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Abstract
We seek to enable classic processing of continu-
ous ultra-sparse spatiotemporal data generated by
event-based sensors with dense machine learning
models. We propose a novel hybrid pipeline com-
posed of asynchronous sensing and synchronous
processing that combines several ideas: (1) an em-
bedding based on PointNet models – the ALERT
module – that can continuously integrate new and
dismiss old events thanks to a leakage mecha-
nism, (2) a flexible readout of the embedded data
that allows to feed any downstream model with
always up-to-date features at any sampling rate,
(3) exploiting the input sparsity in a patch-based
approach inspired by Vision Transformer to opti-
mize the efficiency of the method. These embed-
dings are then processed by a transformer model
trained for object and gesture recognition. Using
this approach, we achieve performances at the
state-of-the-art with a lower latency than competi-
tors. We also demonstrate that our asynchronous
model can operate at any desired sampling rate.

1. Introduction
Event-based sensors capture visual information in an event-
driven, asynchronous manner (Finateu et al., 2020; Gallego
et al., 2020). Efficiently exploiting their data has proven
challenging as the vast majority of approaches published
in the literature consist of either converting event-based
data to dense representations, or deploying spiking neural
networks (SNNs) on streams of events. The former allows
to exploit standard machine learning (ML) frameworks such
as PyTorch and Tensorflow, but does not leverage the
inherent sparsity and other properties of event-based data
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(Gehrig et al., 2019). The latter relies on SNNs, which
are hard to train and usually exhibit lower accuracy than
an equivalent dense neural network. Furthermore, while
the neuromorphic community has argued in favor of their
higher energy efficiency for decades, recent research and
breakthroughs in edge AI accelerators indicate this is still
an open question (Dampfhoffer et al., 2023; Garrett et al.,
2023; Moosmann et al., 2023; Caccavella et al., 2023).

Nevertheless, considering the inherent advantages of event-
based vision sensors, namely high dynamic range (HDR)
and high temporal resolution – simultaneously, without any
tradeoffs between the two –, we aim to find a way to leverage
this sparse and low-latency data for real-world situations.

Standard ML relies on tensor-based processing. Converting
the stream of events – represented as tuples of values (x and
y pixel coordinates, polarities and timestamp) – to a mul-
tidimensional tensor is thus a crucial step. The challenge
involves (1) representing time in a reliable and continuous
manner, allowing it to be processed similarly to the finite
spatial and polarity dimensions, (2) continuously incorpo-
rating new events in the feature tensors which also requires
forgetting previous events, (3) using limited computational
resources to allow real-time processing. Our main contribu-
tions towards Event-Based ML are the following:

• The ALERT module, an embedding based on PointNet
which continuously integrates new events dismissing
old ones via a leakage mechanism. This module intro-
duces novel asynchronous embedding updates.

• A flexible readout of the embedded data that can feed
any downstream model with up-to-date features at dif-
ferent sampling rates, down to a per-event operation,
allowing ultra-low latency decision making.

• A patch-based approach inspired by Vision Trans-
former to exploit input sparsity and optimize efficiency.

• A time encoding solution to represent continuous time
as a bi-dimensional vector of bounded values, at the
cost of negligible decrease of relative accuracy.

• The ALERT-Transformer, a framework incorporat-
ing all of the above, which is trained on event-based
data end-to-end. The model can then operate in syn-
chronous regime for high accuracy on gesture recogni-
tion, or asynchronously for ultra-low latency.
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Figure 1. Schematic representation of the system integrating our proposed asynchronous embedding module. The asynchronous part (left)
processes all events as they come in an event driven manner, thus updating the Features tensor continuously. The synchronous part
(right) samples the Features tensor on demand, thus allowing a seamless interface between asynchronous and synchronous processing.

Our idea is that, even if the sensor outputs data at 1MHz
or more (Finateu et al., 2020), the application/client side
will not, and does not need to, run at this speed. For in-
stance, in an embedded product, such as a drone, that relies
on event-based sensors for self-localization in space, this
localization step would not operate at more than 100Hz
(Kaufmann et al., 2023). Therefore, we consider that this
hybrid (asynchronous-to-synchronous) conversion module
would be operated as close to the sensor as possible, inside
a 3D-stacked image sensor, as proposed in (Bouvier et al.,
2021; Bonazzi et al., 2023).

1.1. Related Works

1.1.1. EVENT-BASED DATA REPRESENTATIONS

Event-based data is extremely sparse, with unpredictable
sparsity patterns, making it unsuitable for raw processing
with dense machine learning pipelines. An extended ap-
proach consists in integrating events over fixed time win-
dows, creating frame-like representations using methods
such as histograms or event queues (Innocenti et al., 2021;
Sabater et al., 2022; Maqueda et al., 2018; Zhu et al.,
2018). To maximize task accuracy from end-to-end, (Gehrig
et al., 2019) proposed learning the kernel for convolving the
stream of events into a discrete tensor, called “Event-Spike
Tensor”. While the resulting networks perform better, this
method still requires waiting to accumulate all events before
starting processing and is thus not asynchronous.

1.1.2. POINTNET ARCHITECTURE

The PointNet (Qi et al., 2017a;b) is an architecture designed
for processing three-dimensional point clouds. It extracts
features from individual points with a shared Multi-Layer
Perceptron (MLP). It then reduces the entire point cloud
with a max-pooling operation into a single global feature
vector. Given the similarity in data representation, several
works interpreted event streams as point clouds (Wang et al.,
2019a; Chen et al., 2022; Zhao et al., 2021; Wang et al.,
2019b). These approaches mostly treat time as any other co-
ordinate, making fast and efficient processing challenging.

