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ABSTRACT

In this paper, we study the problem of efficiently answering predicate queries for
encrypted databases—those powered by Trusted Execution Environments (TEEs),
allowing untrusted providers to process encrypted user data all without revealing
sensitive details. A common strategy in conventional databases to accelerate query
processing is the use of indexes, which map attribute values to their correspond-
ing record locations within a sorted data array. This allows for fast lookup and
retrieval of data subsets that satisfy specific predicates. Unfortunately, these tradi-
tional indexing methods cannot be directly applied to encrypted databases due to
strong data-dependent leakages. Recent approaches use differential privacy (DP)
to construct noisy indexes that enable faster access to encrypted data while main-
taining provable privacy guarantees. However, these methods often suffer from
significant data loss and high overhead. To address these challenges, we pro-
pose to explore learned indexes—a trending technique that repurposes machine
learning models as indexing structures—to build more efficient DP indexes. Our
contributions are threefold: (i) We propose a flat learned index structure that seam-
lessly integrates with differentially private stochastic gradient descent (DPSGD)
algorithms for efficient and private index training. (ii) We introduce a novel noisy-
max based private index lookup technique that ensures lossless indexing while
maintaining provable privacy. (iii) We benchmark our DP learned indexes against
state-of-the-art (SOTA) DP indexing methods. Results show that our method out-
perform the existing DP indexes by up to 925.6× in performance.

1 INTRODUCTION

Over the past decade, there has been a significant increase in the use of cloud computing for data
storage and analysis. Its low cost, high availability, scalability, and ease of use make it an appealing
option for businesses and scientific research. However, organizations that handle sensitive data, such
as hospitals, banks, government agencies, and energy companies, may hesitate to use cloud services
due to privacy concerns. The shared nature of cloud resources, coupled with potential vulnerabilities
in the privileged software stack, has already led to various privacy breaches (Security, 2024). As
a result, there is a critical need for robust measures to safeguard data-in-use privacy in the cloud
environment. This is essential not only for policy compliance (HIPAA, 2003; GDPR, 2017), but
also for maintaining public trust and advancing national priorities (The White House, 2022)

This need has given rise to a long line of research in an area known as Encrypted Databases
(EDBs)(Eskandarian & Zaharia, 2017; Wang et al., 2021; Qiu et al., 2023), which enable untrusted
cloud providers to manage and process encrypted user data. To achieve this, EDBs leverage Trusted
Execution Environments (TEEs)(Costan & Devadas, 2016) to establish secure hardware enclaves
on cloud machines, ensuring that any execution within these enclaves remains strongly isolated
from the rest of the software stack, including the privileged OS and hypervisors. Users’ data is
only decrypted and processed inside these enclaves, and remains encrypted and integrity-protected
whenever it leaves the enclave. Despite the strong encryption and isolation provided by TEEs, re-
searchers have identified various side-channel threats associated with TEEs, leading to significant
real-world data breaches (Kocher et al., 2020). For example, different query processing can result
in distinguishable memory access patterns and read/write volumes, which attackers can exploit to
reconstruct substantial portions of the data (Kellaris et al., 2016), even if it is placed inside a TEE
or encrypted elsewhere. As a result, modern EDBs combine TEEs with oblivious algorithms, which
implement branchless processing methods and pad the complexity to the worst-case maximum to
ensure complete data independence.
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While oblivious algorithms provide strong and provable privacy guarantees for today’s EDBs, they
clash with modern database optimization techniques, which often rely on leveraging data-dependent
patterns for fine-grained performance improvements. A prime example is the use of indexes, which
map attribute values (or keys) to their positions in a sorted array. Indexes enable rapid access to
specific data subsets, reducing the need for frequent full table scans and minimizing excessive I/Os.
Unfortunately, this promising technique is not directly compatible with EDB’s privacy guarantees
as they can leak exact information about the data distribution. As a result, EDBs must sequentially
load all encrypted data into the TEE for every query processing, even when only a small portion is
needed. To bridge this gap, Roy et al. (2020) introduced the concept of DP indexes, which distort
exact key-position mappings with DP noise and and use these noisy mappings to privately index
encrypted data. For instance, if the true index range for an attribute value is [v0, v1], the DP index
would produce [ṽ0, ṽ1], where the endpoints ṽ0 and ṽ1 are distorted by DP noise. While this ap-
proach provides strong privacy guarantees, it can lead to significant data loss. Since the DP noise
is symmetric, it is possible that [v0, v1] \ [ṽ0, ṽ1] ̸= ∅, and when noise is large, the ranges may not
overlap at all, such as [v0, v1] ∩ [ṽ0, ṽ1] = ∅. A recent approach (Wang et al., 2024) improves this
by using one-sided DP noise to enforce that ṽ1 > v1 and ṽ0 < v0, which achieves lossless indexing.
However, the large noise scale and repeated injections (distorting each value-position pair) can result
in excessive extra data being fetched, and in certain cases where the selectivity is relatively high, it
may lead to only marginally better performance than a full table scan.

