
Under review as a conference paper at ICLR 2024

SEARCH: A SELF-EVOLVING FRAMEWORK FOR
NETWORK ARCHITECTURE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies a fundamental network optimization problem that finds a net-
work architecture with optimal performance (low loss) under given resource bud-
gets (small number of parameters and/or fast inference). Unlike existing network
optimization approaches such as network pruning, knowledge distillation (KD),
and network architecture search (NAS), in this work we introduce a self-evolving
pipeline to perform network optimization. In this framework, a simple network
iteratively and adaptively modifies its structures by using the guidance from a
teacher network, until it reaches the resource budget. An attention module is in-
troduced to transfer the knowledge from the teacher network to the student net-
work. A splitting edge scheme is designed to help the student model find an
optimal macro architecture. The proposed framework combines the advantages of
pruning, KD, and NAS, and hence, can efficiently generate networks with flex-
ible structure and desirable performance. Extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet demonstrated that our framework achieves great per-
formance in this network architecture optimization task.

1 INTRODUCTION

Deep neural networks (DNN) have achieved state-of-the-art performance in numerous computer
vision and natural language processing tasks. These networks are often manually designed and fine-
tuned using large datasets, resulting in complex architectures with a large number of parameters. In
many applications, networks need to be simplified in order to be deployed on specific platforms with
constrained resources (e.g. mobile/portable devices with limited processing/memory capability) or
to meet latency requirement (e.g. for real-time tasks).

To simplify or optimize a given well-performing but oversized network, three main network opti-
mization strategies have been widely studied in the literature: (1) network pruning (Li et al., 2016;
Wang et al., 2021), (2) knowledge distillation (Gou et al., 2021; Wang & Yoon, 2021), and (3) neural
architecture search (Liu et al., 2018).

• Network pruning methods iteratively and selectively remove network branches or channels ac-
cording to the given budget. Although generally computationally efficient, these methods fre-
quently lead to sub-optimal performance.

• Knowledge distillation (KD) methods transfer knowledge from a larger, trained network (the
teacher) to a smaller network (the student). The presence of a teacher network enhances training
efficiency. However, the architecture of the student network is usually manually predefined,
without optimization, which can compromise its performance.

• Neural architecture search (NAS) methods aim to discover the most effective architecture by
navigating a vast space of network components. While this approach can yield networks with
adaptable structures and impressive performance, conducting a thorough search is frequently
prohibitively expensive and demands substantial computational resources.

We denote the given well-trained network in need of simplification as the teacher model and assume
that it has acquired effective feature maps. Our goal is to discover a new network, denoted as the
student model, with a constrained number of parameters while maintaining optimal performance,
such as classification accuracy. We introduce a Self-Evolving Architecture optimization framework

1

Under review as a conference paper at ICLR 2024

Teacher
Model

…………

…………

Student Model at Iteration k

Student Model at Iteration k+1

Supervised
Training

Bottleneck Node
Identification

Edge

Arch Evolution by
Edge-Splitting

Repeat
①②③

Self-Evolving Optimization

①
②

③

Node

Figure 1: An overview of the proposed pipeline. Given a well-trained teacher model that requires
optimization, we iteratively evolve and grow a student network until the given resource constraint is
reached. In each iteration, the optimization process includes three stages: (1) transferring knowledge
from the teacher model to the student model by supervised training; (2) selecting a candidate edge
according to the modification value score; and (3) modifying the network structure of the candidate
edge by edge splitting to enhance its expressiveness.

(SEArch) that is both effective (in terms of performance) and efficient, leveraging the strengths of
these three strategies. Our main idea is to iteratively evolve a student network, allowing it to dy-
namically adjust its architecture until the given resource constraint is reached. The student network
initiates with a very simple structure. During the optimization process, we iteratively identify and
modify the bottlenecks under the guidance of the teacher model’s feature maps.

Unlike network pruning methods that simply trim down the original network and knowledge distil-
lation methods that refine a network with a fixed structure, our evolving approach allows for flexible
adjustments to the overall network architecture. Compared with NAS methods that discover a net-
work from a large supernet, our SEArch framework constructs an optimal architecture in a reverse
manner. We iteratively identify the bottleneck of the student network and refine the corresponding
structure, hence, our search demonstrates faster convergence.

Our main contributions are summarized as follows.

• We proposed a Self-Evolving network Architecture optimization framework, or SEArch. This
framework iteratively adjusts the network architecture topology, incorporating the benefits of
network pruning, KD, and architecture search methods.

• To facilitate faster transfer learning and network topology optimization, we designed an effec-
tive attention mechanism, a bottleneck identification, and an edge-splitting scheme for efficient
construction of new networks.

• Comprehensive experiments demonstrated our framework achieves state-of-the-art performance
when compared with existing network pruning and knowledge distillation algorithms.

2 RELATED WORK

Network Pruning. Traditional pruning approaches can be grouped into two categories: structured
pruning and unstructured pruning. Structured pruning He et al. (2017; 2018a; 2019); Zhuang et al.
(2020); He et al. (2020); Lin et al. (2020) removed entire layers or filters of a network to preserve its
structural regularity. The result networks can be easily developed and deployed. Unstructured prun-
ing Dong et al. (2017); Louizos et al. (2018) sparsified the convolutional weights or feature maps.
The pruned networks require specific hardware to speed up the training and inference. These meth-
ods focus on removing the least significant network parameters or components. And the pruned net-
works often have a clear performance drop. Recent papers Dong & Yang (2019); Ye et al. (2020a;b)
built a new network with flexible channels layer-by-layer and cannot optimize the global topological
architectures. Hence, their expressive capability and performance are limited by this fixed architec-
ture. DNN quantization and decomposition depend on hardware and are out of our scope.