EventNet (Sekikawa et al., 2019) addresses this issue by

processing time separately from other coordinates. They
propose a modification to the max operator which becomes
a recursive function capable of updating temporal and spatial
information as new events arrive. Our solution, introduced
in Section 2, eliminates the need to modify the max operator.
The structure of the PointNet remains unaltered and is thus
entirely compatible with existing AI accelerators.

1.1.3. EVENT-BASED TRANSFORMERS

Our work takes inspiration from PointBERT (Yu et al.,
2022), which combines PointNets with a Transformer
(Vaswani et al., 2017) for 3D classification. Models pro-
posed by (Sabater et al., 2022; 2023; Wang et al., 2022;
Peng et al., 2023) generate frames of aggregated events us-
ing various strategies, and convert them into tokens with a
patch-to-token strategy inspired by the Vision Transformer
(ViT1) (Dosovitskiy et al., 2021). They leverage spatial spar-
sity by discarding input patches lacking sufficient events.
In (Peng et al., 2023), grouped convolutions are used to
embed successive patches through time, each token thus
handles information from different time steps. (Chen et al.,
2022) attempts to input a reduced 3D event cloud to the
Point Transformer (Zhao et al., 2021), a model originally
designed for spatial 3D point clouds. Following a different
approach, (Blegiers et al., 2023) employ a Video Trans-
former Network using event-frames. All these approaches
demonstrate high accuracy, motivating our choice of us-
ing Transformer models. However, most are not trained
end-to-end, and none can process events asynchronously.

1.1.4. ASYNCHRONOUS PROCESSING

Besides (Sekikawa et al., 2019), some works focus on asyn-
chronous processing of event streams with standard network
architectures. (Sironi et al., 2018) presented an architec-
ture using local memory units shared by neighboring pix-
els. (Messikommer et al., 2020) introduced Asynchronous
Sparse Convolutional Networks, a framework for convert-
ing models trained on synchronous image-like event repre-
sentations into asynchronous models. Even though these

1In ViT, images are split into fixed-size patches, which are then
linearly embedded to obtain a sequence of vectors.
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solutions are built for event-driven processing, they add on
complexity with respect to standard ML tools.

2. Proposed Architecture
Our objective is to employ ML techniques to build input
embeddings from an asynchronous stream of events, while
preserving the properties of event-based data. For this, we
combine a PointBERT architecture (Yu et al., 2022) with an
embedding inspired by EventNet (Sekikawa et al., 2019).
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Figure 2. Overview of the (A)LERT-Transformer model. The event
stream is spatially divided into local event clouds. The red crosses
indicate the non-active tokens based on their number of events.
(A)LERT module converts them to individual high dimension
features, which are fed to a Transformer and classifier head.

2.1. LERT: Synchronous Events-To-Tokens Conversion

2.1.1. RAW EVENTS TO NORMALIZED LOCAL PATCHES

The embedding part – which we call Learnt Embedding for
Real-Time Processing of Event-Based Data (LERT) Module
– is built upon the PointNet architecture (Qi et al., 2017a).
LERT spatially divides the input stream in local event clouds
(patches) and converts each of them into individual feature
vectors (a.k.a. tokens). This module is depicted in Figure
4. To extract patches from an event sequence, a grid in the
(x, y)-plane is constructed, effectively dividing the space
into same-sized groups of pixels with predefined coordi-
nates. Events triggered in the same pixel-group make a
patch. Hence, a local event cloud is simply a set of events,
which is a subset of the original input event stream.

Once the events are organized in patches, the LERT module
applies two transformations. First, all patches which do not
contain enough events are filtered out. The filter mechanism
is a simple threshold on the number of events present inside
the local point cloud. The threshold value is fixed and
selected via a hyperparameter search. It could be trained.
We denote the removed patches and events they contain as
non-active. This method was proposed by (Sabater et al.,
2022) and allows to exploit the sparsity of the input event-

based data. The remaining events and patches are referred
to as active events and active patches. The second step is
a trivial normalization, where the spatial coordinates (x, y)
of the active events are scaled down to the range [−1, 1]
with respect to a patch size (not the full image size). Once
this preprocessing of the events is finished, the active event
coordinates inside each patch are represented as follows:

(t, x, y, p) 7→ t ∈ [0, T ], x ∈ [−1, 1],
y ∈ [−1, 1], p ∈ {−1, 1};

(1)

T denotes the duration of the input event stream sample (not
the full file duration). LERT operates in a fully synchronous
manner which makes it compatible with widespread ma-
chine learning tools and frameworks, simplifying training.
It takes as input a finite list of events whose length (Ne) de-
pends on the event accumulation mode. Ne is either always
the same (we call it Constant Count Input Mode (CCIM)),
or varying and depending on the number of events triggered
during a fixed time window (denoted Constant Time Input
Mode (CTIM)), in which case T is always the same be-
tween two samples. Figure 3 provides a visualization of
event data and the two possible input modes.

t (ms)20 40 60 80 100 120 140 160 1800

Ne = 10
𝑇 = 40𝑚𝑠

Ne = 10
𝑇 = 45𝑚𝑠

Ne = 10
𝑇 = 90𝑚𝑠

t (ms)20 40 60 80 100 120 140 160 1800

Ne = 12
𝑇 = 60𝑚𝑠

Ne = 11
𝑇 = 60𝑚𝑠

Ne = 5
𝑇 = 60𝑚𝑠

b. CTIM - Constant Time Input Mode

a. CCIM - Constant Count Input Mode

Individual Events ({x, y} not represented) Event Sample

Figure 3. Schematic representation of the temporal sampling. In
(a) Constant Count Input Mode (CCIM), the events are sampled
from the continuous input event stream by splitting them into bins
that include the same amount of events. In (b) Constant Time Input
Mode (CTIM), each bin represents the same input duration. In
both modes, every sample is then split into several subsets, based
on the spatial coordinates of the events, as depicted in Figure 2.
Note: blue and red points represent events with different polarities.

