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Abstract001

Adapting pretrained language models to low-002
resource, morphologically rich languages re-003
mains a significant challenge. Existing vocab-004
ulary expansion methods typically rely on ar-005
bitrarily segmented subword units, resulting006
in fragmented lexical representations and loss007
of critical morphological information. To ad-008
dress this limitation, we propose the Lexically009
Grounded Subword Embedding Initialization010
(LGSE) framework, which introduces morpho-011
logically informed segmentation for initializ-012
ing embeddings of novel tokens. Instead of013
using random vectors or arbitrary subwords,014
LGSE decomposes words into their constituent015
morphemes and constructs semantically coher-016
ent embeddings by averaging pretrained sub-017
word or FastText-based morpheme representa-018
tions. When a token cannot be segmented019
into meaningful morphemes, its embedding is020
constructed using character n-gram representa-021
tions to capture structural information. Dur-022
ing Language-Adaptive Pretraining, we apply023
a regularization term that penalizes large devi-024
ations of newly introduced embeddings from025
their initialized values, preserving alignment026
with the original pretrained embedding space027
while enabling adaptation to the target lan-028
guage. To isolate the effect of initialization, we029
retain the original XLM-R vocabulary and to-030
kenizer and update only the new embeddings031
during adaptation. We evaluate LGSE on three032
NLP tasks: Question Answering, Named En-033
tity Recognition, and Text Classification, in034
two morphologically rich, low-resource lan-035
guages: Amharic and Tigrinya. Experimen-036
tal results show that LGSE consistently out-037
performs baseline methods across all tasks,038
demonstrating the effectiveness of morphologi-039
cally grounded embedding initialization for im-040
proving representation quality in underrepre-041
sented languages.042

Amharic Word for ”egg”: እንቁላል

Subword-Based Embedding Initialization (BPE):

እ ን ቁ ላ ል

Embedding Composition:

E1, E2, E3, E4, E5 ⇒ Combined → V⃗noise

Lexically Grounded Subword Embedding (LGSE):

እን ቁላል

Embedding Composition:

E_��, E_��� ⇒ Combined → V⃗meaningful

Figure 1: Comparison of embedding initialization
strategies: standard BPE subword splits vs. linguisti-
cally grounded morphemes.

1 Introduction 043

Pretrained multilingual language models (PLMs) 044

have become foundational in modern natural lan- 045

guage processing (NLP), leveraging token se- 046

quences generated from word or subword-level 047

units (Liu et al., 2024). A representative example 048

is XLM-R (Conneau et al., 2020), a transformer- 049

based model trained on over 100 languages using 050

the SentencePiece algorithm for subword segmen- 051

tation. Although XLM-R employs a shared vocab- 052

ulary of 250K subword units, the effective average 053

token coverage per language is relatively limited, 054

approximately 2.5K subwords compared to mono- 055

lingual models such as GPT, which typically uti- 056

lize vocabularies in the range of 40K tokens (Wang 057

et al., 2019). 058

Despite their wide language coverage, PLMs 059

tend to favor high-resource languages, especially 060
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those that are typologically or orthographically061

