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Abstract

In this paper, we propose AdaMSS, an adaptive multi-subspace approach for
parameter-efficient fine-tuning of large models. Unlike traditional parameter-
efficient fine-tuning methods that operate within a large single subspace of the
network weights, AdaMSS leverages subspace segmentation to obtain multiple
smaller subspaces and adaptively reduces the number of trainable parameters
during training, ultimately updating only those associated with a small subset of
subspaces most relevant to the target downstream task. By using the lowest-rank
representation, AdaMSS achieves more compact expressiveness and finer tuning of
the model parameters. Theoretical analyses demonstrate that AdaMSS has better
generalization guarantee than LoRA, PiSSA, and other single-subspace low-rank-
based methods. Extensive experiments across image classification, natural language
understanding, and natural language generation tasks show that AdaMSS achieves
comparable performance to full fine-tuning and outperforms other parameter-
efficient fine-tuning methods in most cases, all while requiring fewer trainable
parameters. Notably, on the ViT-Large model, AdaMSS achieves 4.7% higher
average accuracy than LoRA across seven tasks, using just 15.4% of the trainable
parameters. On RoBERTa-Large, AdaMSS outperforms PiSSA by 7% in average
accuracy across six tasks while reducing the number of trainable parameters by
approximately 94.4%. These results demonstrate the effectiveness of AdaMSS
in parameter-efficient fine-tuning. The code for AdaMSS is available at https:
//github.com/jzheng20/AdaMSS.

1 Introduction

With the successful application of large pre-trained models in natural language processing and
computer vision, the parameter-efficient fine-tuning (PEFT) methods have gradually become key
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Figure 1: (a) Weight matrix W ; (b) Multi-subspaces structure of the columns of W (i.e., [W ]:,j); (c)
The lowest-rank representation of W , where each block Z(k) serves as a new representation for the
columns lying in the subspace Sk.

strategies for efficiently adapting these models. Among these PEFT methods, LoRA (Low-Rank
Adaptation) [1] has gained particular attention, as it adopts learnable low-rank structures to represent
weight changes, significantly reducing memory requirements. Following LoRA, numerous low-rank
adaptation methods have since been developed [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Despite sharing the common goal of PEFT, these methods primarily differ in how they impose
low-rank assumptions. For instance, LoRA [1] and AdaLoRA [3] assume that weight changes
∆W ∈ Rn×n are low-rank and represent them using the product of two smaller matrices, A ∈ Rn×r

and B ∈ Rr×n, where r ≪ n. Alternatively, PiSSA [2] assumes that the original weight matrix W
is approximately low-rank and achieves efficient fine-tuning by training its principal components. A
further line of research is represented by methods such as LoRA-GA [5], which hypothesize that the
gradient of the loss function with respect to the weights—i.e., ∇L(W )—exhibits low-rank structure.

These approaches are typical single-subspace methods, as they rely on the assumption that weight
changes, weights, or gradients lie in, or approximately lie in, a single low-dimensional subspace.
However, this assumption inevitably leads to a fundamental trade-off between limited expressiveness
and parameter efficiency: approximating the weights with a single low-dimensional subspace with
a small r limits the model’s capacity for adaptation, while increasing the subspace dimension r
improves expressiveness but results in a substantial rise in the number of trainable parameters and
memory usage.

To address the dilemma between limited expressiveness and parameter efficiency, we propose an
Adaptive Multi-Subspace approach (AdaMSS) that enables finer tuning of model parameters and
has stronger expressiveness. As we will illustrate in this work, the columns of the weight matrix are
approximately distributed across multiple linear subspaces (Figure 1 (a)-(b) provides a conceptual
illustration of multi-subspaces structure of the network weights).

The key features of this work are summarized as follows:

• Compact Expressiveness: By leveraging the observation that the network weights are
approximately located in multiple subspaces, AdaMSS uses a lowest-rank representation for
the network weights, which exhibit an approximate block-diagonal structure (see Figure 1
(c)). This design leads to a more compact representation while preserving both global and
local low-rank structure from the original weights (see Property 1), which is essential for
ensuring effective adaptation across multiple subspaces.

• Generalization Guarantee: We theoretically show that, under the same rank assumption
r, the proposed AdaMSS achieves a lower Gaussian complexity bound and is therefore
expected to exhibit a stronger generalization capability compared to single-subspace-based
methods. Theorem 1 formalizes an upper bound on the expected loss of AdaMSS, providing
its generalization guarantee.

• Multi-Subspace-Based Adaptive Budget Allocation: Thanks to the multi-subspace struc-
ture of the network weights, we can adaptively freeze the parameters associated with
subspaces of lower importance, and eventually updates only those associated with a small
subset of subspaces relevant to the target downstream task, where the importance of each
subspace is evaluated during training.
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Experimental results demonstrate the effectiveness of AdaMSS for PEFT across diverse tasks and
show that it outperforms existing methods in most cases while significantly reducing the number of
trainable parameters. For example, compared with LoRA, AdaMSS achieves 4.7% higher average
accuracy on ViT-Large [12] and 8.5% higher accuracy on GSM8K [13] with LLaMA 2-7B [14],
using only 13.63% and 1.25% of the trainable parameters, respectively. On RoBERTa-Large [15],
AdaMSS achieves comparable performance to LoRA while using just 5.62% of the trainable param-
eters. These results suggest that multi-subspace-based fine-tuning offers a promising direction for
improving the trade-off between expressiveness and parameter efficiency.

2 Preliminaries

In this section, we introduce the notations used throughout the paper, and provide preliminaries and
a brief review of existing literature relevant to our study. Unless otherwise specified, we use a, a,
and A to denote scalars, vectors, and matrices, respectively. The transpose of A is denoted by A⊤.
We use [A]i,j , [A]i,:, and [A]:,j to represent the (i, j)-th element, the i-th row vector, and the j-th
column vector of A, respectively.

2.1 Low-Rank Representation for Subspace Segmentation

To get the lowest-rank presentation for n given samples 2 [M ]:,1, [M ]:,2, · · · , [M ]:,n ∈ Rd, Liu et
al. proposed the Low-Rank Representation (LRR) model [16] expressed as follows:

[Z⋆,E⋆] = min
Z,E

rank(Z) + λ∥E∥♢ s.t.M = MZ +E, (1)

where Z is known as the coefficient matrix, rank(Z) denotes the rank of matrix Z ∈ Rn×n, i.e., the
number of singular values of Z, M ∈ Rd×n represents the matrix composed of the n samples, E
represents the residual component (i.e., noise and redundancy in the samples). The norm ∥ · ∥♢ is
used to quantify the magnitude of the nonzero entries of E, and its specific definition depends on
the prior knowledge about E. The problem (1) can be approximated by a convex formulation and
solved iteratively [16], and it is computationally expensive. Fortunately, when E = 0, problem (1)
has a closed-form solution, given by Z⋆ = V V ⊤, where V ∈ Rn×rank(M) is obtained through the
skinny SVD of M , i.e., M = USV ⊤.

Assuming the samples [M ]:,1, [M ]:,2, · · · , [M ]:,n drawn from a union of linear subspaces {Sk}Kk=1,
where the subspace number K and {Sk}Kk=1 are unknown, the goal of subspace segmentation is to
simultaneously assign the samples into their respective subspaces. When the subspaces {Sk}Kk=1
are independent of each other, samples from different subspaces cannot be expressed as linear
combinations of each other. Consequently, Z⋆ becomes a block-diagonal matrix. To solve the
subspace segmentation problem, Liu et al. determine the subspace number K and to obtain the
segmentation results based on Z⋆ [16]. This LLR-based subspace segmentation method is widely
applied in clustering tasks[16, 17, 18, 19].

3 Multi-Subspace-Based Adaptation

Let W 0 ∈ Rd×n denote the pretrained weight matrix of a network layer, where d and n represent the
input and output dimensions of the layer, respectively. The full fine-tuning (FF) of the network is
formalized as

∆W ⋆ = arg min
∆W∈Rd×n

L(W 0 +∆W ), (2)

where L denotes the loss function, ∆W ∈ Rd×n is the update on W 0, and W = W 0 +∆W is
the corresponding updated weights. In this section, we aim to find a compact representation of W 0

via subspace segmentation [16], which has both low-rank and strictly block-diagonal structure. By
doing so, instead of directly updating W 0 as FF, we perform incremental updates within this compact
representation.

2In this work, the samples here does not refer to layer input x.
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Figure 2: Illustration of multiple subspaces structure in pretrained network weights: an approximate
block-diagonal structure of Z⋆

0 from the first layer of the pretrained (a) ViT-Large (query), (b)
Roberta-Large (query), and (c) LLaMA 2-7B (query).

3.1 Motivation: Multi-Subspace Structure of the Network Weights

Motivated by PiSSA [2], we focus on updating the principle components of W 0 (denoted as
Ŵ 0), and decompose the pretrained weight W 0 as W 0 = Ŵ 0 + W res, where W res :=

W 0 − [U0]:,1:R[S0]1:R,1:R[V 0]
⊤
:,1:R for a given R, and Ŵ 0 = [U0]:,1:R[S0]1:R,1:R[V 0]

⊤
:,1:R is

the truncated SVD of W 0. We apply the LRR to obtain a lowest-rank representation of Ŵ 0.
Considering computational complexity, we adapt the LRR with E = 0:

Z⋆
0 = argmin

Z0∈Rn×n

rank(Z0) s.t. Ŵ 0 = Ŵ 0Z0. (3)

This formulation uses the coefficient matrix Z0 to linearly represent the columns of Ŵ 0 ∈ Rd×n. By
analyzing Z⋆

0, we observe that it exhibits an approximate block-diagonal structure (see Figure 2 for
R = 100), indicating that the columns of Ŵ 0 = Ŵ 0Z

⋆
0 are grouped into different clusters, where

columns within the same cluster are approximately linear combinations of each other. In other words,
the row space of W 0 can be approximated by multiple smaller low-rank subspaces. By leveraging
the approximate block-diagonal structure and low-rank properties of Z⋆

0, we drive a more compact
representation of W 0 than Ŵ 0.