Kraska et al. (2018) argue that indexes are inherently models, sparking a growing research area
known as learned indexes (Wu et al., 2024), which repurpose machine learning (ML) models as
database indexes. While most work on learned indexes focuses on performance, we see their unique
potential for building private indexes. With private training techniques (Goodfellow et al., 2016),
learned indexes could allow us to introduce a unified DP noise into the ML model, instead of adding
multiple noises to distort each key-position pair and potentially lowering noise scales significantly.
For example, privacy induced noise of DP training can be bounded by O((

√
N)−1) (Bassily et al.,

2014), where N is the sample size (unique key-position pairs for learned indexes). In contrast,
existing DP indexes have noise scales proportional to O(

√
N) (Roy et al., 2020). This leads to the

fundmental research question of this work:

Can we leverage learned indexe techniques to build new DP indexes that are both efficient and
lossless, overcoming the their traditional limitations?

To address this question, we initiate the first study on designing DP learned indexes. Our major
contributions are as follows: (i) We identify a key challenge: classical learned index structures are
difficult to integrate with private training techniques. To overcome this, we propose a new Flat Model
Index (FMI) structure that seamlessly combines with DP gradient descent algorithms (DPSGD). (ii)
To achieve lossless indexing, we introduce a novel Report Noisy Max Error mechanism that pri-
vately determines an upper bound on indexing error, which guides a pessimistic indexing to prevent
data loss. (iii) We implement the entire flow and benchmark our method against existing DP in-
dex methods. Our evaluation shows that the proposed DP learned indexes provide strong lossless
guarantees while reducing the overhead of the state-of-the-art (SOTA) lossless DP indexes (Wang
et al., 2024) by up to 494×; (iv) Finally, we conclude our work with a forward-looking discussion
on potential improvements and future directions, aiming to spark broader interest and inspire new
ideas in the emerging field of DP learned indexes.

2 BACKGROUND AND RELATED WORK

General notations for relational databases. We define database instances D as relational tables
with attributes attr(D), where each attribute A ∈ attr(D) has a domain dom(A). For a subset
of attributes A = {A1, A2, . . . , Ak}, the combined domains are dom(A) =

∏k
i=1 dom(Ai). Given

D, Ai ⊆ attr(D), and a value x ∈ dom(Ai), we define the frequency (count) of attributed value x
in D as F (x,D,Ai) =

∑
t∈D∧t.Ai=x 1. The sorted set of frequencies for all attributed values of Ai,

is defined as the histogram of Ai in D, denoted as H(D,Ai) = {ck = F (xk, D,Ai)}∀xk∈dom(Ai).
In this work, we focus on linear predicate queries, denoted as qϕ(D), which retrieve tuples from D
satisfying a predicate ϕ then compute aggregated statistics based on the fetched data. A predicate ϕ
is a logical expression with conditions on attributes, formed using conjunctions (∧) or disjunctions
(∨). Each condition is a logical comparison such as Ai = a or Aj > b.
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EDB system model. We consider a standard EDB model (Zheng et al., 2017; Eskandarian & Za-
haria, 2017) in a cloud environment with two entities (as shown in Figure 1): the service provider
(SP), managing the cloud infrastructure including the TEE, and the data owner (DO), who securely
outsources storage and processing of private data to the SP. In the standard EDB model, the SP is
considered honest-but-curious (Paverd et al., 2014), meaning they follow the pre-defined EDB pro-
tocol without deviation but may attempt to learn sensitive information about the owner’s data by
observing execution transcripts.