closer to English (e.g., French, Spanish). In062

contrast, morphologically rich languages such as063

German face heightened out-of-vocabulary (OOV)064

challenges due to their complex inflectional and065

derivational systems (Ataman and Federico, 2018;066

Lample et al., 2018; Wang et al., 2019). These is-067

sues are significantly exacerbated for low-resource068

languages, particularly those written in non-Latin069

scripts. Languages based on the Ge’ez script, such070

as Amharic and Tigrinya, suffer from poor lexical071

coverage and unreliable token representations due072

to a combination of script-specific orthographic073

complexity and minimal training data.074

To mitigate out-of-vocabulary (OOV) issues,075

subword tokenization techniques such as Byte076

Pair Encoding (BPE), introduced by Sennrich077

et al. (2016), have become foundational in neu-078

ral machine translation (NMT) and broader NLP079

pipelines (Hiraoka et al., 2019; Bostrom and Dur-080

rett, 2020). However, BPE operates purely on char-081

acter co-occurrence frequency and disregards lin-082

guistic structure, often fragmenting morphologi-083

cally rich words into arbitrary subword units. This084

segmentation undermines semantic coherence, par-085

ticularly in agglutinative or templatic languages.086

The issue is especially pronounced in underrep-087

resented languages using the Ge’ez script, such088

as Amharic and Tigrinya, where BPE frequently089

breaks full lexical units, including complete nouns,090

into semantically meaningless fragments.091

As illustrated in Figure 1, the Amharic word092

እንቁላል (‘Iənqulāl’, meaning “egg”) is decom-093

posed into a series of subwords that fail to preserve094

its morphemic integrity. This fragmentation nega-095

tively affects subword embedding initialization by096

associating these noisy segments with ill-grounded097

or diluted vector representations, yielding embed-098

dings that poorly capture the word’s meaning. Con-099

sequently, morphologically aware tokenization is100

essential not merely for better segmentation but101

as a prerequisite for reliable and linguistically102

grounded embedding initialization in morpholog-103

ically complex, low-resource languages.104

Multilingual models like mBERT and XLM-R,105

which rely on shared vocabularies and embedding106

spaces across languages, often fail to encode the107

morphosyntactic nuances of such languages (Ahia108

et al., 2023; Wang et al., 2019). While language-109

adaptive pretraining (LAPT) (Chau et al., 2020)110

and similar transfer learning techniques aim to111

bridge this representational gap, they still strug-112

gle when applied to typologically distinct scripts. 113

In particular, expanding the vocabulary or retrain- 114

ing the embedding matrix with newly introduced 115

tokens disrupts alignment with the pretrained dis- 116

tribution, complicating the integration of linguis- 117

tically informed tokenizers (Dobler and de Melo, 118

2023; de Vries and Nissim, 2021). 119

Although methods like vocabulary expansion 120

and random or averaged embedding initialization 121

provide partial relief, they fail to restore the struc- 122

tural grounding that morpheme-level units pro- 123

vide. This is especially critical for morphologi- 124

cally rich languages, where tokenization and em- 125

bedding decisions are tightly coupled. As high- 126

lighted by Mofijul Islam et al. (2022) and Lim- 127

isiewicz et al. (2023), subword-based models often 128

produce semantically fragmented and unstable rep- 129

resentations across languages, particularly in low- 130

resource settings. 131

To address these limitations, we advocate for 132

embedding strategies that align with morphologi- 133

cally aware tokenization. By respecting linguistic 134

structure during both tokenization and embedding 135

initialization, such methods promise not only im- 136

proved representation quality but also fairer and 137

more effective inclusion of underrepresented lan- 138

guages in NLP systems (Hangya et al., 2023). Our 139

contributions are: 140

(1) We reveal that subword-based embeddings 141

used in current multilingual pretrained models 142

fail to capture the morphological structure of low- 143

resource, morphologically rich languages, leading 144

to fragmented and semantically weak representa- 145

tions; 146

(2) We propose Lexically Grounded Subword 147

Embedding Initialization (LGSE), a novel strat- 148

egy that respects linguistic boundaries by leverag- 149

ing morpheme-aware segmentation for embedding 150

initialization. Unlike conventional methods that 151

rely on arbitrary subword fragments, LGSE creates 152

semantically coherent representations, enabling 153

more accurate and robust representation learning 154

for underrepresented, morphologically rich lan- 155

guages such as Amharic and Tigrinya. 156

(3) We introduce the first human-annotated 157

benchmark dataset for evaluating downstream NLP 158

tasks and assessing model performance in iden- 159

tifying high-quality educational content for two 160

morphologically rich, underrepresented languages 161

Amharic and Tigrinya. This resource fills a crit- 162

ical gap for low-resource languages and provides 163

a foundation for future research on cross-lingual 164
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transfer, morphological modeling, and educational165

