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Abstract

We analyze the necessary and su�cient conditions for exact inference of a latent model in

the context of community detection. In latent models, each entity is associated with a latent

variable following some probability distribution. The challenging question we try to solve

is: can we perform exact inference without observing the latent variables, even without

knowing what the domain of the latent variables is? We show that exact inference can be

achieved using a semidefinite programming (SDP) approach without knowing either the

latent variables or their domain. Our analysis predicts the experimental correctness of SDP

with high accuracy, showing the suitability of our focus on the Karush-Kuhn-Tucker (KKT)

conditions and the spectrum of a properly defined matrix. Running on a laptop equivalent,

our method can achieve exact inference in models with over 10000 entities e�ciently. As a

byproduct of our analysis, we also provide concentration inequalities with dependence on

latent variables, both for bounded moment generating functions as well as for the spectra of

matrices. To the best of our knowledge, these results are novel and could be useful for many

other problems.

1 Introduction

Generative network models have become a powerful tool for researchers in various fields, including data

mining, social sciences, and biology (Goldenberg et al., 2010; Fortunato, 2010). With the emergence of social

media in the past decade, researchers are now exposed to millions of records of interaction generated on

the Internet everyday. One can note that the generic structure and organization of social media resemble

certain network models, for instance, the Erdos-Renyi model, the stochastic block model, the latent space

model, the random dot product model (Goldenberg et al., 2010; Newman et al., 2002; Young & Scheinerman,

2007). The analogy comes from the fact that, in a social network each user can be modeled as an entity,

and the interaction of users can be modeled as edges. One common assumption is that nodes belong to

di�erent groups/communities. In social networks this can be users’ political view, music genre preferences, or

whether the user is a cat or dog person. Another common assumption, often referred to as homophily in prior

literature, suggests that entities from the same group are more likely to be connected with each other than

those from di�erent groups (Goldenberg et al., 2010; Ho�, 2008; Krivitsky et al., 2009). The core task of

community detection, also known as inference also known as or graph partitioning, is to partition the nodes

into groups based on the observed interaction information (Abbe, 2018; Ke & Honorio, 2018; Fortunato,

2010).

In this paper, we are particularly interested in the class of latent models beyond graphs, with latent variables

in arbitrary domains. In a latent model, every entity belongs to one of k groups/communities. Every entity

is associated with a latent variable in some arbitrary latent domain. It is natural to assume that for entities

from the same group, their associated latent variables follow the same probability distribution. The latent

model is equipped with a function to measure the homophily of two latent variables. Finally, two entities

have some a�nity score depending on their homophily in the latent domain. In other words, similar entities

are more likely to have a higher a�nity score. We want to highlight that, for the particular case of binary

(i.e., {0, 1}) a�nity scores, the latent model is a random graph model. The challenging problem problem we
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try to solve is to infer the true group assignments without observing the latent variables nor knowing the

latent domain.

In the past decade, there have actually existed a large amount of literature on network models, and most

focus on the class of fully observed models, for example, the Erdos-Renyi Model, and the Stochastic Block

Model. These models are calledWe call these models “fully observed”, because there are no latent variables,

and edges are generated based on the agreement of entity labels. Some e�cient algorithms have also been

proposed for inference in these fully observed models (Abbe et al., 2016; Bandeira, 2018; Hajek et al., 2016;

Chen & Xu, 2014). On the other hand, there is limited research on the class of latent models. Researchers

have motivated various network models with latent variables, including the latent space model (Ho� et al.,

2002), the exchangeable graph model (Goldenberg et al., 2010), the dot product model (Nickel, 2008), the

uniform dot product model (Young & Scheinerman, 2007), and the extremal vertices model (Daudin et al.,

2010). However to the best of our knowledge, no e�cient polynomial time algorithms with formal guarantees

have been proposed or analyzed for exact inference in latent models.

In this paper we address the problem of exact inference in latent models with arbitrary domains. More

specifically, our goal is to correctly infer the group assignment of every entity in a latent model without

observing the latent variables or the latent domain. We also propose a polynomial-time algorithm for

exact inference in latent models using semidefinite programming (SDP). While SDP was used before for

stochastic block models, our theoretical analysis shows that SDP can also tackle a more challenging setting:

latent models. We want to highlight that many techniques used in the analysis of fully observed models do

not directly apply to latent models. This is because in latent models, a�nities are no longer statistically

independent. As a result, latent models are more challenging to analyze than fully observed models, such as

the stochastic block model.

While SDP has been heavily proposed for di�erent machine learning problems, our goal in this paper is to

study the optimality of SDP for our more challenging model. Our analysis focuses on Karush-Kuhn-Tucker

(KKT) conditions and the spectrum of a carefully constructed primal-dual certificate. For convex problems

including SDPs, the KKT conditions are su�cient and necessary for strong duality and optimality (Boyd

& Vandenberghe, 2004). To the best of our knowledge, we are providing the first polynomial time method

for a generally computationally hard problem with formal guarantees. In general, problems involving latent

variables are computationally hard and either combinatorial or nonconvex, for instance, learning restricted

Boltzmann machines (Long & Servedio, 2010) or structural Support Vector Machines with latent variables

(Yu & Joachims, 2009). We test the proposed method on both synthetic and real-world datasets. Running

on a laptop equivalent, our method can achieve exact inference in models with over 10000 entities in less

than 30 minutes, suggesting the computational e�ciency of our approach. It is worth mentioning that

theoretical computer science typically assumes arbitrary inputs ("worst-case" computationally hard), whereas

we assume inputs are generated by a probabilistic generative model. Our results could be seen as "average-case"

polynomial time: we provide exact inference conditions with respect to the model parameters (p, q).

Summary of our contributions. We provide a series of novel results in this paper:

• We propose the definition of the latent model class, which is highly general and subsumes several

latent models from prior literature (see Table 1).

• We provide the first polynomial time algorithm for a generally computationally hard problem with

formal guarantees. We also analyze the su�cient conditions for exact inference in latent models using

a semidefinite programming approach.

• For completeness, we provide an information-theoretic lower bound on exact inference, and we analyze

when nonconvexpossibly exponential-time maximum likelihood estimation is correct.

• As a byproduct of our analysis, we provide latent conditional independence (LCI) concentration

inequalities, which are a key component in the analysis of latent models (see Remark 7). To the best

of our knowledge, these results are novel and could be useful for many other latent model problems.