To initiate the EDB, the TEE first creates an enclave on SP’s cloud machine, generates encryption
keys (sk, pk), keeps sk inside the enclave, and sends pk to the owner. The DO encrypts their data
tuple-wisely using pk along with a result key Kr, then uploads the encrypted data and Kr to the SP.
When the DO issues a query, the TEE loads, decrypts, and processes the data, reencrypts the result
using decrypted Kr, and sends it back to the DO for decryption. Moreover, we assume the EDB
employs oblivious algorithms for data processing to prevent side-channel leakages. For predicate
queries, an example of the oblivious processing algorithm is as follows: (i) Upon receiving the
query, the TEE sequentially reads the entire dataset into the enclave and performs a linear scan,
labeling each tuple as a ”match” or ”non-match” based on the predicate. To maintain obliviousness,
the label is updated for every tuple, regardless of whether it matches the predicate; (ii) The TEE then
makes a second pass over the labeled data to compute the desired statistics as specified by the query.
Similarly, during the statistics computation, every tuple is accessed, including non-matching ones,
for which a dummy read is applied to maintain obliviousness.
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Figure 1: EDB system overview
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Figure 2: Indexes in the CF model

Index models. Given D sorted by Ai, and an attributed value xj ∈ dom(Ai) = {x1, x2, . . . , xn},
a index structure maps xj to an interval [v0, v1) such that D[v0, v1] contains all tuples t ∈ D that
t.Ai = xj . Kraska et al. (2018) suggest that indexes can essentially be abstracted as a cumulative
frequency (CF) model. So that the lower and upper bound of [v0, v1) mentioned above can actually
computed by the CFs of v0 =

∑k
j=1 F (xj−1, D,Ai), and v1 =

∑k
j=1 F (xj , D,Ai). To better show

this, we provide a visual example in Figure 2. As noted by Kraska et al. (2018), existing indexes
(e.g., B+ trees, etc. ) are inherently data structures that compute or approximate such a CF curve.

Differential privacy, Gaussian mechanism, and DPSGD. DP is a well-established privacy frame-
work that is rooted from the property of algorithm stability. Specifically, a randomnized mechanism
M is said to satisfies (ϵ, δ)-DP if for any pair of neighboring databases D and D′, differing by at
most one tuple, and for all ∀O ⊂ O, where O denotes all possible outputs, the following holds

Pr[M(D) ∈ O] ≤ eϵPr[M(D′) ∈ O] + δ

This definition ensures that the probability of producing a specific output does not change signifi-
cantly (up to a multiplicative factor of eϵ) when any single tuple in the dataset is modified. The slack
δ introduces a practical relaxation, allowing the privacy guarantee to fail with probability at most δ.
Gaussian mechanism (Dwork et al., 2014) is a common method used to achieve (ϵ, δ)-DP. Specifi-
cally, given a function f that maps datasets to real numbers, the mechanism perturbs the output by
adding noise sampled fromN (0, σ2), where σ is determined by both the desired privacy parameters
(ϵ, δ) and the sensitivity of f . The sensitivity of f measures how much a single tuple can affect the
output. DPSGD is an application of the Gaussian mechanism in machine learning training, where
noise is added to the gradients during each iteration (Goodfellow et al., 2016) to protect the privacy
of individual data points while still allowing model optimization.

DP indexes. To allow EDBs to use indexing techniques, Roy et al. (2020) introduced the first
DP index design. Specifically, for each attributed value xk, they consider to add independent
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Laplace noises to generate a DP frequency count F̃ (vk, D,Ai) = min(|D|,max(0, F (vk, D,Ai)+
Lap( 1ϵ ))). The DP frequencies across all attribute values are then used to build a noisy CF curve,
which inherently serves as an index structure (see example in Figure 2). While this design provides
strong privacy guarantees, it can introduce significant errors due to symmetric Laplace noise—the
noisy index range may be smaller than the true range, potentially excluding a large portion of match-
ing tuples. To address this issue, Wang et al. (2024) propose using one-sided Laplace noise (strictly
positive or negative) to build DP indexes. Specifically, they create two noisy CF curves: one over-
estimates the true CF with positive noise, while the other underestimates it with negative noise. To
answer index lookup, the lower end point is taken from the underestimated curve, and the upper end
point from the overestimated curve, ensuring all matching data is included. However, this approach
can result in significant overhead, as the noisy index range can be much larger than the true range,
leading to substantial I/O costs. We shown an example of this in Figure 2.