3.2 A Compact Representation By Subspace Segmentation

In the previous subsection, we analyzed the multi-subspace structure of W 0 and obtained a compact
representation Z⋆

0, which exhibits an approximate block-diagonal structure. We now derive a well-
organized and strictly block-diagonal representation of W 0 by subspace segmentation.

Leveraging subspace segmentation and the multi-subspace structure, the row space of W 0 can
be approximately segmented into K smaller low-dimensional subspaces. We assume that the
columns in W 0 = [W

(1)
0 ,W

(2)
0 , · · · ,W (K)

0 ] are well-organized and partitioned based on the
segmentation results, where each block W

(k)
0 ∈ Rd×nk contains the columns assigned to the k-th

subspace. Accordingly, Ŵ 0, Z⋆
0, and W res are also divided into K blocks, leading to the following

decomposition

[W
(1)
0 ,W

(2)
0 , · · · ,W (K)

0 ]

= [Ŵ
(1)

0 , Ŵ
(2)

0 , · · · , Ŵ
(K)

0 ]
(
diag

(
(Z⋆

0)
(1), (Z⋆

0)
(2), · · · , (Z⋆

0)
(K)

)
+ [E

(1)
0 ,E

(2)
0 , · · · ,E(K)

0 ]
)

+ [W (1)
res,W

(2)
res, · · · ,W

(K)
res ], (4)

where Z⋆
0 = [[Z⋆

0]
(1), [Z⋆

0]
(2), · · · , [Z⋆

0]
(K)] is decomposed into a sum of a strictly block-diagonal

matrix diag
(
(Z⋆

0)
(1), (Z⋆

0)
(2), · · · , (Z⋆

0)
(K)

)
and a noise matrix [E

(1)
0 ,E

(2)
0 , · · · ,E(K)

0 ], and each

block (Z⋆
0)

(k) ∈ Rnk×nk is the k-th diagonal block of Z⋆
0.

Define W̄
(k)
res := Ŵ

(k)

0 E
(k)
0 +W (k)

res, we have

W
(k)
0 = Ŵ

(k)

0 (Z⋆
0)

(k) + W̄
(k)
res (5)
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Algorithm 1 Initialization of AdaMSS
Input: W 0, R, and rk.
Output: Estimated K, {A(k)}Kk=1, and the initialized values of {B(k)}Kk=1 and {C(k)}Kk=1.

Step 1: Compute the skinny SVD of W 0: W 0 = U0S0V
⊤
0 ;

Step 2: Obtain Ŵ 0 by Ŵ 0 = [U0]:,1:R[S0]1:R,1:R[V 0]
⊤
:,1:R for given R;

Step 3: Obtain Z⋆
0 by Z⋆

0 = [V 0]:,1:R[V 0]
⊤
:,1:R; ▷ Steps 1-3 are derived from Section 3.1.

Step 4: Determine (or estimate) the number of subspaces K, and apply clustering to assign the the
columns of W 0 to K subspaces [16], as detailed in Algorithm 2 (see Appendix C);

Step 5: Obtain the matrix blocks {W (k)
0 }Kk=1, {Ŵ

(k)

0 }Kk=1, and {(Z⋆
0)

(k)}Kk=1 by the segmentation
results; ▷ Steps 4-5 are derived from Section 3.2.

Step 6: For each k, compute the skinny SVD of Ŵ
(k)

0 : Ŵ
(k)

0 = U
(k)

Ŵ 0
S

(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤;

Step 7: Perform the QR decomposition of S
(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤(Z⋆

0)
(k): S

(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤(Z⋆

0)
(k) =

Q(k)R(k);
Step 8: Set A(k) = U

(k)

Ŵ 0
, initialize B(k) = Q(k) and C(k) = 0. ▷ Steps 6-8 are derived from

Section 3.3.

Figure 3: Illustration of the proposed Multi-Subspace-Based Adaptation framework.

for each k, where (Z⋆
0)

(k) ∈ Rnk×nk is used to approximately represents W (k)
0 . We thus obtain

[W
(1)
0 ,W

(2)
0 , · · · ,W (K)

0 ] = [Ŵ
(1)

0 , Ŵ
(2)

0 , · · · , Ŵ
(K)

0 ]diag
(
(Z⋆

0)
(1), (Z⋆

0)
(2), · · · , (Z⋆

0)
(K)

)
+ [W̄

(1)
res, W̄

(2)
res, · · · , W̄

(K)
res ], (6)

and a new representation of W 0:

diag
(
(Z⋆

0)
(1), (Z⋆

0)
(2), · · · , (Z⋆

0)
(K)

)
. (7)

The following properties hold for this representation.

Property 1. If the subspaces are independent (i.e., rank(Z⋆
0) =

∑K
k=1 rank([Z

⋆
0]

(k))), then

(1) (Global structure-preserving)
∑K

k=1 rank(Ŵ
(k)

0 ) =
∑K

k=1 rank((Z
⋆
0)

(k)) = rank(Ŵ 0);

(2) (Local structure-preserving) rank((Z⋆
0)

(k)) = rank(Ŵ
(k)

0 ) for k = 1, 2, · · · ,K.

Proof. The corresponding proof is given in the Appendix A.

Property 1 ensures both global and local low-rank structure preservation by the representation of W 0.
Specifically, the total rank across all subspaces remains consistent with that of the original weight
matrix (Property 1 (1)), while each subspace individually preserves its intrinsic low-rank structure
(Property 1 (2)). These properties are critical for maintaining original model abilities and enabling
reliable adaptation across multiple subspaces.
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3.3 Multi-Subspace-Based Incremental Update

In the previous subsection, we presented a representation of W 0 based on subspace segmentation, as
shown in (7). In this subsection, we propose a multi-subspace-based adaptation strategy. Rather than
updating W 0 directly, the proposed adaptation performs incremental updates for each (Z⋆

0)
(k).

We introduce an incremental update ∆Z(k) (with rank rk) for each (Z⋆
0)

(k) in (6), and compute the
updated weight block W (k) as

W (k) = Ŵ
(k)

0 ((Z⋆
0)

(k) +∆Z(k)) + W̄
(k)
res = W

(k)
0 + Ŵ

(k)

0 ∆Z(k), (8)

where the second equality follows from (5). Since the computation involves multiplication with the

large matrix Ŵ
(k)

0 , calculating the gradient with respect to ∆Z(k) can be computationally expensive.

To address this, we decompose Ŵ
(k)

0 by the skinny SVD: Ŵ
(k)

0 = U
(k)

Ŵ 0
S

(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤. Let

Rk := rank(Ŵ
(k)

0 ) and A(k) := U
(k)

Ŵ 0
∈ Rd×Rk . Then, the update becomes:

W (k) = W
(k)
0 +A(k)S

(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤∆Z(k). (9)

Since rank(S
(k)

Ŵ 0
(V

(k)

Ŵ 0
)⊤∆Z(k)) ≤ rk, we introduce two trainable matrices B(k) ∈ RRk×rk and

C(k) ∈ Rrk×nk , and reparameterize the k-th updated weight block as:

W (k) = W
(k)
0 +A(k)B(k)C(k). (10)

This formulation yields a low-rank update (i.e., A(k)B(k)C(k)) within each subspace. The overall
framework is illustrated in Figure 3.

To ensure that the initial value of W (k) remains consistent with W
(k)
0 , we initialize C(k) in (10) as

0. The matrix B(k) ∈ RRk×rk is initialized either as an orthogonal matrix, as described in Steps 7-8
of the Algorithm 1. The complete initialization procedure of AdaMSS is presented in Algorithm 1.
The parameter count and computational complexity analysis of the proposed method, along with
comparisons to LoRA and PiSSA, are provided in the Appendices D and E, respectively.

4 Multi-Subspace-Based Adaptive Budget Allocation

In this section, we introduce an adaptive multi-subspace-based budget allocation mechanism. By
integrating this strategy with the Multi-Subspace-Based Adaptation framework proposed in the
previous section, we derive the final method, AdaMSS.

Thanks to the multi-subspace structure of the weights, we can perform adaptive budget allocation
during training by calculating the importance score [20] for each H(k) = [B(k); (C(k))⊤] ∈
R(Rk+nk)×rk directly. Following [20], the importance score s(t)(·) is defined as

s(t)(H(k)) =
1

rk(R+ nk)

∑
i,j

I
(t)
([H(k)]i,j) · U

(t)
([H(k)]i,j), (11)

where
I
(t)
([H(k)]i,j) = β1I

(t−1)
([H(k)]i,j) + (1− β1)I

(t)([H(k)]i,j),

U
(t)
([H(k)]i,j) = β2U

(t−1)
([H(k)]i,j) + (1− β2)

∣∣I(t)([H(k)]i,j)− I
(t)
([H(k)]i,j)

∣∣, (12)

I([H(k)]ij) = |[H(k)]ij∇[H(k)]ij
L|,

and t denotes the training step. This importance score measures how consistently and significantly
each H(k) contributes to loss reduction during training.