Knowledge Distillation. Knowledge distillation (KD) transfers information from a trained teacher
network to a (often smaller) student network to reduce network complexity. Hinton et al. (2015) in-
troduced a knowledge distillation strategy to compress the model. The student network learns how a
large network studies given tasks under this teaching procedure. Two surveys Wang & Yoon (2021);
Gou et al. (2021) gave comprehensive discussions of KD methods. Recently, Lin et al. (2022)

2

Under review as a conference paper at ICLR 2024

0 1conv (x7)
0 1

conv (x7)

2

conv (x1) conv (x1)

0

1

conv (x7)

2

conv (x4)
conv (x7)

3

conv (x7)

5

conv (x1)

conv (x7)

4

conv (x1) conv (x4)conv (x1)

(a) Architecture at iteration 1 (b) Architecture at iteration 2 (c) Architecture at iteration 13

0

1

conv (x7)

2

conv (x7)

8
conv (x7)

conv (x7)

3

conv (x7)

5
conv (x1)

conv (x7)

4

conv (x7)

7

conv (x1)

conv (x7)

6
conv (x4) conv (x1)

conv (x1)

10

conv (x1) conv (x1)
conv (x1)

9

conv (x1) conv (x1)
conv (x1)

(d) Architecture at iteration 25

Figure 2: Visualizations of our SEArch algorithm for optimizing the architecture of student network
at different iterations. The experiment was conducted on CIFAR-10. Here conv represents the 3× 3
residual separable convolution. The number (×N) indicates how many stacked operations. The
green nodes v1 and v2 are the first stage (input image) and the final stage (final feature map). (a-d)
show the changes in the network architectures at different iterations.

introduced a “target-aware transformer” to align varying semantic information at the same spatial
location. Dong et al. (2023) used feature semantic similarity between the teacher and student models
as an indicator of distillation performance and built a training-free search framework. Inspired by
existing KD methods, our approach transfers both response-based knowledge (output from the final
layers) and feature-based knowledge (output from intermediate layers) to the student model. Finally,
unlike existing KD methods where the student’s architecture is manually designed and remains fixed
during optimization, our scheme actively optimizes the student model’s architecture throughout the
knowledge transfer process, and this helps improve the network performance.

Neural Architecture Search. NAS methods typically construct a huge and comprehensive search
space including many building block architectures, then search for an optimal combination of them,
using reinforcement learning based (Zoph & Le, 2016; Cai et al., 2018), evolutionary algorithm
based (Yang et al., 2020; Liu et al., 2020), or gradient based (Liu et al., 2018; Hu et al., 2020)
algorithms. Although various approximate algorithms (e.g. weight sharing Zhang et al. (2020),
proxy task Zhou et al. (2020), and cell-based Liu et al. (2018); Li et al. (2020)) have been explored
to accelerate the architecture search and training, the prohibitively expensive computational cost of
thorough training and searching significantly hinders the effectiveness of NAS. On the contrary, we
search for the new architecture in a reverse manner that our SEArch starts from a simple network
and iteratively adds new convolutional operators to improve its performance.

3 APPROACH

Compared with mainstream network optimization approaches that shrink existing networks or find
an optimal network from a huge supernet, our self-evolving neural network optimization is in a re-
verse manner. It begins with a basic, primitive network (student model) and progressively evolves
to superior ones by incorporating new convolutional operators and modifying its architectural topol-
ogy. Knowledge is transferred from the teacher network to the student network through learning
intermediate layers’ output and final prediction. This growing scheme assists the network in better
maintaining its performance, and in some cases, even surpassing that of the original network. Fig. 1
shows an overview of the proposed pipeline. In this work, we validate this design on the classic
image classification task, where a color image is taken as input and its class label is predicted.

3.1 DEFINITIONS AND PIPELINE OVERVIEW

A neural network can be described using a directed acyclic graph G = (V,E) comprising V nodes
and E edges. In this context, each node vi ∈ V represents a latent feature map, and each directed
edge ei,j ∈ E is associated with a specific operation oi,j that transforms feature map from vi to
vj . When a node vi has more than one incident edge, each edge generates a feature map, and the
resulting feature map of vi is the sum of these individual feature maps.

Given a well-trained network, denoted as the teacher model, Ĝ = (V̂, Ê) requires optimization with
respect to the number of parameters or FLOPs. We identify the longest path originating from the

3

Under review as a conference paper at ICLR 2024

2723201613 21 2214 150

Classifier

Student's output
for classification
loss

26 Classifier'

Teacher's output

Student Model

Teacher Model

Figure 3: Illustrations of supervised learning for a student model. The student model is at the search
iteration 13 on CIFAR-100. The teacher model is a well-trained ResNet-56 network that has 27
layers (at the bottom). Both models take the same input image (Node 0). The classification loss Lcls

compares the outputs of the student model and the training labels. Rinner computes the differences
in feature maps between the student and the teacher, indicated by dashed red arrows.

(a) Original Network (b) Widening Network (c) Deepening Network

Figure 4: Illustrations of the proposed edge-splitting optimizations. (a) is the initial state of the
most valuable structure for modification. (b) shows the first option by adding a supervised node vk
to widen the network. (c) shows the second modification option by adding an implicit node vk to
deepen the network.

input and terminating at the final feature map. The feature maps along this path constitute a list of
nodes in order V̂ = {v̂1, v̂2, · · · , v̂m} and the teacher model is partitioned into m layers. v̂1 and v̂m
are the source and sink of the graph Ĝ, respectively.