The remainder of this document is organized as follows. Section 2 describes the problem and our notations.

Section 3 provides new concentration inequalities, pivotal for the analysis of latent models. Section 4
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Models X f(x
i

, x
j

)
Latent space model Rd exp(≠Îx

i

≠ x
j

Î2)
Exchangeable graph model {0, 1}d exp(≠ Îx

i

≠ x
j

Î
1

)
Dot product graph (DPG) Rd g(x

i

· x
j

)
Uniform DPG [0, 1]d g(x

i

· x
j

)
Extremal vertices model {x œ Rd

+

| x
i

Ø 0,
q

d

i=1

x
i

= 1} g(x
i

· x
j

)
Kernel latent variable model Rd

, sets, graphs, text, etc. g(K(x
i

, x
j

))

Table 1: Comparison of various latent models, including the latent space model (Ho� et al., 2002), the

exchangeable graph model (Goldenberg et al., 2010), the dot product graph (DPG) (Nickel, 2008), the uniform

DPG (Young & Scheinerman, 2007), the extremal vertices model (Daudin et al., 2010), and the kernel latent

variable model. In dot product models, g : R æ [0, 1] is a function that normalizes dot products to the range

of [0, 1]. In kernel models, K : X ◊ X æ R is an arbitrary kernel function.

investigates the su�cient conditions for exactly inferring the group assignment of entities via polynomial-time

semidefinite programming. Section 5 studies the fundamental limits in terms of information-theortic lower

bounds and possibly exponential-time methods. Section 6 provides experimental results. Section 7 presents

some concluding remarks.

2 Problem SettingPreliminaries

In this section, we formally introduce the problem and notations that will be used in later sections. First we

provide the definition of the class of latent models.

2.1 Problem Setting

Definition 1 (Class of latent models). A model M is called a latent model with n entities and k clustersgroups,
if M is equipped with structure (X , f, P)(Zú, X , f, P) æ (x

1

, . . . , x
n

, W ) satisfying the following properties:

• Zú œ {0, 1}n◊k is the true group assignment matrix, such that Zú
ij

= 1 if entity i is in group j, and
Zú

ij

= 0 otherwise.
• X is an arbitrary latent domain, and for every entity i, its associated latent varaible x

i

œ X ;
• f : X ◊ X æ [0, 1] is a homophily function, such that f(x, xÕ) = f(xÕ, x);
• P = (P

1

, . . . , P
k

) is the collection of k distributions with support on X .
• For every entity i in group j, nature randomly generates a latent variable x

i

from distribution P
j

.
• A random observed a�nity matrix W œ [0, 1]n◊n is generated, such that the conditional expectation

fulfills E
Wij [W

ij

|x
i

, x
j

] = f(x
i

, x
j

).

For simplicity we consider the balance case in this paper: each cluster has the same size m := n/k. Let Zú œ {0, 1}n◊k be the true cluster assignment matrix, such that Zú
ij

= 1 if entity i is in cluster j, and Zú
ij

= 0 otherwise. For every entity i in cluster j, nature randomly generates a latent vector x
i

œ X from distribution P
j

. A random observed a�nity matrix W œ [0, 1]n◊n is generated, such that the conditional expectation fulfills E
Wij [W

ij

|x
i

, x
j

] = f(x
i

, x
j

).

For simplicity we consider the balanced case in this paper: each group has the same size m := n/k.

Remark 1. We use [0, 1] for f and W for clarity of exposition. Our results can be trivially extended to a
general domain [0, B] for B > 0 using the same techniques in later sections.
Remark 2. A particular case of the latent model is a random graph model, in which every entry W

ij

in
the a�nity matrix is binary (i.e., W

ij

œ {0, 1}) and generated from a Bernoulli distribution with parameter
f(x

i

, x
j

).

Our definition of latent models is highly general. In Table 1, we illustrate several latent models motivated

from prior literature that can be subsumed under our model class by properly defining X and f .

Next we formally introduce our problem.
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Figure 1: Comparison of fully observed models (left) and latent models (right). The blue nodes are the true

(constant) labels Zú
. The green nodes are the unobserved latent random variables X in our model. The

red nodes are entries of the observed matrix W . In latent models, a�nities are not independent without

conditioning on latent variables. We say W ’s are latently conditional independent given X.

Problem 1 (Exact inference). Our goal is to infer a group assignment Z that is exactly equal to the true
group assignment Zú of a latent model M equipped with structure (Zú, X , f, P) æ (x

1

, . . . , x
n

, W ). The input
for our algorithm is W only. Our algorithm does not know Zú, X , f, P and does not observe x

1

, . . . , x
n

.

In latent models, a�nities are not independent if not conditioning on the latent variables. For example,

suppose i, j and kl are three entities. In fully observed models the a�nities W
ij

and W
ik

W
il

are independent,

but this is not true in latent models, as shown graphically in Figure 1. This motivates our following definition

of latent conditional independence (LCI).
Definition 2 (Latent Conditional Independence). We say random variables V = (v

1

, v
2

, . . . ) are latently
conditional independent given U , if v

1

, v
2

, . . . are mutually conditional independent given the unobserved
latent random variable U .

2.2 Notations

We denote [n] := {1, 2, . . . , n}. We use Sn

+

to denote the n-dimensional positive semidefinite matrix cone, and

Rn

+

to denote the n-dimensional nonnegative orthant.

For simplicity of analysis, we use z
i

œ {0, 1}k

to denote the i-th row of Z, and z(i) œ {0, 1}n

to denote the

i-th column of Z. We use X = (x
1

, . . . , x
n

) to denote the collection of latent variables.

We use È·, ·Í to denote the inner product of matrices, i.e., ÈW, Y Í =
q

ij

w
ij

y
ij

. Regarding eigenvalues of

matrices, we use ⁄
i

(·) to refer to the i-th smallest eigenvalue, and ⁄
max

(·) to refer to the maximum eigenvalue.

Regarding probabilities P
W

{·} ,P
X

{·}, and P
W X

{·}, the subscripts indicate the random variables. Regarding

expectations E
W

[·] ,E
X

[·], and E
W X

[·], the subscripts indicate which variables we are averaging over. We

use P
W

{· | X} to denote the conditional probability with respect to W given X, and E
W

[· | X] to denote

the conditional expectation with respect to W given X.