At each update step, we rank all H(k) by their importance scores s(t)(H(k)), retain the top-Kt for
training, and freeze the rest. The value of Kt is gradually reduced from K to Ktarget following a
smooth cubic decay schedule (i.e., with exponent ρ = 3) over training steps. The adaptive budget
allocation mechanism is stopped when the number of trainable H(k) for k = 1, 2, · · · ,K falls below
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Figure 4: The adaptive change in the number of trainable parameters of AdaMSS during the training
process.

Ktarget. Figure 4 presents examples on the StanfordCars3, FGVC3, and CIFAR1003 tasks, illustrating
the proposed adaptive budget allocation strategy, which gradually reduces the number of trainable
parameters during the training process.

5 Analysis of AdaMSS

In the previous section, we introduced AdaMSS that is based on the following reparametrization:
W = W 0 +ABC, (13)

where A = [A(1),A(2), · · · ,A(K)] ∈ Rd×R, B = diag(B(1),B(2), · · · ,B(K)) ∈ RR×
∑K

k=1 rk ,
C = diag(C(1),C(2), . . . ,C(K)) ∈ R

∑K
k=1 rk×n, (A(k))⊤A(k) = I and rank(C(k)) ≤ rk for

k = 1, 2, · · · ,K.

We establish the upper bound of expected loss by AdaMSS in Lemma 1 and Theorem 1.

As our discussions given in the Appendix B.2, the upbound of the Gaussian complexity for
LoRA and its single subspace variants (such as AdaLoRA, PiSSA and LoRA-GA) is given by

L(ϕ)R̂B
√

rank(∆W )n
m for ∥∆W ∥2 ≤ B. If

∑K
k=1 rk = rank(∆W ), applying Cauchy–Schwarz

inequality and using
∑K

k=1 nk = n, we have
∑K

k=1

√
rknk ≤

√
rank(∆W )n. Therefore, AdaMSS

attains a lower Gaussian complexity bound when Bk ≤ B, and can be expected to have a stronger
generalization capability than single subspace-based fine-tuning methods, as indicated by Theorem
1. These results can be further extended to deep Lipschitz neural networks by applying Maurer’s
Gaussian complexity chain rule [21].
Lemma 1. [Gaussian complexity of the AdaMSS for a shallow Lipschitz neural network] For the
class of spectrally bounded shallow Lipschitz network

FAdaMSS ={fW (x) = ϕ(xW ) | W = W 0 +ABC,

(A(k))⊤A(k) = I, ∥B(k)C(k)∥2 ≤ Bk}, (14)
the Gaussian complexity of this function class is upper bounded as follows:

ĜS(FAdaMSS) ≤ L(ϕ)
K∑

k=1

R̂Bk

√
rknk

m
,

where n =
∑K

k=1 nk, nk denotes the width of the weight matrix C(k), L(ϕ) is Lipschitz constant for
function ϕ, X = [x⊤

1 , . . . ,x
⊤
m] ∈ Rd×m for the samples {xi}mi=1, and maxi=1,2,··· ,m ∥xi∥ ≤ R̂.

Proof. The corresponding proof is given in the Appendix B.1.

Theorem 1. Let g(·) be a L(g)-Lipschitz loss function from (fw(x),y) to [0, 1], where fw ∈
FAdaMSS and (x,y) ∈ X× Y, X ⊆ Rd and Y are feature space and output space, respectively. For
any δ > 0, the following holds with probability at least 1− δ for a randomly chosen i.i.d. samples
S = {(xi,yi)}mi=1:

E[g(fw(x),y)] ≤ 1

m

m∑
i=1

g(fw(xi),yi) +
√
L(g)πL(ϕ)

K∑
k=1

R̂Bk

√
rknk

m
+

√
9 log 2

δ

2m
.

3https://huggingface.co/datasets/Multimodal-Fatima
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Proof. Combining Lemma 1 with Vector-valued Gaussian complexity Generalization Bound Theorem
[22], we obtain the generalization bound for AdaMSS.

6 Experiments

In this section, we present comparative experiments to evaluate the effectiveness of AdaMSS across
tasks in image classification (IC), natural language understanding (NLU), and natural language
generation (NLG). To better understand the contribution of each component, we define a variant of
AdaMSS without the proposed adaptive budget allocation mechanism, referred to as AdaMSSbase,
for clarity of comparison. We report the average number of trainable parameters per epoch in
our experimental results, as the number of trainable parameters in AdaMSS is adaptively reduced
during the training. Since our focus is on low-rank-based adaptation, we compare AdaMSS not
only with baseline methods such as full fine-tuning (FF) and linear probing (LP), which only tune
the classification head, but also with several low-rank-based PEFT methods, including LoRA [1],
DyLoRA [23], AdaLoRA [3], PiSSA [2], LoRETTA [10], and LoRA-PRO [6]. For each method, we
prioritize using hyperparameters (e.g., rank r) recommended by the authors. For a fair comparison,
we replicate the experimental setups in [1, 2, 24]. A complete list of all hyperparameters and settings
is provided in the Appendix H. Ablation studies are given in Appendix G. All experiments were
performed with Python version 3.12.3. The best results are highlighted in bold, and the top three
results are underlined.

6.1 Image Classification

Table 1: The performance of different fine-tuning methods on various image classification datasets
for the ViT-Base model and ViT-Large model, averaged over 5 random seeds, where the hyperpa-
rameter rk in AdaMSSbase and AdaMSS corresponds to the assumed rank of ∆Z(k) and is set to the
same value for all k.

Model Method # Trainable Accuracy (%)
Parameters OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100 Avg.

LP - 90.28±0.4 25.76±0.3 96.41±0.0 88.72±0.1 17.44±0.4 74.22±0.1 84.28±0.1 68.15
FF 85.8M 93.14±0.4 79.78±1.2 98.92±0.1 99.05±0.1 54.84±1.2 96.13±0.1 92.38±0.1 87.74

LoRA (r = 16) 581K 93.19±0.4 45.38±0.4 98.78±0.1 98.44±0.2 25.16±0.2 92.70±0.2 92.02±0.1 77.95
PiSSA (r = 8) 313K 93.84±0.3 78.43±0.5 98.74±0.0 98.67±0.1 51.56±1.8 93.81±1.8 93.31±0.2 86.90
PiSSA (r = 1) 55K 93.83±0.1 60.29±0.3 98.7±0.0 98.47±0.1 29.61±0.2 92.87±0.2 91.98±0.2 80.82

ViT-Base LoRA-PRO 313K 94.03±0.1 72.12±0.4 98.77±0.1 98.65±0.1 43.39±0.7 93.66±0.2 92.54±0.1 84.74
WeGeFT 49K 92.71±0.2 76.18±0.2 98.46±0.1 94.92±6.9 51.82±0.9 93.03±0.2 91.46±0.2 85.51

LoRETTA (r = 5) 57K 93.39±0.4 74.15±0.8 98.73±0.1 98.67±0.1 48.86±0.5 93.36±0.1 91.87±0.1 85.57
AdaMSSbase (rk = 3) 125K 94.02±0.3 81.55±0.4 98.81±0.05 98.7±0.06 56.95±0.6 94.18±0.1 92.13±0.1 88.05

AdaMSS (rk = 3) 59K 94.23±0.1 80.44±0.2 98.69±0.04 98.59±0.09 54.45±0.3 94.03±0.2 91.91±0.1 87.47
AdaMSSbase (rk = 1) 42K 93.91±0.2 78.98±0.2 98.71±0.07 98.64±0.07 53.2±0.4 93.62±0.08 91.90±0.1 86.99

LP - 91.11±0.3 37.91±0.3 97.78±0.0 92.64±0.1 24.62±0.2 82.02±0.1 84.28±0.1 72.91
FF 303.3M 94.43±0.6 88.90±0.3 99.15±0.1 99.04±0.1 68.25±1.6 96.43±0.1 93.58±0.2 91.40

LoRA (r = 16) 1.57M 94.82±0.1 73.25±0.4 99.13±0.0 98.63±0.1 42.32±1.0 94.71±0.3 94.87±0.1 85.40
PiSSA (r = 8) 835K 94.04±0.4 84.19±0.7 99.13±0.0 98.79±0.0 59.81±0.6 94.99±0.2 92.42±0.1 89.05
PiSSA (r = 1) 147K 93.98±0.3 83.04±0.3 99.04±0.0 98.71±0.0 56.72±0.6 94.64±0.2 93.25±0.1 88.48

ViT-Large LoRA-PRO 835K 94.67±0.1 83.57±0.3 99.20±0.1 98.81±0.1 57.71±0.5 95.12±0.1 93.53±0.1 88.94
WeGeFT 204K 94.49±0.2 83.96±0.1 99.06±0.1 98.34±0.1 60.82±0.5 94.49±0.3 92.69±0.2 89.12

LoRETTA (r = 5) 132K 78.28±0.3 68.44±0.3 88.80±0.2 98.68±0.1 58.04±0.9 94.53±0.1 93.28±0.1 82.86
AdaMSSbase(rk = 3) 483K 94.74±0.1 85.40±0.3 99.11±0.0 98.93±0.06 65.30±0.6 95.32±0.1 93.51±0.1 90.33

AdaMSS(rk = 3) 241K 94.87±0.1 85.24±0.3 99.12±0.0 98.93±0.1 64.31±0.4 95.2±0.2 93.22±0.1 90.13
AdaMSSbase(rk = 1) 178K 94.58±0.1 83.71±0.2 99.08±0.05 98.85±0.1 59.27±0.8 94.68±0.3 93.43±0.2 89.09

We evaluate all methods on IC using the widely adopted Vision Transformer (ViT) [12], a prevalent
foundation model in computer vision, across seven public datasets: OxfordPets4, StanfordCars3,
CIFAR103, EuroSAT5, FGVC3, RESISC456, and CIFAR1003. The number of training epochs is set
as 10. As shown in Table 1, AdaMSS achieves higher average accuracy than other PEFT methods,
including LP, LoRA, PiSSA, LoRA-PRO, and LoRETTA, and performs comparable accuracy with
FF on the seven image classification datasets while using significantly fewer trainable parameters.
More specifically, with the ViT-Base model, AdaMSS (59K) achieves average accuracy comparable
to PiSSA (r = 8), using only 19.5% of its tranable parameters, and achieves 6.5% higher accuracy
than PiSSA (r = 1) at a similar parameter budget. This is because that AdaMSS’s multi-subspace
design allows it to capture richer features with fewer parameters. On the ViT-large model, AdaMSS
achieves 4.7% higher average accuracy than LoRA, while requiring only with 15.4% of the trainable

4https://huggingface.co/datasets/timm/oxford-iiit-pet
5https://huggingface.co/datasets/timm/eurosat-rgb
6https://huggingface.co/datasets/timm/resisc45
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parameters, demonstrating AdaMSS’s strong parameter efficiency and transfer performance in image
classification tasks.

