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Abstract

In this work, we examine the learning process for
Neural Probabilistic Soft Logic (NeuPSL) [Pryor
et al., 2022]. NeuPSL is a novel neuro-symbolic
(NeSy) framework that unites state-of-the-art sym-
bolic reasoning with the low-level perception of
deep neural networks to create a tractable prob-
abilistic model that supports end-to-end learning
via back-propagation. We investigate two common
learning losses, Energy-based and Structured Per-
ceptron. We provide formal definitions, and iden-
tify and propose principled fixes to degenerate so-
lutions. We then perform an extensive evaluation
over a canonical NeSy task.

1 INTRODUCTION

Neural Probabilistic Soft Logic (NeuPSL) [Pryor et al.,
2022] is a recently introduced Neuro-symbolic (NeSy)
framework that extends the expressive power of the Proba-
bilistic Soft Logic (PSL) programming language [Bach et al.,
2017] with neural models. NeuPSL instantiates a tractable
class of graphical models, a Deep Hinge-loss Markov ran-
dom field (Deep HL-MRF), to integrate low-level neural
perception with symbolic reasoning. Deep-HL-MRFs ad-
mit log-concave density functions with a structure that sup-
ports highly-efficient maximum-a-posteriori (MAP) infer-
ence. Moreover, end-to-end training of both neural and
graphical model parameters is possible via the standard
back-propagation algorithm.

Pryor et al. (2022) introduces neuro-symbolic energy-based
models (NeSy-EBMs), a general family of EBMs that con-
nects neural and symbolic components. NeSy-EBMs include
NeuPSL and other prominent NeSy frameworks, including
DeepProbLog [Manhaeve et al., 2018], and Logic Tensor
Networks [Badreddine et al., 2022]. Training a NeSy-EBMs
is the process of finding both symbolic and neural parame-

ters that minimize an EBM learning objective.

In this work, we examine both the energy loss, used by Pryor
et al. (2022), and the structured perceptron loss [Collins,
2002, LeCun et al., 1998] as training objectives for a Ne-
uPSL model. We provide formal definitions and identify
both theoretical and practical issues. Both learning losses
require solving a subproblem to compute gradients for back-
propagation. Moreover, both learning losses have degenerate
solutions, which leads to minimizers of the learning problem
that have low prediction performance.

In this work, we examine NeSy-EBM learning loss in the
context of NeuPSL. 1) We describe the structured percep-
tron and energy learning losses, 2) We identify degenerate
solutions for both losses and propose methods for remov-
ing them from the problem’s feasible set while maintaining
tractability, and 3) We analyze the runtime and performance
of the learning losses on a canonical NeSy dataset.

2 NEUPSL

NeSy-EBM frameworks integrate neural architectures with
encodings of symbolic relations to define an energy function
with an explicit neural and symbolic interface. Specifically,
input variables are organized into neural, xnn ∈ Xnn, and
symbolic x = [xi]

nx
i=1 ∈ [0, 1]nx , vectors. Likewise, model

parameters are organized into neural, wnn ∈ Wnn, and
symbolic w = [wi]

r
i=1 ∈ Rr

+, vectors. Then, one or more
neural networks gnn = [gi]

ng

i=1, where each gi : Xnn →
Rng,i , are integrated into a symbolic model as inputs of
potential functions.

The symbolic model NeuPSL instantiates is a Deep Hinge-
Loss Markov Random Field (Deep-HL-MRF), a tractable
probabilistic graphical model. The potentials of a Deep-
HL-MRF are hinge-loss functions over the neural output,
the symbolic inputs x, and a vector of symbolic output
variables y = [yi]

ny

i=1 ∈ [0, 1]ny . Each potential in NeuPSL
represents the dissatisfaction of an arithmetic or logical rule
in a PSL program (see Bach et al. (2017) for a complete
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description of the potential instantiation process).

Definition 1 (Deep Hinge-Loss Markov Random Field).
Let y = [yi]

ny

i=1 and x = [xi]
nx
i=1 be vectors of real valued

variables. Let gnn = [gnn,i]
ng

i=1 be functions with corre-
sponding parameters wnn = [wnn,i]

ng

i=1 and inputs xnn. A
deep hinge-loss potential is a function of the form

ϕ(y,x,xnn,wnn) = max(l(y,x,gnn(xnn,wnn)), 0)
α

where α ∈ {1, 2}. Let T = [ti]
r
i=1 denote an ordered parti-

tion of a set of m deep hinge-loss potentials {ϕ1, · · · , ϕm},
then define

Φi(y,x,xnn,wnn) :=
∑
j∈ti

ϕi(y,x,xnn,wnn)