The student model is initialized to a basic two-layer network, denoted as G1 = (V1,E1). G1 com-
prises two nodes V1 = {v1, v2}, where v1 represents the input image and v2 is the final feature
map fed into the classifier. The only edge e1,2 = (v1, v2) in E1 denotes a convolution operation
that transforms data from v1 to v2. Subsequently, the proposed framework iteratively optimizes the
student model Gz(z ≥ 1) until its model size reaches the budgetary limit B. In each iteration, the ar-
chitecture of Gz was optimized by two stages: training and self-evolving. (1) Training stage transfers
the knowledge from the teacher model to the student model Gz by supervised training (Sec. 3.2) and
identifies the bottleneck to refine (Sec. 3.3). (2) Self-evolving stage modifies the topological structure
of this bottleneck edge by edge-splitting (Sec. 3.4). We split the training dataset into two subsets for
these two stages, respectively. Fig. 2 provides an example of how the student’s architecture evolves
during the self-evolving scheme.

3.2 SUPERVISED LEARNING THROUGH THE TEACHER MODEL

Training student model Gz allows us to optimize its parameter weight and identify the bottleneck
structure for architecture evolving. The student model is expected to imitate the behavior of the
teacher model, including the network’s output and the inner feature maps. Hence, we use the inner
feature maps V̂ produced by the teacher model as checkpoints to supervise the student models’ inner
nodes.

In the first iteration, the student model is a two-node network with nodes v1 and v2. Here v1 rep-
resents the input image while v2 contains the final feature map. We construct a mapping table q

to map each student node to a teacher node in V̂. Then qi indicates that teacher node v̂qi transfers
knowledge to the student node vi during training. For example, if q2 = m, it means that the student
node v2 is supervised by the final layer v̂m of the teacher model. When introducing a new node
vk into the student model, we match it with an appropriate teacher node v̂k′ , denoted by qk = k′.
Further details on the construction of q can be found in Sec. 3.4.

4

Under review as a conference paper at ICLR 2024

The student model’s weights are optimized from two perspectives using the training set. First, we
minimize the classification loss Lcls that computes the differences between the student model’s out-
put and the groundtruth labels. When the task is image classification, we use Cross Entropy Loss for
Lcls. The second objective function aims to minimize the learning loss between the student model
and the teacher model. Although student node (vi) and its corresponding teacher node (v̂qi) can have
feature maps with identical height and width dimensions, they often differ in the number of chan-
nels. Inspired by Lin et al. (2022), we employ an attention module fa to facilitate the aggregation
of feature channels from the teacher model for transfer learning. Unlike Lin et al. (2022), which
focuses on finding matching features in spatial locations, our model aims to identify matching fea-
tures in channel space. For every channel in the student’s feature map, an attention query is used to
calculate the corresponding channel weights in the teacher’s feature map. These calculated weights
are then used to project the teacher’s feature maps into a feature space that matches the channel
dimensions of the student model’s feature map. A projected feature map for the teacher node v̂qi
can be obtained as

fa(v̂qi) = Atten(vi, v̂qi , v̂qi). (1)
We use the L2 norm to measure the differences between feature maps of the student node vi and
teacher node v̂qi , denoted as

Rinner(vi) = ||vi − fa(v̂qi)||22. (2)

Then, we define the imitation loss Linner of the student model as the average of the difference on
all student nodes,

Linner =
1

|V|
∑
vi∈V

Rinner(vi), (3)

where |V| represents the number of nodes in the student model. Fig. 3 visualizes the supervised
training in one iteration. We train the parameter weight of the student model by minimizing

L = Lcls + Linner. (4)

3.3 BOTTLENECK IDENTIFICATION FOR ARCHITECTURE OPTIMIZATION

We model network learning as an information gain process. Here we design a scheme to identify the
bottleneck of the student model and then improve its topology architecture. A bottleneck implies
that making modifications to this local structure could lead to large potential performance gains.
Although Rinner indicates the difference between the student node and the teacher node, it doesn’t
actually reflect the bottleneck node (see the ablation study). We further define a modification value
score S to estimate the bottleneck node.

Considering a node vj in the student model, we define another student node vi that shares its incom-
ing incident edge (ui, vj) as its precursor node. Similarly, we define a student node vk that shares
its outgoing incident edge (vj , uk) as its successor node.

(1) First, if the feature map at node vj is inaccurate, it propagates this inaccuracy, affecting all its
successor nodes. Hence, improving the accuracy of vj will benefit all its successor nodes. We use
the out-degree deg+j to denote the number of successor nodes of node vj . Assuming that the error
Rinner(vj) could be minimized to a theoretical minimum of 0 after refining node vj , the positive
impact would be proportional to deg+j ×Rinner(vj).

(2) Second, to modify the feature map of node vj , we often need to change the network architec-
ture from its precursor nodes to vj . Each time, we select one precursor node vi and add additional
convolutional operations to increase the depths/widths of the local network, named, splitting the
edge ei,j . We use the in-degree deg−j to denote the number of precursor nodes of node vj . As-
suming each incoming edge of vj independently and evenly contributes to the error Rinner(vj), an
improvement from modifying one of the deg−j incoming edges can be expected to be proportional
to 1

deg−j
×Rinner(vj).

Finally, we define the modification value score S for each student node vj as

S(vj) =
deg+j

deg−j
Rinner(vj), (5)

5

Under review as a conference paper at ICLR 2024

where Rinner(vj) is the deviation of this node’s feature map from the teacher model, and
deg+

j

deg−j
is the

adjustment term that estimates the potential performance gain from modifying the local structure.
We compute S for each student node using the validation dataset. The node with the largest S is
selected and its local structure will be refined by edge-splitting. In our experiments, we selected the
edge associated with the closest precursor node for architecture evolution.

