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Abstract

Adapting pretrained language models to low-
resource, morphologically rich languages re-
mains a significant challenge. Existing vocab-
ulary expansion methods typically rely on ar-
bitrarily segmented subword units, resulting
in fragmented lexical representations and loss
of critical morphological information. To ad-
dress this limitation, we propose the Lexically
Grounded Subword Embedding Initialization
(LGSE) framework, which introduces morpho-
logically informed segmentation for initializ-
ing embeddings of novel tokens. Instead of
using random vectors or arbitrary subwords,
LGSE decomposes words into their constituent
morphemes and constructs semantically coher-
ent embeddings by averaging pretrained sub-
word or FastText-based morpheme representa-
tions. When a token cannot be segmented
into meaningful morphemes, its embedding is
constructed using character n-gram representa-
tions to capture structural information. Dur-
ing Language-Adaptive Pretraining, we apply
a regularization term that penalizes large devi-
ations of newly introduced embeddings from
their initialized values, preserving alignment
with the original pretrained embedding space
while enabling adaptation to the target lan-
guage. To isolate the effect of initialization, we
retain the original XLM-R vocabulary and to-
kenizer and update only the new embeddings
during adaptation. We evaluate LGSE on three
NLP tasks: Question Answering, Named En-
tity Recognition, and Text Classification, in
two morphologically rich, low-resource lan-
guages: Ambharic and Tigrinya. Experimen-
tal results show that LGSE consistently out-
performs baseline methods across all tasks,
demonstrating the effectiveness of morphologi-
cally grounded embedding initialization for im-
proving representation quality in underrepre-
sented languages.

Ambharic Word for "egg”: | a7&AA

Subword-Based Embedding Initialization (BPE):

ENEN KN [ESES
| A A

Embedding Composition:

El, E2, E3, E4, E5 = Combined — Vioise

Lexically Grounded Subword Embedding (LGSE):

Embedding Composition:

E_ ,E_ = Combined — Vicaningtul

Figure 1: Comparison of embedding initialization
strategies: standard BPE subword splits vs. linguisti-
cally grounded morphemes.

1 Introduction

Pretrained multilingual language models (PLMs)
have become foundational in modern natural lan-
guage processing (NLP), leveraging token se-
quences generated from word or subword-level
units (Liu et al., 2024). A representative example
is XLM-R (Conneau et al., 2020), a transformer-
based model trained on over 100 languages using
the SentencePiece algorithm for subword segmen-
tation. Although XLLM-R employs a shared vocab-
ulary of 250K subword units, the effective average
token coverage per language is relatively limited,
approximately 2.5K subwords compared to mono-
lingual models such as GPT, which typically uti-
lize vocabularies in the range of 40K tokens (Wang
et al., 2019).

Despite their wide language coverage, PLMs
tend to favor high-resource languages, especially



those that are typologically or orthographically
closer to English (e.g., French, Spanish). In
contrast, morphologically rich languages such as
German face heightened out-of-vocabulary (OOV)
challenges due to their complex inflectional and
derivational systems (Ataman and Federico, 2018;
Lample et al., 2018; Wang et al., 2019). These is-
sues are significantly exacerbated for low-resource
languages, particularly those written in non-Latin
scripts. Languages based on the Ge’ez script, such
as Amharic and Tigrinya, suffer from poor lexical
coverage and unreliable token representations due
to a combination of script-specific orthographic
complexity and minimal training data.

To mitigate out-of-vocabulary (OOV) issues,
subword tokenization techniques such as Byte
Pair Encoding (BPE), introduced by Sennrich
et al. (2016), have become foundational in neu-
ral machine translation (NMT) and broader NLP
pipelines (Hiraoka et al., 2019; Bostrom and Dur-
rett, 2020). However, BPE operates purely on char-
acter co-occurrence frequency and disregards lin-
guistic structure, often fragmenting morphologi-
cally rich words into arbitrary subword units. This
segmentation undermines semantic coherence, par-
ticularly in agglutinative or templatic languages.
The issue is especially pronounced in underrep-
resented languages using the Ge’ez script, such
as Ambharic and Tigrinya, where BPE frequently
breaks full lexical units, including complete nouns,
into semantically meaningless fragments.

As illustrated in Figure 1, the Amharic word
A7eAA (‘Tonqulal’, meaning “egg”) is decom-
posed into a series of subwords that fail to preserve
its morphemic integrity. This fragmentation nega-
tively affects subword embedding initialization by
associating these noisy segments with ill-grounded
or diluted vector representations, yielding embed-
dings that poorly capture the word’s meaning. Con-
sequently, morphologically aware tokenization is
essential not merely for better segmentation but
as a prerequisite for reliable and linguistically
grounded embedding initialization in morpholog-
ically complex, low-resource languages.