Learned indexes. Learned indexes are inherently ML models that fits the CF curves of attributed
values. To gain high accuracy, the well-adopted method is to use a staged Recursive Model Index
(RMI) (Kraska et al., 2018), where each stage’s model takes a key as input and selects the next model
in the hierarchy. The final stage then fits the key to a CF curve—estimating its position within a
sorted array. As mentioned before, learned indexes have demonstrated various advantages including
strong accuracy, efficient storage, and faster lookup times, making them a promising alternative for
building DP indexes, which can potentially overcome the traditional limitations of noisy CF based
DP indexes. An example of RMI structure can be found in § 3.2, Figure 3.a.

3 DP LEARNED INDEXES

In this section, we present the technical details of our proposed DP learned indexes. Before delving
into the specifics, we first formulate the concrete problem to be addressed.

Problem formulation. In general we consider the problem of private training and inference of
learned indexes on static data. Formally, given D sorted by Ai ∈ attr(D), and CF (D,Ai) =
{(xi, yi)}Ni=1 to be the discrete CF of Ai over D and dom(Ai) = {x1, x2, ..., xN}. We consider an
idealized index is IDX(xi) = [yi−1, yi) for all xi, and our goal is to build a private learned index
model, PIDX, such that PIDX(xi) = [ỹ(xi−1), ỹ(xi)), where ỹ(xi) denotes the predicted position of
xi (vs. the true position of xi to be yi). In addition, we consider PIDX should satisfies the following:

• (ϵ, δ)-DP at the tuple level. Given ϵ > 0, and 0 < δ < 1. For any neighboring databases
D and D′, differing by a single tuple and both sorted by the same attribute Ai, where
dom(Ai) ∈ D = dom(Ai) ∈ D′, it holds for all outputs O ⊂ O that

Pr[PIDXD ∈ O] ≤ eϵ · Pr[PIDXD′
∈ O] + δ.

This notion describes privacy at the tuple level, for instance the information related to the
presence of each individual tuple by observing the index outcome, is bounded by DP. We
do not consider key privacy, for example, an attacker might know whether a specific key
xj is included in dom(Ai) ∈ D. This aligns with the privacy guarantees of existing DP
index approaches (Roy et al., 2020; Wang et al., 2024) and the logic of traditional indexes,
where a lookup should abort if a key is not present. Note that tuple-level privacy can also be
extended to user-level privacy. If a user owns multiple tuples in the dataset and we wish to
preserve privacy at the user level, we can achieve this by applying the group privacy (Dwork
& Rothblum, 2016) mechanism with appropriately adjusted privacy parameters.

• Lossless indexing. ∀xi it holds that IDX(xi) \ PIDX(xi) = ∅. This means that for records
that is selected by the idealized index will also be included in the private index.

• Small overhead. If PIDX is lossless, the overhead for each lookup of xi is given by
|PIDX(xi)| − |IDX(xi)|, which represents the number of extra records selected by PIDX
compared to the ideal index. Our objective is to minimize this overhead.

In the following sections, we present our approach to designing the desired DP learned index struc-
ture. We begin by discussing the potential challenges in Section 3.1, followed by proposed building
block solutions 3.2 3.3 to address these challenges. Finally, we provide an integrated view 3.4 of
these building blocks within the context of the EDB’s workflow.
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3.1 CHALLENGES

Challenge 1. DP training of classical RMIs is hard. A key challenge in designing DP learned
indexes is that the hierarchical training procedure required by classical RMIs can be hard to integrate
with private training algorithms like DP-SGD. Specifically, let CF = {(xi, yi)}Ni=1 to be the ground
truth CF for building indexes, and consider an RMI with ℓ stages, one root model, and Mℓ sub-
models at stage ℓ. The root model is denoted as f0(x; θ0), where θ0 are the model parameters. A
sub-model at stage ℓ, indexed by k, is denoted as f (k)

ℓ (x; θ
(k)
ℓ ), with parameters θ(k)ℓ . The root model

will be trained first by minimizing the following loss function:

L0(θ0) =
1

N

N∑
i=1

(f0(xi; θ0)− yi)
2
.