Φ(y,x,xnn,wnn) := [Φi(y,x,xnn,wnn)]
r
i=1

Further, let wpsl = [wi]
r
i=1 be a vector of non-negative

weights corresponding to the partition T . Then, a deep
hinge-loss energy function is

E(y,x,xnn,wnn,wpsl) = wT
pslΦ(y,x,xnn,wnn)

Further, let c = [ci]
q
i=1 be a vector of q linear con-

straints in standard form, defining the feasible set Ω =
{y,x | ci(y,x) ≤ 0, ∀i}. A deep hinge-loss Markov ran-
dom field, P , with random variables y conditioned on x
and xnn is a probability density of the form

P (y|x,xnn) =

{
exp(−E(y,x,xnn,wnn,wpsl))

Z(x,xnn,wnn,wpsl)
(y,x) ∈ Ω

0 o.w.

Z(x,xnn,wnn,wpsl) =

∫
Ω

exp(−E(y,x,xnn,wnn,wpsl))dy

Inference in NeuPSL fully integrates neural and symbolic
inference. Neural inference requires computing the output
of the neural networks given the input xnn, i.e., comput-
ing gnn,i(xnn,wnn,i) for all i, while symbolic inference
minimizes the Deep-HL-MRF energy function over y:

y∗ = argmin
y|(y,x)∈Ω

E(y,x,xnn,wnn,wpsl) (1)

The energy function and constraints are convex in y. Any
scalable convex optimizer can be applied to solve (1).

3 LEARNING IN NESY-EBMS

Learning in NeSy-EBMs is the task of finding both neu-
ral parameters and symbolic parameters that minimize an
EBM learning objective. Learning objectives are functionals
mapping an energy function and a set of training examples
S = {(yi,xi,xi,nn) : i = 1, · · · , P} to a real-value. The
energy function for NeuPSL is parameterized by the neu-
ral parameters wnn and symbolic parameters wpsl, so we
can express the learning objective as a function of wnn,
wpsl, and S: L(wnn,wpsl,S). Learning objectives follow
the standard empirical risk minimization framework and
are separable over the training examples in S as a sum

of per-sample loss functions Li(yi,xi,xi,nn,wnn,wpsl).
Concisely, NeuPSL learning is the following minimization:

argmin
wnn,wpsl

L(wnn,wpsl,S)

= argmin
wnn,wpsl

P∑
i=1

Li(yi,xi,xi,nn,wnn,wpsl)

In the learning setting, variables yi from the training set S
are partitioned into vectors yi,t and zi. The variables yi,t

represent variables for which there is a corresponding truth
value, while zi represent latent variables. Without loss of
generality, we write yi = (yi,t, zi).

There are multiple losses that one could motivate for opti-
mizing the parameters of an EBM. The losses we present in
this work use the following terms:

z∗i = argmin
z|((yi,t,z),x)∈Ω

E((yi,t, z),xi,xi,nn,wnn,wpsl)

y∗
i = argmin

y|(y,xi)∈Ω

E(y,xi,xi,nn,wnn,wpsl)

In words, z∗i and y∗
i are the lowest energy states given

(yi,t,xi,xi,nn) and (x,xi,nn), respectively.

3.1 ENERGY LOSS

The simplest energy-based learning loss is the energy loss,
LEnergy(wnn,wpsl, S). Energy loss learning for NeuPSL
was first presented in Pryor et al. (2022) and minimizes
the energy of the MAP states of the Deep-HL-MRF given
(yi,t,xi), for all i.

argmin
wnn,wpsl

LEnergy(wnn,wpsl, S)

= argmin
wnn,wpsl

P∑
i=1

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

Notice that inference over the latent variables is necessary
to compute the learning objective value. Furthermore, when
strong convexity in each component of z is ensured via
regularization, by Danskin (1966), the gradient of the energy
loss with respect to wpsl is:

∇wpslLenergy(wnn,wpsl, S)

=
P∑

i=1

Φ((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

Then the per-sample energy loss partial derivative with re-
spect to wnn[j] at yi,xi,xi,nn,wpsl is:

∂Li(yi,xi,xi,nn,wnn,wpsl)

∂wnn[j]

=

R∑
r=1

wpsl[r]
∑
q∈τr

∂ϕq((yi,t, z
∗
i ),xi,xi,nn,wnn)

∂wnn[j]

These gradients are sufficient to perform gradient descent
via the backpropagation algorithm described in Section 3.4.
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3.2 STRUCTURED PERCEPTRON LOSS