Multilingual models like mBERT and XLM-R,
which rely on shared vocabularies and embedding
spaces across languages, often fail to encode the
morphosyntactic nuances of such languages (Ahia
et al., 2023; Wang et al., 2019). While language-
adaptive pretraining (LAPT) (Chau et al., 2020)
and similar transfer learning techniques aim to
bridge this representational gap, they still strug-

gle when applied to typologically distinct scripts.
In particular, expanding the vocabulary or retrain-
ing the embedding matrix with newly introduced
tokens disrupts alignment with the pretrained dis-
tribution, complicating the integration of linguis-
tically informed tokenizers (Dobler and de Melo,
2023; de Vries and Nissim, 2021).

Although methods like vocabulary expansion
and random or averaged embedding initialization
provide partial relief, they fail to restore the struc-
tural grounding that morpheme-level units pro-
vide. This is especially critical for morphologi-
cally rich languages, where tokenization and em-
bedding decisions are tightly coupled. As high-
lighted by Mofijul Islam et al. (2022) and Lim-
isiewicz et al. (2023), subword-based models often
produce semantically fragmented and unstable rep-
resentations across languages, particularly in low-
resource settings.

To address these limitations, we advocate for
embedding strategies that align with morphologi-
cally aware tokenization. By respecting linguistic
structure during both tokenization and embedding
initialization, such methods promise not only im-
proved representation quality but also fairer and
more effective inclusion of underrepresented lan-
guages in NLP systems (Hangya et al., 2023). Our
contributions are:

(1) We reveal that subword-based embeddings
used in current multilingual pretrained models
fail to capture the morphological structure of low-
resource, morphologically rich languages, leading
to fragmented and semantically weak representa-
tions;

(2) We propose Lexically Grounded Subword
Embedding Initialization (LGSE), a novel strat-
egy that respects linguistic boundaries by leverag-
ing morpheme-aware segmentation for embedding
initialization. Unlike conventional methods that
rely on arbitrary subword fragments, LGSE creates
semantically coherent representations, enabling
more accurate and robust representation learning
for underrepresented, morphologically rich lan-
guages such as Amharic and Tigrinya.

(3) We introduce the first human-annotated
benchmark dataset for evaluating downstream NLP
tasks and assessing model performance in iden-
tifying high-quality educational content for two
morphologically rich, underrepresented languages
Ambharic and Tigrinya. This resource fills a crit-
ical gap for low-resource languages and provides
a foundation for future research on cross-lingual



transfer, morphological modeling, and educational
Al;

(4) We rigorously evaluate LGSE on three down-
stream NLP tasks Question Answering, Named
Entity Recognition, and Text Classification us-
ing two morphologically complex, low-resource
languages: Amharic and Tigrinya. Compared
to strong multilingual baselines, LGSE achieves
substantial and consistent improvements over
conventional subword-based embedding methods,
demonstrating the effectiveness of linguistically
grounded initialization in challenging language set-
tings.

2 Related Work

2.1 Over-Segmentation in Low-Resource
Languages

Subword tokenization methods such as Byte-Pair
Encoding (BPE) and SentencePiece are widely
used in multilingual pretrained language models.
However, these approaches often cause excessive
fragmentation when applied to morphologically
rich and low-resource languages (Rust et al., 2021;
Muller et al., 2021). This over-segmentation leads
to longer token sequences, which increase infer-
ence time (Hofmann et al., 2022; Sun et al., 2023),
raise API costs (Ahia et al., 2023; Petrov et al.,
2023), and degrade downstream task performance
(Bostrom and Durrett, 2020; Fujii et al., 2023). To-
kenizers trained on high-resource languages often
produce segmentation mismatches in low-resource
languages due to their lack of morphological aware-
ness (Sun et al., 2023).

2.2 Vocabulary Expansion and Embedding
Initialization

Vocabulary expansion is a common strategy for
adapting pretrained models to underrepresented
languages, particularly when the base vocabulary
lacks coverage for non-Latin scripts or language-
specific structures (Conneau et al., 2020; Downey
et al., 2024; Pfeiffer et al., 2020). Pretrained mod-
els typically use a fixed vocabulary of approxi-
mately 50K tokens (Ushio et al., 2023), which of-
ten fails to adequately represent morphologically
rich or low-resource languages.

To address out-of-vocabulary (OOV) issues, em-
bedding initialization methods aim to leverage pre-
trained representations. Liu et al. (2021) propose
synthesizing OOV embeddings using subword and
hyperword information. UniBridge aligns non-

overlapping tokens across languages via syntactic
and semantic embeddings to enhance cross-lingual
transfer (Pham et al., 2024). EVALM mitigates
overfitting by initializing new tokens with high-
resource language translations (InitHRL) and ap-
plying regularization during fine-tuning (Nag et al.,
2023).