AI;166

(4) We rigorously evaluate LGSE on three down-167

stream NLP tasks Question Answering, Named168

Entity Recognition, and Text Classification us-169

ing two morphologically complex, low-resource170

languages: Amharic and Tigrinya. Compared171

to strong multilingual baselines, LGSE achieves172

substantial and consistent improvements over173

conventional subword-based embedding methods,174

demonstrating the effectiveness of linguistically175

grounded initialization in challenging language set-176

tings.177

2 Related Work178

2.1 Over-Segmentation in Low-Resource179

Languages180

Subword tokenization methods such as Byte-Pair181

Encoding (BPE) and SentencePiece are widely182

used in multilingual pretrained language models.183

However, these approaches often cause excessive184

fragmentation when applied to morphologically185

rich and low-resource languages (Rust et al., 2021;186

Muller et al., 2021). This over-segmentation leads187

to longer token sequences, which increase infer-188

ence time (Hofmann et al., 2022; Sun et al., 2023),189

raise API costs (Ahia et al., 2023; Petrov et al.,190

2023), and degrade downstream task performance191

(Bostrom and Durrett, 2020; Fujii et al., 2023). To-192

kenizers trained on high-resource languages often193

produce segmentation mismatches in low-resource194

languages due to their lack of morphological aware-195

ness (Sun et al., 2023).196

2.2 Vocabulary Expansion and Embedding197

Initialization198

Vocabulary expansion is a common strategy for199

adapting pretrained models to underrepresented200

languages, particularly when the base vocabulary201

lacks coverage for non-Latin scripts or language-202

specific structures (Conneau et al., 2020; Downey203

et al., 2024; Pfeiffer et al., 2020). Pretrained mod-204

els typically use a fixed vocabulary of approxi-205

mately 50K tokens (Ushio et al., 2023), which of-206

ten fails to adequately represent morphologically207

rich or low-resource languages.208

To address out-of-vocabulary (OOV) issues, em-209

bedding initialization methods aim to leverage pre-210

trained representations. Liu et al. (2021) propose211

synthesizing OOV embeddings using subword and212

hyperword information. UniBridge aligns non-213

overlapping tokens across languages via syntactic 214

and semantic embeddings to enhance cross-lingual 215

transfer (Pham et al., 2024). EVALM mitigates 216

overfitting by initializing new tokens with high- 217

resource language translations (InitHRL) and ap- 218

plying regularization during fine-tuning (Nag et al., 219

2023). 220

Recent work has also explored vocabulary ex- 221

pansion in decoder-only models such as LLaMA 222

2 and 3 to improve generative performance in low- 223

resource settings (Balachandran, 2023; Larcher 224

et al., 2023; Lin et al., 2024; Cui et al., 2023; Fujii 225

et al., 2024; Choi et al., 2024b; Nag et al., 2025). 226

These approaches typically add subwords based 227

on frequency and continue pretraining or fine-tune 228

with instruction data. While effective in reducing 229

token overhead and improving fluency, they often 230

rely on naive subword addition and initialization 231

methods that do not account for linguistic struc- 232

ture. For example, Balachandran (2023) and Cui 233

et al. (2023) introduce additional tokens for Tamil 234

and Chinese using simple initialization, while Fujii 235

et al. (2024) adapts LLaMA 2 for Japanese through 236

cross-lingual pretraining. Similarly, Choi et al. 237

(2024a) and Nguyen et al. (2024) extend coverage 238

for Korean and Southeast Asian languages. How- 239

ever, these methods do not explicitly address frag- 240

mentation or incorporate morphological alignment 241

in their tokenization strategies. 242

2.3 Linguistically Informed Embedding 243

Alignment 244

Several studies have explored embedding reinitial- 245

ization and alignment strategies that incorporate 246

cross-lingual semantics. WECHSEL (Minixhofer 247

et al., 2022) maps new subword embeddings to se- 248

mantically similar words using multilingual vector 249

alignment. Although it improves zero-shot trans- 250

fer, it treats subwords as atomic units and over- 251

looks morphological structure. OFA (Liu et al., 252

2024) introduces matrix factorization to compress 253

the embedding space for scalable adaptation, yet it 254

also ignores language-internal patterns. 255

Language-specific vocabulary augmentation 256

has been shown to improve syntactic tasks in 257

low-resource languages (Chau et al., 2020), and 258

Mundra et al. (2024) provide a comparative 259

analysis of embedding initialization methods. 260

Nonetheless, existing approaches largely neglect 261

morpheme-based segmentation and do not ex- 262

ploit morphological composition for embedding 263

initialization. 264
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3 Problem Statement265