Subsequently, for stages ℓ ≥ 1, each sub-model f (k)
ℓ (x; θ

(k)
ℓ ) is trained independently, only after all

models from the previous stage ℓ− 1 have been trained. The loss function for the sub-model is

L
(k)
ℓ (θ

(k)
ℓ ) =

1

|CF
(k)
ℓ |

∑
(xi,yi)∈CF

(k)
ℓ

(
f
(k)
ℓ (xi; θ

(k)
ℓ )− yi

)2
,

where CF
(k)
ℓ represents the data routed to the k-th sub-model at stage ℓ, and is defined as:

CF
(k)
ℓ =

{
(xi, yi) ∈ CF

∣∣∣∣ ⌊Mℓfℓ−1(xi; θℓ−1)

N

⌋
= k

}
.

To incorporate DP-SGD into the aforementioned training process, independent DP noise must be
added at each stage, however, this can potentially lead to significant error accumulation in the final-
stage models. Moreover, tracking and managing the privacy budget across different stages becomes
challenging. As such, we will need to redesign a learned index architecture that seamlessly inte-
grates with DP-SGD techniques.

Challenge 2. Missing data can still occurs with learned indexes. Even after addressing the
aforementioned challenge and creating a DP learned index that can be seamlessly trained with DP-
SGD, the learned index can still suffer from the potential issue of missing data. Predicted indexing
ranges could be smaller than the true range, causing some data to be missed. Therefore, we must
also explore how to ensure lossless indexing without compromising privacy.

3.2 FLAT MODEL INDEX (FMI) AND DP TRAINING

To address the challenge that traditional RMI structures can be hard to compatible with existing DP
training techniques, such as DP-SGD, we draw inspiration from the Mixture of Experts framework to
introduce FMIs. Unlike the hierarchical structure of classical RMI, which necessitates independent
training of each sub-model, the FMI consists of multiple models that can be trained at the same time,
which significantly simplifies integration with DP-SGD—as one can derive a unified gradient during
training to which DP noise can be applied. Specifically, we consider a FMI consists of a root model
f0(x; θ0) and M expert-models {fk(x; θk)}Mk=1 operating at the same level (Figure 3.b). Given a
key xi ∈ CF = {(xi, yi)}Ni=1, the index prediction of FMI is then given by

ŷ(xi) =

M∑
k=1

wk(xi; θ0) · fk(xi; θk),

where w(xi; θ0) = [w1(xi; θ0), . . . , wM (xi; θ0)] denotes the weight vector generated by the root
model. We say that FMI can be logically similar to RMI: In RMI, the the backbone logic is to
distribute each key (attribute value) to a final stage model, which then individually predicts the
range for that specific key. FMI can be logically formed as a two staged RMI, but intead of picking
one model for prediction, multiple last stage models collaboratively predict the output for every key,
with a root model f0(x; θ0) adjusting the contributions of these predictions through a weight vector
w(xi; θ0). Notably, if we generalize the root model to output a one-hot-encoded weight vector, the
FMI effectively reduces to a two-stage RMI model.
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(a) RMI architecture (b) FMI (our approach) architecture
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Figure 3: Comparison of architectures between RMI and FMI.

Private training of FMI with DP-SGD. To enable simultaneous training of all components, the
model parameters are concatenated into a unified parameter vector Θ = [θ0; θ1; . . . ; θM ], and the
loss function is defined as L(Θ) = 1

N

∑N
i=1 (ŷ(xi)− yi)

2. During each training iteration, we
sample a mini-batch B ⊂ D, where the per-example unified gradient is computed as

gi = ∇Θℓi(Θ) = [∇θ0ℓi(Θ),∇θ1ℓi(Θ), . . .∇θM ℓi(Θ)]
⊤
,

such that the gradients of the root and the k-th expert model parameters are given, respectively, by

∇θ0ℓi(Θ) = 2

(
M∑
k=1

wk(xi; θ0) · fk(xi; θk)− yi

)
·

M∑
k=1

(∇θ0wk(xi; θ0) · fk(xi; θk)) ,

∇θkℓi(Θ) = 2

(
M∑
k=1

wk(xi; θ0) · fk(xi; θk)− yi

)
· wk(xi; θ0) · ∇θkfk(xi; θk).