Recent work has also explored vocabulary ex-
pansion in decoder-only models such as LLaMA
2 and 3 to improve generative performance in low-
resource settings (Balachandran, 2023; Larcher
et al., 2023; Lin et al., 2024; Cui et al., 2023; Fujii
et al., 2024; Choi et al., 2024b; Nag et al., 2025).
These approaches typically add subwords based
on frequency and continue pretraining or fine-tune
with instruction data. While effective in reducing
token overhead and improving fluency, they often
rely on naive subword addition and initialization
methods that do not account for linguistic struc-
ture. For example, Balachandran (2023) and Cui
et al. (2023) introduce additional tokens for Tamil
and Chinese using simple initialization, while Fujii
etal. (2024) adapts LLaMA 2 for Japanese through
cross-lingual pretraining. Similarly, Choi et al.
(2024a) and Nguyen et al. (2024) extend coverage
for Korean and Southeast Asian languages. How-
ever, these methods do not explicitly address frag-
mentation or incorporate morphological alignment
in their tokenization strategies.

2.3 Linguistically Informed Embedding
Alignment

Several studies have explored embedding reinitial-
ization and alignment strategies that incorporate
cross-lingual semantics. WECHSEL (Minixhofer
et al., 2022) maps new subword embeddings to se-
mantically similar words using multilingual vector
alignment. Although it improves zero-shot trans-
fer, it treats subwords as atomic units and over-
looks morphological structure. OFA (Liu et al.,
2024) introduces matrix factorization to compress
the embedding space for scalable adaptation, yet it
also ignores language-internal patterns.

Language-specific vocabulary augmentation
has been shown to improve syntactic tasks in
low-resource languages (Chau et al., 2020), and
Mundra et al. (2024) provide a comparative
analysis of embedding initialization methods.
Nonetheless, existing approaches largely neglect
morpheme-based segmentation and do not ex-
ploit morphological composition for embedding
initialization.



3 Problem Statement

Multilingual  pretrained models such as
mBERT and XLM-R employ a shared sub-
word vocabulary ) across multiple languages

= {Li,Ls,...,Ly,}. Forawordw € L,
a tokenizer T segments it into subwords
T(w) = I[s1,82,...,5n], Where each subword
s; € V is associated with a pretrained embedding
e; € R% However, this subword segmentation
frequently fails to align with the word’s true
morphemic structure M (w) = [my, ma, ..., mgl,
where each m; represents a linguistically mean-
ingful morpheme.

This misalignment is particularly problematic
for morphologically rich and low-resource lan-
guages, leading to suboptimal semantic represen-
tations and poorer generalization on unseen or in-
frequent tokens.

4 Vocabulary expansion and
Initialization

This section introduces two key approaches to en-
hancing embedding initialization for morpholog-
ically rich and low-resource languages. Section
4.1 presents Lexically Grounded Subword Embed-
ding Initialization Framework (LGSE) which lever-
ages subword-level semantic representations from
FastText (Bojanowski et al., 2017) to initialize
embeddings for morpheme-aligned tokens. This
method ensures that the initialized vectors cap-
ture meaningful morphological and semantic pat-
terns, aligning with the language’s internal struc-
ture. In Section 4.2, we describe embedding initial-
ization for new morphologically grounded tokens,
which addresses out-of-vocabulary (OOV) scenar-
ios by generating embeddings for novel morpheme-
based units using composition strategies informed
by morphological structure and distributional se-
mantics. Together, these strategies aim to improve
vocabulary coverage, semantic coherence, and rep-
resentation quality in low-resource, morphologi-
cally complex languages.

4.1 Lexically Grounded Subword Embedding
Initialization (LGSE)

Given access to a morphologically-aware tokenizer
and pretrained FastText embeddings, we represent
anew token ¢ segmented into morphemes M (t) =
[m1,ma, ..., my]. Each morpheme m; is further
represented by a set of character n-grams

Gj ={9j1.9j2:- -, gjn; }-

Each n-gram ¢ has an associated FastText embed-
dingf, € R?. The embedding for morpheme m; is
computed as the average of its constituent n-gram
embeddings

Zf

geG

while the initial token embedding e; is obtained by
averaging over all morpheme embeddings, i.e.,

wmim =i (g T

j=1 gGG

To align the FastText embedding space with the pre-
trained model embedding space, a learned linear
projection W € R%*? is applied, i.e.,

ligned
e &C = We;.