Multilingual pretrained models such as266

mBERT and XLM-R employ a shared sub-267

word vocabulary V across multiple languages268

L = {L1, L2, . . . , Lm}. For a word w ∈ Li,269

a tokenizer T segments it into subwords270

T (w) = [s1, s2, . . . , sn], where each subword271

si ∈ V is associated with a pretrained embedding272

ei ∈ Rd. However, this subword segmentation273

frequently fails to align with the word’s true274

morphemic structure M(w) = [m1,m2, . . . ,mk],275

where each mj represents a linguistically mean-276

ingful morpheme.277

This misalignment is particularly problematic278

for morphologically rich and low-resource lan-279

guages, leading to suboptimal semantic represen-280

tations and poorer generalization on unseen or in-281

frequent tokens.282

4 Vocabulary expansion and283

Initialization284

This section introduces two key approaches to en-285

hancing embedding initialization for morpholog-286

ically rich and low-resource languages. Section287

4.1 presents Lexically Grounded Subword Embed-288

ding Initialization Framework (LGSE) which lever-289

ages subword-level semantic representations from290

FastText (Bojanowski et al., 2017) to initialize291

embeddings for morpheme-aligned tokens. This292

method ensures that the initialized vectors cap-293

ture meaningful morphological and semantic pat-294

terns, aligning with the language’s internal struc-295

ture. In Section 4.2, we describe embedding initial-296

ization for new morphologically grounded tokens,297

which addresses out-of-vocabulary (OOV) scenar-298

ios by generating embeddings for novel morpheme-299

based units using composition strategies informed300

by morphological structure and distributional se-301

mantics. Together, these strategies aim to improve302

vocabulary coverage, semantic coherence, and rep-303

resentation quality in low-resource, morphologi-304

cally complex languages.305

4.1 Lexically Grounded Subword Embedding306

Initialization (LGSE)307

Given access to a morphologically-aware tokenizer308

and pretrained FastText embeddings, we represent309

a new token t segmented into morphemes M(t) =310

[m1,m2, . . . ,mk]. Each morpheme mj is further311

represented by a set of character n-grams312

Gj = {gj1, gj2, . . . , gjnj}.313

Each n-gram g has an associated FastText embed- 314

ding fg ∈ Rd. The embedding for morphememj is 315

computed as the average of its constituent n-gram 316

embeddings 317

mj =
1

|Gj |
∑
g∈Gj

fg 318

while the initial token embedding et is obtained by 319

averaging over all morpheme embeddings, i.e., 320

et =
1

k

k∑
j=1

mj =
1

k

k∑
j=1

 1

|Gj |
∑
g∈Gj

fg

 . 321

To align the FastText embedding space with the pre- 322

trained model embedding space, a learned linear 323

projection W ∈ Rd×d is applied, i.e., 324

ealigned
t = Wet. 325

4.2 Embedding Initialization for New 326

Lexically Grounded Subword Tokens 327

We initialize the embedding for a new token as the 328

average of its morpheme embeddings computed 329

via FastText-based pooling: 330

enew =
1

k

k∑
j=1

maligned
j , 331

where maligned
j are morpheme embeddings after 332

projection. For tokens without known morpheme 333

segmentation or embeddings, we initialize by sam- 334

pling from a multivariate normal distribution esti- 335

mated from existing pretrained embeddings: 336

enew ∼ N (µ,Σ), 337

where µ and Σ are the mean and covariance matrix 338

of pretrained embeddings. To prevent excessive de- 339

viation of new embeddings from their initialization 340

during continual pretraining or fine-tuning, we ap- 341

ply the regularization loss 342

Lreg = λ ∥enew − µ∥2 , 343

where µ is the initial embedding vector (e.g., from 344

FastText projection), and λ controls the regulariza- 345

tion strength, balancing stability and adaptability. 346

4



5 Experimental Setup347

Our experiments are conducted using the multilin-348

gual encoder-based model XLM-R (Conneau et al.,349

2020) as the foundational architecture. XLM-R is350

selected for its proven cross-lingual transfer per-351

formance and extensive use in multilingual NLP352

research. Its decoupled SentencePiece tokenizer353

enables straightforward integration of morpheme-354

level tokens without modifying the underlying355

model architecture. To ensure fair comparison and356

reproducibility, all experiments utilize the base ver-357

sion of XLM-R and maintain consistent hyperpa-358

rameters across both baseline and LGSE-enhanced359

models.360

The model contains approximately 125 million361

parameters. Training was performed on a single362

GPU with 4 CPU cores and 46 GB RAM, with363

each run allocated up to 24 GPU hours on an Am-364

pere architecture GPU. The computational envi-365

ronment was managed using Anaconda to ensure366

consistency and reproducibility.367

5.1 Morphology-Aware Tokenization368

We adopt a morphologically informed tokeniza-369

tion strategy that segments words into lexically370

grounded morphemes using supervised morpho-371

logical analysis applied to monolingual corpora372

Pam (Amharic) and Pti (Tigrinya). Unlike con-373

ventional tokenizers that rely solely on frequency-374

based subword segmentation, our approach re-375

spects linguistic boundaries to preserve morpho-376

logical integrity. To construct a vocabulary that377

is both linguistically meaningful and computation-378

ally efficient, we combine high-frequency mor-379

pheme tokens with subword units learned via Byte-380

Pair Encoding (BPE). A hyperparameter r ∈381

[0, 1] controls the ratio of morpheme tokens, yield-382

ing a hybrid vocabulary:383

V = VBPEsmall ∪ Vmorph,

|VBPEsmall | = s(1− r),

|Vmorph| = sr.

(1)384

Tokenization proceeds in two stages: (i) words385

are first segmented into morphemes; (ii) BPE is386

then applied within each morpheme, preventing387

merges across morpheme boundaries.388

Formally, for a word w = m1m2 · · ·mk, the to-389

kenizer output is:390

Tokenizer(w) =
k∪

i=1

BPEsmall(mi).391

This morphology-aware BPE forms the foun- 392

dation of our Lexically Grounded Subword 393

Embedding Initialization (LGSE) framework. 394

By aligning embeddings with linguistically inter- 395

pretable morphemes and subwords, LGSE miti- 396

gates semantic fragmentation and noise introduced 397

by arbitrary subword splits, thereby producing rep- 398

resentations that better capture the morphological 399

richness of underrepresented languages. For prac- 400

tical efficiency, we train the tokenizer to generate 401

a vocabulary of 50,000 tokens per language using 402

parallel and monolingual corpora from the No Lan- 403

guage Left Behind (NLLB) project (Fan et al., 404

2021) for both Amharic and Tigrinya. 405

5.2 Baselines 406

To evaluate the effectiveness of our proposed 407

LGSE approach, we compare it against several 408

strong baselines. In all cases, the original XLM- 409

R encoder layers remain frozen during initializa- 410

tion to isolate the effect of embedding strategies. 411

All models subsequently undergo Language Adap- 412

tive Pretraining (LAPT) under identical settings for 413

fairness. 414

• XLM-R Off-the-Shelf: The unmodified 415

XLM-R model is used in a zero-shot setting 416

without any additional training. This baseline 417

provides a reference point for assessing the in- 418

herent transfer capabilities of the pretrained 419

model in our target languages. 420

• XLM-R + LAPT: The original XLM-R vo- 421

cabulary and embeddings are preserved, and 422

the model is further adapted using Language 423

Adaptive Pretraining on monolingual target 424

language data. This measures the gains from 425

LAPT alone without modifying the tokenizer 426

or embeddings. 427

• Random Initialization for Newly Added To- 428

kens + LAPT: When expanding the vocab- 429

ulary with morphologically grounded tokens, 430

only the embeddings for these new tokens are 431

randomly initialized, while the pretrained em- 432

beddings and encoder parameters remain un- 433

changed. Each new embedding vector is sam- 434

pled from a Gaussian distribution estimated 435

from the original embedding matrix: 436

et ∼ N (µ,Σ), 437

where µ and Σ are the empirical mean and 438

covariance of the original embeddings. This 439
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baseline isolates the contribution of linguis-440

