides, in order to leverage detailed information contained
in low-level features, we propose a hierarchical low-level adversarial learn-
ing mechanism to encourage low-level features domain uninformative in a
hierarchical way, so that the segmentation performance can benefit from
low-level features without being affected by domain shift. Following these
two proposed approach, we develop a cross-modality domain adaptation
framework which employs the dual-task collaboration for target domain
self-supervision, and encourages low-level detailed features domain unin-
formative for better alignment. Our proposed framework achieves state-
of-the-art results on public cross-modality segmentation datasets.

Keywords: Domain adaptation · Dual-task collaboration ·
Hierarchical adversarial learning

1 Introduction

For medical image analysis based on deep learning, a great challenge remains
that deep learning models require high-quality and large quantities of annotated
images. This problem results in expensive data collection and repeatedly anno-
tation workload. Furthermore, annotating different image modalities such as CT
and MR of the same organ makes the issue more pronounced. Consequently, an
annotation-efficient deep learning method, namely unsupervised domain adap-
tation (UDA), is introduced to address cross-modality medical image analysis.

Unsupervised domain adaptation generalizes the learning model trained on
annotated source domain to another unlabeled target domain without any target
label supervision. For semantic segmentation task, many existing UDA methods
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Fig. 1. Comparison between our proposed method and previous methods. (a) Previous
methods where the detailed low-level domain informative features are not utilized for
single way segmentation. (b) Proposed method encourages low-level detailed features
to be domain uninformative for following segmentation, and employs self-supervision
on target domain by constructing an edge generation task as auxiliary task.

[1–3,8] borrow the idea of image-to-image translation from CycleGAN [15] and
multi-modal image translation network [6], so that the aligned images of two
domains can be learned together under source domain supervision. Another main
stream of UDA strategies employs adversarial learning to align source and target
domain, where a common way is to follow [11] to utilize adversarial learning at
the segmentation output [2,13], or at the segmentation entropy map [12,14], or
in the VAE-based latent space [9].

These UDA methods have two drawbacks. Firstly, simple adversarial learn-
ing between source and target domain is not enough to completely align two
domains, especially when unpaired source and target modalities vary much in
medical images. Under unsupervised conditions, the edge region of target domain
segmentation mask may be very inaccurate and has a high probability to over
segmented or under segmented. Therefore, we propose a novel self-supervision
on target domain to directly improve target domain performance. Specifically,
we propose an auxiliary task that generates edges to assist primary segmentation
task to improve prediction accuracy around contour. These two tasks are collab-
orated through a designed edge consistency function and their partially shared
parameters, where two tasks share a common feature extractor and partial layers
in decoder.

Secondly, existing methods employ segmentation task on aligned semantic
features, without considering rich detailed information in low-level features,
because domain information contained in low-level features can harm the adap-
tation performance. But detailed features can benefit medical image segmen-
tation which are proved by the great success of U-net [10], and should also
be considered. Therefore, to leverage detailed information in low-level features,
while simultaneously reduce the adaptation degradation results from the skip-
connection in U-net, we propose a hierarchical low-level adversarial learning
mechanism to encourage low-level detailed features domain uninformative in a
hierarchical way according to the content of domain.
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Fig. 2. Our proposed framework. The feature extractor F generates domain invariant
features, and the hierarchical discriminator Df differentiates input features accordingly.
Segmentor S and edge generator G take features from corresponding layers of F to
generate segmentation masks and edges. Two discriminators Dm and De (omitted in
this figure) are employed at the output of S and G for adversarial learning.

In general, the comparison between our Dual-task and Hierarchical learning
Network (DualHierNet) and previous UDA methods is shown in Fig. 1.

2 Methodology

Given Ns pixel-level labeled source domain data {Xs, Y s} = {(xs
i , y

s
i )}Ns

i=1 and
Nt unlabeled target domain data Xt = {xt

i}Nt

i=1, unsupervised domain adaptation
aims to use these data to learn a source to target adaptation network to correctly
segment target images without any target domain supervision.

The architecture of proposed DualHierNet is shown in Fig. 2. Target domain
self-supervision is achieved through the edge consistency between partially
shared primary segmentation task S and auxiliary edge generation task G. Also,
the low-level features extracted by feature extractor F are encouraged to be
domain invariant through the adversarial learning with discriminator Df in a
hierarchical way according to the domain content. Lastly, two discriminators Dm

and De are employed on output semantic space to align generated segmentation
masks and edges respectively.