4.2 Embedding Initialization for New
Lexically Grounded Subword Tokens

We initialize the embedding for a new token as the
average of its morpheme embeddings computed
via FastText-based pooling:

k
e o 1 Z ahgned
new — -
k

ligned .
where mj- '81% are morpheme embeddings after

projection. For tokens without known morpheme
segmentation or embeddings, we initialize by sam-
pling from a multivariate normal distribution esti-
mated from existing pretrained embeddings:

enew ~ N (11, ),

where 1 and X are the mean and covariance matrix
of pretrained embeddings. To prevent excessive de-
viation of new embeddings from their initialization
during continual pretraining or fine-tuning, we ap-
ply the regularization loss

ﬁreg = A Henew - /J/HZ ;
where p is the initial embedding vector (e.g., from

FastText projection), and A controls the regulariza-
tion strength, balancing stability and adaptability.



5 Experimental Setup

Our experiments are conducted using the multilin-
gual encoder-based model XLM-R (Conneau et al.,
2020) as the foundational architecture. XLM-R is
selected for its proven cross-lingual transfer per-
formance and extensive use in multilingual NLP
research. Its decoupled SentencePiece tokenizer
enables straightforward integration of morpheme-
level tokens without modifying the underlying
model architecture. To ensure fair comparison and
reproducibility, all experiments utilize the base ver-
sion of XLM-R and maintain consistent hyperpa-
rameters across both baseline and LGSE-enhanced
models.

The model contains approximately 125 million
parameters. Training was performed on a single
GPU with 4 CPU cores and 46 GB RAM, with
each run allocated up to 24 GPU hours on an Am-
pere architecture GPU. The computational envi-
ronment was managed using Anaconda to ensure
consistency and reproducibility.

5.1 Morphology-Aware Tokenization

We adopt a morphologically informed tokeniza-
tion strategy that segments words into lexically
grounded morphemes using supervised morpho-
logical analysis applied to monolingual corpora
Py (Amharic) and F; (Tigrinya). Unlike con-
ventional tokenizers that rely solely on frequency-
based subword segmentation, our approach re-
spects linguistic boundaries to preserve morpho-
logical integrity. To construct a vocabulary that
is both linguistically meaningful and computation-
ally efficient, we combine high-frequency mor-
pheme tokens with subword units learned via Byte-
Pair Encoding (BPE). A hyperparameter r &
[0, 1] controls the ratio of morpheme tokens, yield-
ing a hybrid vocabulary:

V= VBPEsmau U Vmorph7

‘VBPEsmall‘ - 8(1 - 74)7 (1)
|Vinorph| = 7

Tokenization proceeds in two stages: (i) words
are first segmented into morphemes; (i¢) BPE is
then applied within each morpheme, preventing
merges across morpheme boundaries.

Formally, for a word w = myms - - - my, the to-
kenizer output is:

k
Tokenizer(w) = U BPEgman (1m;).
i=1

This morphology-aware BPE forms the foun-
dation of our Lexically Grounded Subword
Embedding Initialization (LGSE) framework.
By aligning embeddings with linguistically inter-
pretable morphemes and subwords, LGSE miti-
gates semantic fragmentation and noise introduced
by arbitrary subword splits, thereby producing rep-
resentations that better capture the morphological
richness of underrepresented languages. For prac-
tical efficiency, we train the tokenizer to generate
a vocabulary of 50,000 tokens per language using
parallel and monolingual corpora from the No Lan-
guage Left Behind (NLLB) project (Fan et al.,
2021) for both Amharic and Tigrinya.

5.2 Baselines

To evaluate the effectiveness of our proposed
LGSE approach, we compare it against several
strong baselines. In all cases, the original XLM-
R encoder layers remain frozen during initializa-
tion to isolate the effect of embedding strategies.
All models subsequently undergo Language Adap-
tive Pretraining (LAPT) under identical settings for
fairness.

* XLM-R Off-the-Shelf: The unmodified
XLM-R model is used in a zero-shot setting
without any additional training. This baseline
provides a reference point for assessing the in-
herent transfer capabilities of the pretrained
model in our target languages.

* XLLM-R + LAPT: The original XLM-R vo-
cabulary and embeddings are preserved, and
the model is further adapted using Language
Adaptive Pretraining on monolingual target
language data. This measures the gains from
LAPT alone without modifying the tokenizer
or embeddings.

* Random Initialization for Newly Added To-
kens + LAPT: When expanding the vocab-
ulary with morphologically grounded tokens,
only the embeddings for these new tokens are
randomly initialized, while the pretrained em-
beddings and encoder parameters remain un-
changed. Each new embedding vector is sam-
pled from a Gaussian distribution estimated
from the original embedding matrix:

€ ~ N(M’ E)a

where p and Y are the empirical mean and
covariance of the original embeddings. This



baseline isolates the contribution of linguis-
tically informed initialization by comparing
against a purely random, statistically coherent
initialization strategy.