2.1.2. NORMALIZED LOCAL PATCHES TO TOKENS

The Feature Generator (FG) then converts each normalized
input patch into an input token for the transformer model.
The FG is shared between all the patches and consists in a
customized shallow PointNet architecture. Every 4D active
event contained in a single patch is processed through a
shared MLP unit to generate a single high dimensional
vector (of dimension c). The feature generator inherits the
capacity of the PointNet to process an input of varying
length. In our implementation, an MLP is composed of a
succession of 1D-convolution layers.

3



ALERT-Transformer

Each 4D event is thus mapped to a high dimensional vector,
and the Patch Feature is obtained by applying a channel-
wise maximum operation on the resulting vectors. At this
stage, all P active patches have been converted into P c-
dimensional vectors, denoted as Patch Features (Fig. 5 (a)).

Normalizing and scaling the events with respect to the patch
size results in information loss. In particular, the spatial
origin of each local cloud in relation to the absolute (x,y)
pixel grid is disregarded. Thus, the LERT module adds a
positional embedding (i.e. a learnt linear embedding) to
each Patch Feature, incorporating its spatial location within
the predefined 2D grid. Positional embeddings supply the
model with spatial distribution information about the tokens,
they are learnt during training, and they are unique for ev-
ery patch coordinate. A detailed schematic of the LERT
embedding can be seen in Figure 4.
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Figure 4. (A)LERT module: spatially local event cloud to token.

2.2. ALERT: Asynchronous Token Update

2.2.1. INTRODUCTION TO THE ALERT MODULE

The LERT module is built for synchronous processing. As
such, it does not take full advantage of the event-based
nature of the data: it does not naturally update tokens when
new events show up. Instead, it starts from scratch and
recalculates all tokens for every new piece of data, which
means it must collect events before it can process them.

We thus introduce the Asynchronous LERT (ALERT) Mod-
ule, which is used during inference. This variation is de-
signed to efficiently update the token sequence as new events
occur (asynchronous processing), making it particularly
suited for online inference of event-based data. To achieve
this, the ALERT module requires three key modifications
during training and/or inference: handling continuous values
of time, updating tokens with each new event, and memoriz-
ing past information.

2.2.2. HANDLING CONTINUOUS TIME VALUES

The LERT module alters the time coordinates of events in a
sequence, shifting each input stream so that the first event
starts at time 0. This approach introduces inefficiencies in
real-time asynchronous processing, as it hinders the feasi-

bility of recurrent or iterative processing of events. Our
proposed solution consists in encoding the time value by
using a periodic function. We achieve this by representing
time with two sinusoidal waves: tx(t) = α cos(2πft+ ϕ),
and ty(t) = α sin(2πft + ϕ); taking inspiration from the
positional encoding originally used in Transformers. The
amplitude (α), frequency (f ) and phase (ϕ) of these waves
are constant and tuned for each application. The Time En-
coded (TE) LERT (TELERT) Module applies this periodical
wrap prior to the PointNet model. So, TELERT must be the
module used during training if ALERT is used for inference.
The only change made before the channel-wise maximum
operation between the LERT and TELERT/ALERT modules
is this time encoding (see Figure 5 b). Next, we present a
method applied at token stage that emulates a sliding buffer
in input during prediction.

2.2.3. ASYNCHRONOUS EVENT-BASED TOKEN UPDATE

The ALERT module is used for inference, and continu-
ously updates the tokens as new events arrive, whenever
k (k ∈ Z+; k >= 1) events have been triggered. When
decomposing it, a token update requires both (1) adding in-
formation from new event(s) and (2) forgetting information
from the oldest events.

Add Information: The k new event(s) are processed by
TELERT. The resulting patch token is the channel-wise
maximum between the previous patch token and the k new
event feature vector(s).

Forgetting information using Old Maximum Value De-
cay (OMVD): The “age” of the last update from each to-
kens’ channel is simply tracked by a counter. All channels
whose associated counter channel is higher than a certain
threshold undergo decay. All tokens are subject to this
decay, not only the newly updated one, as the oldest infor-
mation might be stored in different embeddings. The decay
is applied in the form of an exponential (×e−λ), where the
decay rate λ can be tuned for each model or scene charac-
teristics, and could potentially be learned; the pseudocode
can be found in Appendix A.1. This mechanism draws
inspiration from the “leakage” concept in SNNs literature
(Bouvier et al., 2019), but instead of applying it to all neu-
rons/features of the model, we apply it only on tokens, to
minimize compute.

2.2.4. TOKEN MEMORIZATION AND ACTIVITY STATUS

In ALERT, each new event triggers a corresponding patch
token update. No raw event needs to be buffered. Instead,
all tokens and associated age counter values are memorized
throughout the entire runtime of the model, their patch being
active or not. The non-activeness of the tokens is tracked
using an event count for each patch. This counter is up-
dated (+1 or −1) every time the token is updated (added
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Figure 5. Overview of the modes of the (A)LERT feature generator (FG). The Time Encoded LERT FG (b) is used for training ALERT (c).

information or OMVD, respectively).

2.3. (A)LERT-Transformer

2.3.1. TRANSFORMER ENCODER FOR CLASSIFICATION

To evaluate the proposed LERT and ALERT modules, we
plug them to a Vision Transformer model trained from
scratch for classification tasks. As our focus is to assess the
functionality of the proposed learnt synchronous and asyn-
chronous embedding modules, we deploy a stack of standard
transformer encoders, as in the original ViT (Dosovitskiy
et al., 2021). The final classification head simply consists
of a single linear layer followed by a SoftMax activation
function.

2.3.2. SYNCHRONOUS TRAINING AND ASYNCHRONOUS
INFERENCE

During training and for synchronous inference (using LERT
or TELERT), all samples are processed independently from
each other. So, classic GPU/TPU accelerated processing
is done as usual. Once TELERT is trained, the embedding
module can be converted to ALERT for inference by adding
the event update functionalities (adding information and
OMVD).