tically informed initialization by comparing441

against a purely random, statistically coherent442

initialization strategy.443

• Subword-Based Initialization (FOCUS) +444

LAPT: We adopt FOCUS (Dobler and445

de Melo, 2023), a subword-level embedding446

refinement method that computes weighted447

combinations of overlapping pretrained sub-448

word tokens using Sparsemax. This improves449

representations for rare or unseen tokens with-450

out modifying the original tokenizer or vocab-451

ulary.452

• Lexically Grounded Subword Embedding453

Initialization (LGSE) + LAPT: Our pro-454

posed approach combines morphology-aware455

tokenization with embedding initialization456

based on FastText-derived morpheme embed-457

dings, aligned via a learned projection layer.458

This linguistically informed strategy miti-459

gates over-fragmentation and enhances cover-460

age of morphologically rich words, improving461

representation quality for low-resource lan-462

guages.463

6 Language-Adaptive Pretraining464

(LAPT)465

To enhance the XLM-R model’s performance on466

morphologically complex, low-resource languages467

such as Tigrinya and Amharic, we move away from468

subword-based approaches that utilize BPE vocab-469

ularies, such as FOCUS (Dobler and de Melo,470

2023). Instead, we initialize the embedding layer471

with lexically grounded representations derived472

from a morphology-aware tokenizer trained on lin-473

guistically annotated corpora. This tokenizer seg-474

ments text into morphemes, preserving the lan-475

guage’s meaningful lexical and grammatical struc-476

tures, unlike arbitrary subword units.477

We employ Language-Adaptive Pretraining478

(LAPT) with a morpheme-level Masked Language479

Modeling (MLM) objective, initializing the em-480

bedding layer with morpheme-aware representa-481

tions from annotated corpora to maintain the lin-482

guistic integrity of the target languages. For483

Amharic, we utilize the CC100 corpus (133M to-484

kens), previously used in XLM-R pretraining (Con-485

neau et al., 2020), while for Tigrinya, we rely486

on data from (Gaim et al., 2021), totaling ap-487

proximately 0.5GB. Hyperparameters for both lan-488

guages are consistent, as detailed in Appendix Ta- 489

ble 3. 490

We preserve the pretrained XLM-R encoder pa- 491

rameters {L1, L2, . . . , Ln} and adapt only the em- 492

bedding layer E, initializing it with a language- 493

specific vocabulary Vmorph tailored to each target 494

language. Pretraining is performed on monolin- 495

gual Tigrinya and Amharic corpora, applying a dy- 496

namic masking probability of 15% to sequences 497

that are either truncated or padded to a maximum 498

length of 256 tokens. 499

7 Evaluation 500

We evaluate our proposed models on a suite of 501

downstream tasks in two low-resource, morpho- 502

logically rich languages that use the Ge’ez script: 503

Amharic and Tigrinya. These languages were se- 504

lected due to the availability of supervised, mor- 505

phologically annotated data as well as curated eval- 506

uation datasets. We conduct experiments on three 507

key tasks: text classification, question answering, 508

and named entity recognition. The hyperparame- 509

ters used for all evaluation tasks are provided in 510

Appendix B Table 3. 511

Text Classification: We address the task of as- 512

signing predefined labels to input texts, with a spe- 513

cific focus on evaluating the quality of educational 514

content. 515

Educational Quality Classification Dataset: 516

To support this task, we introduce a new bench- 517

mark dataset comprising 2,500 human-annotated 518

samples in Amharic and Tigrinya. The dataset 519

was developed in close collaboration with local 520

linguistic communities to ensure cultural and lin- 521

guistic relevance. Data collection proceeded in 522

two stages: initially, a diverse set of texts was 523

sourced from publicly available educational ma- 524

terials, including manuals and blog posts; subse- 525

quently, each text was annotated on a 1–6 scale 526

reflecting perceived educational quality. Compre- 527

hensive dataset statistics and illustrative examples 528

are provided in Appendix A. For model training 529

and evaluation, the dataset was carefully curated 530

and split into 80% for training, 10% for develop- 531

ment, and 10% for testing. 532

Named Entity Recognition (NER): We per- 533

form NER experiments using the balanced train- 534

dev-test splits of the MasakhaNER dataset (Ade- 535

lani et al., 2021) for Amharic and For the Tigrinya 536

NER dataset (Yohannes and Amagasa, 2022), 537

where no official data split is provided, we create a 538
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Table 1: Performance of XLM-R across three NLP tasks in Tigrinya and Amharic. F1 score is used for QA and
NER; Accuracy is used for TC. All results are reported as mean ± standard deviation over five runs. The best
performance per task is highlighted in bold.

Model Task Category Task Metric Tigrinya Amharic Avg

XLM-R (off-the-shelf)
Question Answering QA F1 61.3 ± 0.4 71.4 ± 0.9 66.35
Text Classification TC AC 63.2 ± 0.7 70.1 ± 0.6 66.65
Named Entity Recognition NER F1 66.4 ± 0.6 70.2 ± 0.8 68.3

XLM-R + LAPT
Question Answering QA F1 70.5 ± 0.8 74.9 ± 0.5 72.7
Text Classification TC AC 69.4 ± 0.5 71.0 ± 0.4 67.8
Named Entity Recognition NER F1 69.8 ± 0.5 75.0 ± 0.6 70.4

XLM-R + Random + LAPT
Question Answering QA F1 68.7 ± 0.6 71.3 ± 0.8 70
Text Classification TC AC 69.9 ± 0.6 70.8 ± 0.8 70.35
Named Entity Recognition NER F1 70.3 ± 0.7 74.0 ± 0.7 72.15

XLM-R + FOCUS + LAPT
Question Answering QA F1 75.5 ± 0.3 77.8 ± 1.0 76.65
Text Classification TC AC 72.4 ± 0.4 76.5 ± 0.9 74.45
Named Entity Recognition NER F1 77.5 ± 0.4 78.1 ± 0.9 77.8