For matrices, we use Î·Î to denote the spectral norm of a matrix, and Î·Î
F

to denote the Frobenius norm. We

use tr (·) to denote the trace of a matrix, and rank (·) to denote the rank. We use the notation diag (a
1

, . . . , a
n

)
to denote a diagonal matrix with diagonal entries a

1

, . . . , a
n

. We also use I to refer to the identity matrix,

and 1
n

to refer to an all-one vector of length n. We use Sn≠1

to denote the unit (n ≠ 1)-sphere.

Let S
i

œ [n]m denote the index set of the i-th clustergroup. For any vector v œ Rn

, we define v
Si to be the

subvector of v on indices S
i

. Similarly for any matrix V œ Rn◊n

, we define V
SiSj to be the submatrix of V

on indices S
i

◊ S
j

. Denote the shorthand notation V
Si := V

SiSi .

Define d
i

(S
l

) :=
q

jœSl
W

ij

to be the degree of entity i with respect to clustergroup l. Define shorthand

notation d
i

to be the degree of entity i with respect to its own clustergroup. Algebraically, we have

d
i

:=
q

j

W
ij

zú€
i

zú
j

. We also denote D := diag (d
1

, . . . , d
n

).

In the following sections we will frequently use the expected values related to the observed a�nity matrix W .

Since it would be tedious to derive every expression from (X , f, P). To simplify thisrepetitively write those
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expected values, we introduce the following induced model parameters, which will be used throughout the

paper.

Definition 3 (Induced model parameters). In a latent model M equipped with structure
(X , f, P)(Zú, X , f, P) æ (x

1

, . . . , x
n

, W ), one can derive the following induced parameters: p
l

:=
E

X

[f(x
i

, x
j

) | i, j œ S
l

] for l œ [k], q
lr

:= E
X

[f(x
i

, x
j

) | i œ S
l

, j œ S
r

] for l, r œ [k], l ”= r. Furthermore,
one can define p := min

lœ[k]

p
l

, q := max
l,rœ[k],l ”=r

q
lr

. Note that both p, q œ [0, 1].

3 Latent Conditional Independence Concentration Inequalities

In this section we provide new concentration inequalities with dependence on latent variables, both for

bounded moment generating functions as well as for the spectra of matrices. It is worth highlighting that the

notations in this section are not related to any particular model defined above. The proofs are in Appendix

A.

Lemma 1 (LCI tail bound). Consider a finite sequence of random variables V = (v
1

, v
2

, . . . ) that are
LCI given U . Assume: 1) total expectation E

viU

[v
i

] = µ
i

; 2) each term v
i

≠ E
vi [v

i

| U ] is sub-Gaussian
with parameter ‡2

i

for all U ; 3) sum of conditional expectations
q

i

(E
vi [v

i

| U ] ≠ µ
i

) is sub-Gaussian with

parameter ‡2

U

. Then for all positive t, P
UV

{
q

i

(v
i

≠ µ
i

) Ø t} Æ exp
3

≠ t

2

2(‡

2

U +

q
i

‡

2

i )

4
.

Corollary 1 (LCI Hoe�ding’s inequality). Consider a finite sequence of random variables V = (v
1

, v
2

, . . . )
that are LCI given U . Assume: 1) total expectation E

viU

[v
i

] = µ
i

; 2) bounded random variable v
i

œ [a
i

, b
i

]
almost surely; 3) bounded sum of conditional expectations

q
i

E
vi [v

i

| U ] œ [a
U

, b
U

] almost surely. Then for

all positive t, P
UV

{
q

i

(v
i

≠ µ
i

) Ø t} Æ exp
3

≠ 2t

2

(bU ≠aU )

2

+

q
i
(bi≠ai)

2

4
.

Corollary 2 (LCI Bernstein inequality). Consider a finite sequence of random variables V = (v
1

, v
2

, . . . )
that are LCI given U . Assume: 1) zero total expectation E

viU

[v
i

] = 0; 2) bounded random variable |v
i

| Æ R
almost surely; 3) bounded variance E

vi

#
(v

i

≠ E
vi [v

i

| U ])2 | U
$

Æ ‹2

i

for all U , Var
U

[
q

i

E
vi [v

i

| U ]] Æ ‹2

U

.

Then for all positive t, P
UV

{
q

i

v
i

Ø t} Æ exp
3

≠ t

2

/2

‹

2

U +

q
i

‹

2

i +Rt/3

4
.

Lemma 2 (LCI matrix tail bound). Consider a finite sequence of random symmetric matrices V = (V
1

, V
2

, . . . )
of dimension d that are LCI given U . Let M

i

(U) := E
Vi [V

i

| U ] be the conditional expectation of V
i

given
U . Let g be a function g : (0, Œ) æ [0, Œ]. Assume: 1) zero total expectation E

ViU

[V
i

] = 0; 2) there exists
a sequence of symmetric matrices {A

i

} such that E
Vi

#
e◊(Vi≠Mi(U)) | U

$
∞ eg(◊)·Ai for ◊ > 0 and for all U ;

3) there exists a symmetric matrix A
U

such that E
U

Ë
e◊

q
i

Mi(U)

È
∞ eg(◊)·AU for ◊ > 0. Define the scale

parameter fl := ⁄
max

(A
U

+
q

i

A
i

). Then for all positive t, P
UV

{⁄
max

(
q

i

V
i

) Ø t} Æ d · inf
◊>0

e≠◊t+g(◊)·fl .

Corollary 3 (LCI matrix Bernstein inequality). Consider a finite sequence of random symmetric matrices
V = (V

1

, V
2

, . . . ) of dimension d that are LCI given U . Let M
i

(U) := E
Vi [V

i

| U ] be the conditional expectation
of V

i

given U . Assume: 1) zero total expectation E
ViU

[V
i

] = 0; 2) bounded eigenvalue ⁄
max

(V
i

) Æ R almost
surely; 3) bounded variance

..E
U

#
(
q

i

M
i

(U))2

$
+

q
i

E
Vi

#
(V

i

≠ M
i

(U))2 | U
$.. Æ ‡2 for all U . Then for all

positive t, P
UV

{⁄
max

(
q

i

V
i

) Ø t} Æ d · exp
1

≠ t

2

/2

‡

2

+Rt/3

2
.