The ALERT version, used only for inference, can process
events continuously. However, applying the feature genera-
tor on every single event without distributed processing is
extremely time consuming. Hence, for simulation purposes,
the asynchronous inference pipeline is assessed by updating
and processing the tokens on-demand every ∆t. This has
no impact on the resulting accuracy, as the mathematics of
the asynchronous update are ultimately not altered. Proof
can be found in Appendix A.2.

3. Experiments
3.1. Experimental Setup

3.1.1. DATASETS

We validate our approach through two classification tasks:
action recognition and binary classification. For action
recognition, we utilize the 11-class DVS128Gesture dataset
(Amir et al., 2017), consisting of 2 to 6-seconds record-
ings from 29 users. For training (TE)LERT-Transformers,
our input samples consist in Constant Count (CCIM) event
streams of Ne = 8192 events each, with the events being
randomly sampled in sequence from the original recordings.
A file usually contains far more than 8192 events, thus en-
suring a huge amount of possible random samples of Ne
consecutive events. For binary classification, the Prophe-
see’s N-Cars dataset (Sironi et al., 2018) is used. Each file is
a 100ms recording containing either a car or a scene without
a car (“background”). In this case our input training samples
correspond to one recording, using Constant Time (CTIM)
event streams with variable number of events. We use the
original train and test splits for both datasets, and during
asynchronous inference simulation with ALERT, we treat
the entire test files as continuous sequences of events.

3.1.2. PERFORMANCE METRICS

We describe here the metrics used to evaluate our hybrid
asynchronous to synchronous network.

Accuracy. It is common practice in the literature to process
several samples sequentially before settling on a decision
(a class) (Sabater et al., 2022; Wang et al., 2019a) – which
we denote N-Voting Accuracy (NVA) –, or to estimate the
class over full files (Peng et al., 2023; Innocenti et al., 2021).
Because our model does not rely on any recurrence between
two consecutive input samples, it can process each sample
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Table 1. Classification performance and complexity on the DVS128Gesture dataset. Event representation meanings: (F=Frames, T=Tokens,
E=Events). Online refers to the capacity of achieving the said accuracy in a continuous inference paradigm. Aync. refers to the event-driven
processing nature of the network, where each event can be processed individually. TtA means Time to Accuracy, and it is the combination
of input accumulation time (tin) and inference time (tp).

Model Event Repr. Async. Online TtA Accuracy

3D-CNN (Innocenti et al., 2021) F ✗ ✗ File 99.6% (FVA)

GET (Peng et al., 2023) F→ T ✗ ✗ File 97.9% (FVA)

PointNet++ (Wang et al., 2019a) E ✗ ✓ 143ms 95.3% (NVA)

EventTransAct (Blegiers et al., 2023) F→ T ✗ ✓ 400ms+tp 97.9% (NVA)

Event Tr. (Sabater et al., 2022) F→ T ✗ ✓
480ms+tp 94.4% (NVA)2

24ms+tp 79.8% (SA)3

CNN + LSTM (Innocenti et al., 2021) F ✗ ✓ 500ms+tp 97.7% (SA)

LERT-Tr. — RM E→ T ✗ ✗ File 96.2% (FVA)
E→ T ✗ ✓ 132ms+tp 88.6% (SA)

ALERT-Tr. — RM E→ T ✓ ✗ File 94.1% (FVA)
E→ T ✓ ✓ 9.6ms (tp) 84.6% (SA)

LERT-Tr. — LMM E→ T ✗ ✗ File 92.0% (FVA)
E→ T ✗ ✓ 132ms+tp 83.1% (SA)

ALERT-Tr. — LMM E→ T ✓ ✗ File 89.2% (FVA)
E→ T ✓ ✓ 6.0ms (tp) 72.9% (SA)

individually and independently. So, to compare with these
works, we evaluate our model by voting over all predictions
for each file, denoted File Voting Accuracy (FVA). However,
to achieve ultra-low latency, providing a decision with every
single sample is crucial. Hence, we also show the average
accuracy over all samples analyzed independently, which
we denote as Sample Accuracy (SA). Using SA results in
lower accuracy, but enables ultra-low latency.

Time to Accuracy (TtA). The TtA represents the minimum
amount of time needed to classify. This value depends on
both the accuracy measurement method and the total latency
(tlat) of the network (which equals input accumulation time
(tin) plus inference time (tp)). In FVA, one needs to get
predictions over the full file to reach a conclusion. So, the
TtA is the total duration of a file. In an online setup (for
real-world operation), the accuracy can be evaluated with
different strategies, for instance using a sliding buffer for
voting over N previous predictions (Wang et al., 2019a)
(NVA). We target flexible and ultra-low latency and there-
fore consider the prediction of individual samples. So, we
use the SA method where TtA equals tlat.

Complexity. A good proxy for the time complexity is the
number of operations per sample (FLOPs), which is inden-
pent of the employed hardware. We also report tp for our
model on an NVIDIA RTX 3080. The space complexity is

associated to the number of parameters of a model.

3.1.3. IMPLEMENTATION DETAILS

We present two models: a high-performing Reference Model
(RM) and a Low-Memory Model (LMM) which is a reduced
version of the same model. The RM consists in a 5-layer
LERT module and a 4-layer Transformer Encoder with 8
attention heads and a token width of 512. The LMM features
a small 2-layer LERT module and a (2 layers, 4 heads,
128-token width) Transformer Encoder. All models are
implemented using PyTorch version 2.1. (Paszke et al.,
2019). We train all networks with the cross-entropy loss and
the LAMB optimizer (You et al., 2020).