XLM-R + LGSE + LAPT
Question Answering QA F1 78.0 ± 0.4 78.5 ± 0.4 78.25
Text Classification TC AC 75.2 ± 0.5 77.8 ± 0.3 76.5
Named Entity Recognition NER F1 79.0 ± 0.3 79.4 ± 0.4 79.2

consistent partition by randomly splitting the data539

into 80% for training, 10% for development, and540

10% for testing. Model selection is based on per-541

formance on the development set, and final results542

are reported on the test set.543

Question Answering (QA): QA performance is544

evaluated on the TIGQA train-dev-test splits bal-545

anced dataset (Teklehaymanot et al., 2024), which546

contains expert-annotated question-answer pairs in547

Tigrinya. For Amharic, we use the AmQA, train-548

dev-test splits dataset (Taffa et al., 2024), devel-549

oped for low-resource QA benchmarking. The fi-550

nal results are reported on the test set for both551

Amharic and Tigriyna QA datasets.552

We report F1 scores for NER, QA, and Text clas-553

sification. Each experiment is repeated five times554

with different random seeds. We report the mean555

and standard deviation of results. Full training556

configurations and hyperparameter settings are pre-557

sented in Appendix B Table 3.558

We compare our approach against three strong559

baselines:560

• XLM-R (off-the-shelf) (Conneau et al.,561

2020) with no modifications,562

• Random embedding initialization, and563

• FOCUS (Dobler and de Melo, 2023), a re-564

cent subword-level initialization strategy us-565

ing overlapping token combinations.566

Unlike these baselines, our method (LGSE) ex-567

plicitly incorporates morpheme-level structure,568

which we argue is essential for capturing the deep 569

semantics of morphologically complex languages 570

such as Amharic and Tigrinya. 571

8 Results and Discussion 572

The results in Table 1 demonstrate a clear and con- 573

sistent performance improvement across all three 574

tasks Question Answering (QA), Text Classifica- 575

tion (TC), and Named Entity Recognition (NER) 576

as additional training strategies and embedding 577

initialization methods are applied to the XLM-R 578

model. 579

8.1 Baseline Performance 580

The off-the-shelf XLM-R model yields the low- 581

est performance across all tasks. This is expected, 582

as the model has not been adapted to the specific 583

languages or domains involved. For instance, it 584

achieves an average QA F1 score of 66.35 and 585

NER F1 score of 68.30, indicating limited ability 586

to generalize to Tigrinya and Amharic without fur- 587

ther adaptation. 588

8.2 Impact of Language-Adaptive 589

Pretraining (LAPT) 590

Applying Language-Adaptive Pretraining 591

(LAPT) substantially improves performance 592

across all tasks. QA and NER scores increase 593

by approximately 6-7 points on average, con- 594

firming the benefit of continued pretraining on 595

language-specific data for low-resource scenarios. 596
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8.3 Effect of Embedding Initialization597