3.4 ARCHITECTURE EVOLUTION BY EDGE SPLITTING

Suppose the current student network is Gz = (V,E). Node vj ∈ V and edge ei,j = (vi, vj) ∈ E are
selected for improvement by edge-splitting. Our design is based on the observation that: Increasing
the depth or width of a network can either maintain or improve output accuracy. Hence, if the
model size of a given network (e.g. number of parameters, FLOPs) has not reached the budget
limit, we evolve its architecture by adding new convolutional operations to enhance both its size and
performance.

To refine a local structure at node vj , which has not approximated the teacher network well, we
introduce a new node vk between its precursor node vi and vj , and perform two types of edge-
splitting: widening the network and deepening the network.

(1) Widening the network. One option is to create a new branch beside ei,j by inserting a new node
vk, as illustrated in Fig. 4(b). Two new convolutional operations are also added as ei,k and ek,j . This
operation increases the width of the student network to improve its capability. We select the one of
intermediate layers between qi and qj as the guidance for vk :

qk = bc · qi + (1− c) · qjc, (6)

where c ∈ [0, 1] is a hyper-parameter. In our experiment, we have tested that c = 0.5 works the best.
This can be explained by the intuition that the information gain of a shallow network is proportional
to its depth. Thus the total information gain can be represented as c(1 − c), which is maximized at
c = 0.5. We also discussed the comparisons of choosing c in the ablation study.

(2) Deepening the network. The second option is to deepen the network by adding a new node vk
between vi and vj with new convolutional operations. To reduce the network latency, we didn’t
assign a teacher node to supervise the training of node vj . In other words, this operation can be
considered as stacking/concatenating a new convolutional operation op to the old ones on ei,j , as
illustrated in Fig. 4(c).

While either widening or deepening the local structure could increase the capability of the net-
work, deepening operation is simpler and introduces less computation overhead. In our self-evolving
framework, we first use the deepening modification until the number of stacked operations reaches
a predefined number Bop. Algorithm 1 summarizes the proposed self-evolving framework.

3.5 CONVOLUTIONAL OPERATION Algorithm 1 Self-Evolving Arch Overview

Input: Teacher model Ĝ, training dataset DT , valid
dataset DV , budget B, Bop, and Conv op

Output: Student model G
1: G1 ← two-layer network, z ← 1
2: while |Gz| < B do
3: Train the student model Gz on DT by Eq. 4
4: Select node vj and ei,j on DV by Eq. 5
5: if |ei,j | < Bop then
6: Deepening. e′ij = eij ⊕ op
7: else
8: Widening. Add node vk, ei,k, ek,j
9: Set supervised qk from Ĝ by Eq. 6

10: end if
11: z = z + 1
12: end while

We perform the network optimization
through self-evolving by incorporating the
network creation capability from neural
architecture search. Most architecture search
algorithms first define a set of candidate
operations O, then search and pick the best
operations during optimization. Having a
big operation set provides more choices
and bigger diversity in designing networks,
but it significantly slows down the search
runtime. Recent study Yang et al. (2019)
suggested that when searching a neural
architecture, the quality of macro-structures
(edge connections) is more important than
micro-structures (operations). In this work,
we only use 3 × 3 separable convolution as
op to build the network. The expressivity analysis can be found in the Appendix.

6

Under review as a conference paper at ICLR 2024

Table 1: Ablation study on CIFAR-10. “Base Acc.” and “Pruned Acc” are accuracy of the baseline
and optimized networks. “Acc. Drop” is the accuracy drop (smaller is better), where a negative
value means the optimized model outperforms the baseline. “PARAMs” is the network parameters.

Method Base Acc. Pruned Acc. Acc. Drop PARAMs FLOPs
(%) (%) (%) (M) (M)

Baseline: ResNet-56 93.95 - - 0.85 126.6
(A) Ours w/o S (Eqn. 5) 93.95 84.18 (±3.34) 9.77 0.41 90.9
(B) Ours c = 0.25 (Eqn. 6 93.95 94.62 -0.67 0.40 78.9
(B) Ours c = 0.75 (Eqn. 6 93.95 94.50 -0.55 0.40 142.1
(C) Random Splitting (0.40) 93.95 91.79 (±2.14) 2.16 0.40 63.1
Our full model (0.40) 93.95 94.82 (±0.14) -0.87 0.40 63.1
Baseline: ResNet-110 94.04 - - 1.73 255.0
(C) Random splitting (0.68) 94.04 92.81 (±0.52) 1.22 0.68 85.5
Our full model (0.68) 94.04 95.00 (±0.02) -0.97 0.68 85.5

Table 2: Comparisons with network pruning methods for optimizing ResNet-56 on CIFAR-10. The
“FLOPs ↓” is the pruned ratio on FLOPs. The fields have the same meaning as Table 1.

Method Base Acc. Pruned Acc. Acc. Drop FLOPs FLOPs ↓
(%) (%) (%) (M) (%)

MIL (Dong et al., 2017) 94.35 92.81 1.54 78.1 37.9
Polar (Zhuang et al., 2020) 93.80 93.83 -0.03 - 47.0
AMC (He et al., 2018b) 92.80 91.90 0.90 62.7 50.0
HRank (Lin et al., 2020) 93.26 93.17 0.09 62.7 50.0
Greg-1 (Wang et al., 2021) 93.36 93.06 (±0.09) 0.30 62.0 50.2
SFP (He et al., 2018a) 93.59 93.35 (±0.31) 0.24 59.4 52.6
FPGM (He et al., 2019) 93.59 93.26 (±0.03) 0.33 59.4 52.6
TAS (Dong & Yang, 2019) 94.46 93.69 0.77 59.5 52.7
LFPC (He et al., 2020) 93.59 93.24 (±0.17) 0.35 59.1 52.9
ResRep (Ding et al., 2021) 93.71 93.71 (±0.02) 0.00 59.1 52.9
Ours (0.40) 93.95 94.82 (±0.14) -0.87 63.1 50.2

4 EXPERIMENTS

We evaluated our SEArch algorithm using image classification task and compared it with state-of-
the-art network optimization approaches: network pruning and knowledge distillation. Due to the
page limit, we discuss the main results here and move the implementation details, time complexity
and runtime analysis to the Appendix.