2.1 Dual-Task Collaboration for Target Domain Self-supervision

Under unsupervised conditions, the edge region of target domain segmentation
mask may be inaccurate and has a high probability to over or under segmented.
We therefore propose a novel target self-supervision by constructing an auxiliary
task to generate edges, and making it collaborate with primary segmentation
task to obtain a more accurate target segmentation mask at the edge region.
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Specifically, feature extractor F generates domain invariant features from
input images of source and target domain, where this part will be illustrated
in later subsection. Domain invariant features are input to both segmentor S
and edge generator G. The edge generator G has a similar network structure to
segmentor S, with low-level features of F copied and concatenated to correspond-
ing high-level features. Besides, edge generator employs deep-supervision for the
purpose of providing auxiliary supervision to improve edge generation quality
by outputting upsampled features in G as auxiliary edges shown in Fig. 2. These
auxiliary edges are fused together to obtain the final generated edge pe.

For source domain supervision, we use a combination of weighted cross-
entropy loss and Dice loss: Ls(ps, ys) = Ls

wCE + Ls
Dice, where ps and ys are

segmentation mask and ground truth. We employ multi-class and two-class seg-
mentation for segmentor S and edge generator G:

Ls
seg = Ls(psm, ys

m),

Ls
edge = Ls(pse, y

s
e) +

∑

Ae

Ls(psAe, y
s
e),

(1)

where Ls
seg and Ls

edge are objective functions of S and G respectively. psm and
ys
m is the segmentation mask and ground truth of source domain, and pse and

ys
e is the generated edge and ground truth edge. Noted that ys

e is obtained by
calculating the first derivative of ys

m. psAe are auxiliary edges shown in Fig. 2.
For target domain self-supervision, we encourage the segmentation mask ptm

and generated edge pte to keep consistency at the edges and we propose a dual-
task consistency loss Lt

d on target domain. An operation ∂ calculates the first
derivative of soft segmentation mask ptm on two spatial axes i, j to obtain a soft
edge, which should possess structural consistency with generated edge pte. The
consistency loss and the soft edge calculation formula are:

Lt
d =

∥∥pte − ∂(ptm)
∥∥2

2
,

∂(ptm) =
1
2
(
∣∣∣∣
∂ptm
∂i

∣∣∣∣ +
∣∣∣∣
∂ptm
∂j

∣∣∣∣) ≈ 1
2
(
∑

c

∣∣ptm,i+1 − ptm,i

∣∣ +
∑

c

∣∣ptm,j+1 − ptm,j

∣∣),

(2)
where the summation symbol is applied to channel dimension c. The soft edge
∂(ptm) has a probability between [0,1].

2.2 Hierarchical Adversarial Learning for Better Alignment

Hierarchical Adversarial Learning. We follow the success of U-net in medi-
cal image segmentation [10] to combine low-level detailed features with high-level
semantic features. However, low-level features are domain informative, and severe
domain gap in detailed features can harm adaptation performance when com-
bined with domain uninformative semantic features. We thus develop a hierar-
chical adversarial skip connection mechanism to make low-level detailed features
domain invariant when concatenating them to semantic features simultaneously.
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Specifically, feature extractor F maps input images to feature space, and we
propose a hierarchical discriminator Df to differentiate input domains accord-
ingly. Features of each layer in F : l1, l2, l3, l4 and l5, are gradually decreasing in
domain information and increasing in semantic information. l5 is directly input
to following segmentor S and edge generator G, while l1, l2, l3, l4 are input to dif-
ferent layers of discriminator Df in a hierarchical way according to their distinct
resolutions for domain alignment. The objective function of layer lk,k=1,2,...,K is
formulated as follows where F and Df play a min-max game:

Lf =
K∑

k=1

γkLf,k,

Lf,k = Elsk∈F (Xs)[log(Df (lsk))] + Eltk∈F (Xt)[log(1 − Df (ltk))],

(3)

where γk increases as k decreases, indicating that lower layer features contained
more domain information is assigned with larger weights for attention.

Output Alignment. Finally, two discriminators Dm and De are employed in
output space to align segmentation mask pm and generate edge pe with adver-
sarial learning. Lm and Le are the adversarial objective as follows respectively:

Lm = Exs∼Xs [log(Dm(psm))] + Ext∼Xt [log(1 − Dm(ptm))],

Le = Exs∼Xs [log(De(pse))] + Ext∼Xt [log(1 − De(pte))].
(4)

Therefore, with trade-off parameters λ0, λ1, λ2, λ3, the total objective func-
tion of the model is formulated as:

min
F,S,G

max
Df ,Dm,De

Ls
seg + Ls

edge + λ0Lt
d

+λ1Lf + λ2Lm + λ3Le.
(5)