4 Polynomial-Time Regime with Semidefinite ProgrammingExact Inference via
(Polynomial-Time) Semidefinite Programming

In this section we investigate the su�cient conditions for exactly inferring the group assignment of entities in

latent models. An algorithm achieves exact inference if the recovered group assignment matrix Z œ {0, 1}n◊k

is identical to the true assignment matrix Zú
up to permutation of its columns (without prior knowledge it is

impossible to infer the order of groups).

Overview of the proof. Our proof starts by looking at a maximum likelihood estimation (MLE) problem

(1), which cannot be solved e�ciently (for more details see Section 4). We relax the MLE problem (1) to

problem (2) (matrix-form relaxation), then to problem (3) (convex SDP relaxation). We ask under what
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conditions the relaxation holds (i.e., returns the groundtruth). Our analysis proves that, if the statistical

conditions in Theorem 1 are satisfied, by solving the relaxed convex optimization problem (3), one can recover

the true group assignment Zú
perfectly and e�ciently with probability tending to 1.

Our analysis can be broken down into two parts. In the first part we demonstrate that the exact inference

problem in latent models can be relaxed to a semidefinite programming problem. It is well-known that SDP

problems can be solved e�ciently (Boyd & Vandenberghe, 2004). We employ Karush-Kuhn-Tucker (KKT)
conditions in our proof to construct a pair of primal-dual certificates, which shows that the SDP relaxation

leads to the optimal solution under certain deterministic spectrum conditions. In the second part we analyze

the statistical conditions for exact inference to succeed with high probability. The proofs are in Appendix B.

4.1 SDP Relaxation

We first consider a maximum likelihood estimation approach to recover the true assignment Zú
. The use of

MLE in graph partitioning and community detection literature is customary (Bandeira, 2018; Abbe et al.,

2016; Chen & Xu, 2014). The motivation is to find clustergroup assignments, such that the number of edges

within clustersgroups is maximized. Recall that z
i

œ {0, 1}k

is the i-th row of Z, and z(i) œ {0, 1}n

is the

i-th column of Z. Given the observed matrix W , the goal is to find a binary assignment matrix Z, such thatq
i,j

W
ij

z€
i

z
j

is maximized. In the matrix form, MLE can be cast as the following optimization problem:

maximize
Z

ÈW, ZZ€Í

subject to Z œ {0, 1}n◊k, Z€1
n

= m1
k

, Z1
k

= 1
n

. (1)

where the last two constraints enforce that each entity is in one of the k groups, and each group has size

m = n/k. As mentioned before, we consider the balanced case for simplicity. If group sizes are s = (s
1

, ..., s
k

),
then one would add the constraint Z€1

n

= s. Note that s = m1
k

in (1).

Problem (1) is nonconvexcombinatorial and hard to solve because of the {0, 1} constraint. In fact, in the

case of two clustersgroups (k = 2) and 0-1 weights, the MLE formulation reduces to the Minimum Bisection

problem, which is known to be NP-hard (Garey et al., 1976). To relax it, we introduce the clustergroup

matrix Y = ZZ€
. One can see that Y is a rank-k, {0, 1} positive semidefinite matrix. Each entry is 1 if and

only if the corresponding two entities are in the same group (z
i

= z
j

). Similarly we can define Y ú = ZúZú€

for the true clustergroup matrix. Then the optimization problem becomes

maximize
Y

ÈW, Y Í

subject to Y
ii

= 1 , ’i œ [n], Y 1
n

= m1
n

, 1€
n

Y = m1€
n

Y ≤Sn
+

0, Y ≤Rn
+

0, rank (Y ) = k . (2)

Problem (2) is still nonconvex because of the rank constraint. By dropping this constraint, we obtain the

main SDP problem:

maximize
Y

ÈW, Y Í

subject to Y
ii

= 1, ’i œ [n], Y 1
n

= m1
n

, 1€
n

Y = m1€
n

Y ≤Sn
+

0, Y ≤Rn
+

0 . (3)

Problem (3) is now convex and can be solved e�ciently. A natural question is: under what circumstances the

optimal solution to (3) will match the solution to the original problem (1)? To answer the question, we take

a primal-dual approach. One can easily see there exists a strictly feasible Y for the constraints in (3). Thus

Slater’s condition guarantees strong duality (Boyd & Vandenberghe, 2004). We now proceed to derive the

dual problem.
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Lemma 3 (Dual problem). The dual of (3) is

minimize
h,A,�

tr (A) + 2mh€1
n

subject to A ≠ W + h1€
n

+ 1
n

h€ ≠ � ≤Sn
+

0
A is diagonal, �

Si = 0 , ’i œ [k], � ≤Rn
+

0 . (4)

We now construct the primal-dual certificates to close the duality gap between problem (3) and (4).

Lemma 4 (Primal-dual certificates). Let P := I ≠ 1

m

1
m

1€
m

to be the projection onto the orthogonal
complement of span (1

m

). By setting the dual variables as h = „

2

1
n

, A = D ≠ m„I, �
Si = 0, ’i œ [k], �

SiSj =
„1

m

1€
m

+ PW
SiSj P ≠ W

SiSj , ’i ”= j, where „ œ R is a constant to be determined later, the duality gap between
(3) and (4) is closed.

It remains to verify feasibility of the dual constraints in (4). It is trivial to verify that A = D ≠ m„I is

diagonal, and �
Si ≤Rm

+

0. We now summarize the dual feasibility conditions.

Lemma 5 (Dual feasibility). Let h, A, � be defined as in Lemma 4. If

� := D ≠ m„I ≠ W + „1
n

1€
n

≠ � ≤Sn
+

0 , (5)

and
�

SiSj ≤Rm
+

0 (6)

for every i, j œ [k] with i ”= j, then the dual constraints in (4) are satisfied.

We also require the optimal solution to be unique. This means Y ú = ZúZú€
should be the only

optimal solution to problem (3). To do so we look into the eigenvalues of � defined in Lemma 5. It is easy

to verify that every zú(i)

is an eigenvector of � with �zú(i) = 0. To ensure uniqueness, it is su�cient to

require that all other n ≠ k eigenvalues of � are strictly positive. We now provide the following lemma about

uniqueness.