In this way, a unified per-example gradient vector gi can be obtained. Next, we apply DP-SGD to
update the overall model parameters, and using the obtained unified gradients, shown as follows:

Θ← Θ− η

 1

|B|

∑
i∈B

gi

max
(
1, ∥gi∥2

C

) +N
(
0, σ2C2I

) ,

The above process can be summarized as follows: At each iteration, we sample a mini-batch
B ⊂ {(xi, yi)}Ni=1 for training. For each example in the mini-batch, the per-example gradient gi is
first clipped to a maximum ℓ2-norm of C to bound the sensitivity. After that, the clipped gradients
are averaged and perturbed with Gaussian noiseN (0, σ2C2I), where I is the identity matrix corre-
sponding to the dimensionality of Θ, and σ ≥ 2ε−1C

√
2 ln(1.25/δ) is the noise multiplier. Finally,

the DP model update is applied to the overall model parameters with a learning rate η. Note that the
above process is a direct application of DP-SGD, and thus it follows the same privacy guarantees as
by DP-SGD. For completeness, we have also provided a derived privacy proof in A.1.

3.3 NOISY MAX BASED PRIVATE INDEX OVERESTIMATION

We now address the second challenge of ensuring lossless indexing atop the DP-FMIs derived in the
previous step. The key idea is to leverage the maximum inference error as a pessimistic upper bound
to guarantee the correctness of every index search. Specifically, we first compute the inference
errors, ei = |ŷ(xi) − yi|, for all xi, and subsequently determine the maximum error, emax =
argmax{1,...,N}(ei). For any index lookup (e.g., assuming query with key xj), we can then compute
a pessimistic overestimated indexing range as [ŷ(xj) − emax, ŷ(xj+1) + emax). Since the true
indexing range for xj is [yj , yj+1), it holds that ŷ(xj) − emax ≤ yj and yj+1 ≤ ŷ(xj+1) + emax.
As a result, the true range [yj , yj+1) is guaranteed to be completed contained within the predicted
range [ŷ(xj)− emax, ŷ(xj+1) + emax), and thus no tuples are missing (lossless).

Although this method ensures lossless, it may introduce additional privacy concerns—while the
predicted results on DP-FMI satisfy DP as they post-processing on DP models, the computation
of emax involves direct access to raw data, which violates DP. To resolve this issue, we propose
an enhancement to the max error method by employing the Report Noisy Max (Ding et al., 2021)
mechanism. This generates a DP-distorted max error, ẽmax, which to be used as a private bound for
overestimating the indexing ranges. The details are shwon in Algorithm 1.
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Algorithm 1 Lossless private FMI inference
Input: (i) Given D sorted by A, and let {(xi, yi)}Ni=1 to be the CF of attribute A. (ii) Privacy
parameters: ϵ > 0, ∆; (iii) A look up request (key), xj .

1: if not exists ẽmax then
2: Compute the lookup errors for all attribute values, ∀i ∈ [1, N ], ei = |ŷ(xi)− yi|.
3: Sample z1, z2, ..., zN ∼ Exp(z, ϵ

2∆ ) i.i.d, where Exp(z, λ)← λe−λx for all z ≥ 0,

4: and ∆ = maxi,D∼D′ |eDi − eD
′

i | ∼ O(

√
log 1/δ

Nϵ ) is the sensitivity of prediction errors.
5: One-time release ẽmax ← argmaxe1,...,eN (ei + zi).
6: for each lookup ki ∈ k1, ..., km do
7: output indexing range [ŷ(xj)− ẽmax, ŷ(xj+1) + ẽmax).

In summary, this method introduces non-negative exponential noise to each indexing error and se-
lects the noisy maximum from these distorted errors. This ensures that ẽmax ≥ emax, thereby
guaranteeing that using ẽmax to overestimate the indexing range preserves the lossless property.
Moreover, since modifying a single tuple results in |yDi − yD

′

i | ≤ 1, the sensitivity is bounded
by ∆ ≤ maxi |ŷ(xi)

D − ŷ(xi)
D′ | + 1. By applying the error bounds from the DP-SGD algo-

rithm (Das et al., 2023; Bassily et al., 2014), the sensitivity ∆ is actually asymptotically bounded by
O(
√
log δ−1/Nϵ2). For space concerns, the privacy proof of Algorithm 1 is deferred to A.2.