6.2 Natural Language Understanding

Table 2: The performance of different fine-tuning methods on six datasets of the GLUE benchmark
for the RoBERTa-Base model and RoBERTa-Large model, averaged over 5 random seeds.

Model Method # Trainable SST-2 MRPC CoLA QNLI RTE STS-B Avg.Parameters Acc. Acc. MCC Acc. Acc. PCC
FF 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2

LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.2
AdaLoRA 0.3M 94.5±0.2 88.7±0.5 62.0±0.6 93.1±0.2 81.0±0.6 90.5±0.2 85.0
DyLoRA 0.3M 94.3±0.5 89.5±0.5 61.1±0.3 92.2±0.5 78.7±0.7 91.1±0.6 84.5

RoBERTa-Base PiSSA (r = 8) 0.3M 93.9±0.1 89.3±0.8 62.1±2.9 91.3±0.1 77.3±1.4 90.5±0.2 84.1
LoRA-PRO 0.3M 94.2±0.3 90.1±0.5 64.3±0.72 92.0±0.2 80.2±1.8 90.9±0.22 85.3

LoRA (r = 1) 0.055M 93.7±0.5 89.2±0.3 62.3±3.6 90.6±0.4 79.5±0.4 80.8±20.6 82.7
PiSSA (r = 1) 0.055M 93.3±0.2 89.3±0.6 62.6±1.4 90.6±0.4 74.9±1.2 90.0±0.3 83.4

LoRETTA 0.057M 94.6±0.5 88.3±0.7 61.8±1.3 92.7±0.2 75.1±5.3 90.5±0.1 83.8
WeGeFT 0.049M 94.1±0.5 89.5±0.5 63.5±1.3 91.2±0.4 78.6±1.6 90.5±0.1 84.6

AdaMSSbase (rk = 1) 0.042M 94.6±0.2 89.2±1.0 64.3±0.9 92.4±0.1 77.2±0.7 90.6±0.1 84.7
AdaMSS (rk = 1) 0.032M 94.6±0.2 88.8±1.4 64.5±1.1 92.4±0.1 77.3±0.7 90.4±0.1 84.7

FF 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8

PiSSA (r = 8) 0.8M 95.5±0.2 86.9±2.6 61.1±3.4 92.1±1.7 56.8±8.2 91.8±0.4 80.7
RoBERTa-Large LoRA-PRO 0.8M 95.9±0.2 90.9±0.4 66.7±2.0 93.0±0.5 60.5±13.5 92.0±0.1 83.2

LoRA (r = 1) 0.147M 95.7±0.4 88.3±0.7 62.2±2.4 93.9±0.2 82.2±2.5 78.2±29.7 83.4
PiSSA (r = 1) 0.147M 95.2±0.2 84.9±3.4 56.6±6.2 93.4±0.3 65.9±11.3 91.3±0.2 81.2

LoRETTA 0.132M 96.2±0.2 90.5±0.4 69.5±0.6 94.1±0.9 53.0±0.5 92.0±0.2 82.6
WeGeFT 0.065M 95.0±0.3 75.7±7.7 64.0±2.0 93.7±0.3 53.6±1.2 91.4±0.3 78.9

AdaMSSbase (rk = 1) 0.097M 96.3±0.2 90.5±0.3 68.0±0.9 94.6±0.1 87.3±1.0 92.0±0.0 88.1
AdaMSS (rk = 1) 0.045M 96.1±0.0 90.3±0.5 67.2±1.2 94.5±0.1 87.1±2.1 91.9±0.0 87.9

We evaluate all methods on the General Language Understanding Evaluation (GLUE) benchmark
[25] using the robustly optimized BERT models, i.e., RoBERTa-Base and RoBERTa-Large [15],
for the evaluation. We evaluate the performance of the fine-tuned models using three key metrics:
Matthew’s correlation coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC) for STS-B,
and accuracy (Acc.) for all other tasks. For all methods, the maximum number of training epochs
is set to 100 and select the best epoch for each run. Table 2 presents the results of all methods. As
shown in the Table 2, on RoBERTa-Base, AdaMSS achieves average accuracy comparable to other
low-rank-based PEFT methods while using the fewest trainable parameters. For RoBERTa-Large,
AdaMss outperforms PiSSA, LoRA-PRO, and LoRETTA by around 5% in average accuracy while
using fewer parameters, and achieves performance comparable to both LoRA and FF.

6.3 Natural Language Generation

In this subsection, we compare AdaMSS with other methods using a range of models, including LLaMA
2-7B [14], Mistral-7B [26], and Gemma-7B [27], on natural language generation (NLG) tasks. We
adopt the fixed value K = 10 for AdaMSS. All comparison results on accuracy are summarized in
Table 3. As the results demonstrate, AdaMSS⋆ and AdaMSS⋆

base consistently outperforms existing
PEFT methods in most cases, while using only a small number of trainable parameters. Notably,
AdaMSS achieves state-of-the-art performance on both GSM8K [13], MATH [28] for LLaMA 2-7B
and Gemma-7B, with a clear accuracy margin over all other baselines and using less than 1% of the
parameters required for Full FF. For Mistral-7B, AdaMSS remains highly competitive and yields
the best result on MATH using only 4M trainable parameters.

Table 4 further compares the initialization cost of various PEFT methods on LLaMA 2-7B. As
shown in the Table 4, AdaMSS incurs a moderate setup cost, significantly lower than LoRETTA but
higher than the PiSSA and LoRA-PRO. This reflects the structural complexity of both AdaMSS and
LoRETTA, which aim to construct compact representations of network weights: AdaMSS through
multi-subspace segmentation, and LoRETTA via tensor decomposition.

7 Conclusions and Future Works

In this work, inspired by our observation of the multi-subspace structure in network weights, we
proposed AdaMSS, a novel PEFT approach, to address the limitations of single-subspace methods that
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Table 3: Comparing different methods on NLG tasks. PEFT methods marked with ⋆ denote tuning
of all major projection modules, including qproj, kproj, vproj, oproj, upproj, downproj, and gateproj,
whereas the default setting only updates qproj, and vproj.

Model Method Trainable Parameters GSM8K MATH

Full FT 6738M 49.05 7.22
LoRA⋆ 320M 42.30 5.50
PiSSA⋆ (r = 8) 19M 44.11 5.84
LoRA-PRO⋆ (r = 8) 19M 46.61 6.4

LLaMA 2-7B PiSSA (r = 8) 4M 36.39 5.35
LoRETTA (r = 5) 0.3M 37.86 4.6
AdaMSS⋆

base (rk = 3) 4M 51.10 7.57
AdaMSS⋆ (rk = 3) 4M 50.80 7.22
AdaMSSbase (rk = 3) 0.8M 44.41 6.05

Full FT 7242M 67.02 18.6
LoRA⋆ 168M 67.70 19.68
PiSSA⋆ (r = 8) 20M 71.00 20.40
LoRA-PRO⋆ (r = 8) 20M 69.59 19.17

Mistral-7B PiSSA (r = 8) 3M 64.26 16.87
LoRETTA (r = 5) 0.3M 62.6 15.6
AdaMSS⋆

base (rk = 3) 4M 70.71 20.44
AdaMSS⋆ (rk = 3) 2M 70.74 19.47
AdaMSSbase (rk = 3) 0.5M 65.43 17.74

Full FT 8538M 71.34 22.74
LoRA⋆ 200M 74.90 31.28
PiSSA⋆ (r = 8) 25M 75.48 29.59
LoRA-PRO⋆ 25M 75.90 29.25

Gemma-7B PiSSA (r = 8) 3M 71.52 27.53
LoRETTA (r = 5) 0.2M 70.23 26.28
AdaMSS⋆

base (rk = 3) 6M 75.33 29.73
AdaMSS⋆ (rk = 3) 4M 76.41 28.64
AdaMSSbase (rk = 3) 0.7M 70.86 27.38

Table 4: Comparing Initialization Costs of Different PEFT Methods on LLama 2-7B.
Method PiSSA LoRA-Pro LoRETTA AdaMSS
Avg. Time (s) 2.278 2.006 12.878 8.777

often struggle with the dilemma between limited expressiveness and parameter efficiency. Compared
to low-rank-based fine-tuning methods, AdaMSS enables more expressive and adaptive parameter
updates by leveraging subspace segmentation, thereby achieving both parameter efficiency and strong
generalization capability. Comprehensive theoretical analysis and extensive empirical evaluations
demonstrate the advantages of AdaMSS. In future work, we aim to extend the multi-subspace
perspective beyond fine-tuning to broader areas such as network compression and pruning. We
believe that subspace segmentation offers a promising direction for learning compact, disentangled,
and efficient representations for network weights, which could benefit model compression and pruning
in deep neural networks.
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[7] Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. Rosa: accurate parameter-efficient
fine-tuning via robust adaptation. In International Conference on Machine Learning, pages 38187–38206,
2024.