3 Experiments and Results

Dataset and Implementation Details. The proposed framework is evalu-
ated on the Multimodality Whole Heart Segmentation Challenge MMWHS2017
dataset [17] which consists of unpaired 20 CT and 20 MR volumes with pixel-
level annotation of seven heart structures: left ventricle blood cavity (LV), right
ventricle blood cavity (RV), left atrium blood cavity (LA), right atrium blood
cavity (RA), myocardium of the left ventricle (Myo), ascending aorta (AA) and
pulmonary artery (PA). We follow Pnp-AdaNet and SIFA [2,4] to use randomly
selected sixteen MR volumes as source and sixteen CT as target for training. The
remaining four CT volumes are for testing. Each volume is split into transverse
view slices as inputs since doctors observe transverse view to diagnose cardiac
diseases, and is augmented with flipping, rotation and scaling, and normalized
to zero mean and unit variance and resized to 256 × 256. The volume metrics
Dice score and Average Surface Distance (ASD) are employed for evaluation.
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For fair comparison, 5-fold cross validation is employed. All annotations of CT
are only used for evaluation without being presented during training.

We also validate our proposed method on another multi-modality cardiac
dataset: MS-CMRSeg 2019 [16] which consists of 45 patients and each patient
has cardiac images of three MR modalities: bSSFP, T2 and LGE. For fair com-
parison, we re-implement methods [1,13] under the same experiment setup with
us, and follow [13] to combine labeled bSSFP and T2 as source and unlabeled
LGE as target, where the target LGE is divided by competition, and use trans-
verse view slices with the same preprocessing and augmentation as above.

The detailed dual-task architecture is shown in Fig. 2. Discriminators follow
[7] to have 6 convolutional layers where the first 3 use instance normalization.
Adam optimizers are utilized with a learning rate of 1.0×10−3 for segmentation
and edge generation, but with a decay rate of 0.9 every 2 epochs for segmentation
and no decay for edge generation, since we empirically found edge generation
task converges slower than segmentation. The model is trained for 100 epochs
with a batch size equals 4. Hyper-parameters λ0 is 10, λ1 is 1.0, while λ2, λ3 grow
linearly from 0.0 to 1.0 as epoch increases to 40, and remain 1.0 subsequently.

Quantitative and Qualitative Analysis. For MMWHS2017 dataset, we val-
idate our methods on seven structures and show the results in Table 1, and
also follow [2,4] to validate on four left-side structures in Table 2. We compare
with several state-of-the-art UDA methods including CyCADA [5], Pnp-AdaNet
[4], BEAL [14], Cascaded U-net [1] and SIFA [2]. We re-implemented all above
methods under the same experiment setup with five-fold cross validation shown
in the mean ± std manner, and no post-processing is employed.

In Table 1, we first obtain the unadapted results by directly testing a source
domain trained U-net on target domain, and a Dice score of 30.43% reflects
severe domain shift between different modalities. A supervised target domain
upper bound of 84.95% is also obtained through a supervised U-net. Our pro-
posed method outperforms several UDA methods by a great margin and achieves
superior performance of 73.68% in average Dice and 7.3 in average ASD. Note
that our approach significantly improves the accuracy of LA by achieving a
performance gain up to 9.4% in Dice, and even the most difficult structure to
segment: Myo, is also improved to 64.03%. For four class segmentation of LV,
LA, Myo and AA shown in Table 2, we achieve an average Dice of 76.98% and
average ASD of 4.6, with great margin compared with other methods. Results
on MS-CMRSeg shown in Table 3 prove the generalization ability of our method
on cross-MR modalities by achieving an average Dice of 84.85%.

Visual results are shown in Fig. 3. Our DualHierNet has a smoother 3D heart
with clearer contours, and better segmentation masks inside cardiac structures.
For generated edges in lower part of Fig. 3, figures inside the red box are good
examples that generated edge ptE and ∂(ptM ) are well constrained to be similar.
Figures inside the blue box are poor examples, where the blue arrows point to
boundary area that are distinct in ptE and ∂(ptM ). This usually results from
incoherent annotation between two adjacent slices.
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Table 1. Comparison results on MMWHS2017 for 7 cardiac structures.