Methods598

Beyond LAPT, we examine the impact of dif-599

ferent subword embedding initialization methods:600

Random , FOCUS, and our proposed Lexically601

Grounded Subword Embedding Initialization602

(LGSE).603

The FOCUS + LAPT configuration outper-604

forms the Random + LAPT baseline, achieving a605

QA F1 score of 76.65 and NER F1 of 77.80. This606

indicates that more informed subword representa-607

tions can lead to better convergence and improved608

performance.609

8.4 Effectiveness of LGSE and610

Cross-Language Impact611

The proposed method, LGSE + LAPT, which in-612

tegrates Language-Adaptive Pretraining with Lex-613

ically Grounded Subword Embedding Initial-614

ization (LGSE), achieves the best overall perfor-615

mance, obtaining QA F1 of 78.25, TC accuracy616

of 76.50, and NER F1 of 79.20. LGSE em-617

ploys a morpheme-aware tokenizer that captures618

linguistically meaningful units, offering improved619

representations for morphologically rich and low-620

resource languages such as Amharic and Tigrinya.621

Unlike conventional subword-based approaches,622

this method aligns with the underlying morpholog-623

ical structure of these languages, thereby enhanc-624

ing semantic fidelity and reducing segmentation er-625

rors.626

Our analysis further reveals that vocabulary627

overlap plays a non-trivial role in cross-lingual628

embedding transfer. Despite Tigrinya’s absence629

in pretraining corpora, we observe approximately630

1,280 shared morphemes with Amharic, largely631

driven by code-mixing rather than strict linguis-632

tic similarity. While this overlap facilitates par-633

tial transfer, it also introduces potential semantic634

drift. To address rare and out-of-vocabulary mor-635

phemes, LGSE leverages FastText-based charac-636

ter n-gram embeddings, enabling compositional637

representations and robust initialization, which638

are crucial for improving generalization in low-639

resource settings.640

Cross-Language Impact. Although Amharic641

benefits from relatively larger resources, LGSE642

substantially reduces the performance gap with643

Tigrinya. This improvement underscores the effec-644

tiveness of linguistically informed tokenization645

and embedding strategies in supporting cross-646

lingual generalization under severe resource con- 647

straints, particularly for morphologically complex 648

languages. 649

9 Conclusion 650

We propose a Lexically Grounded Subword Em- 651

bedding Initialization (LGSE) framework for mor- 652

phologically rich, low-resource languages, focus- 653

ing on Amharic and Tigrinya. By combin- 654

ing morpheme-aware tokenization with FastText- 655

based compositional embeddings and Language- 656

Adaptive Pretraining (LAPT), LGSE consistently 657

improves performance across multiple downstream 658

tasks. These results underscore the benefits of 659

incorporating lexical and morphological structure 660

into multilingual NLP models. 661

Ethical Considerations and Limitations 662

Limitations and Future Work. While the pro- 663

posed framework demonstrates promising im- 664

provements, it faces several limitations. First, it 665

depends on morphologically annotated resources, 666

which remain scarce for many low-resource lan- 667

guages, constraining its applicability in truly mul- 668

tilingual settings. Second, the current design tar- 669

gets encoder-based architectures such as XLM-R, 670

limiting direct integration with decoder-based or 671

sequence-to-sequence models widely used in ma- 672

chine translation and other generative tasks. Third, 673

the incorporation of Lexically Grounded Subword 674

Embedding Initialization introduces additional 675

computational overhead compared to frequency- 676

driven subword segmentation methods, which may 677

impact scalability for very large vocabularies or 678

low-resource deployment environments. 679

As future work, we plan to extend the frame- 680

work to decoder-based and encoder–decoder archi- 681

tectures, enabling its use in machine translation 682

and generative modeling. Additionally, we aim to 683

investigate vocabulary replacement versus expan- 684

sion strategies under these settings to better under- 685

stand their trade-offs in terms of efficiency and per- 686

formance across diverse language families. 687

Ethical Considerations. This work uses only 688

publicly available datasets, with all sources prop- 689

erly cited to ensure transparency. ChatGPT was 690

used only for paraphrasing and language clarity no 691

scientific content was generated. The Amharic and 692

Tigrinya annotated datasets, models, and code will 693

be released under an open-access license to sup- 694

port research equity and inclusivity. No personally 695

8



identifiable information (PII) or sensitive content696

is involved. All research activities adhere to es-697

tablished ethical guidelines for NLP, with attention698

to linguistic and cultural sensitivity in underrepre-699

sented language communities. Our goal is to pro-700

mote responsible and inclusive cross-lingual NLP701

development.702
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A Appendix A 1020

Educational Quality Classification Dataset 1021

The scarcity of labeled data is a particularly no- 1022

table issue in low-resource languages. With this in 1023

mind, we collected human-annotated educational 1024

content benchmark data for training and evaluating 1025

models in two low-resource languages, Amharic 1026

and Tigriyna. The data is collected from Octo- 1027

ber 2024 to April 2025. Community-driven an- 1028

notator primarily from Ethiopia and is actively in- 1029

volved in data development. All the collected 1030

content is sourced from public educational blogs. 1031

Community-driven efforts achieve this by creating 1032
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a human-annotated dataset. Annotators assessed1033

the educational value of each context on a scale1034

from 1 to 6 following a detailed annotation guide-1035

line. This dataset is split 80,10,10 to train-dev-1036

test. This dataset also serves to evaluate models1037

on their ability to identify and select high-quality1038

educational content from web-based sources using1039

a variety of methods.1040

Language Selection1041

To compile the dataset, we employ a methodology1042

akin to that used in the FineWeb-Edu datasets by1043

(Penedo et al., 2024). FineWeb-Edu comprises1044

1.3 trillion tokens, specifically optimized for ed-1045

ucational content, and significantly surpasses all1046

openly available web-based datasets in several rea-1047

soning - and knowledge-intensive benchmarks, in-1048

cluding MMLU, ARC, and OpenBookQA (Penedo1049

et al., 2024). Unlike FineWeb (Penedo et al., 2024),1050

which relies solely on web content scraped through1051

Common Crawl and often includes unstructured,1052

noisy, and low-quality material. We enhance our1053

dataset with structured data from online manu-1054

als and public educational blogs to improve qual-1055

ity and diversity by focusing on two specific lan-1056

guages, Tigrinya and Amharic.1057

Total Context
Amharic 1,250
Tigrinya 1,250
Both Languages 2,500

Total No. Words
Amharic 65,795
Tigrinya 73,683
Both Languages 139,478
Total Unique Tokens 42,991

Data Split (No. Samples)
Training Set (80%) 2,000
Development Set (10%) 250
Test Set (10%) 250

Table 2: Statistics for the Educational Quality Classi-
fication dataset in Amharic and Tigrinya, comprising
2,500 human-annotated samples and split into training,
development, and test sets.