[8] Shubhankar Borse, Shreya Kadambi, Nilesh Pandey, Kartikeya Bhardwaj, Viswanath Ganapathy, Sweta
Priyadarshi, Risheek Garrepalli, Rafael Esteves, Munawar Hayat, and Fatih Porikli. Foura: Fourier
low-rank adaptation. In Neural Information Processing Systems, 2024.

[9] Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector banks.
In Neural Information Processing Systems, 2024.

[10] Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang. Loretta: Low-rank economic tensor-train
adaptation for ultra-low-parameter fine-tuning of large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 3161–3176, 2024.

[11] Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev, and Ivan Oseledets. Lotr: low tensor rank weight
adaptation. arXiv preprint arXiv:2402.01376, 2024.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[13] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems, 2021.

[14] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan
Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023.

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[16] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery of subspace
structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(1):171–184, 2012.

[17] Pan Zhou, Canyi Lu, and Jiashi Feng. Tensor low-rank representation for data recovery and clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[18] Shiqiang Du, Baokai Liu, Guangrong Shan, Yuqing Shi, and Weilan Wang. Enhanced tensor low-rank
representation for clustering and denoising. Knowledge-Based Systems, 243:108468, 2022.

[19] Hongyang Zhang, Zhouchen Lin, Chao Zhang, and Junbin Gao. Robust latent low rank representation for
subspace clustering. Neurocomputing, 145:369–373, 2014.

11



[20] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Platon: Pruning large transformer models with upper confidence bound of weight importance. In
International conference on machine learning, pages 26809–26823. PMLR, 2022.

[21] Andreas Maurer. A chain rule for the expected suprema of gaussian processes. Theoretical Computer
Science, 650:109–122, 2016.

[22] Andrea Pinto, Akshay Rangamani, and Tomaso Poggio. On generalization bounds for neural networks
with low rank layers. arXiv preprint arXiv:2411.13733, 2024.

[23] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: parameter efficient tun-
ing of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint arXiv:2210.07558,
2022.

[24] Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li. Parameter-
efficient fine-tuning with discrete fourier transform. In International Conference on Machine Learning,
2024.

[25] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
a multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[26] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023.

[27] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[28] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large
language models, 2024.

[29] Roman Vershynin. High-dimensional probability. 2020.

[30] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[31] Xiang Lisa Li and Percy Liang. Prefix-tuning: optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

[32] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning
v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks, 2022.

[33] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp, 2019.

[34] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: simple parameter-efficient fine-tuning for
transformer-based masked language-models, 2022.

[35] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and
Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. In Neural Information
Processing Systems, 2024.

[36] Massimo Bini, Karsten Roth, Zeynep Akata, and Anna Khoreva. Ether: efficient finetuning of large-scale
models with hyperplane reflections. In International Conference on Machine Learning, pages 4007–4026,
2024.

[37] Frank Lauren Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematical Physics, (6):164–189, 1927.

12



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the core contributions of the
paper, including the proposed methodology, the scope of experiments, and key findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The authors mention several shortcomings and directions for improvement in
the “Future Work” section, reflecting an awareness of the method’s current boundaries.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results in the paper are supported by clearly stated assumptions.
The proofs are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of the experiments are given in the Appendix.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets employed in the experiments are publicly accessible and appropri-
ately referenced. The code of the proposed method is included in the supplemental material,
with sufficient instructions

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are given in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports experimental results with multiple independent runs, and the
variance across these runs is provided to capture statistical variability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details are given in the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms to the NeurIPS Code of Ethics. All data used are
publicly available and properly cited, no human subjects or private user information were
involved, and no actions were taken that could lead to harm or discrimination.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper presents foundational research. As such, it does not have an
immediate societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

17

https://neurips.cc/public/EthicsGuidelines


Answer: [Yes]
Justification: The paper does not release any models or datasets that pose a high risk for
misuse. All datasets used are publicly available and widely adopted benchmarks, and no
new data is scraped or generated for release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and code packages used in the paper are publicly available and
properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper releases a new code and provides detailed documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study does not involve any crowdsourcing or human subjects. All data
used are collected from publicly available sources or generated synthetically.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any experiments with human subjects or crowd-
sourcing. Therefore, IRB approval is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in the development of the core methodology.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The Proof of Property 1

Proof. From Z⋆
0 = [V 0]:,1:R[V 0]

⊤
:,1:R, we know rank(Z⋆

0) = rank(Ŵ 0).

Since Ŵ
(k)

0 = Ŵ
(k)

0 (Z⋆
0)

(k), it follows that rank(Ŵ
(k)

0 ) ≤ rank((Z⋆
0)

(k)). Thus, we have

K∑
k=1

rank(Ŵ
(k)

0 ) ≤
K∑

k=1

rank((Z⋆
0)

(k)) ≤
K∑

k=1

rank([Z⋆
0]

(k)) = rank(Z⋆
0) = rank(Ŵ 0).

On the other hand, we know that rank(Ŵ 0) ≤
∑K

k=1 rank(Ŵ
(k)

0 ). Therefore, we can conclude

K∑
k=1

rank(Ŵ
(k)

0 ) =

K∑
k=1

rank((Z⋆
0)

(k)) = rank(Ŵ 0).

Since rank(Ŵ
(k)

0 ) ≤ rank((Z⋆
0)

(k)) for all k and
∑K

k=1 rank(Ŵ
(k)

0 ) =
∑K

k=1 rank((Z
⋆
0)

(k)), it
must hold that

rank(Ŵ
(k)

0 ) = rank((Z⋆
0)

(k)).

B The Proofs of the Results in Section 5

B.1 The Proof of Lemma 1

Proof. By Talagrand’s contraction lemma [29], we have

ĜS(FAdaMSS) ≤ L(ϕ) 1
m

Eγ sup
W

⟨W , XΓ⟩, (15)

where each entry in Γ ∈ Rm×n, i.e., [Γ]ij , follows standard Gaussian distribution.

Since

Eγ [sup
W

⟨W , XΓ⟩] = Eγ [⟨W 0,XΓ⟩] + Eγ [sup
B,C

⟨ABC, XΓ⟩]

= Eγ [sup
B,C

⟨ABC, XΓ⟩], (16)

we only need to study the upper bound of Eγ [supB,C⟨ABC, XΓ⟩].

We divide Γ into K blocks according {nk}Kk=1, i.e., Γ = [Γ(1),Γ(2), · · · ,Γ(K)] for Γ(k) ∈
Rm×nk(k = 1, 2, · · · ,K). From the Cauchy-Schwarz inequality, we have

sup
B,C

⟨ABC,XΓ⟩ =
K∑

k=1

sup
B(k),C(k)

⟨A(k)B(k)C(k),XΓ(k)⟩ ≤
K∑

k=1

∥B(k)C(k)∥F ∥XΓ(k)∥F

≤
K∑

k=1

√
rkBk ∥XΓ(k)∥F . (17)

Using the fact that E[|Y |] ≤
√
E[Y 2] for any random variable Y , we obtain

Eγ

[
∥XΓ(k)∥F

]
≤

√
Eγ

[
∥XΓ(k)∥2F

]
=

√
Tr
(
XX⊤ Eγ [(Γ

(k))⊤Γ(k)]
)
≤ R̂

√
nkm. (18)

Combining (17) and (18), we obtain

Eγ [sup
W

⟨W , XΓ⟩] = Eγ sup
B,C

⟨ABC,XΓ⟩ ≤
K∑

k=1

√
rkBk Eγ [∥XΓ(k)∥F ] ≤

K∑
k=1

√
rkBkR̂

√
nkm.

(19)
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Algorithm 2 Estimation of K and Subspace Segmentation [16]
Input: V 0, R, K0, and τ > 0.
Step 1: Construct the affinity matrix [F ]i,j = ([ŨŨ

T
]i,j), where Ũ is formed by [V 0]:,1:R with

normalized rows;
Step 2: Estimate the number of subspaces K by K = max(K0, n − int (

∑n
i=1 fτ (σi(L)))

[16], where {σi(L)}ni=1 are the singular values of the Laplacian matrix L = I − D− 1
2FD− 1

2 ,

where D = diag
(∑

j [F ]1j , · · · ,
∑

j [F ]nj

)
, int(·) is the function of the nearest integer, and

fτ (σ) =

{
1, if σ ≥ τ,

log2

(
1 + σ2

τ2

)
, otherwise.

Step 3: Construct an undirected graph by using the affinity matrix F ;
Step 4: Apply the NCut [30] to segment the vertices into K clusters;

Substituting (19) into (15) leads to

ĜS(FAdaMSS) ≤ L(ϕ) 1
m

Eγ sup
W

⟨W , ΓX⟩ ≤ L(ϕ)
K∑

k=1

R̂Bk

√
rknk

m
.

B.2 Gaussian Complexity Analysis for LoRA and Its Single Subspace Variants

By the Vector-valued Gaussian complexity Generalization Bound Theorem [22], we can directly
derive the Gaussian complexity of LoRA, as stated in Lemma 2.
Lemma 2. [Gaussian complexity of the LoRA for a shallow Lipschitz neural network] For the class
of spectrally bounded shallow Lipschitz network

Flora = {fW (x) = ϕ(xW ) | W = W 0 +∆W , ∥∆W ∥2 ≤ B} (20)

the Gaussian complexity of this function class is upper bounded as follows:

ĜS(Flora) ≤ L(ϕ)R̂B

√
rn

m
, (21)

where r = rank(∆W ), n denotes the width of the weight matrix ∆W , L(ϕ) is Lipschitz constant for
function ϕ, X = [x⊤

1 , . . . ,x
⊤
m] ∈ Rd×m for the samples {xi}mi=1, and maxi=1,2,··· ,m ∥xi∥ ≤ R̂.