3.2. Experimental Results

3.2.1. LERT-TRANSFORMER: SYNCHRONOUS

Our RM model showcases noteworthy performance, with
an FVA of 96.2% on the DVSGesture dataset (see Ta-
ble 1). When measured with SA, the accuracy drops
to 88.6%, but with a much lower latency of 141.6ms
(tin=132ms + tp=9.6ms) on average. The RM is relatively
complex, running at 1.299MFLOPs per event, and a total
of 13.96M parameters for the full (A)LERT-Transformer
model (see Table 2). The LERT module individually uses
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1.218MFLOPs/event and 1.41M parameters. The LMM
reduces this complexity by 24x to an impressive 0.566M
parameters, with the LERT module requiring 264x less op-
eration per event (4.0kFLOPs per event), and 0.04M param-
eters. The module together with the transformer runs at
7.4kFLOPs per event. LMM still shows a competitive FVA
of 92.0% on the action recognition task. On the binary clas-
sification task with the N-Cars dataset, LMM achieves an
accuracy of 85.6% with 0.54M parameters and an average
of only 34.28M total FLOPs per 100ms. Note that the aver-
age FLOP count per sample varies across different datasets,
as the number of events per sample differs depending on
sensor resolution and scene dynamics. On the contrary, the
FLOPs for processing a single event with our model always
remain the same, independently of the dataset.

Table 2. Model complexity on the DVS128Gesture dataset. Here,
LERT (RM/LMM) refers only to the LERT module part of the
associated model, while RM and LMM refer to the entire model
(LERT-Transformer). tp refers to the inference time, i.e. the time
ALERT-Transformer takes to process a sample of 8192 events.

Model #Param FLOPs per
tpevent sample

LERT (RM) 1.41M 1.218M 8.83G 5.8ms

RM 13.96M 1.299M 9.42G 9.6ms

LERT (LMM) 0.04M 0.0040M 0.03G 3.9ms

LMM 0.57M 0.0074M 0.06G 6.0ms

3.2.2. ALERT-TRANSFORMER: ASYNCHRONOUS

Moving from the synchronous LERT to the TELERT mod-
ule, we noticed a negligible relative accuracy drop in FVA
of 0.4% and 0% for the RM (95.8%) and LMM (92.0%) re-
spectively (not shown in Table 1). This illustrates that time
wrapping with sinusoidal encoding is an easy but efficient
solution for bounded representation of time values. From
synchronous LERT to ALERT inferences (adding TE and
decay) the FVA accuracy relatively decreases by 2% and 3%
for the RM (94.1%) and LMM (89.2%) versions, respec-
tively. Nevertheless, this change in the model now allows
for asynchronous updating of the tokens. The latency
is entirely customizable as the tokens are continuously up-
dated and can be processed on demand (the asynchronous to
synchronous concept illustrated in Figure 1). The inference
times tp for processing Ne = 8192 events are 9.6ms and
6.0ms for the full RM and LMM, respectively. In the RM

2For a fair comparison, we report the accuracy when evaluating
their model on full files of DVSGesture test set. It leads to a 1.8%
difference when compared with the original accuracy presented in
(Sabater et al., 2022), where only the central 480ms of every file
were used.

3The reported SA is obtained when the model makes a predici-
ton every 24ms, and latent vectors are reset every 20 samples.

Table 3. Classification performance and latency on the N-Cars
dataset. Comparison with state-of-the-art asynchronous models.

Model Acc. MFLOPs/ev

HOTS (Lagorce et al., 2017) 62.4% 14.0

HATS (Sironi et al., 2018) 90.2% 0.03

Async. Sparse CNNs
94.4% 21.5(Messikommer et al., 2020)

YOLE (Cannici et al., 2019) 92.7% 328.2

EST (Gehrig et al., 2019) 92.5% 1050

ALERT-Tr. — LMM (Ours) 85.6% 0.0074

(LMM), the (A)LERT module takes 5.8ms (3.9ms) against
the 3.8ms (2.1ms) for Transformer and Head. Simulating
this asynchronous low-latency scenario, the RM and LMM
models achieve SA accuracies of 84.6% and 72.9%, respec-
tively. Because the (A)LERT module can be run event by
event, we argue that using an event-driven asynchronous
sparse AI accelerator could reduce the (A)LERT inference
time to a few microseconds, thus enabling an on-demand
ultra-low latency of 3.8ms (2.1ms) for the RM (LMM).

3.2.3. COMPARISON WITH STATE-OF-THE-ART

Table 1 presents a comparative analysis with state-of-the-art
for action recognition models. Many competitors lack the
ability to process events asynchronously and cannot operate
continuously (Online). PointNet++ (Wang et al., 2019a)
still exhibits a low latency of 143ms for an NVA accuracy
of 95.3% thanks to their sliding buffer voting and averaging
strategy for improving accuracy. Note that our ALERT mod-
ule could be deployed in their model, which would enable
asynchronous PointNet++ processing instead of the current
update every 25ms. EventNet (Sekikawa et al., 2019), a com-
parable model with asynchronous to synchronous capability,
has limited performance on complex tasks as it applies a
single PointNet for the full input event stream spatial dimen-
sion. Accuracy measures on gesture recognition has thus
not been reported by the authors. This was one of our moti-
vations towards splitting the input window along the spatial
dimension. EventTransAct (Blegiers et al., 2023) processes
individual clips containing 16 frames of 5ms. Every 5 clips,
a prediction is obtained through mean aggregation, leading
to a latency of 400ms, and a NVA of 97.9%. (Sabater et al.,
2022) propose a recurrent Transformer model that integrates
events into frames and processes them every 24ms. How-
ever, due to reccurence, predictions are originally obtained
every 20 samples (tin = 480ms), introducing significant
latency. When using their model by requesting a predic-
tion every 24ms (keeping the 20-sample recurrency) and
applying SA the accuracy drops to 79.8%3. In this situation,
our ALERT-Transformer RM outperforms theirs with an
accuracy of 84.6%, but at the price of 1.299MFLOPs/event.
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Even though our LMM requires only 0.0074MFLOPs/event,
in this case, it struggles with a 72.9% SA. But the different
hyperparameter searches realized during our study revealed
a major cost/accuracy tradeoff (see Appendix B.1).