Lemma 6 (Uniqueness). The convex relaxed problem (3) achieves exact inference and outputs the unique
optimal solution Y = Y ú = ZúZú€, if

⁄
k+1

(�) > 0 . (7)

Remark 3. Why is the requirement of uniqueness reasonable? Because our latent models are generative, i.e.,
the ground truth Zú is unique and generates everything, including the latent variables X and the observed
matrix W (see Figure 1). From the perspective of optimization, in some cases there may exist multiple optimal
solutions, but we are only interested in the cases in which the preexisting groundtruth Zú is returned. In fact,
the requirement of uniqueness is customary in generative models (Abbe et al., 2016; Bandeira, 2018; Chen &
Xu, 2014).

Combining the results above, we now give the su�cient conditions for exact inference.

Lemma 7 (Deterministic su�cient conditions). Let h, A, � be defined as in Lemma 4. If

�
SiSj ≤Rm

+

0 (8)

for every i, j œ [k] with i ”= j, and

⁄
k+1

(�) > 0 , (9)

then Y ú = ZúZú€ is the unique primal optimal solution to (3), and (h, A, �) is the dual optimal solution to
(4).

Note that Lemma 7 gives the deterministic condition for our SDP relaxation to succeed. In the following two

sections, we characterize the statistical conditions for (8) and (9) to hold with probability tending to 1.

7
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4.2 Entrywise Nonnegativity of �

In this section we analyze the statistical conditions for (8) to hold with high probability. From Lemma 4 it

follows that �
SiSj = „1

m

1€
m

+ PW
SiSj P ≠ W

SiSj , ’i ”= j. To ensure dual feasibility, it is necessary to ensure

that every entry in �
SiSj is nonnegative with high probability by setting a proper „.

We now present the condition for (8) to hold with high probability.

Lemma 8 (Choice of „). If „ Ø q +O

3Ò
k log n

n

4
, then �

SiSj ≤Rm
+

0 holds for every i, j œ [k] with probability

at least 1 ≠ O
!

1

n

"
.

Remark 4. To ensure nonnegativity, one may think about setting „ to be some su�ciently large constant
(for example, set „ = 2). This is not going to work, however, as the choice of „ also plays a critical role in
the analysis of (9) in the next section. In order to obtain a tighter final result, it is necessary to pick the
smallest possible „, without breaking the nonnegativity of �. For further details see Lemma 9.

4.3 Statistical Conditions of E�cient Inference

In this section we analyze the statistical conditions for (9) to hold with high probability. To do so, we first

look at the expectation of �.

Lemma 9 (Eigenvalue of expectation). It follows that

⁄
k+1

(E
W X

[�]) Ø m(p ≠ „) . (10)

Remark 5. The expectation above shows why the choice of „ matters. With a larger „, one has less degree
of freedom to work with, in terms of the concentration inequalities.

The next step is to show that the eigenvalue of � will not deviate too much from its expectation, so that

⁄
k+1

(�) is greater than 0 with high probability. In fact we have the following lemma.

Lemma 10 (Su�cient concentration conditions). Assuming that „ < p. To prove (9) holds with high
probability, it is su�cient to prove

min
i

(d
i

≠ E
W X

[d
i

]) + m

2 (p ≠ „) > 0 (11)

and

≠⁄
max

(W ≠ E
W X

[W ]) + m

2 (p ≠ „) > 0 (12)

hold with high probability.

We now present the statistical conditions for exact inference of latent models using semidefinite programming.

Theorem 1. In a latent model of k clustersgroups and n entities, with induced parameters (p, q) as in
Definition 3, if

q
n

j=1

(E
W

[W
ij

| X] ≠ E
W X

[W
ij

]) is sub-Gaussian with parameter O(n) for all i œ [n], and..E
X

#
(E

W

[W | X] ≠ E
W X

[W ])2

$.. = O(n), then the SDP-relaxed problem (3) achieves exact inference, i.e.,
Y = Y ú = ZúZú€, with probability at least 1 ≠ O

!
1

n

"
, as long as

(p ≠ q)2

k2

= �
3

log n

n

4
. (13)

Remark 6. Our theorem requires that the deviation between the conditional expectations E
W

[W
ij

| X] =
f(x

i

, x
j

) and the total expectations E
W X

[W
ij

] = p (or q), to be bounded above by some variance. Similar
deviation bounds are necessary for latent models in general. To illustrate this, in Appendix C we discuss a
counterexample, which fulfills the final condition above but not the deviation assumptions.

8
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Remark 7. The LCI inequalities are a key component in our analysis. This is because in our model, W
depends on E

W

[W | X], and E
W

[W | X] depends on E
W X

[W ]. Regular matrix concentration requires two
steps: concentrating the observed random matrix W around the conditional expectation E

W

[W | X] using
matrix Bernstein inequality, then concentrating E

W

[W | X] around the total expectation E
W X

[W ] using
matrix Chebyshev inequality. This approach gives the final bound in the form of (p ≠ q)2/k2 = �(n2), which
is much worse than the �(log n/n) rate. On the other hand, the LCI inequalities can be applied in one single
step in the analysis, while giving us a tighter bound.

4.4 Reparametrization of Latent Space Model

As an example, in this section we present the latent space model (Ho� et al., 2002). We show the latent space

model can be subsumed by our latent model class as in Definition 1, and Theorem 1 provides the statistical

condition for exact inference. The proofs can be found in Appendix D.

Definition 4 (Symmetric latent space model). Let n be a positive even integer, ‡ > 0, d œ Z+, and
µ œ Rd, µ ”= 0. In a symmetric latent space model with n nodes and two clustersgroups {+1, ≠1}, nature
picks the groundtruth yú randomly from the space Y = {y : y œ {±1}n, 1€y = 0}. Each latent vector x

i

is generated from the d-dimensional Gaussian distribution N
d

(yú
i

µ, ‡2I). A random graph G is generated
from X = (x

1

, . . . , x
n

), such that for every pair of nodes i and j, (i, j) is an edge of G with probability
exp(≠Îx

i

≠ x
j

Î2).
Corollary 4 (Exact inference in latent space model). In a d-dimensional symmetric latent space model of n
entities, with parameters (µ, ‡) as in Definition 4, if the order of d = �(log n) and µ, ‡ are constant, then the
SDP-relaxed problem (3) achieves exact inference with probability at least 1 ≠ O

!
1

n

"
, as long as

(4‡2 + 1)≠d

A
1 ≠ exp

A
≠ 4ÎµÎ2

4‡2 + 1

BB
2

= �
3

log n

n

4
.