¢ Subword-Based Initialization (FOCUS) +
LAPT: We adopt FOCUS (Dobler and
de Melo, 2023), a subword-level embedding
refinement method that computes weighted
combinations of overlapping pretrained sub-
word tokens using Sparsemax. This improves
representations for rare or unseen tokens with-
out modifying the original tokenizer or vocab-
ulary.

* Lexically Grounded Subword Embedding
Initialization (LGSE) + LAPT: Our pro-
posed approach combines morphology-aware
tokenization with embedding initialization
based on FastText-derived morpheme embed-
dings, aligned via a learned projection layer.
This linguistically informed strategy miti-
gates over-fragmentation and enhances cover-
age of morphologically rich words, improving
representation quality for low-resource lan-
guages.

6 Language-Adaptive Pretraining
(LAPT)

To enhance the XLM-R model’s performance on
morphologically complex, low-resource languages
such as Tigrinya and Amharic, we move away from
subword-based approaches that utilize BPE vocab-
ularies, such as FOCUS (Dobler and de Melo,
2023). Instead, we initialize the embedding layer
with lexically grounded representations derived
from a morphology-aware tokenizer trained on lin-
guistically annotated corpora. This tokenizer seg-
ments text into morphemes, preserving the lan-
guage’s meaningful lexical and grammatical struc-
tures, unlike arbitrary subword units.

We employ Language-Adaptive Pretraining
(LAPT) with a morpheme-level Masked Language
Modeling (MLM) objective, initializing the em-
bedding layer with morpheme-aware representa-
tions from annotated corpora to maintain the lin-
guistic integrity of the target languages. For
Ambharic, we utilize the CC100 corpus (133M to-
kens), previously used in XLM-R pretraining (Con-
neau et al., 2020), while for Tigrinya, we rely
on data from (Gaim et al., 2021), totaling ap-
proximately 0.5GB. Hyperparameters for both lan-

guages are consistent, as detailed in Appendix Ta-
ble 3.

We preserve the pretrained XLM-R encoder pa-
rameters {L1, Lo, ..., L, } and adapt only the em-
bedding layer F, initializing it with a language-
specific vocabulary Viorph tailored to each target
language. Pretraining is performed on monolin-
gual Tigrinya and Amharic corpora, applying a dy-
namic masking probability of 15% to sequences
that are either truncated or padded to a maximum
length of 256 tokens.

7 Evaluation

We evaluate our proposed models on a suite of
downstream tasks in two low-resource, morpho-
logically rich languages that use the Ge’ez script:
Ambharic and Tigrinya. These languages were se-
lected due to the availability of supervised, mor-
phologically annotated data as well as curated eval-
uation datasets. We conduct experiments on three
key tasks: text classification, question answering,
and named entity recognition. The hyperparame-
ters used for all evaluation tasks are provided in
Appendix B Table 3.

Text Classification: We address the task of as-
signing predefined labels to input texts, with a spe-
cific focus on evaluating the quality of educational
content.

Educational Quality Classification Dataset:
To support this task, we introduce a new bench-
mark dataset comprising 2,500 human-annotated
samples in Amharic and Tigrinya. The dataset
was developed in close collaboration with local
linguistic communities to ensure cultural and lin-
guistic relevance. Data collection proceeded in
two stages: initially, a diverse set of texts was
sourced from publicly available educational ma-
terials, including manuals and blog posts; subse-
quently, each text was annotated on a 1-6 scale
reflecting perceived educational quality. Compre-
hensive dataset statistics and illustrative examples
are provided in Appendix A. For model training
and evaluation, the dataset was carefully curated
and split into 80% for training, 10% for develop-
ment, and 10% for testing.

Named Entity Recognition (NER): We per-
form NER experiments using the balanced train-
dev-test splits of the MasakhaNER dataset (Ade-
lani et al., 2021) for Amharic and For the Tigrinya
NER dataset (Yohannes and Amagasa, 2022),
where no official data split is provided, we create a



Table 1: Performance of XLM-R across three NLP tasks in Tigrinya and Amharic. F1 score is used for QA and
NER; Accuracy is used for TC. All results are reported as mean + standard deviation over five runs. The best

performance per task is highlighted in bold.

Model Task Category Task Metric Tigrinya  Amharic Avg
Question Answering QA F1 613+£04 714+£09 66.35
Text Classification TC AC 632+0.7 70.1+£0.6 66.65
XLM-R (off-the-shelf) Named Entity Recognition NER ~ FI  664+0.6 702+08 683
Question Answering QA F1 70.5+£0.8 74905 72.7
Text Classification TC AC 69.4+£05 71.0x04 678
XLM-R + LAPT Named Entity Recognition NER ~ FI  69.8+05 750+0.6 70.4
Question Answering QA F1 68.7+£0.6 71.3+0.8 70
Text Classification TC AC 699+0.6 70.8+0.8 70.35
XLM-R + Random + LAPT  \ o4 Entity Recogniion NER ~ FI 70307 740+07 72.15
Question Answering QA F1 755+£03 77.8+x1.0 76.65
Text Classification TC AC 724+04 765+09 7445
XLM-R + FOCUS + LAPT i, o4 Entity Recognition NER ~ FI  775+04 78.1+09 7738
Question Answering QA F1 780+04 785+x04 78.25
Text Classification TC AC 75205 77.8+x03 765
XLM-R + LGSE + LAPT Named Entity Recognition =~ NER F1 79.0+03 794+04 792

consistent partition by randomly splitting the data
into 80% for training, 10% for development, and
10% for testing. Model selection is based on per-
formance on the development set, and final results
are reported on the test set.