Methods ↑ Dice [%] ↓ ASD [voxel]
LV RV LA RA Myo AA PA Average LV RV LA RA Myo AA PA Average

Upper Bound 88.02 86.01 85.42 87.84 81.27 82.22 83.91 84.95 5.4 4.7 4.2 4.6 5.4 2.3 4.8 4.5
±4.34 ±3.91 ±5.28 ±6.01 ±4.24 ±6.12 ±7.71 ±5.72 ±3.2 ±2.9 ±2.4 ±3.6 ±3.7 ±1.8 ±2.6 ±3.7

W/o Adaptation 15.87 15.21 52.14 45.65 6.54 43.82 33.81 30.43 52.4 56.8 31.9 24.4 36.0 42.1 31.2 39.26
±3.72 ±4.54 ±13.74 ±6.20 ±3.98 ±13.24 ±5.77 ±9.26 ±16.4 ±17.1 ±15.0 ±14.3 ±29.6 ±20.7 ±22.8 ±21.1

Pnp-AdaNet [4] 50.49 51.43 70.18 72.24 31.18 64.92 57.49 56.85 13.6 8.5 15.4 12.8 9.4 9.7 8.9 11.2
±10.46 ±6.72 ±5.41 ±4.18 ±10.09 ±8.44 ±9.23 ±8.20 ±2.5 ±3.7 ±6.8 ±5.1 ±2.8 ±4.9 ±5.1 ±5.2

CyCADA [5] 55.49 54.16 66.90 68.70 50.03 68.42 65.77 61.35 10.6 8.1 9.3 9.4 8.2 8.6 7.4 8.8
±9.75 ±13.47 ±10.05 ±5.42 ±8.80 ±9.67 ±6.96 ±9.58 ±3.4 ±4.2 ±2.3 ±5.5 ±4.7 ±4.6 ±3.8 ±4.2

BEAL [14] 65.23 58.01 64.00 62.04 56.10 72.05 61.95 62.77 10.2 7.9 9.2 10.1 8.4 8.2 7.0 8.7
±7.85 ±9.22 ±8.44 ±9.91 ±6.80 ±9.80 ±9.67 ±8.21 ±3.8 ±5.1 ±2.1 ±4.8 ±3.6 ±4.3 ±3.9 ±4.3

Cascaded U-net [1] 72.35 60.14 67.75 69.88 60.74 73.25 62.45 66.65 9.6 7.7 8.8 9.7 8.2 8.2 6.7 8.4
±8.33 ±9.24 ±9.18 ±8.74 ±5.65 ±7.42 ±8.77 ±9.33 ±4.1 ±5.6 ±3.0 ±3.6 ±3.0 ±3.1 ±4.2 ±4.0

SIFA [2] 79.56 70.79 69.77 72.02 61.48 75.59 63.82 70.43 8.4 7.2 8.1 8.6 8.0 6.6 6.8 7.7
±8.17 ±11.24 ±9.55 ±7.00 ±6.57 ±9.45 ±8.45 ±8.73 ±4.1 ±3.2 ±4.6 ±4.9 ±2.8 ±3.1 ±3.2 ±3.9

DualHierNet (Ours) 81.58 70.23 79.17 73.30 64.03 80.25 67.22 73.68 8.2 7.2 7.0 8.4 7.7 6.4 6.3 7.3
±9.70 ±8.45 ±9.19 ±8.29 ±7.97 ±7.24 ±7.16 ±8.93 ±3.6 ±3.0 ±2.8 ±2.9 ±2.6 ±3.2 ±2.7 ±3.4

Table 2. Comparison results on MMWHS2017 for 4 cardiac structures.

Methods ↑ Dice [%] ↓ ASD [voxel]