5 Additional AnalysisFundamental Limits

In this section, for completeness, we also provide an information-theoretic lower bound on exact inference

(i.e., the impossible regime), and we analyze when (nonconvex)(possibly exponential-time) maximum like-

lihood estimation is correct (i.e., the hard regime). Both results allow for finding the fundamental limits

without computational constraints. The proofs are in Appendix E.

5.1 Impossible RegimeInformation-Theoretic Lower Bound

In this section we analyze the necessary conditions for exact inference of latent models. Our goal is to

characterize the information-theoretic lower limit of any algorithm for inferring the true labels Zú
in our model.

More specifically, we would like to infer labels Ẑ given the observation of the adjacency matrix W . Also note

that we do not observe the collection of latent variables X. We present the following information-theoretic

lower bound for our model.

Claim 1. Let Zú be the true assignment matrix sampled uniformly at random. In a latent model of k
clustersgroups and n entities, with induced parameters (p, q) as in Definition 3, if

p

k
log(p/q) = O

3
1
n

4
,

then the probability of error P
Ó

Ẑ ”= Zú
Ô

Ø 1/2, for any algorithm that a learner could use for picking Ẑ.

5.2 Hard Regime withPossibly Exponential-Time Maximum Likelihood Estimation

In this section we analyze the conditions for exact inference of the true labels in latent models

using nonconvexcombinatorial maximum likelihood estimation by solving optimization problem (1).

9
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We call this the hard regime because enumerating Z takes O(kn) iterations. TheIn the case of two groups

(k = 2) and 0-1 weights, the problem reduces to the Minimum Bisection problem, which is known to be

NP-hard (Garey et al., 1976). Intuitively speaking, there exist exponentially many (i.e., O(kn)) feasible Z in

problem (1). This problem can be rewritten in the following square matrix form:

maximize
Y œY

ÈW, Y Í , (14)

where

Y = {ZZ€ | Z œ {0, 1}n◊k, Z€1
n

= n

k
1

k

, Z1
k

= 1
n

} ,

is the space of all feasible solutions. We now state the conditions for exact inference of latent models using

maximum likelihood estimation.

Claim 2. In a latent model of k clustersgroups and n entities, with induced parameters (p, q) as in Definition
3, if

q
i,j

(E
W

[W
ij

| X] ≠ E
W X

[W
ij

]) is sub-Gaussian with parameter O(n) for all Y , then the maximum
likelihood estimation (14) achieves exact inference, i.e., Y = Y ú = ZúZú€, with probability at least 1 ≠ O

!
1

n

"
,

as long as
(p ≠ q)2

k
= �

3
log n

n

4
.

6 Experimental ValidationNumerical Experiments

In this section, we validate the proposed program (3) and Theorem 1 through synthetic and real-world

experiments.

6.1 Small Latent Space Model

Experiment 1: We validate the proposed method on a latent space model using CVX (Grant & Boyd,

2014). We pick X = R2

as the latent domain. We generate the latent variables using Gaussian distributions,

such that P
1

= N
2

(µ, ‡2I), P
2

= N
2

(≠µ, ‡2I), where N denotes the Gaussian distribution. We set the

homophily function f(x, xÕ) = exp(≠Îx ≠ xÕÎ2), and each entry W
ij

is sampled from Bernoulli distribution

with parameter f(x
i

, x
j

). The parameters in our simulations is ÎµÎ. We iterate ÎµÎ from 0.1 to 20 with an

interval of 0.1. For each value of ÎµÎ, we run 20 trials and calculate the empirical probability that CVX

returns the correct clustergroup matrix: P {Y = Y ú}.

WeIn Figure 2, we plot the empirical probability of exact inference against value C, which is defined as

C := n(p ≠ q)2/ log n in the x-axis. Note that C is equal to the left-hand side of (13) divided by its right-hand

side, and p, q are the induced parameters calculated as in Definition 3. Our result suggests that as C gets

larger, the proposed algorithm achieves exact inference with high probability tending to 1. This matches our

theoretic findings in Theorem 1.

6.2 Larger Latent Space Model

Experiment 2: We validate the proposed method on a large scale latent space model. In this experiment

we fix the number of entities n to be 10000. It is known that CVX can be ine�cient to solve large scale

semidefinite programs due to the large memory cost. To test the proposed algorithm with more entities,

we implement a gradient method SDP solverwe implemented an interior point method. There also exist

e�cient solvers for n = 10000000 such as (Yurtsever et al., 2021). We use the same model parameters as in

Experiment 1, except that we fix ÎµÎ = 1 now, and iterate ‡2

from 0.25 to 1.25 with an interval of 0.25.

We report the average number of correctly recovered labels, and the empirical probability of exact inference

P {Y = Y ú}, in Figure 3. Our result suggests that even in the large scale case (10000 entities in total), exact

inference of the clustergroup structure can be achieved e�ciently through a gradient methodan interior-point

SDP solver.

Validation of the spectrum conditions on other latent models, including the exchangeable graph model and

the kernel latent variable model, can be found in Appendix F.1.

10
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Figure 2: Simulations on the latent space model using CVX. The x-axis is set by C := n(p ≠ q)2/ log n, and

the y-axis is the empirical probability of exact inference P {Y = Y ú}. The growing curves match our theoretic

findings in Theorem 1.

Figure 3: Simulations on the latent space model using CVXour interior-point implementation. The x-axis is

the Gaussian distribution variance ‡2

, and the y-axis is the number of recovered labels and the empirical

probability of exact inference P {Y = Y ú}, respectively. Even if n = 10000, as long as the variance is not too

large, exact inference of the clustergroup structure can be achieved e�ciently through the proposed method.

6.3 Scalability

Experiment 3: We test the runtime scalability of the gradient methodour interior-point SDP solver on a

large scale latent space model. We iterate n from 1000 to 10000 with an interval of 1000. We use the same

model parameters as in Experiment 1, except that we fix ÎµÎ = 1, and ‡2 = 0.25 now. We report the runtime

of the gradient methodour interior-point SDP solver in Figure 4. The runtime can be fitted almost perfectly

by a third order polynomial, suggesting the e�ciency of the method.

As a comparison, when n is set to 1000, CVX SDPT3 solver takes 36.26 seconds, and our

gradient methodinterior-point SDP solver takes only 2.50. When n is set to 2000, CVX SDPT3 solver

runs out of 16GB memory, and our gradient methodinterior-point SDP solver succeeds and takes only 15.95

seconds.