Furthermore, when compared to state-of-the-art asyn-
chronous models on the N-Cars binary classification task,
our LMM showcases the lowest 0.0074MFLOPs/event com-
plexity while achieving a competitive accuracy (see Table
3). This represents a 75% decrease in complexity compared
to the previous state-of-the-art (Sironi et al., 2018), with
only a 5.11% decrease in accuracy.

Overall, the proposed ALERT is a compelling event embed-
ding module for Transformer models. It inherits event-based
data properties, allows for highly flexible latency on-demand
compute, and enables friction-less end-to-end learning.

3.3. Ablation Studies

We present the effects several hyperparameters have on the
RM accuracy and complexity. Accuracies are depicted on
the DVS Gesture dataset. We refer the reader to Appendix
B.2 for a better visualization of the impact these parameters
have on the patch sequences and the model.

Patch Size. The ALERT module spatially splits the in-
put event stream in several smaller point clouds. Figure
6 depicts the variation of accuracy and total FLOPs for
RM with respect to the patch size (height and width, in
pixels). Smaller patches yield better models, but they are
more complex and, as such, slower. The low accuracy of
models with bigger patch size is predictable, as attention net-
works are known to perform worse with too short sequences.
As the patch size increases, the number of available sub
clouds – and consequential tokens – decreases, causing the
poor performance of the Transformer classification network.
Therefore, a tradeoff is necessary to find the optimum for
each application and sensor resolutions.
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ity (+) (GFLOPs). Input resolution is 128× 128 pixels. The RM
is set as the baseline, hence has a 1.0 relative accuracy.

Active Patch Threshold. Understanding the role of the
activation threshold in the (A)LERT-Transformer is key for
using it efficiently. This threshold – defined in number

of events per patch – determines the portion of patches
considered as active. Interestingly, according to Figure 7
comparable accuracies are achieved with both low and high
thresholds. Nevertheless, higher thresholds result in less
complex models because the FLOPs per processed event
remains constant, while less events are processed. In RM,
the Transformer model is so small that the embedding part
represents 94% of the total FLOPs of the model for Ne =
8192 events. Therefore, choosing a high threshold may be
an important decision when a low complexity model with
high accuracy is required.
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Input Sequence Length. The (TE)LERT module can be
trained and evaluated in Constant Count or Constant Time
input modes, and is thus suited for processing input se-
quences of varying lengths (Ne or ∆t, respectively). In
Figure 8a, we show how Ne impacts the CCIM model’s per-
formance. There seems to be an optimum point in between
Ne = 8k and Ne = 16k events for the accuracy. How-
ever, the total complexity scales linearly with the number of
processed events. Hence, our experiments were conducted
using Ne = 8192, which yields 96.2% FVA. Similarly, for
CTIM performance and complexity vary depending on ∆t

values (see Appendix B.4). The optimal point in this case
is ∆t = 180ms, where the model reaches 88.5% SA and
96.5% FVA. The average time span of a DVS Gesture input
sample in CCIM with Ne = 8192 fixed events, is of 130ms.
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It is worth noting that using ∆t = 130ms in CTIM reaches
96.2% FVA, proving the equivalence between both input
modes. Consequently, the input mode and its length should
be adjusted based on task-specific requirements.

Old Maximum Value Decay. The decay rate is applied in
the form of an exponential factor whenever a token channel
has not been updated for a certain time. An optimal value ex-
ists for this decay rate, which should be tuned to simulate the
behavior of the synchronous processing paradigm as truth-
fully as possible. Figure 9 shows the relationship between
accuracy and decay rate for RM. Below the optimal rate,
our model forgets past information too quickly; above the
optimal value too much past information is kept, bringing
confusion to the prediction. In the limit where information
is not forgotten, i.e. λ = 0, the model reaches a sample
accuracy of 25.9%, proving OMVD is a key component of
the ALERT-Transformer.
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Figure 9. Decay rate influence on the ALERT accuracy during
inference.

Positional embeddings. The encodings of the patch coor-
dinates, provide information about the patch tokens spatial
distribution in space. Training the LERT-Transformer Refer-
ence Model (RM) on the DVSGesture dataset without these
positional encodings, leads to accuracies of 80.0% SA and
95.1% FVA (versus 88.6% SA, 96.2% FVA with positional
embeddings). During inference they can be built as a simple
Look-Up table, introducing a negligible overhead to the
total cost of the model.

3.4. Limitations and Potential Applications

While the outcomes of this study showcase the viability of
the proposed ALERT module for event data in Transformer-
based computer vision pipelines, there are some limitations
and room for improvement. The current validation focuses
on a Transformer architecture for classification tasks. How-
ever, the tokens do not have to be used only by Transformers,
and our method could be easily integrated with Convolu-
tional Neural Networks (CNNs) or other architectures. Sim-
ilarly, we are also working on the applicability of this learnt
representation for other tasks than those used for bench-
marking, such as generative ones. We see several directions
for exploiting our research: trying to improve accuracy by

adopting advanced strategies akin to concurrent processing
of multiple samples (Peng et al., 2023) or using of memory
tokens (Sabater et al., 2022); or exploring PointNet-only
architectures based on the ALERT module (Wang et al.,
2019a; Sekikawa et al., 2019).