As shown in Table 2, we constructed a dataset1058

comprising 2,500 human-annotated samples for1059

the task of educational quality classification in1060

Amharic and Tigrinya. The dataset was developed1061

using a diverse selection of source texts, including 1062

academic blogs and publicly available educational 1063

manuals, to ensure broad topical and stylistic cov- 1064

erage. Designed as a benchmark resource for low- 1065

resource language research, this dataset enables the 1066

training and evaluation of models capable of iden- 1067

tifying high-quality educational content from gen- 1068

eral web-based material. 1069

Preprocessing 1070

Following the collection of raw texts, we applied 1071

several preprocessing steps to ensure data quality. 1072

First, we removed non-target-language content us- 1073

ing a FastText-based language identification tool 1074

(Bojanowski et al., 2017); for Tigrinya, which is 1075

not supported by FastText, manual verification was 1076

conducted. To further refine the dataset, we filtered 1077

out texts containing abusive language using a set 1078

of rule-based heuristics. Entries containing URLs 1079

or emojis were also excluded to maintain textual 1080

clarity and relevance. Finally, the cleaned text was 1081

tokenized, segmented into sentences, and further 1082

divided into individual words. 1083

Annotation 1084

Each text entry in the dataset was annotated by five 1085

coders, all of them are from Ethiopia who are pro- 1086

feccent in the language, with each coder selecting 1087

one or more labels from six category classes. The 1088

coders who participated in this task were volun- 1089

teers contributing to a community engagement ef- 1090

fort. The annotation process was carried out using 1091

the open-source tool Argilla (Team, n.d.). 1092

Annotation Guidline 1093

Guidelines for Rating Educational Value of the 1094

Content. It comprises six categories: None, Min- 1095

imal, Basic, Good, Excellent, and Problematic 1096

Content Rate the content using the following 1097

criteria: 1098

1099

[1] No Educational Value: 1100

Definition: No educational purpose whatsoever. 1101

Purely entertainment, advertisements, or personal 1102

content with nothing to learn. 1103

Examples: Social media conversations about 1104

daily life Online shopping product listings Ad- 1105

vertisement pages Personal blog posts about 1106

someone’s day Forum discussions about entertain- 1107

ment Comment sections Sports match reports. 1108

1109
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[2] Minimal Educational Value:1110

Definition: Contains a few facts or pieces of infor-1111

mation, but the content is mostly non-educational.1112

Information is incidental or not the main focus.1113

Examples: News article that mentions some1114

historical facts A travel blog with basic informa-1115

tion about a location Product review with some1116

technical details Company website with brief1117

industry information A recipe that briefly explains1118

a cooking technique Entertainment article with1119

occasional facts.1120

1121

[3] Basic Educational Content:1122

Definition: Attempts to explain or teach some-1123

thing, though the information might be scattered1124

or disorganized. Mixed with non-educational1125

content. Examples: A basic how-to guide with1126

ads Simple Wikipedia-style article A blog post1127

explaining a concept but lacking depth Amateur1128

tutorial video transcript Brief explanation of a1129

scientific concept Quick overview of a historical1130

event.1131

1132

[4] Good Educational Content: Definition: Has1133

a clear teaching purpose and well-organized1134

information. Suitable for learning but may have1135

minor limitations. Examples: Detailed tutorial1136

with clear steps Well-written educational blog post1137

Comprehensive guide to a topic Clear explanation1138

of a scientific process Structured learning material1139

Educational website article with examples.1140

1141

[5] Excellent Educational Content:1142

Definition: Outstanding teaching material with1143

a clear structure and thorough explanations.1144

Includes helpful examples and lacks distracting1145

content. Examples: Professional educational1146

resource Well-crafted learning module In-depth1147

guide with clear examples Comprehensive1148

educational article High-quality teaching mate-1149

rial Expert explanation with practical applications.1150

1151

[6] Problematic Content1152

Definition: Unreadable or corrupted text, inappro-1153

priate content, or machine-generated nonsense.1154

Examples: Text in a different language than1155

expected Garbled characters or formatting AI-1156

generated spam content Inappropriate or offensive1157

material Broken/partial webpage content Content1158

that’s too technical to evaluate.1159

Hyperparameter Value
Maximum sequence length 256
Batch size 32
Number of training epochs 10
Learning rate 5e-5
Learning rate schedule Constant
MLM probability 0.15
Weight decay 0.01
Optimizer Adam
Adam ϵ 1× 10−8

Adam β1 0.9
Adam β2 0.999
Mixed precision (fp16) True

Table 3: Hyperparameter settings used for further pre-
training with morpheme-aware tokenization.

B Appendex B 1160

Model and training parameters 1161

Training Details To better align the model’s 1162

embeddings and internal representations with the 1163

linguistic characteristics of the target language, 1164

we employ Language Adaptive Pretraining (LAP), 1165

which continues training a multilingual model on 1166

monolingual data from the target language using 1167

the masked language modeling objective. 1168

All expanded and initialized XLM-R models are 1169

trained following the hyperparameters in (Dobler 1170

and de Melo, 2023), employing the masked lan- 1171

guage modeling (MLM) objective with a mask 1172

probability of 15%. We use the Adam optimizer 1173

(Kingma and Ba, 2014) with parameters β1 = 0.9, 1174

β2 = 0.999, and ϵ = 1×10−8, and an initial learn- 1175

ing rate of 5 × 10−5 with a constant learning rate 1176

schedule. Unlike the original FOCUS approach, 1177

where batch size may vary, we fix the batch size 1178

at 32 to better utilize available hardware resources. 1179

Additionally, we set the maximum sequence length 1180

to 256 tokens and train for 10 epochs, allowing 1181

the model to capture better morpheme-level tok- 1182

enized inputs, which tend to be shorter but more 1183

granular. We apply a weight decay of 0.01 to help 1184

regularize the training and enable mixed-precision 1185

training (fp16), which improves computational ef- 1186

ficiency without sacrificing model stability. 1187
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