The structured perceptron loss [LeCun et al., 1998, Collins,
2002], LSP (wnn,wpsl, S), measures the energy difference
between the true setting of the variables and the MAP state
of the Deep-HL-MRF. Structured perceptron learning mini-
mizes the difference in energies:

argmin
wnn,wpsl

LSP (wnn,wpsl, S)

= argmin
wnn,wpsl

P∑
i=1

E((yi,t, z
∗
i ),xi,xi,nn,wpsl,wnn)

− E(y∗
i ,xi,xi,nn,wpsl,wnn)

In this loss, inference over both the latent variables, z, and
over the complete set of variables, y, is necessary. With
regularization, the HL-MRF energy function is strongly
convex in all components of y. Thus, the gradient of the
structured perceptron loss with respect to w is:

∇wLSP (wnn,wpsl, S)

=

P∑
i=1

Φ((yi,t, z
∗
i ),xi,xi,nn,wnn)−Φ(y∗

i ,xi,xi,nn,wnn)

3.3 DEGENERATE SOLUTIONS

Pryor et al. (2022) shows there are two degenerate solutions
of the energy learning loss for NeuPSL and propose methods
for overcoming them. We show that the same degenerate
solutions and methods for overcoming them apply to the
structured percetpron loss.

First, note that the symbolic parameters are constrained to
be non-negative real numbers. Furthermore, every symbolic
potential is of the form:

ϕi(y,x,xnn,wnn) = max(li(y,x,gnn(xnn,wnn)), 0)
α

so we have that ϕi(y,x,xnn,wnn) ≥ 0 for all settings of
the variables y,x,xnn,wnn. Thus, Φi(y,x,xnn,wnn) :=∑

j∈ti
ϕi(y,x,xnn,wnn) ≥ 0 and Φ(y,x,xnn,wnn) :=

[Φi(y,x,xnn,wnn)]
r
i=1 ⪰ 0. We therefore have that

LEnergy(wnn,wpsl,S)

=

P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn) ≥ 0

In fact, LEnergy(wnn,wpsl,S) = 0, i.e., is minimized
when wpsl = 0.

Similarly, as y∗ is a MAP state of the energy function, it is
a minimizer of the energy function, hence

LSP (wnn,wpsl, S)

=

P∑
i=1

wT
psl

(
Φ((yi,t, z

∗
i ),xi,xi,nn,wnn)

−Φ(y∗
i ,xi,xi,nn,wnn)

)
≥ 0

and LSP (wnn,wpsl,S) = 0 when wpsl = 0. The wpsl =
0 configuration results in a collapsed energy function, a
function that assigns all points y ∈ Y to the same energy.

One way to eliminate the wpsl = 0 degenerate solution is
by leveraging the invariance of HL-MRF MAP inference
to the scale of the symbolic parameters, as shown by Srini-
vasan et al. (2021). Formally, for all configurations wpsl

and scalars c̃ ∈ R+,

argmin
y|(y,x)∈Ω

E(y,x,xnn,wnn,wpsl)

= argmin
y|(y,x)∈Ω

E(y,x,xnn,wnn, c̃ ·wpsl)

For this reason, it is possible to constrain the search space
of the symbolic parameters to the unit simplex, ∆r = {w ∈
Rr

+

∣∣∥w∥1 = 1}, without inhibiting the expressivity of the
model when the HL-MRF is exclusively used to obtain
MAP inference predictions. Adding the simplex constraint
discussed in the previous section makes the degenerate solu-
tion wpsl = 0 infeasible.

The simplex constraint and concavity of the energy loss
in the symbolic parameters raises an additional degenerate
solution. Precisely, a solution to the problem must exist at
corner points of the simplex ∆r.

Lemma 1. The structured perceptron and energy loss func-
tions, LEnergy(wnn,wpsl,S), and LSP (wnn,wpsl,S)
are concave in wpsl.

Proof. For all i

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

= inf
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn)

Similarly,

E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

− E(y∗
i ,xi,xi,nn,wnn,wpsl)

= inf
z|((yi,t,z),x)∈Ω

inf
y|(y,x)∈Ω

wT
psl(Φ((yi,t, z),xi,xi,nn,wnn)− Φ(y,xi,xi,nn,wnn))

Hence, LEnergy(wnn,wpsl,S), and LSP (wnn,wpsl,S)
are both pointwise infimums of a set of affine functions
of wpsl and are therefore concave [Boyd and Vandenberghe,
2004]. Therefore, LEnergy and LSP are sums of concave
functions of wpsl and are concave.