The demonstrated learnt token sequence in the ALERT-
Transformer model holds promise for diverse applications
relying on computer vision, especially for edge solutions.
Its adaptability across various pipelines, beyond transformer
architectures, suggests utility in multiple tasks where event
vision sensors offer advantages over conventional cam-
eras. The flexibility of the on-demand data processing,
and potential resulting energy-efficient capabilities of the
ALERT-Transformer create opportunities for real-world de-
ployment in scenarios using advanced systems for computer
vision (always-on sensing to wake-up Application Process-
ing Unit). Future research may explore integrating this
hybrid asynchronous to synchronous representation into a
broader array of vision tasks, leveraging its strengths for
diverse real-time applications, and paving the way for poten-
tial hardware implementations. Also, it is worth noting that
our pipeline could be integrated in multi-modal Transform-
ers, seamlessly enabling mixed sensor computer vision.

4. Conclusions
Our research focused on addressing the fundamental chal-
lenge of efficiently processing sparse and asynchronous
event-based data while leveraging its properties. Several,
simple yet essential, contributions have been introduced: (1)
end-to-end trained event-data to feature vectors conversion
with the LERT module, and the modified Time Encoded
LERT able to deal with continuous time values with neg-
ligible decrease of accuracy. (2) Seamless conversion to
real-time event-driven processing with Asynchronous LERT,
significantly reducing latency and enhancing the model’s
applicability to real-time applications. (3) An asynchronous
sensing to on-demand synchronous processing framework:
the ALERT-Transformer. An end-to-end system that en-
sures continuous and energy-efficient data processing for
event-based vision sensors.

The ALERT-Transformer on the gesture recognition task
achieves high accuracy (84.6%) with lowest ever latency
(less than 9.6ms) during inference, outperforming compar-
ative models with higher accuracy but slower processing.
The reduced size model performs asynchronous binary clas-
sification at the lowest ever cost of 7.4kFLOPs/ev (to the
best of our knowledge).

These contributions allow for significant advancement to-
wards exploiting the potential of sparse heterogeneous mul-
tidimensional data, and lay the ground for further advance-
ments in mixed sensors computer vision.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work. We shortly mention two of them
here specifically related to using an Event-based technology.
Our work aims at bridging the gap between asynchronous,
event-based signal processing and conventional signal pro-
cessing. On one hand, in doing so, it facilitates the use
of such low-latency system, for example for autonomous
systems, and make them more robust and possibly safe (e.g.
for obstacle detection). On the other hand, accelerating the
use of event-based sensing and processing in computer vi-
sion might lead to systems requiring less power, which, at
scale, is relevant for the environment. We do not foresee
any negative impact of this work.
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A. ALERT Module: Proofs and Definitions
A.1. Algorithm: Asynchronous Event-Based Token Updates

The following algorithm presents the mathematical operations performed during a single token update with the ALERT
module in inference mode. This update corresponds to a token, Ga, from a patch that has a new event, enew, whose
information needs to be incorporated. The Old Maximum Value Decay strategy is also applied to this token. OMVD consists
in applying a decay to old values and, although not shown in the algorithm, it is applied to in all tokens, not only Ga. Below,
the function f(e) represents the shared MLP that builds a feature for each event; N is the threshold for OMVD to be applied;
and countera keeps track of the latest updates in all channels of Ga.

Algorithm 1 Asynchronous Event-Based Update of a Patch Token with Old Maximum Value Decay
Require: enew, countera, Ga, N

for C in embbedings dimension do
Ga[C]← max(Ga[C], f(enew)[C])
if Ga[C] == f(enew)[C] then
countera[C]← 0

else
countera[C]← countera[C] + 1
if countera[C] > N then

Ga[C]← Ga[C]× exp (−λ)
end if

end if
end for

A.2. Proof: Iterative Updating of Tokens

Global features in the proposed model are obtained from the channel-wise maximum values amongst all the event features
in a cloud. Let us demonstrate the equivalence between updating the token channels as each events arrives, and creating the
tokens by applying the max function to several available new events at once (TELERT module).

Consider a sequence of values x1, x2, . . . , xN , and let M represent the maximum value in the sequence. In the LERT token
creation paradigm, the maximum value is obtained by applying the max function to all values at once:

Mall = max(x1, x2, . . . , xN ) (2)

On the other hand, with the ALERT token creation paradigm, the maximum value is obtained by applying the max function
iteratively as new values arrive. Define Mk as the maximum value after considering the first k values:

Mk = max(x1, x2, . . . , xk) (3)

After adding a new value xk+1 to the sequence, the updated maximum is:

Mk+1 = max(Mk, xk+1) (4)

Now, let us show that Mall = MN , demonstrating the equivalence of the two approaches.

Mall = max(x1, x2, . . . , xN )

= max(max(x1, x2, . . . , xN−1), xN )

= max(max((max(max(x1, x2), x3), . . .), xN−1), xN )

= MN
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We have now shown that applying the max function to all values at once is equivalent to applying it iteratively as new values
arrive. Furthermore, we would like to proof that the Old Maximum Value Decay strategy leads to congruent results.

Consider a global feature where a specific channel, M , has not been updated for a long time, meaning that the channel is
taking the information from an old event. In this case, with non-iterative processing, this channel’s value would be updated,
as the old event feature would not be included in the max operation anymore.

M = max(x0, x1, ..., xN ) → xN+1 not used (5)

Here, xi represents the corresponding channel from each event feature. Now, if we want to do iterative updating of the
tokens, we cannot recompute the max over all values every time. Thus, we find a decay strategy where old channel values
lose their relevance over time, instead of completely removing these values.

M = max(x0, x1, ..., xN , xN+1 × e−λ) (6)

As time continues and new events arrive, the oldest events values lose their relevance exponentially.

X = max(x0, x1, ..., xN , xN+1 × e−λ, xN+2 × e−2λ, ..., xN+l × e−lλ) (7)

The decay term ensures that the influence of events decreases exponentially over time. Thus, in the limit where time
approaches infinity, channels from old event features will tend to zero, not being able to “win” in the max function.