Similarly, by [22], we can obtain the same upper bound in (21) for the Gaussian complexity of PiSSA
and other single subspace variants under the same assumptions.

C Subspace Segmentation (Algorithm 2)

As Step 2 in Algorithm 2 incurs significant computational and memory costs, a practical alternative
for large models is to fix K = K0 for large models.

D Parameter Count

Table 5: Comparison of parameter counts among different low-rank-based methods for d = n: r
represents the rank of the incremental update used in LoRA and PiSSA.

LoRA PiSSA AdaMSS
# Trainable

2rn 2rn
∑K

k=1(rknk + rkRk)Parameters

Given W (k) = W
(k)
0 +A(k)B(k)C(k) for k = 1, 2, · · · ,K, where B(k) ∈ RRk×rk and C(k) ∈

Rrk×nk are trainable, the total trainable parameter count in AdaMSS is given by
∑K

k=1(rknk+rkRk),
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which is always less than 2(
∑K

k=1 rk)maxk=1,2,··· ,K nk for d = n. Compared to the trainable
parameter count in LoRA and PiSSA, as shown in Table 5, AdaMSS introduces significantly fewer
parameters for r =

∑K
k=1 rk, owing to the fact that rk ≤ Rk ≤ nk and n =

∑K
k=1 nk.

E Computation Complexity

By the proposed adaptation, we have Y = X(W 0 +ABC), where X ∈ Rbach size×n is the input.
In table 6, we compare the computational complexity of gradient computation for LoRA, PiSSA, and
AdaMSS. The table shows that AdaMSS’s computational complexity is on the same order as LoRA
and PiSSA when

∑K
i=1 rk = r.

Table 6: Comparison of LoRA, PiSSA and AdaMSS for d = n, where underline denotes the trainable
parameters, and A ∈ Rn×r and B ∈ Rr×n for LoRA and PiSSA.

LoRA PiSSA AdaMSS
Forward Y = XW 0 +XAB Y = XW res +XAB Y = XW 0 +XABC

Gradient ∂L
∂A = X⊤

(
∂L
∂Y

)
B⊤ ∂L

∂A = X⊤
(

∂L
∂Y

)
B⊤ ∂L

∂B = (XA)⊤
(

∂L
∂Y

)
C⊤

∂L
∂B = A⊤X⊤

(
∂L
∂Y

)
∂L
∂B = A⊤X⊤

(
∂L
∂Y

)
∂L
∂C = B⊤(XA)⊤

(
∂L
∂Y

)
Cost O(rn2 + bach size× n2) O(rn2 + bach size× n2) O(

∑K
i=1 rkn

2+bach size×
n2)

F Comparison of Optimizer Memory Efficiency and Training Speed

Since our method uses fewer trainable parameters, it exhibits superior memory efficiency, as shown
in Tables 7 and 8.

Table 7: Optimizer memory consumption (MB) of different PEFT methods on ViT-Large using
fp32 precision.

Method LoRA (r = 16) PiSSA (r = 8) LoRETTA (r = 5) AdaMSSbase (rk = 1)

Memory (MB) 18.84 9.6 1.584 2.136

Table 8: Optimizer memory consumption (MB) of different PEFT methods on RoBERTa-Large
using fp32 precision.

Method LoRA (r = 8) PiSSA (r = 8) LoRETTA (r = 5) AdaMSS (rk = 1)

Memory (MB) 9.6 9.6 1.58 0.54

Regarding training speed, as discussed in the main text, the computational complexity of our gradient
updates remains on the same order as LoRA and PiSSA when r =

∑K
k=1 rk, where r is the

rank hyperparameter used in LoRA and PiSSA. However, in practice, the multi-subspace adaptive
budget allocation in our method accelerates training by selectively updating only the most important
subspaces (see Table 9). Moreover, this adaptive budget allocation offers greater flexibility in
balancing training efficiency and model performance. Specifically, the number of trainable subspaces
is gradually reduced to a target value Ktarget according to a smooth decay schedule with decay
exponent ρ = 3. A larger ρ results in a faster reduction in the number of trainable subspaces. Table 10
provides an ablation study demonstrating the impact of different ρ values on both training speed and
final performance.
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Table 9: Average training time (in seconds) of different PEFT methods on RoBERTa-Large for
natural language understanding task (STS-B).

Method LoRA (r = 8) PiSSA (r = 8) LoRETTA (r = 5) AdaMSS (rk = 1,
∑

k rk ≥ 10)

Avg. Time (s) 5325.77 5174.04 5441.47 4972.03

Table 10: Training time (in seconds) and performance (PCC) of AdaMSS with varying ρ on
RoBERTa-Large for natural language understanding task (STS-B).

ρ 5 10 15

Avg. Time (s) 4913.63 4780.97 4667.35
PCC 91.66±0.03 91.52±0.02 91.35±0.03

G Ablation Study

G.1 Comparison of Different Adaptive Budget Allocation Strategies

We compare our importance-score-based adaptive budget allocation strategy (described in the main
text) with the following two alternative approaches:

• Random adaptive budget allocation: At each training step, Kt subspaces are randomly
selected, and only the corresponding parameters are updated.

• ℓ1-norm-based adaptive budget allocation: At each training step, the ℓ1-norm of the
parameters associated with each subspace is computed, and the top-Kt subspaces with the
largest ℓ1-norms are selected for updating.

As shown in Table 11, both random and ℓ1-norm-based adaptive allocation strategies lead to consider-
able performance degradation. In contrast, our importance-score-based allocation method achieves
the best performance for all cases.

Table 11: Performance comparison of different adaptive budget allocation strategies on the
ViT-Large model.

Methods \ Dataset StanfordCars CIFAR100 FGVC

Importance-score-based adaptive budget allocation 85.24±0.3 93.22±0.01 64.31±0.4

Random adaptive budget allocation 83.63±0.30 93.11±0.10 59.36±0.72

ℓ1-norm-based adaptive budget allocation 79.89±0.41 92.00±0.21 40.77±1.13

G.2 Performance of AdaMSS With Varying rk

This subsection explores how the performance of AdaMSS varies with different values of rk and
Ktarget using ViT-Large, where rk ∈ {1, 2, 3} and Ktarget ∈ {100, 200, 300, 400, 500}. Each
configuration is evaluated on the StanfordCars, FGVC datasets, and CIFAR100. All results are
presented in Figures 5. As shown in the results, increasing rk can lead to significant improvements in
accuracy.

G.3 Sensitivity Analysis of ρ and Ktarget in Adaptive Budget Allocation

We evaluate the sensitivity of AdaMSS to different values of ρ ∈ {1, 2, 3, 4, 5} and Ktarget ∈
{100, 200, 300, 400} using the ViT-Large, as shown in Tables 15–17. The results demonstrate that
AdaMSS maintains robust performance across a wide range of ρ and Ktarget settings.
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Table 12: Results of AdaMSSbase under varying τ and K0 values for StanfordCars.
τ\K0 1 5 10 15 20

0.001 84.25±0.23 85.40±0.19 85.40±0.22 85.38±0.25 85.67±0.42

0.01 84.12±0.24 85.20±0.50 85.31±0.27 85.41±0.13 85.50±0.21

0.05 84.77±0.16 85.02±0.26 85.23±0.28 85.59±0.27 85.70±0.24

0.10 84.58±0.29 84.93±0.25 85.60±0.26 85.36±0.29 85.42±0.23

0.15 84.72±0.39 85.12±0.23 85.38±0.33 85.61±0.20 85.63±0.45

0.20 84.57±0.09 84.86±0.17 85.53±0.21 85.39±0.34 85.65±0.19

Table 13: Results of AdaMSSbase under varying τ and K0 values for CIFAR100.
τ\K0 1 5 10 15 20

0.001 93.27±0.09 93.44±0.16 93.47±0.06 93.57±0.12 93.48±0.15

0.01 93.38±0.08 93.33±0.10 93.50±0.10 93.53±0.15 93.57±0.05

0.05 93.42±0.12 93.43±0.12 93.51±0.09 93.45±0.10 93.56±0.09

0.10 93.40±0.12 93.47±0.09 93.58±0.13 93.45±0.12 93.64±0.10

0.15 93.43±0.12 93.43±0.14 93.52±0.06 93.55±0.06 93.60±0.12

0.20 93.43±0.10 93.54±0.05 93.48±0.08 93.53±0.04 93.51±0.11

Table 14: Results of AdaMSSbase under varying τ and K0 values for FGVC.
τ\K0 1 5 10 15 20

0.001 61.36±1.12 65.33±0.55 66.11±0.53 66.62±0.78 66.98±0.73

0.01 61.90±0.55 64.58±0.69 65.27±0.64 66.10±0.69 66.60±0.68

0.05 61.64±0.22 64.63±0.98 65.51±1.05 66.63±0.48 67.44±0.68

0.10 62.42±0.33 64.49±0.87 65.88±0.68 66.29±0.21 67.16±0.82

0.15 62.56±0.73 64.90±1.02 65.72±1.04 66.86±0.30 66.44±0.92

0.20 62.00±0.51 64.76±0.78 65.68±0.93 66.65±0.41 66.86±0.60

Table 15: Results of AdaMSS under varying ρ and Ktarget values for StanfordCars.
ρ\Ktarget 100 200 300 400 500