Further, ∆r is a polyhedron described by the set: ∆r =
{wpsl | 1Twpsl = 1} and is therefore a convex set. A
concave function is globally minimized over a polyhedron
at one of the vertices, this can be shown by definition of
concavity. In this case, we can find a solution to the energy
minimization problem by comparing the objective value at
each point of the simplex, i.e., setting one of the symbolic
parameter components to 1 and the remaining parameters
to 0. This solution is however undesirable; we want each of
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Model Learning Method Noise (%) Accuracy Runtime (sec)

NeuPSL

Energy 10 77.1 ± 2.5 120.3 ± 0.7
Energy 25 75.3 ± 4.6 120.3 ± 0.5
Energy 50 70.4 ± 4.2 121.2 ± 0.7

Structured Perceptron 10 71.2 ± 3.9 266.5 ± 2.0
Structured Perceptron 25 72.0 ± 4.6 281.3 ± 2.4
Structured Perceptron 50 75.1 ± 3.8 289.9 ± 2.5

Independent
Baseline

- 10 81.8 ± 2.5 -
- 25 59.0 ± 2.7 -
- 50 30.1 ± 2.5 -

Table 1: Accuracy and runtime over varying noise in the local model.

the symbolic relations corresponding to the parameters to be
represented and have influence over the model predictions.
For this reason, we propose the use of the negative logarithm
as a regularizer to break the concavity of the objective and
give the simplex corner solutions infinitely high energy.
With negative log regularization and simplex constraints,
energy loss parameter learning and structured perceptron
parameter learning are:

min
wnn∈Wnn,wpsl∈∆r

LEnergy(wnn,wpsl,S)−
r∑

i=1

logb(wpsl[i])

min
wnn∈Wnn,wpsl∈∆r

LSP (wnn,wpsl,S)−
r∑

i=1

logb(wpsl[i])

3.4 MIRROR DESCENT

Minimization of the learning losses with respect to the sym-
bolic parameters constrained to the unit simplex is achiev-
able via normalized exponentiated gradient descent [Kivinen
and Warmuth, 1997, Shalev-Shwartz, 2012]. The minimiza-
tion over neural parameters is achievable via standard gradi-
ent descent. With an initial step size parameter η > 0, the
parameter updates are

wk+1
nn = wk

nn + η∇wnnL(w
k
nn,w

k
psl, S)

wk+1
psl [i] =

wk
psl[i] exp{−η

∂L(wk
nn,wk

psl,S)

∂wk
psl

[i]
}∑r

j=1 exp{−
∂L(wk

nn,wk
psl

,S)

∂wk
psl

[j]
}

, ∀i = 1, · · · , r

This update ensures that at every iterate the symbolic pa-
rameter wpsl satisfies simplex constraints. This proposed
minimization algorithm and convergence behavior can be an-
alyzed with the mirror descent framework [Shalev-Shwartz,
2012].

4 EMPIRICAL EVALUATION

We evaluate the performance and runtime of the energy
and structured perceptron learning losses on MNIST-Add1
[Manhaeve et al., 2018]. This task extends the classic

MNIST image classification problem [LeCun et al., 1998]
by constructing addition equations using MNIST images
and requiring classification to be performed using only their
sum as a label. For example, a MNIST-Add1 addition is
(
[ ]

+
[ ]

= 8). Given 300 randomly selected MNIST
images, we create 150 MNIST-Add1 additions. We empha-
size that individual MNIST images do not have labels, only
the resulting sum. All results are averaged over ten splits
and evaluated over 500 randomly sampled MNIST images.
The baseline symbolic and neural models are taken from
[Pryor et al., 2022]. In order to study the effect of noise, we
introduce a (noisy) digit classifier for each MNIST image.

Table 1 shows the average accuracy and standard deviation
over ten splits on varying amounts of predictor noise. Inde-
pendent Baseline is the expected accuracy using only the
local predictor, i.e., the probability of the predictor labeling
of both numbers in the addition correctly. Energy and struc-
tured perceptron outperform the Independent Baseline with
25% and 50% noise, while both perform slightly worse with
10% noise. The energy loss outperforms structured percep-
tron in accuracy in most settings, while always providing
over a two times speed up in time.

While optimizing directly for accuracy is likely to improve
predictive performance, accuracy is non-differentiable and
hence less tractable. The differentiablity of both energy and
structured perceptron in training makes the models tractable.
For future work we intend to explore the trade off in perfor-
mance versus time for more complex tractable losses.

5 CONCLUSION

In this paper, we explore two efficient learning losses for
Deep HL-MRFs, energy and structured perceptron. There
are many avenues for future work including exploration
of additional efficient energy learning losses, looking into
losses that specifically focus on the metric being evaluated
over, and the exploration of additional application domains
to further understand when each loss is appropriate. Each
of these directions is likely to provide insights into creating
useful and accurate tractable models.
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