Question Answering (QA): QA performance is
evaluated on the TIGQA train-dev-test splits bal-
anced dataset (Teklehaymanot et al., 2024), which
contains expert-annotated question-answer pairs in
Tigrinya. For Amharic, we use the AmQA, train-
dev-test splits dataset (Taffa et al., 2024), devel-
oped for low-resource QA benchmarking. The fi-
nal results are reported on the test set for both
Ambharic and Tigriyna QA datasets.

We report F1 scores for NER, QA, and Text clas-
sification. Each experiment is repeated five times
with different random seeds. We report the mean
and standard deviation of results. Full training
configurations and hyperparameter settings are pre-
sented in Appendix B Table 3.

We compare our approach against three strong
baselines:

e XLM-R (off-the-shelf) (Conneau et al.,
2020) with no modifications,

* Random embedding initialization, and

¢« FOCUS (Dobler and de Melo, 2023), a re-
cent subword-level initialization strategy us-
ing overlapping token combinations.

Unlike these baselines, our method (LGSE) ex-
plicitly incorporates morpheme-level structure,

which we argue is essential for capturing the deep
semantics of morphologically complex languages
such as Ambharic and Tigrinya.

8 Results and Discussion

The results in Table 1 demonstrate a clear and con-
sistent performance improvement across all three
tasks Question Answering (QA), Text Classifica-
tion (TC), and Named Entity Recognition (NER)
as additional training strategies and embedding
initialization methods are applied to the XLM-R
model.

8.1 Baseline Performance

The off-the-shelf XLM-R model yields the low-
est performance across all tasks. This is expected,
as the model has not been adapted to the specific
languages or domains involved. For instance, it
achieves an average QA F1 score of 66.35 and
NER F1 score of 68.30, indicating limited ability
to generalize to Tigrinya and Amharic without fur-
ther adaptation.

8.2 Impact of Language-Adaptive

Pretraining (LAPT)
Applying  Language-Adaptive  Pretraining
(LAPT) substantially improves performance

across all tasks. QA and NER scores increase
by approximately 6-7 points on average, con-
firming the benefit of continued pretraining on
language-specific data for low-resource scenarios.



8.3 Effect of Embedding Initialization
Methods

Beyond LAPT, we examine the impact of dif-
ferent subword embedding initialization methods:
Random , FOCUS, and our proposed Lexically
Grounded Subword Embedding Initialization
(LGSE).

The FOCUS + LAPT configuration outper-
forms the Random + LAPT baseline, achieving a
QA F1 score of 76.65 and NER F1 of 77.80. This
indicates that more informed subword representa-
tions can lead to better convergence and improved
performance.

8.4 Effectiveness of LGSE and
Cross-Language Impact

The proposed method, LGSE + LAPT, which in-
tegrates Language-Adaptive Pretraining with Lex-
ically Grounded Subword Embedding Initial-
ization (LGSE), achieves the best overall perfor-
mance, obtaining QA F1 of 78.25, TC accuracy
of 76.50, and NER F1 of 79.20. LGSE em-
ploys a morpheme-aware tokenizer that captures
linguistically meaningful units, offering improved
representations for morphologically rich and low-
resource languages such as Amharic and Tigrinya.
Unlike conventional subword-based approaches,
this method aligns with the underlying morpholog-
ical structure of these languages, thereby enhanc-
ing semantic fidelity and reducing segmentation er-
TOrS.

Our analysis further reveals that vocabulary
overlap plays a non-trivial role in cross-lingual
embedding transfer. Despite Tigrinya’s absence
in pretraining corpora, we observe approximately
1,280 shared morphemes with Ambharic, largely
driven by code-mixing rather than strict linguis-
tic similarity. While this overlap facilitates par-
tial transfer, it also introduces potential semantic
drift. To address rare and out-of-vocabulary mor-
phemes, LGSE leverages FastText-based charac-
ter n-gram embeddings, enabling compositional
representations and robust initialization, which
are crucial for improving generalization in low-
resource settings.