LV LA Myo AA Average LV LA Myo AA Average

Upper Bound 89.54 87.72 86.06 85.21 87.13 3.3 4.3 4.9 1.6 3.5

±5.27 ±1.58 ±1.97 ±6.67 ±5.24 ±3.0 ±2.6 ±1.2 ±1.1 ±3.3

W/o Adaptation 13.42 46.05 12.25 20.39 23.03 47.1 22.8 24.5 42.7 34.3

±2.31 ±20.32 ±10.92 ±10.96 ±18.47 ±17.9 ±19.9 ±12.1 ±12.6 ±19.8

Pnp-AdaNet [4] 52.32 75.75 28.73 73.86 57.67 9.2 13.6 8.8 11.5 10.8

±21.00 ±4.35 ±13.31 ±7.48 ±13.85 ±3.9 ±3.6 ±4.3 ±2.9 ±4.8

CycADA [5] 61.90 68.95 50.83 74.08 63.94 11.4 6.3 14.7 10.8 10.8

±10.78 ±5.26 ±7.06 ±7.30 ±8.59 ±7.0 ±2.3 ±3.8 ±3.2 ±5.1

BEAL [14] 68.49 62.77 57.93 75.47 66.17 9.8 7.0 8.9 7.7 8.4

±11.23 ±9.47 ±7.59 ±9.67 ±10.25 ±5.0 ±3.4 ±4.9 ±5.2 ±4.9

Cascaded U-net [1] 70.05 65.28 60.66 77.36 68.34 9.2 6.8 8.2 7.6 8.0

±9.60 ±10.16 ±9.74 ±6.28 ±9.31 ±4.2 ±4.9 ±4.9 ±3.4 ±4.8

SIFA [2] 77.39 73.35 60.68 84.55 73.99 4.2 5.5 5.9 4.4 5.0

±11.04 ±12.20 ±5.02 ±4.05 ±8.24 ±2.5 ±3.8 ±3.7 ±2.1 ±3.4

DualHierNet (Ours) 83.42 74.61 65.19 84.70 76.98 3.6 5.3 4.8 4.5 4.6

±7.46 ±10.07 ±6.33 ±6.41 ±7.84 ±1.7 ±2.0 ±2.2 ±2.8 ±2.3

Table 3. Comparison results on MS-CMRSeg.

Methods ↑ Dice [%] ↓ ASD [voxel]

LV RV Myo Average LV RV Myo Average

Cascaded U-net [1] 82.05 80.90 81.47 81.47 1.8 1.9 1.8 1.8

U-net+GFRM [13] 85.42 83.64 79.62 82.89 1.6 1.7 1.8 1.7

DualHierNet (Ours) 88.91 84.01 81.62 84.85 1.5 1.7 1.8 1.7

Ablation Study. Firstly, we conduct an ablation experiment to evaluate
the effectiveness of each component: (i) U-net with output adversarial learn-
ing (Base), (ii) Base equipped with dual-task collaboration (Base+Dual),
(iii) Base with hierarchical adversarial learning (Base+Hier), and (iv) ours
(Base+Dual+Hier). In Table 4, the performance is improved to 68.50% and
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Fig. 3. Visual results of comparison and generated edges.

Table 4. Effects of each component.

Methods LV LA Myo AA Avg

Dice [%]

W/o Adaptation 13.42 46.05 12.25 20.39 23.03

Base 67.20 54.46 53.27 69.39 61.08

Base+Dual 76.82 60.62 57.48 79.09 68.50

Base+Hier 78.11 63.74 60.42 81.28 70.89

Base+Dual+Hier 83.42 74.61 65.19 84.70 76.98

Table 5. Effect of hierarchical weights.

γ1:γ2:γ3:γ4 LV RV Myo AA Avg

Dice [%]

1 : 2 : 3 : 4 78.10 67.05 58.14 79.32 70.65

1 : 1 : 1 : 1 79.24 69.95 60.33 80.90 72.61

4 : 3 : 2 : 1 83.42 74.61 65.19 84.70 76.98

Table 6. Dual-task self-supervision extended on supervised setting.

Target domain Model LV RV Myo AA Avg Dice [%]

Supervised Seg+Seg 90.02 87.62 86.98 89.40 88.51

Seg+Edge 90.17 89.06 88.11 91.24 89.65

Adapted Seg+Seg 79.64 68.11 60.28 79.69 71.93

Seg+Edge 83.42 74.61 65.19 84.70 76.98

70.89% equipped with our proposed dual-task self-supervision and hierarchical
strategy respectively. The further improvement to 76.98% in our DualHierNet
confirms the effect of using dual-task as self-supervision and hierarchically align-
ing low-level features.

Secondly, we experiment on choice of hierarchical weights γk shown in Table 5.
When we assign larger weights to higher layers, only an average Dice of 70.65% is
achieved. A Dice of 72.61% is achieved if each layer shares a same weight. When
we enlarge the weights of shallow layers which contain more domain information,
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we can get a Dice of 76.98%. This further justify that low-level domain informative
features should receive stronger adversarial learning attention.

Thirdly, we extend on target-only supervised segmentation to validate our
proposed self-supervision. We replace Seg+Edge structure with two segmentors
Seg+Seg so that they have nearly the same number of parameters. In supervised
setting, Seg+Edge uses segmentation loss and dual consist loss while Seg+Seg
only uses segmentation loss to train the networks. Results shown in Table 6
reveals that auxiliary edge task assists segmentation even on supervised set-
ting and achieve performance gain of 1.14%. While in adapted setting, a larger
performance gain is obtained through our proposed dual-task self-supervision.

4 Conclusion

We propose a dual-task collaboration framework for target self-supervision with
low-level hierarchical adversarial learning for cross-modality image segmentation.
We develop a novel self-supervision by constructing an auxiliary task to generate
edges to assist segmentation task, and we also design a hierarchical adversarial
mechanism according to the content of domain. Our framework outperforms
several adaptation methods on cross-modality datasets and the proposed dual-
task architecture even achieves promising performance in supervised setting.
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