6.4 Real-World Experiments

Experiment 4: We test the adequacy of our method on a real-world dataset email-Eu-core (Leskovec &

Krevl, 2014), where the equal sizebalancedness assumption does not hold. During each trial, we extract n
most connected nodes from the dataset, and solve for the clustergroup structure in the induced subgraph.

We also compare our results with the Kernighan-Lin algorithm with random initialization for 100 iterations.

11
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Figure 4: Runtime of the gradient methodour interior-point SDP solver versus the number of entities. The

runtime can be fitted almost perfectly by a third order polynomial, suggesting the e�ciency of the method.

Figure 5: Simulations using the real-world dataset email-Eu-core (Leskovec & Krevl, 2014). In the n = 200
case, the two clustersgroups have 92 and 108 entities, respectively. The result suggests that our method

performs well even if the balancedness assumption does not hold.

We report the number of correctly recovered labels in Figure 5. The result suggests that our method performs

well compared to the Kernighan-Lin algorithm, even in cases where the equal sizebalancedness assumption

does not hold.

Additional real-world experiments can be found in Appendix F.2.

6.5 Additional ExperimentsComparison Versus A Reasonable Alternative

One of our contributions in this paper, is to show that our proposed method can achieve exact inference

in latent models, without estimating the latent vectorsvariables. That is, the power of our method is that

we do not need to guess the latent variables x
i

’s values in order to infer the true group assignments. In contrast,

the maximum likelihood estimation (MLE) approach of recovering the cluster structure in a latent model, is to

a reasonable machine learning practitioner would follow an “alternate” maximum likelihood estimation

(MLE) approach: estimate all the latent vectorsvariables x
i

’s first, and then run clustering algorithms (e.g.,

K-means) using the estimated latent vectorsvariables. Note that, with respect to our proposed method, an

alternate MLE approach will necessarily require some extra knowledge of the domain X of x
i

’s and the

function f(x, xÕ). Here we demonstrate that our proposed method, without the need to estimate the latent

vectorsvariables, can achieve even better performance than the alternate MLE approach.

12
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Algorithm 1 Alternate Maximum Likelihood Estimation

Input: A�nity matrix W œ {0, 1}n◊n

, latent space dimension d, regularization parameter ⁄
Output: Predicted label vector ẑ

x
1

, . . . , x
n

Ω N
d

(0, I) {random Gaussian initialization of latent vectors}

while not converge do
for i = 1, . . . , n do

{solution of a nonconvex optimization problem}

x
i

Ω arg min
xi

1

n≠1

q
j ”=i

1
W

ij

Îx
i

≠ x
j

Î2 + (W
ij

≠ 1) log
1

1 ≠ exp(≠Îx
i

≠ x
j

Î2)
22

+ ⁄

2(n≠1)

Îx
i

Î2

end for
end while
ẑ Ω K-means({x

1

, . . . , x
n

}, 2) {2-means clustering using estimated latent vectors}

Figure 6: Probability of exact inference in latent space model. Left: our SDP method. Mid: alternate MLE

with ⁄ = 0. Right: alternate MLE with ⁄ = 1. A brighter color indicates a higher probability of successful

trials.

To do so, we compare the performance of our SDP method against that of an alternate MLE approach

(Algorithm 1). We test both algorithms on a synthetic latent space model with two clustersgroups. We pick

X = R2

as the latent domain. We fix the number of entities n to be 100. We generate Zú
by randomly

assigning n/2 entities to one group (zú
i

= 1), and n/2 entities to the other group (zú
i

= ≠1). We generate the

latent variables using Gaussian distributions, such that P
1

= N
2

(µ, ‡2I), P
2

= N
2

(≠µ, ‡2I), where N denotes

the Gaussian distribution. We also set f(x, xÕ) = exp(≠Îx ≠ xÕÎ2). The parameters in our simulations are

ÎµÎ and ‡. Each entry W
ij

follows Bernoulli distribution with probability f(x
i

, x
j

).

The motivation behind Algorithm 1 is as follows. The algorithm first initializes the latent vectors x
1

, . . . , x
n

ran-

domly. Then for each latent vector x
i

, the algorithm seeks to maximize its likelihood based on the observation

of a�nity W
ij

’s and other latent vector x
j

’s. Since in the latent space model W
ij

follows Bernoulli distribution

with probability f(x
i

, x
j

), the likelihood function of x
i

is

r
j ”=i

f(x
i

, x
j

)Wij (1 ≠ f(x
i

, x
j

))1≠Wij , which has a

negative log likelihood of

q
j ”=i

1
W

ij

Îx
i

≠ x
j

Î2 + (W
ij

≠ 1) log
1

1 ≠ exp(≠Îx
i

≠ x
j

Î2)
22

. Reweighting the

expression above and adding an Euclidean regularization term, we obtain the following nonconvex objective

function

1

n≠1

q
j ”=i

1
W

ij

Îx
i

≠ x
j

Î2 + (W
ij

≠ 1) log
1

1 ≠ exp(≠Îx
i

≠ x
j

Î2)
22

+ ⁄

2(n≠1)

Îx
i

Î2

. We solve for x
i

’s

using the MATLAB built-in fminunc solver. After that, the algorithm uses 2-means algorithm to recover the

clustergroup structure.

It is worth highlighting that our SDP solver does not have access to the side information in Algorithm 1.

First, the cost function in the MLE solver perfectly matches the function ff(x, xÕ) = exp(≠Îx ≠ xÕÎ2) being

used in the generative process, which gives a bonus to the algorithm. Second, Algorithm 1 takes the true

dimension of the latent space d = 2 as an input, while our SDP method does not observe that at all. In fact,

our SDP solver does not even know that X = Rd

. Thus, the proposed SDP method has much less information

than the alternate MLE method.
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Figure 7: Percentage of recovered labels in latent space model. Left: our SDP method. Mid: alternate MLE

with ⁄ = 0. Right: alternate MLE with ⁄ = 1. A brighter color indicates a higher percentage of recovered

labels.

Figure 8: Latent space model with ÎµÎ = 1, ‡ = 0.2. Top: distribution of latent vectors. Bottom:
distribution of true labels, labels predicted by our method, and labels predicted by alternate MLE.