Cross-Language Impact. Although Amharic
benefits from relatively larger resources, LGSE
substantially reduces the performance gap with
Tigrinya. This improvement underscores the effec-
tiveness of linguistically informed tokenization
and embedding strategies in supporting cross-

lingual generalization under severe resource con-
straints, particularly for morphologically complex
languages.

9 Conclusion

We propose a Lexically Grounded Subword Em-
bedding Initialization (LGSE) framework for mor-
phologically rich, low-resource languages, focus-
ing on Amharic and Tigrinya. = By combin-
ing morpheme-aware tokenization with FastText-
based compositional embeddings and Language-
Adaptive Pretraining (LAPT), LGSE consistently
improves performance across multiple downstream
tasks. These results underscore the benefits of
incorporating lexical and morphological structure
into multilingual NLP models.

Ethical Considerations and Limitations

Limitations and Future Work. While the pro-
posed framework demonstrates promising im-
provements, it faces several limitations. First, it
depends on morphologically annotated resources,
which remain scarce for many low-resource lan-
guages, constraining its applicability in truly mul-
tilingual settings. Second, the current design tar-
gets encoder-based architectures such as XLM-R,
limiting direct integration with decoder-based or
sequence-to-sequence models widely used in ma-
chine translation and other generative tasks. Third,
the incorporation of Lexically Grounded Subword
Embedding Initialization introduces additional
computational overhead compared to frequency-
driven subword segmentation methods, which may
impact scalability for very large vocabularies or
low-resource deployment environments.

As future work, we plan to extend the frame-
work to decoder-based and encoder—decoder archi-
tectures, enabling its use in machine translation
and generative modeling. Additionally, we aim to
investigate vocabulary replacement versus expan-
sion strategies under these settings to better under-
stand their trade-offs in terms of efficiency and per-
formance across diverse language families.

Ethical Considerations. This work uses only
publicly available datasets, with all sources prop-
erly cited to ensure transparency. ChatGPT was
used only for paraphrasing and language clarity no
scientific content was generated. The Amharic and
Tigrinya annotated datasets, models, and code will
be released under an open-access license to sup-
port research equity and inclusivity. No personally



identifiable information (PII) or sensitive content
is involved. All research activities adhere to es-
tablished ethical guidelines for NLP, with attention
to linguistic and cultural sensitivity in underrepre-
sented language communities. Our goal is to pro-
mote responsible and inclusive cross-lingual NLP
development.
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A Appendix A
Educational Quality Classification Dataset

The scarcity of labeled data is a particularly no-
table issue in low-resource languages. With this in
mind, we collected human-annotated educational
content benchmark data for training and evaluating
models in two low-resource languages, Amharic
and Tigriyna. The data is collected from Octo-
ber 2024 to April 2025. Community-driven an-
notator primarily from Ethiopia and is actively in-
volved in data development. All the collected
content is sourced from public educational blogs.
Community-driven efforts achieve this by creating
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a human-annotated dataset. Annotators assessed
the educational value of each context on a scale
from 1 to 6 following a detailed annotation guide-
line. This dataset is split 80,10,10 to train-dev-
test. This dataset also serves to evaluate models
on their ability to identify and select high-quality
educational content from web-based sources using
a variety of methods.

Language Selection

To compile the dataset, we employ a methodology
akin to that used in the FineWeb-Edu datasets by
(Penedo et al., 2024). FineWeb-Edu comprises
1.3 trillion tokens, specifically optimized for ed-
ucational content, and significantly surpasses all
openly available web-based datasets in several rea-
soning - and knowledge-intensive benchmarks, in-
cluding MMLU, ARC, and OpenBookQA (Penedo
etal., 2024). Unlike FineWeb (Penedo et al., 2024),
which relies solely on web content scraped through
Common Crawl and often includes unstructured,
noisy, and low-quality material. We enhance our
dataset with structured data from online manu-
als and public educational blogs to improve qual-
ity and diversity by focusing on two specific lan-
guages, Tigrinya and Ambharic.

Total Context

Ambharic 1,250
Tigrinya 1,250
Both Languages 2,500
Total No. Words
Ambharic 65,795
Tigrinya 73,683
Both Languages 139,478
Total Unique Tokens 42,991
Data Split (No. Samples)
Training Set (80%) 2,000
Development Set (10%) 250
Test Set (10%) 250

Table 2: Statistics for the Educational Quality Classi-
fication dataset in Amharic and Tigrinya, comprising
2,500 human-annotated samples and split into training,
development, and test sets.

As shown in Table 2, we constructed a dataset
comprising 2,500 human-annotated samples for
the task of educational quality classification in
Amharic and Tigrinya. The dataset was developed
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using a diverse selection of source texts, including
academic blogs and publicly available educational
manuals, to ensure broad topical and stylistic cov-
erage. Designed as a benchmark resource for low-
resource language research, this dataset enables the
training and evaluation of models capable of iden-
tifying high-quality educational content from gen-
eral web-based material.