1 84.78±0.32 85.06±0.16 85.34±0.13 85.35±0.11 85.16±0.12

2 84.88±0.36 85.11±0.19 85.21±0.33 85.26±0.20 85.21±0.41

3 85.03±0.29 84.91±0.24 85.21±0.39 85.06±0.20 85.02±0.18

4 84.69±0.20 84.95±0.13 85.03±0.29 85.02±0.21 85.19±0.13

5 84.89±0.27 84.67±0.25 85.04±0.25 85.16±0.26 85.37±0.36

Table 16: Results of AdaMSS under varying ρ and Ktarget values for CIFAR100.
ρ\Ktarget 100 200 300 400 500

1 93.47±0.10 93.49±0.11 93.41±0.14 93.56±0.10 93.34±0.12

2 93.41±0.14 93.44±0.07 93.54±0.08 93.42±0.13 93.47±0.07

3 93.42±0.14 93.38±0.05 93.56±0.09 93.46±0.14 93.55±0.08

4 93.25±0.11 93.53±0.09 93.40±0.10 93.48±0.15 93.50±0.07

5 93.35±0.15 93.45±0.11 93.37±0.09 93.41±0.12 93.41±0.12

Table 17: Results of AdaMSS under varying ρ and Ktarget values for FGVC.
ρ\Ktarget 100 200 300 400 500

1 64.76±0.55 65.56±0.60 64.98±0.81 64.90±0.98 65.73±0.48

2 64.55±0.73 64.38±0.83 65.14±0.89 65.11±0.57 64.99±0.70

3 63.73±0.31 64.16±1.22 64.77±0.34 65.33±0.64 65.77±0.21

4 63.02±0.89 64.35±0.62 64.64±0.81 64.54±0.47 65.13±0.61

5 62.74±1.53 63.43±0.63 65.12±0.83 64.28±0.99 65.32±0.73
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Figure 5: The performance of AdaMSS with different values of rk and Ktarget.
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Figure 6: The performance of AdaMSSbase with different values of K for rk = 3.

G.4 Sensitivity Analysis of the Subspace Number K

G.4.1 K estimated by Algorithm 2 for given τ and K0

In Algorithm 2, the threshold τ is used to detect near-zero singular values in the normalized Laplacian
matrix and is set to a small value. The parameter K0 serves as a lower bound on the estimated
number of subspaces. We evaluate different settings of τ ∈ {0.001, 0.01, 0.05, 0.10, 0.15, 0.20} and
K0 ∈ {1, 5, 10, 15, 20} using ViT-Large with AdaMSSbase, as reported in Tables 12–14. The results
demonstrate that AdaMSSbase maintains robust performance across all three datasets (StanfordCars,
CIFAR100, and FGVC) when K0 ≥ 10, regardless of the specific choice of τ .

G.4.2 K given manually.

This subsection investigate the effect of varying K on the performance of AdaMSSbase at rk = 3,
comparing estimated K (shown as red dashed lines) with given values of K. As shown in Figures
6, increasing K can also lead to significant improvements in accuracy. Notably, the improvement
associated with increasing K highlights the advantage of the multi-subspace approach.

G.5 Initialization of AdaMSS

In this subsection, we compare two initialization strategies for B(k): the proposed orthogonal
initialization (as described in Steps 6-8 of Algorithm 1) and a random initialization following the
LoRA strategy. While the latter avoids the computations in Steps 6-7 and simplifies the initialization
procedure, we do not recommend this approach for AdaMSS. This is because randomly initializing

B(k) disrupts the preservation of structural information contained in Ŵ
(k)

0 . As reparameterization of
(8), the decomposition A(k)B(k) in (10) is designed to remain as close as possible to the subspace

spanned by Ŵ
(k)

0 , which is crucial for AdaMSS—a method derived from a subspace segmentation
perspective.

Figure 7 analyzes the impact of the two initialization strategies on ViT-Large using the StanfordCars
and FGVC datasets, under varying values of K and rk. The results show that orthogonal initialization
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Figure 7: The performance of AdaMSS with different initialization strategies.

consistently yields superior performance across all configurations compared to random initialization,
highlighting the effectiveness of orthogonal initialization in preserving subspace structure.

H Experimental Setup and Hyper-parameter Configuration

For a fair comparison, we replicate the experimental setups in [1, 2, 24]:

• IC and NLU: The reported results are averaged over five random seeds. All models are
fine-tuned by updating only the query and value projection matrices, while the classification
head is updated for every method.

• NLG: Following [2], we use the datasets listed in Table 21, and all experiments are conducted
on 100K-example subsets and trained for a single epoch. The results are averaged over three
runs.

• A detailed list of all hyper-parameters and settings can be found in the Tables 18-20.

In our experiments, we set R = 100, ρ = 3, and τ = 0.01. If not specified, K0 is set to 10.

Table 18: Hyper-Parameter Configuration for AdaMSSbase and AdaMSS on IC.

Model Hyperparameter OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100

Both

Optimizer AdamW
Batch Size 10

Epochs 10
Seeds {7,77,777,7777,77777}

ViT-Base

Learning Rate 0.005 0.01 0.01 0.01 0.01 0.01 0.01
Learning Rate (Head) 0.005 0.005 0.005 0.0005 0.005 0.005 0.005

Weight Decay 0.0005 0.0 0.05 0.05 0.0005 0.0005 0.05

ViT-Large

Learning Rate 0.001 0.01 0.01 0.01 0.01 0.01 0.01
Learning Rate (Head) 0.0005 0.005 0.05 0.0005 0.0005 0.0005 0.05

Weight Decay 0.0005 0.1 0.1 0.01 0.0005 0.1 0.05

26



Table 19: Hyper-Parameter Configuration for AdaMSSbase and AdaMSS on NLU.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Both

Optimizer AdamW
Batch Size 32

Epochs 100
Seeds {0,11111,22222,33333,444444}

RoBERTa-Base

Learning Rate 0.001 0.01 0.001 0.001 0.0005 0.001
Learning Rate (Head) 0.005 0.0005 0.005 0.005 0.005 0.005

Weight Decay 0.0005 0.0 0.005 0.005 0.005 0.005

RoBERTa-Large

Learning Rate 0.001 0.001 0.005 0.0005 0.005 0.001
Learning Rate (Head) 0.0005 5e-05 0.0005 0.05 0.005 0.0005

Weight Decay 0.0 0.005 0.1 0.005 0.5 0.0005

Table 20: Hyper-Parameter Configuration for AdaMSSbase and AdaMSS on NLG.

Model Hyperparameter GSM8K MATH
Optimizer AdamW

Both Batch Size 4
Epochs 1

LLaMA 2-7B, Mistral-7B Learning Rate 6e-4
Gemma-7B Learning Rate 2e-4

I More Evidence for Multiple Subspaces Structure in Pretrained Network
Weights

In this section, we provide additional numerical evidence for the presence of multi-subspace structures
in pretrained models across layers and tasks.

Beyond the approximate block-diagonal patterns shown in Figure 2, we also examine the distribution
of weight column vectors through the singular values of a Laplacian matrix constructed from the
principal components. Tables 22–25 report the singular value distributions of these Laplacian
matrices, computed from the principal components of the query weight matrices at each layer of
several pretrained models, including ViT-Large, LLaMA 2-7B, Mistral-7B, and Gemma-7B. The
results show that, for most layers, the dominant singular values remain substantially large, while the
trailing ones are close to zero (e.g., below 0.01).

The number of near-zero singular values can be interpreted as an estimate of the number of disjoint
subspaces in the weight space. This offers further numerical evidence for the existence of multi-
subspace structures within the principal components of pretrained weights.

J Related Works

J.1 Parameter-Efficient Fine-Tuning (PEFT)

In recent years, a variety of PEFT methods have been proposed to adapt large pre-trained models
to downstream tasks while minimizing the number of trainable parameters. Broadly, current PEFT
methods include prefix-tuning [31, 32], adapter-based methods [33], sparse fine-tuning [34, 24],
orthogonal fine-tuning [35, 36], and low-rank-based adaptation [1, 2, 3, 4, 5, 6, 7, 8, 9]. Specifically,
prefix-tuning methods introduce a small task-specific trainable vectors, known as prefixes, while
keeping the original model parameters frozen [31, 32]. In contrast, adapter-based methods [33] insert
small trainable modules within each layer of the model, allowing efficient task adaptation by updating
only these modules. Meanwhile, sparse fine-tuning, such as BitFit [34] and FourierFT [24], update
only a small subset of parameters in bias terms or transformed weights. On another front, orthogonal
fine-tuning introduces a learnable orthogonal transformation applied to the pre-trained weights, with
the goal of preserving the model’s original capabilities during adaptation [35, 36]. In addition to the
above, low-rank-based adaptation methods, for example LoRA [1], PiSSA [2], LoRA-GA [5], Foura

Table 21: The experimental setup
Fine-tuned on Evaluated Datasets
MetaMathQA [28] GSM8K [13], MATH [28]
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Table 22: Singular value distribution of the Laplacian matrices constructed from the principal
components of the query weight matrices at each layer of the pretrained ViT-Large model.