4.1 ABLATION STUDY

We conducted ablation studies on the CIFAR-10 dataset to evaluate the effectiveness of each com-
ponent in the proposed SEArch model.

Effectiveness of Modification Value Score in Eqn. 5. The results are reported in Table 1 Exp
(A). We removed the adjustment term deg+

deg−
in Eqn. 5, and the rest parts are the same as our full

model. With this setting, the bottleneck node was selected with the largest Rinner. The accuracy
of the optimized network drops 0.8%, while our full model has 0.87% accuracy gain. It shows that
our modification value score in Eqn. 5 is critical to identify the bottleneck to guide the architecture
modification.

Different Supervision Layer of Teacher Model in Eqn. 6. In Eqn. 6, the parameter c determines
the index of intermediate layers of the teacher model that is assigned to supervise the new node in
the student model. We conducted experiments by setting c = 0.25 (close to the precursor node) and
c = 0.75 (close to the bottleneck node). In Table 1 Exp (B), the results of c = 0.25 and c = 0.75 are
slightly weaker than our full model (c = 0.50). We concluded that our SEArch is robust to different

7

Under review as a conference paper at ICLR 2024

Table 3: Comparisons with pruning methods for optimizing ResNet-56 on CIFAR-100. The fields
have the same meaning with Table 2.

Method Base Acc. Pruned Acc. Acc. Drop FLOPs FLOPs ↓
(%) (%) (%) (M) (%)

Polar (Zhuang et al., 2020) 72.49 72.46 0.06 - 25.0
OICSR-GL (Li et al., 2019) 75.87 76.23 -0.66 - 38.5
MIL (Dong et al., 2017) 71.33 68.37 2.96 76.3 39.3
TAS (Dong & Yang, 2019) 73.18 72.25 0.93 61.2 51.3
LFPC (He et al., 2020) 71.41 70.83 0.58 60.8 51.6
SFP (He et al., 2018a) 71.40 68.79 2.61 59.4 52.6
FPGM (He et al., 2019) 71.41 69.66 1.75 59.4 52.6
Ours (0.80) 70.79 73.86 (±0.14) -3.08 86.8 31.8
Ours (0.40) 70.79 73.00 (±0.20) -2.20 56.9 55.3

Table 4: Comparisons with pruning methods for optimizing ResNet-50 on ImageNet
Method Top-1 Acc. (%) Top-5 Acc. (%) PARAMs (M)
ResNet50 76.15 92.87 25.56
HRank (Lin et al., 2020) 71.98 91.01 13.77
ThiNet-50 (Luo et al., 2017) 71.01 90.02 12.38
GAL-1-joint (Lin et al., 2019) 69.31 89.12 10.21
GDP-0.5 (Lin et al., 2018) 69.58 90.14 -
Taylor-FO (Molchanov et al., 2019) 71.69 - 7.90
S-ResNet-50 (Yu et al., 2018) 72.10 90.57 6.92
SEArch (Ours) 72.55 90.81 4.98

settings of c. Besides the information gain process intuition, the experiment supports choosing the
middle layer of the teacher model provides the best results.

Bottleneck Identification v.s. Random Edge-splitting. A random edge-splitting setting is to
randomly pick edges from the student model, and randomly add new operations during iterative
optimization until the model reaches the predefined model size budget. We ran the random edge-
splitting three times and recorded the average results. With the proposed bottleneck identification
strategy, our SEArch model is able to select key nodes for architecture optimization. Table 1 Exp
(C) reports the performance of the random splitting strategy and our full SEArch model. When the
baseline is ResNet-56, the random splitting strategy has a 2.16% accuracy drop while our model
achieved 0.87% accuracy improvement from the baseline model. When the baseline is ResNet-110,
the random splitting strategy has 1.22% accuracy drop while our model yields 0.97% accuracy gain.

4.2 COMPARISONS WITH NETWORK PRUNING METHODS

Table 5: Comparisons with KD methods on CIFAR-10
Method Acc. (%)
KD (Hinton et al., 2015) 92.63
AT (Zagoruyko & Komodakis, 2016) 92.87
FT (Kim et al., 2018) 93.15
OD (Heo et al., 2019) 93.19
Tf-KD(S) (Yuan et al., 2020) 92.59
CRD (Tian et al., 2019) 93.20
IE-AT (Huang et al., 2021) 93.30
IE-FT (Huang et al., 2021) 93.43
IE-OD (Huang et al., 2021) 93.47
Ours (0.27M PARAMs) 93.58

Results on CIFAR-10. We follow the
common evaluation settings of network
pruning papers. On CIFAR-10, we eval-
uated our SEArch algorithm on ResNet
with depths 56 and 110. Note that
the weights of the baseline models vary
in these papers. We chose a baseline
model with relatively high accuracy for
fair comparisons because when started
with a more accurate model, it is harder
for pruning to maintain the accuracy.
We chose the widely adopted pretrained
model Chenyaofo (2021) as the baseline
model. We set the number of parameters
as our pruning target as 0.40M. Following

8

Under review as a conference paper at ICLR 2024

experiments done in other pruning papers, we ran the model three times and reported the “mean (±
std)” results. The comparisons of optimizing ResNet-110 are discussed in the Appendix.