The ALERT module methodology comes from merging the iterative addition of information and this decay strategy. The
combination of both approaches slightly alters the results from completely computing tokens from scratch, but the difference
is negligible when compared to the gains the ALERT module provides.

Xt =max(xnew, Xt−1) if counterc < threshold

Xt =max(xnew, Xt−1 × e−λ) if counterc >= threshold
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B. (A)LERT-Transformer: In-Depth Ablation Study
The following figures and tables show in a visual and detailed manner the influence several hyperparameters have on the
ALERT-Transformer model.

B.1. Patch Size, Activation Rate and Sequence Length

Table 4. ALERT Hyperparameter Analysis. Influence of several key embedding hyperparameters on the performance and complexity
of the LERT-Transformer model trained on the DVS Gesture Dataset for action recognition.

(a) Sequence Length (b) Voxel’s Spatial Size (c) Voxel’s Activation Rate

Relative Total
Accuracy FLOPs

2048 0.963% 2.092G
4096 0.973% 4.492G
6144 0.985% 6.949G
8192 1.000% 9.419G

10240 0.982% 11.87G
12288 0.982% 14.32G
16384 0.997% 19.24G
24576 0.964% 28.86G

Relative Total
Accuracy FLOPs

[6, 6] 0.985% 10.10G
[8, 8] 1.000% 9.419G

[12, 12] 0.973% 9.082G
[20, 20] 0.985% 8.914G
[32, 32] 0.999% 8.653G

Relative Total
Accuracy FLOPs

0.50 0.979% 9.871G
0.75 1.000% 9.419G
1.00 0.988% 9.071G
1.25 0.971% 8.785G
1.50 0.970% 8.538G
2.00 0.993% 8.134G
2.50 0.983% 7.811G

B.2. Visualization of the Patch Size and Sequence Length

Figure 10. Patch Size Visualization: A simple 2D representation of the same sample with its corresponding active voxels for different
patch sizes. This representation allows for a better understanding of the spatial division of the event stream. Each drawn patch corresponds
to an active voxel, which events will be processed through the feature generator to obtain a token. The smaller the patch size, the less
information a single voxel contains. As a result, with the same processing pipeline, a more detailed representation can be obtained when
using smaller patches. The need exists to find a trade-off between the complexity of the model, and the level of detail of the token
representations. The sample consists of a stream of 8192 events from the DVS128 Gesture Dataset.
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Figure 11. Patch Activation Threshold Visualization: A simple 2D representation of the same sample with its corresponding active
patches for the same patch size, but different activation thresholds. This simple representation allows for a straightforward understanding
of the necessity of discarding certain patches. Event-based data is inherently sparse, and this should be leveraged when processing it.
Eventhough the model performs similarly with different thresholds, it is important to note that processing almost empty patches does not
add any relevant information while adding a great computational cost. Discarding sub clouds where no movement occurs removes noise
and allows the model to decrease its complexity. The sample consists of a stream of 8192 events from the DVS128 Gesture Dataset.

Figure 12. Sequence Length Visualization: A simple 2D representation of samples formed by different number of events. All of the
samples share the first event but extend to different lengths. The samples consist of streams of events from the DVS128 Gesture Dataset.
Although this frame representation of the samples is not used at any point in the proposed pipeline, it serves as visualization of the
different sample lengths and the amount of information they carry. This analysis highlights the necessity of selecting input samples
appropriately to the dataset and task requirements, as too little information may limit the performance, while too much may be too difficult
to learn with a simple model.
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B.3. Feature Generator Network Depth

The optimal number of layers for the Feature Generator’s MLP strongly depends on other hyperparameters of the model.
This value has a direct impact on the model’s memory footprint, as it changes the number of parameters of the model. The
Feature Generator has two important tunable hyperparameters: the number of layers of the MLP (depth) and the number
of neurons in each of these layers. The input and output of the FG have fixed dimensions, being a 4-dimensional point
and a 512-dimensional vector, respectively. However, the dimension and number of in-between hidden layers can vary
depending on the model’s requirements. Three different hyperparameters are used during our implementation to define this
configuration:

• Depth: Number of layers of the MLP. In the implementation, each of these layers comprises a 1D-convolutional layer,
batch normalization and an activation function (ReLU).

• Base channels: Number of neurons of the first hidden layer.

• Expansion Factor (β): Determines the increment of neurons from one hidden layer to the next as follows: hiddeni =
β × hiddeni−1.

Figure 13 provides an insight on how the modification of these values alters the performance and memory footprint of the
model. In general, the fewer layers and number of neurons, the less accurate a model is. However, this decrease in accuracy
is quite slow. On the contrary, reducing the number of hidden layers, and the neurons per layer, decreases the size of the
model exponentially. The relationship between the metrics and the MLP’s hyperparameters highlights the necessity of a
trade-off between complexity and accuracy for each model, and the optimal solution will depend on the specific application
requirements. Our RM and LMM provide two cases where this trade-off are considered, but further models are to be
explored.
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Figure 13. Feature Generator’s Depth impact on the Model’s Performance. Overall,the depth of the (A)LERT module has a major
influence on the accuracy of the network. The deeper the most accurate. But at the same time, network complexity increases. So a tradeoff
needs to be made regarding the depth. On the other hand, the projection dimension does not have the same relationship with accuracy.
Indeed, it seems that one should avoid using a too small projection width, but an optimum can be found. The same seems to be true for the
expansion factor. The two later points provide an optimism regarding the search for an optimal accuracy to cost ratio at a given depth.
Note: the vertical red lines illustrate the RM configuration.
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B.4. Constant Time Input Mode
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Figure 14. Duration of an Input Sample (in CTIM) impact on the Model’s Performance.
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