We run each trial for 10 times. We report the empirical probability of achieving exact inference in Figure

6, and we report the average percentage of correctly recovered labels in Figure 7. The figures suggest that

our method outperforms the alternate MLE approach using both metrics. To help better comparing the

two methods, we visualize an instance of the latent space model with ÎµÎ2 = 1, ‡ = 0.2 in Figure 8. We

plot the true distribution of the latent vectors, as well as the true labels and the labels predicted by the

two methods. The result suggests that even in this simple case, the alternate MLE method cannot produce

accurate inference results, while our method produces perfect results. We believe this happens due to the

fact that the alternate MLE approach gets trapped in local minima of its highly nonconvex problem.

Remark 8. We sum up the comparison. The alternate MLE method estimates the latent vectorsvariables,
while our SDP method does not. The alternate MLE method utilizes the side information about the functions
and the domain/dimension being used in the generative process, while our SDP method does not have access to
any side information at all. Nevertheless, our proposed method performs significantly better than the alternate
MLE approach.
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7 Future WorkConcluding Remarks

In this paperIn the context of community detection, we considered the problem of exact inference in latent

models characterized by an arbitrary latent domain X and a binary homophily function f : X ◊ X æ [0, 1].
We provided e�cient algorithms, as well as theoretical guarantees for inference.

It remains an open question, if our current results could be generalized to models involving higher order

interactions. In other words, is it possible to give exact inference guarantees and e�cient algorithms, if f
takes more than two parameters? A naive approach is to use supersymmetric tensors to characterize the

homophily between multiple entities. This could be a direction in the future.

References
Emmanuel Abbe. Community detection and stochastic block models: Recent developments. Journal of

Machine Learning Research, 18(177):1–86, 2018.

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block model. IEEE
Transactions on Information Theory, 62(1):471–487, 2016.

Afonso S Bandeira. Random laplacian matrices and convex relaxations. Foundations of Computational
Mathematics, 18(2):345–379, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yudong Chen and Jiaming Xu. Statistical-computational phase transitions in planted models: The high-

dimensional setting. In International Conference on Machine Learning, pp. 244–252, 2014.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

Jean-Jacques Daudin, Laurent Pierre, and Corinne Vacher. Model for heterogeneous random networks using

continuous latent variables and an application to a tree–fungus network. Biometrics, 66(4):1043–1051,

2010.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete graph problems. Theoretical
Computer Science, 1(3):237 – 267, 1976. ISSN 0304-3975.

Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al. A survey of statistical

network models. Foundations and Trends® in Machine Learning, 2(2):129–233, 2010.

Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,

S. Boyd, and H. Kimura (eds.), Recent Advances in Learning and Control, Lecture Notes in Control and

Information Sciences, pp. 95–110. Springer-Verlag Limited, 2008.

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version 2.1.

http://cvxr.com/cvx, March 2014.

Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery threshold via semidefinite

programming. IEEE Transactions on Information Theory, 62(5):2788–2797, 2016.

Peter Ho�. Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in
neural information processing systems, pp. 657–664, 2008.

Peter D Ho�, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network analysis.

Journal of the american Statistical association, 97(460):1090–1098, 2002.

Chuyang Ke and Jean Honorio. Information-theoretic limits for community detection in network models.

Advances in Neural Information Processing Systems, 2018.

15

http://cvxr.com/cvx


Under review as submission to TMLR

Pavel N Krivitsky, Mark S Handcock, Adrian E Raftery, and Peter D Ho�. Representing degree distributions,

clustering, and homophily in social networks with latent cluster random e�ects models. Social networks, 31

(3):204–213, 2009.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data, June 2014.

Philip M Long and Rocco A Servedio. Restricted boltzmann machines are hard to approximately evaluate or

simulate. In Proceedings of the 27th annual international conference on machine learning, 2010.

Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random graph models of social networks.

Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

Christine Leigh Myers Nickel. Random dot product graphs a model for social networks. PhD thesis, Johns

Hopkins University, 2008.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389–434, 2012.

Stephen J Young and Edward R Scheinerman. Random dot product graph models for social networks. In

International Workshop on Algorithms and Models for the Web-Graph, pp. 138–149. Springer, 2007.

Bin Yu. Assouad, Fano, and Le Cam. Festschrift for Lucien Le Cam, 423:435, 1997.

Chun-Nam John Yu and Thorsten Joachims. Learning structural svms with latent variables. In Proceedings
of the 26th annual international conference on machine learning, pp. 1169–1176. ACM, 2009.

Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable semidefinite

programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021.

16

http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	[rgb]1,0,0Problem Setting[rgb]0,0,1Preliminaries
	[rgb]0,0,1Problem Setting
	Notations

	Latent Conditional Independence Concentration Inequalities
	[rgb]1,0,0Polynomial-Time Regime with Semidefinite Programming[rgb]0,0,1Exact Inference via (Polynomial-Time) Semidefinite Programming
	SDP Relaxation
	Entrywise Nonnegativity of 
	Statistical Conditions of Efficient Inference
	Reparametrization of Latent Space Model

	[rgb]1,0,0Additional Analysis[rgb]0,0,1Fundamental Limits
	[rgb]1,0,0Impossible Regime[rgb]0,0,1Information-Theoretic Lower Bound
	[rgb]1,0,0Hard Regime with[rgb]0,0,1Possibly Exponential-Time Maximum Likelihood Estimation

	[rgb]1,0,0Experimental Validation[rgb]0,0,1Numerical Experiments
	[rgb]0,0,1Small Latent Space Model
	[rgb]0,0,1Larger Latent Space Model
	[rgb]0,0,1Scalability
	[rgb]0,0,1Real-World Experiments
	[rgb]1,0,0Additional Experiments[rgb]0,0,1Comparison Versus A Reasonable Alternative

	[rgb]1,0,0Future Work[rgb]0,0,1Concluding Remarks
	Proof of LCI Concentration Inequalities
	Proofs for Polynomial-Time Regime with Semidefinite Programming
	A Counterexample to Theorem 1 without Deviation Assumptions
	Reparametrization of the Latent Space Model
	Proofs for [rgb]1,0,0Additional Analysis[rgb]0,0,1Fundamental Limits
	Proof of Claim 1
	Proof of Claim 2

	[rgb]1,0,0Simulation Results[rgb]0,0,1Additional Numerical Experiments
	Validation of Spectrum [rgb]1,0,0Condition[rgb]0,0,1Conditions on Various Latent Models
	[rgb]1,0,0Validation Using Real-world Data[rgb]0,0,1Additional Real-World Experiments