The quantitative comparisons of optimizing ResNet-56 are shown in Table 2. The proposed SEArch
outperforms the existing pruning methods. Our method pruned the ResNet-56 by 50.2% FLOPs,
and the optimized networks actually surpassed the baseline by 0.87% in accuracy. Conventional
pruning methods remove redundant filters and trim the network, and the accuracy of the pruned
network is often worse than the original network. The reason is that they use linear representation
to approximate the original network, which could lose accuracy during feature reduction.

Results on CIFAR-100. The quantitative comparisons of pruning ResNet-56 on CIFAR-100 are
shown in Table 3. Note that the weights of the baseline models vary in these papers, we chose
our baseline from a public repository for fair comparisons. Our method pruned the ResNet-56 by
31.8% and 55.3% FLOPs, the optimized networks improved better accuracy of 3.08% and 2.20%
over the baseline model. While existing methods such as SFP He et al. (2019) and Polar Zhuang
et al. (2020) have 1.75% and 0.06% accuracy dropped from the baseline model. Fig. 2 visualizes
how the proposed SEArch framework optimizes the architecture of the student model (0.40M).

Results on ImageNet. We also conducted experiments for ResNet-50 optimization on ImageNet.
The results are shown in Table 4. We follow the mobile setting and set our maximum parameter
count to 5.0M. Compared with the recent optimization methods, our method optimized the baseline
network to a extremely small size (from 25.56M to 5.0M, 20% size of the original network), while
preserved comparable Top-1 and Top-5 accuracy.

4.3 COMPARISONS WITH KNOWLEDGE DISTILLATION METHODS

Following the common settings in KD papers, we conducted experiments on CIFAR-10 dataset.
We selected ResNet-56 as the teacher model and transferred the knowledge to a smaller network.
Quantitative comparisons are reported in Table 5. State-of-the-art KD papers selected ResNet-20
as the student model and the architecture optimization is not considered during knowledge transfer.
In contrast, our method integrates the architecture optimization technique to search for the optimal
architecture for the student network. Because ResNet-20 has 0.27M parameters, we set the target
parameters of the searched network to 0.27M for fair comparisons. Under the same parameter
count, the optimized architecture by our SEArch has the best accuracy 93.58%, which outperforms
the existing KD papers. Both KD methods and ours require training on the dataset to transfer the
knowledge, our method requires longer time to optimize the architecture (see the Appendix for
runtime analysis) but achieves better accuracy.

5 CONCLUSIONS

We present a self-evolving neural network optimization framework that combines the strengths of
network optimization methods (i.e. network pruning, KD, and NAS). Starting from a basic structure,
our student model iteratively identifies bottlenecks in the network and refines its architecture under
the guidance of the teacher network. Our adoption of a single operation and the design of edge
splitting enable more efficient local structure creation and topology modification. Experiments on
image classification demonstrated the effectiveness of our approach.

Limitations and Future Work. The proposed framework optimizes an existing network in a man-
ner similar to network pruning and KD. When compared to NAS, our approach achieves quicker
optimization, but sometimes lower accuracy. Using a teacher model for guidance to identify bot-
tlenecks in the evolving network architecture reduces the search cost but may result in sub-optimal
network structures. Although the student model is capable of self-evolving to improve its architec-
ture, its performance might be constrained by the teacher model. To eliminate the need for such
a prior, we plan to explore new metrics based on information gain theory for better guidance in
autonomous network evolution.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2018.

Chenyaofo. Pytorch cifar models. https://github.com/chenyaofo/
pytorch-cifar-models, 2021.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In Proceedings
of the IEEE/CVF ICCV, pp. 4510–4520, 2021.

Peijie Dong, Lujun Li, and Zimian Wei. Diswot: Student architecture search for distillation without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 11898–11908, 2023.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. Advances in
Neural Information Processing Systems, 32:760–771, 2019.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated
network with less inference complexity. In Proceedings of the IEEE CVPR, July 2017.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In IJCAI, 2018a.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF CVPR, pp.
4340–4349, 2019.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter prun-
ing criteria for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF
conference on CVPR, pp. 2009–2018, 2020.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE ICCV, Oct 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the ECCV, September 2018b.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In Proceedings of the IEEE/CVF ICCV, pp. 1921–
1930, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin.
Dsnas: Direct neural architecture search without parameter retraining. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12084–12092, 2020.

Zhen Huang, Xu Shen, Jun Xing, Tongliang Liu, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang
Huang, and Xian-Sheng Hua. Revisiting knowledge distillation: An inheritance and exploration
framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3579–3588, 2021.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compres-
sion via factor transfer. Advances in neural information processing systems, 31, 2018.

10

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

Under review as a conference paper at ICLR 2024

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xi-
aojun Chang. Block-wisely supervised neural architecture search with knowledge distillation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1989–1998, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue, and Haifeng Sun. Oicsr: Out-
in-channel sparsity regularization for compact deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7046–7055, 2019.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF CVPR,
June 2020.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Accel-
erating convolutional networks via global & dynamic filter pruning. In IJCAI, volume 2, pp. 8.
Stockholm, 2018.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David Doermann. Towards optimal structured cnn pruning via generative adver-
sarial learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2790–2799, 2019.

Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang
Wang. Knowledge distillation via the target-aware transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10915–10924, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Peiye Liu, Bo Wu, Huadong Ma, and Mingoo Seok. Memnas: Memory-efficient neural architecture
search with grow-trim learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2108–2116, 2020.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=H1Y8hhg0b.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=o966_Is_nPA.

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual in-
telligence: A review and new outlooks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

11

https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=o966_Is_nPA
https://openreview.net/forum?id=o966_Is_nPA

Under review as a conference paper at ICLR 2024

Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard. In
International Conference on Learning Representations, 2019.

Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang
Xu. Cars: Continuous evolution for efficient neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1829–1838, 2020.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good sub-
networks provably exist: Pruning via greedy forward selection. In International Conference on
Machine Learning, pp. 10820–10830. PMLR, 2020a.

Mao Ye, Lemeng Wu, and Qiang Liu. Greedy optimization provably wins the lottery: Logarithmic
number of winning tickets is enough. arXiv preprint arXiv:2010.15969, 2020b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation
via label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3903–3911, 2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and Steven Su. Overcoming multi-model forget-
ting in one-shot nas with diversity maximization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7809–7818, 2020.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11396–
11404, 2020.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in Neural Information Processing
Systems, 33, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

Under review as a conference paper at ICLR 2024

A SINGLE CONVOLUTION EXPRESSIVITY ANALYSIS

We observed that the operations of DARTS Liu et al. (2018) can be replaced using a single convolu-
tional operation such as the 3× 3 separable convolution. First, 3× 3 average pooling, identity (skip
connection), and zero are in the same group, which are special cases of the 3× 3 convolution with
specific weights. Second, following ResNet, 3 × 3 max pooling can be replaced by a 3 × 3 convo-
lution with stride = 2. Third, 5 × 5 or 7 × 7 convolutions can be approximated by stacked 3 × 3
convolutions. Last, dilated separable convolutions are special cases of separable convolutions with
larger kernel sizes and zero parameter weight. As results, 3 × 3 and 5 × 5 separable convolutions,
3×3 and 5×5 dilated separable convolutions can be induced to stacked 3×3 separable convolutions.
Hence, using just a single operation greatly reduces the computational cost of operation search, yet
still offers similar model expressivity.

B IMPLEMENTATION DETAILS

We implemented our framework on PyTorch. The convolutional operation we choose is the 3 × 3
residual separable convolution, or sep conv 3x3 for short. Fig. 5 shows the conventional convo-
lutional unit stacking two full convolutions (named Conv 3x3). ResNet He et al. (2016) improves
its performance by adding a skip connection (indicated by the blue line). MobileNet Sandler et al.
(2018) found that depth-wise separable convolution is more efficient than full convolutions. We fol-
low their design and replace the full convolutions with two layers: (1) The first layer is a depth-wise
convolution that performs lightweight filtering (named DW Conv 3x3). (2) The second layer is a
point-wise convolution that computes a linear combination of the input channels (named Conv 1x1).
Fig. 6 illustrates the detailed structure of the 3× 3 residual separable convolution.

The max stacked operations per edge Bop is set to 7. To speed up the search, on each edge, we
initialize the number of operations as 1, then we append 3 operations once when an unsupervised
node is added. The training epoch number for each training stage is 10, which is usually good
enough to reveal the underperforming nodes in the current student model. We stop the self-evolving
procedure when the size of the student model reaches the limit. Following the training settings of
existing papers on CIFAR-10, the final student model is retrained for 400 epochs. We choose SGD
with a momentum of 0.9 and a weight decay of 0.0003 in all the training. The initial learning rate
is set to 0.025 and the step scheduler is used to tune the learning rate during training. On ImageNet,
we chose learning rate 0.01 and trained the model for 100 epochs.

C TIME COMPLEXITY ANALYSIS

Given an architecture with V nodes and E directed edges, if we have K candidate operations,
the time complexity of the operation search is O(Top) = O(K |E|). Even a relatively small K
makes this search expensive, and it limits the size of edges E a generated network can have. To
accommodate the huge operation search cost, existing NAS methods often restrict the search and
structural optimization in cell or block levels. Then, the design of connections between cells/blocks
is done manually based on expert knowledge and enormous experiments.

In contrast, as we observed, this operation search is unnecessary. We use a single operation to
build the architecture and can then perform a more comprehensive search on the network’s global
structure. We use Tarch to represent the time of architecture search and Tw to represent the time
of training parameter weights. With the single candidate operation selected, K = 1, our method
reduces the overall time complexity from O(TarchTopTw) = O(TarchK

|E|Tw) to O(TarchTw),
which is significantly smaller with even a moderate size of |E|.

D RUNTIME ANALYSIS

Experiments from other papers were performed on different hardware configurations, we found it
very difficult to directly compare the runtime performance. Since the proposed SEArch framework
optimizes architecture starting from a primitive one, when the target model size is much smaller
than the baseline model size, our algorithm needs less time to prune the network. For example,

13

Under review as a conference paper at ICLR 2024

R
eL

U

C
on

v
3x

3

Ba
tc

hN
or

m
2D

R
eL

U

C
on

v
3x

3

Ba
tc

hN
or

m
2D

Input
Feature Map
Cin x H x W

Skip connection

Output
Feature Map
Cout x H' x W'

Figure 5: Conventional convolution unit stacking two full convolutions. ResNet improves its per-
formance by adding a skip connection (blue line).

R
eL

U

C
on

v
1x

1

D
W

 C
on

v
3x

3

Ba
tc

hN
or

m
2D

R
eL

U

D
W

 C
on

v
3x

3

C
on

v
1x

1

Ba
tc

hN
or

m
2D

Input
Feature Map
Cin x H x W

Skip connection (only if stride s == 1)

C
in

 x
 H

' x
 W

'

C
in

 x
 H

' x
 W

'

C
in

 x
 H

' x
 W

'

C
ou

t x
 H

' x
 W

'

Output
Feature Map
Cout x H' x W'

Figure 6: Convolution unit of the residual separable convolution 3 × 3, named sep conv 3x3. DW
Conv is the standard depth-wise separable convolution. Cin and Cout represent the feature channels
of the input and output feature maps. The stride s equals either 1 or 2, which controls spatial size of
the output feature map, H ′ = H/s and W ′ = W/s.

recent network pruning literature TAS Dong & Yang (2019) reported their runtime statistics. For
the CIFAR-10 dataset, TAS searched a network with 92.65% accuracy, and it cost 10.6 GPU hours
on an NVIDIA V100 GPU. In contrast, our method SEArch searched a network with 94.01% ac-
curacy, and it cost only 4.0 GPU hours on an NVIDIA 1080Ti GPU, which reduced 62.3% search
time. Additionally, the training speed of V100 is 100% faster than 1080Ti in general. Hence, our
proposed scheme can more efficiently optimize neural architectures.