Preprocessing

Following the collection of raw texts, we applied
several preprocessing steps to ensure data quality.
First, we removed non-target-language content us-
ing a FastText-based language identification tool
(Bojanowski et al., 2017); for Tigrinya, which is
not supported by FastText, manual verification was
conducted. To further refine the dataset, we filtered
out texts containing abusive language using a set
of rule-based heuristics. Entries containing URLSs
or emojis were also excluded to maintain textual
clarity and relevance. Finally, the cleaned text was
tokenized, segmented into sentences, and further
divided into individual words.

Annotation

Each text entry in the dataset was annotated by five
coders, all of them are from Ethiopia who are pro-
feccent in the language, with each coder selecting
one or more labels from six category classes. The
coders who participated in this task were volun-
teers contributing to a community engagement ef-
fort. The annotation process was carried out using
the open-source tool Argilla (Team, n.d.).

Annotation Guidline

Guidelines for Rating Educational Value of the
Content. It comprises six categories: None, Min-
imal, Basic, Good, Excellent, and Problematic
Content Rate the content using the following
criteria:

[1] No Educational Value:

Definition: No educational purpose whatsoever.
Purely entertainment, advertisements, or personal
content with nothing to learn.

Examples: Social media conversations about
daily life Online shopping product listings Ad-
vertisement pages Personal blog posts about
someone’s day Forum discussions about entertain-
ment Comment sections Sports match reports.



[2] Minimal Educational Value:

Definition: Contains a few facts or pieces of infor-
mation, but the content is mostly non-educational.
Information is incidental or not the main focus.
Examples: News article that mentions some
historical facts A travel blog with basic informa-
tion about a location Product review with some
technical details Company website with brief
industry information A recipe that briefly explains
a cooking technique Entertainment article with
occasional facts.

[3] Basic Educational Content:

Definition: Attempts to explain or teach some-
thing, though the information might be scattered
or disorganized. Mixed with non-educational
content. Examples: A basic how-to guide with
ads Simple Wikipedia-style article A blog post
explaining a concept but lacking depth Amateur
tutorial video transcript Brief explanation of a
scientific concept Quick overview of a historical
event.

[4] Good Educational Content: Definition: Has
a clear teaching purpose and well-organized
information. Suitable for learning but may have
minor limitations. Examples: Detailed tutorial
with clear steps Well-written educational blog post
Comprehensive guide to a topic Clear explanation
of a scientific process Structured learning material
Educational website article with examples.

[5] Excellent Educational Content:

Definition: Outstanding teaching material with
a clear structure and thorough explanations.
Includes helpful examples and lacks distracting
content. Examples: Professional educational
resource Well-crafted learning module In-depth
guide with clear examples Comprehensive
educational article High-quality teaching mate-
rial Expert explanation with practical applications.

[6] Problematic Content

Definition: Unreadable or corrupted text, inappro-
priate content, or machine-generated nonsense.
Examples: Text in a different language than
expected Garbled characters or formatting Al-
generated spam content Inappropriate or offensive
material Broken/partial webpage content Content
that’s too technical to evaluate.
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Hyperparameter Value
Maximum sequence length 256
Batch size 32
Number of training epochs 10
Learning rate Se-5
Learning rate schedule Constant
MLM probability 0.15
Weight decay 0.01
Optimizer Adam
Adam € 1x10°8
Adam [ 0.9
Adam [ 0.999
Mixed precision (fp16) True

Table 3: Hyperparameter settings used for further pre-
training with morpheme-aware tokenization.

B Appendex B
Model and training parameters

Training Details To better align the model’s
embeddings and internal representations with the
linguistic characteristics of the target language,
we employ Language Adaptive Pretraining (LAP),
which continues training a multilingual model on
monolingual data from the target language using
the masked language modeling objective.

All expanded and initialized XLM-R models are
trained following the hyperparameters in (Dobler
and de Melo, 2023), employing the masked lan-
guage modeling (MLM) objective with a mask
probability of 15%. We use the Adam optimizer
(Kingma and Ba, 2014) with parameters 81 = 0.9,
Bo =0.999,and e = 1 X 108, and an initial learn-
ing rate of 5 x 107> with a constant learning rate
schedule. Unlike the original FOCUS approach,
where batch size may vary, we fix the batch size
at 32 to better utilize available hardware resources.
Additionally, we set the maximum sequence length
to 256 tokens and train for 10 epochs, allowing
the model to capture better morpheme-level tok-
enized inputs, which tend to be shorter but more
granular. We apply a weight decay of 0.01 to help
regularize the training and enable mixed-precision
training (fp16), which improves computational ef-
ficiency without sacrificing model stability.
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