Layer σ1 σ101 σ201 σ301 σ401 σ501 σ601 σ701 σ801 σ901 σ1001 σ1024

1 1.00 0.87 0.78 0.59 0.38 0.21 0.09 0.02 0.00 0.00 0.00 0.00
3 1.00 0.83 0.78 0.72 0.65 0.57 0.47 0.37 0.24 0.10 0.00 0.00
5 1.00 0.83 0.81 0.79 0.77 0.74 0.70 0.64 0.54 0.38 0.05 0.00
7 1.00 0.82 0.81 0.79 0.77 0.74 0.71 0.67 0.60 0.47 0.01 0.00
9 1.00 0.82 0.81 0.79 0.78 0.76 0.74 0.71 0.67 0.56 0.00 0.00
11 1.00 0.83 0.81 0.80 0.79 0.77 0.75 0.73 0.68 0.55 0.00 0.00
13 1.00 0.83 0.81 0.80 0.78 0.76 0.74 0.71 0.66 0.52 0.00 0.00
15 0.99 0.81 0.79 0.77 0.76 0.73 0.71 0.67 0.63 0.53 0.00 0.00
17 1.00 0.82 0.80 0.79 0.77 0.76 0.74 0.71 0.68 0.60 0.00 0.00
19 1.00 0.82 0.81 0.80 0.78 0.77 0.76 0.74 0.71 0.66 0.00 0.00
21 1.00 0.82 0.81 0.80 0.80 0.79 0.78 0.77 0.75 0.72 0.00 0.00
23 1.00 0.83 0.82 0.81 0.80 0.80 0.79 0.78 0.77 0.75 0.12 0.00

Table 23: Singular value distribution of the Laplacian matrices constructed from the principal
components of the query weight matrices at each layer of the pretrained LLaMA 2-7B model.

Layer σ1 σ501 σ1001 σ1501 σ2001 σ2501 σ3001 σ3501 σ4001 σ4092 σ4093 σ4094 σ4095 σ4096

1 1.00 0.31 0.19 0.13 0.08 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1.00 0.51 0.48 0.43 0.36 0.27 0.17 0.08 0.01 0.00 0.00 0.00 0.00 0.00
5 1.00 0.50 0.47 0.45 0.42 0.38 0.31 0.19 0.03 0.00 0.00 0.00 0.00 0.00
7 0.99 0.46 0.41 0.37 0.34 0.30 0.24 0.15 0.03 0.00 0.00 0.00 0.00 0.00
9 1.00 0.43 0.38 0.35 0.32 0.28 0.22 0.13 0.02 0.00 0.00 0.00 0.00 0.00
11 1.00 0.50 0.46 0.43 0.38 0.31 0.24 0.15 0.03 0.01 0.00 0.00 0.00 0.00
13 1.00 0.47 0.43 0.40 0.36 0.31 0.24 0.17 0.05 0.01 0.01 0.01 0.01 0.00
15 1.00 0.50 0.44 0.38 0.32 0.26 0.20 0.13 0.03 0.01 0.01 0.01 0.00 0.00
17 1.00 0.49 0.45 0.41 0.37 0.32 0.26 0.17 0.03 0.00 0.00 0.00 0.00 0.00
19 1.00 0.48 0.43 0.40 0.37 0.33 0.30 0.22 0.06 0.01 0.01 0.01 0.01 0.01
21 1.00 0.47 0.40 0.35 0.32 0.28 0.23 0.15 0.03 0.00 0.00 0.00 0.00 0.00
23 1.00 0.44 0.38 0.35 0.33 0.30 0.27 0.18 0.02 0.00 0.00 0.00 0.00 0.00
25 1.00 0.46 0.38 0.35 0.32 0.29 0.26 0.15 0.01 0.00 0.00 0.00 0.00 0.00
27 1.00 0.46 0.41 0.39 0.36 0.34 0.30 0.19 0.03 0.00 0.00 0.00 0.00 0.00
29 1.00 0.47 0.45 0.43 0.41 0.39 0.36 0.31 0.09 0.01 0.01 0.01 0.01 0.00
31 1.00 0.48 0.45 0.43 0.42 0.40 0.37 0.30 0.10 0.02 0.02 0.01 0.01 0.01

[8], and RoSA [7], approximate weight updates using low-rank matrices, significantly reducing the
number of trainable parameters while maintaining performance. These techniques provide effective
strategies for adapting large models to new tasks with less computational overhead.

J.2 Low-Rank-Based Adaptation Methods

Inspired by the success of LoRA [1], a large number of low-rank-based adaptation methods have
emerged over the past three years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. LoRA assumes a fixed rank for all
incremental matrices across different layers, thereby ignoring the diverse importance of different
weight parameters. To address this limitation, AdaLoRA [3] was proposed to allocates parameter
budgets by adaptively adjusting the rank during training. Following AdaLoRA, research attention has
shifted toward improving the initialization strategies of A and B in LoRA, as opposed to relying on
random initialization. Representative works include PiSSA [2] and LoRA-GA[5]. In addition, by
incorporating both low-rankness and sparsity constraints, RoSA [7] enhances low-rank adaptation
to enable more efficient parameter utilization. In another line of work, FouRA [8] extends LoRA
into the frequency domain, yielding disentangled feature spaces that enable fine-grained control and
editing. Motivated by the success of tensor decomposition in data compression [37], LoTR [11]
and LoRETTA [10] leverage Tucker decomposition and Tensor-train decomposition, respectively, to
achieve more compact representations of the low-rank update matrices.
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Table 24: Singular value distribution of the Laplacian matrices constructed from the principal
components of the query weight matrices at each layer of the pretrained Mistral-7B model.

Layer σ1 σ501 σ1001 σ1501 σ2001 σ2501 σ3001 σ3501 σ4001 σ4092 σ4093 σ4094 σ4095 σ4096

1 1.00 0.29 0.15 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1.00 0.49 0.46 0.43 0.41 0.38 0.28 0.16 0.03 0.00 0.00 0.00 0.00 0.00
5 1.00 0.48 0.44 0.40 0.36 0.32 0.25 0.17 0.06 0.01 0.01 0.01 0.01 0.00
7 1.00 0.47 0.43 0.39 0.35 0.31 0.23 0.14 0.04 0.01 0.01 0.00 0.00 0.00
9 1.00 0.48 0.44 0.41 0.38 0.34 0.27 0.19 0.06 0.01 0.01 0.00 0.00 0.00
11 1.00 0.47 0.42 0.37 0.32 0.27 0.21 0.11 0.02 0.00 0.00 0.00 0.00 0.00
13 0.99 0.42 0.33 0.27 0.21 0.16 0.11 0.06 0.01 0.00 0.00 0.00 0.00 0.00
15 1.00 0.45 0.38 0.33 0.27 0.22 0.16 0.11 0.03 0.01 0.01 0.01 0.00 0.00
17 1.00 0.48 0.41 0.35 0.30 0.24 0.19 0.12 0.03 0.01 0.01 0.01 0.01 0.01
19 1.00 0.40 0.32 0.27 0.23 0.18 0.14 0.08 0.02 0.00 0.00 0.00 0.00 0.00
21 1.00 0.47 0.41 0.36 0.32 0.27 0.21 0.15 0.04 0.01 0.01 0.00 0.00 0.00
23 1.00 0.46 0.42 0.39 0.36 0.33 0.27 0.16 0.02 0.00 0.00 0.00 0.00 0.00
25 1.00 0.44 0.40 0.37 0.34 0.31 0.25 0.18 0.06 0.01 0.01 0.00 0.00 0.00
27 1.00 0.47 0.43 0.41 0.38 0.34 0.30 0.22 0.07 0.01 0.01 0.01 0.01 0.01
29 1.00 0.45 0.41 0.38 0.35 0.32 0.26 0.17 0.03 0.00 0.00 0.00 0.00 0.00
31 1.00 0.46 0.42 0.39 0.36 0.32 0.26 0.16 0.02 0.00 0.00 0.00 0.00 0.00

Table 25: Singular value distribution of the Laplacian matrices constructed from the principal
components of the query weight matrices at each layer of the pretrained Gemma-7B model.

Layer σ1 σ501 σ1001 σ1501 σ2001 σ2501 σ3001 σ3501 σ4001 σ4092 σ4093 σ4094 σ4095 σ4096

1 1.00 0.50 0.46 0.44 0.41 0.37 0.29 0.15 0.00 0.00 0.00 0.00 0.00 0.00
3 1.00 0.49 0.46 0.45 0.43 0.41 0.39 0.32 0.12 0.01 0.01 0.01 0.01 0.00
5 1.00 0.48 0.45 0.43 0.41 0.39 0.36 0.26 0.03 0.00 0.00 0.00 0.00 0.00
7 1.00 0.49 0.47 0.45 0.44 0.42 0.38 0.28 0.08 0.00 0.00 0.00 0.00 0.00
9 1.00 0.50 0.47 0.44 0.41 0.37 0.33 0.24 0.07 0.00 0.00 0.00 0.00 0.00
11 1.00 0.48 0.45 0.43 0.42 0.39 0.35 0.25 0.05 0.00 0.00 0.00 0.00 0.00
13 1.00 0.50 0.47 0.44 0.42 0.37 0.29 0.20 0.07 0.00 0.00 0.00 0.00 0.00
15 1.00 0.49 0.44 0.38 0.29 0.18 0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.00
17 1.00 0.50 0.45 0.41 0.36 0.30 0.23 0.14 0.04 0.01 0.00 0.00 0.00 0.00
19 0.99 0.52 0.45 0.38 0.30 0.22 0.15 0.08 0.01 0.00 0.00 0.00 0.00 0.00
21 0.99 0.48 0.43 0.39 0.34 0.27 0.19 0.11 0.01 0.00 0.00 0.00 0.00 0.00
23 1.00 0.51 0.42 0.36 0.31 0.25 0.19 0.11 0.02 0.00 0.00 0.00 0.00 0.00
25 1.00 0.49 0.41 0.33 0.27 0.20 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00
27 1.00 0.46 0.43 0.40 0.37 0.33 0.28 0.19 0.05 0.01 0.01 0.00 0.00 0.00
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