Comprehensive runtime analysis of our SEArch is reported in Table 6. We ran our pipeline on a
single NVIDIA 1080Ti GPU (11GB MEM). The running time depends on the baseline model size
and target model size. Larger models require longer search/retraining time. Our model has small
runtime and memory footprints. Note that our SEArch framework is memory-friendly: it can fit
into a 4GB-MEM GPU when the batch size is set to 32.

E COMPARISONS WITH NETWORK PRUNING ON RESNET-110 ON CIFAR-10

Recent network pruning methods also conducted experiments on optimizing ResNet-110 on CIFAR-
10. The qualitative comparison is shown in Table 7. Note that in this dataset, reducing the PARAMs
to a half size is a common setting in pruning literature, and this corresponds to 0.86M PARAMs. In
addition, we also cut 60% off of FLOPs, which resolves to 0.68M PARAMs, for a fair comparison
with HRank (Lin et al., 2020). Our method optimized the ResNet-110 by 61.2% and 66.4% FLOPs,
the optimized networks improved the accuracy by 1.15% and 0.97% over the baseline model. Fig. 7
plots the accuracy gain of the pruned network over the pruned ratio on FLOPs. Our method outper-
forms existing network pruning methods by achieving bigger accuracy gains and a higher pruned
ratio on FLOPs.

14

Under review as a conference paper at ICLR 2024

Dataset CIFAR-100 CIFAR-10
Baseline Model ResNet-56 ResNet-56 ResNet-110
PARAMs (M) 0.40 0.80 0.40 0.80 0.68 0.86
Search Time 3.7 / 24 12.7 / 38 4.0 / 25 18.3 / 47 11.8 / 38 13.5 / 44
Retraining Time 8.7 / 400 19.0 / 400 10.1 / 400 22.4 / 400 15.6 / 400 17.2 / 400

Table 6: Runtime results under different pruning settings. The codes are implemented on PyTorch.
The experiments are conducted on Ubuntu 18.04 with a single NVIDIA 1080Ti GPU. Our SEO
model can optimize a network at low computation costs. (GPU Hours / Iters)

35 40 45 50 55 60 65
Pruned FLOPs (%)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Ac
cu

ra
cy

 G
ai

n
(%

)

MIL

PFEC
SFP

GAL

FPGM

TAS

HRank

LFPC

Ours (0.86M PARAMs)
Ours (0.68M PARAMs)

Figure 7: The accuracy gain of the optimized network over the optimized ratio on FLOPs. We
compare the optimized networks from ResNet-110 on CIFAR-10. The accuracy gain means the
accuracy improvement after pruning. Detailed comparisons are reported in Table 7. The red hori-
zontal line indicates the zero accuracy gain. Our optimized networks are on the right top positions
that outperform the state-of-the-art network pruning methods.

Table 7: Quantitative comparisons with network pruning methods for optimizing ResNet-110 on
CIFAR-10. “Base Acc.” and “Pruned Acc” are accuracy of the baseline and optimized networks.
“Acc. ↓” is the accuracy drop (smaller is better), where a negative value means the result model
outperforms the baseline. The “PARAMs ↓” is the pruned ratio on network parameters. The “FLOPs
↓” is the pruned ratio on FLOPs. The Baseline of NetSlim is ResNet-164.

Method Base Acc. Pruned Acc. Acc. ↓ PARAMs PARAMs ↓ FLOPs FLOPs ↓
(%) (%) (%) (M) (%) (M) (%)

NetSlim 94.58 94.73 -0.15 1.10 35.2 275 44.9
MIL 93.63 93.44 0.19 - - 166 34.2
PFEC 93.53 93.30 -0.02 1.16 32.4 155 38.6
SFP 93.68 93.86 (±0.21) -0.18 - - 150 40.8
GAL 93.5 92.74 0.76 0.95 44.8 130.2 48.5
FPGM 93.68 93.74 (±0.10) -0.16 - - 121 52.3
TAS 94.97 94.33 0.64 - - 119 53.0
HRank 93.50 93.36 0.14 0.70 59.2 105.7 58.2
LFPC 93.68 93.07 (±0.15) 0.61 - - 101 60.3
ResRep 94.64 94.62 (±0.02) 0.02 - - - 58.2
LCAF 93.77 93.92 -0.15 - 60.1 - 59.8
Ours (0.86) 94.04 95.19 (±0.05) -1.15 0.86 50.2 98.8 61.2
Ours (0.68) 94.04 95.00 (±0.02) -0.97 0.68 60.4 85.5 66.4

15

	Introduction
	Related Work
	Approach
	Definitions and Pipeline Overview
	Supervised Learning through the Teacher Model
	Bottleneck Identification for Architecture Optimization
	Architecture Evolution by Edge Splitting
	Convolutional Operation

	Experiments
	Ablation Study
	Comparisons with Network Pruning Methods
	Comparisons with Knowledge Distillation Methods

	Conclusions
	Single Convolution Expressivity Analysis
	Implementation Details
	Time Complexity Analysis
	Runtime Analysis
	Comparisons with Network Pruning on ResNet-110 on CIFAR-10