3.4 PUTTING IT TOGETHER

We now show how our PD learned index building blocks can be integrated into the EDB’s workflow.
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Range query [ ො𝑦 𝑥𝑖 − ǁ𝑒𝑚𝑎𝑥, … , [𝒚𝒊, 𝒚𝒋+𝟏), … , ො𝑦 𝑥𝑗+1 + ǁ𝑒𝑚𝑎𝑥)

Noisy Max: ǁ𝑒𝑚𝑎𝑥 = arg max{𝑒1,…,𝑒𝑀}(𝑒𝑗 + 𝓏𝑖) 

(b) FMI DP Learned Indexes inference flow

EDB flow in TEE
Enc(result, 𝑲𝒓)

UserUser

Figure 4: Our approach enables end-to-end training and inference for DP Learned Indexes.

Phase 1. On-premises training (Figure 4.a). Initially, the DO will train a DP learned index on-
premises using their private data. The process begins by sorting the data based on an attribute of
interest (e.g., frequently queried ones) and computing the corresponding CF curve. The DO then
trains a DP-FMI using the CF as training data and derives the noisy error bound ẽmax. For better
outcomes, we say that one may adopt a Neural Architecture Search (NAS) (Liu et al., 2018a;b; 2022)
process to identify an optimized FMI architecture. The search space may include parameters such
as (i) the number of expert models, (ii) the number of hidden layers per model, and (iii) the number
of neurons per layer. Finally, the DO uploads the trained DP-FMI, the private error bound ẽmax, and
their encrypted data to the SP. As all uploaded objects are either DP-distorted or encrypted, they can
be safely managed by the SP directly.

Phase 2. Runtime private indexing (Figure 4.b). We now discuss how DP-FMI is used to accel-
erate EDB predicate queries. Upon receiving a plaintext query, the TEE analyzes the predicate and
performs an index lookup on the DP-FMI, which returns private intervals. The TEE then loads the
corresponding encrypted data, decrypts it, and processes as specified by the query to compute the
required statistics. Note that both the DP-FMI and ẽmax can be stored and used outside the TEE,
as they have already been injected with DP noise. Thus, DP-FMI inference can be offloaded to
the untrusted SP’s software stack or external accelerators like GPUs, without compromising EDB’s
privacy guarantees. Moreover, since all operations on DP-FMI and ẽmax are post-processing of DP
results, the private indexing incurs no additional privacy loss.
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4 EXPERIMENTS

In this section, we benchmark our proposed DP-FMI against the SOTA DP index, SPECIAL (Wang
et al., 2024). Since both indexes are lossless, our focus will be on comparing their performance over-
heads. Additional evaluations, including privacy tradeoffs of DP-FMI and accuracy comparisons
with lossy DP indexes (Roy et al., 2020), are conducted but deferred to A.3 for space concerns.

4.1 EXPERIMENT SETUP

The baseline method. We select the SPECIAL index (Wang et al., 2024) as our comparison baseline
because, to our knowledge, it is the only DP index that ensures (deterministic) lossless indexing. In
contrast, the classical Cryptϵ (and its variant for growing data (Zhang et al., 2023)) is a lossy scheme
and can suffer significant data loss, particularly with scaled data or high privacy levels (see our
additional experiments in A.3). We also exclude ORAM-based index proposals like Oblix (Mishra
et al., 2018) and GraphOS (Chamani et al., 2024), as they focus on fully oblivious settings with no
leakage, while DP indexes consider to trade some bounded leakage for efficiency. As such, ORAM
indexes typically do not offer performance comparable to DP indexes. For fair comparison reasons,
we exclude both lossy DP indexes and fully oblivious ones from our main evaluation.

Datasets and Queries. Our experiments are conducted using 11 datasets, consisting of both syn-
thetic and real-world data. The first eight datasets are generated from mathematical distributions,
including uniform and lognormal, with each dataset scaled to four different sizes from 1K to 1M
records. In addition, we use three real-world datasets: (i) The bank transaction records from the
Czech Financial Dataset (Petrocelli, 2020), which consists of 1M entries; (ii) A sampled set of bu-
reau credit records from Home Credit Data (Kaggle, 2018), for which we create two versions: one
with 250K unique index keys, and another with 1M records allowing duplicate index keys. For the
synthetic datasets, the generated numbers serve as the index column. In the bank transaction dataset,
the index column is account id, and in the credit card dataset, it is SKU ID. These index columns
are used to construct the CDF for training and evaluation. In our evaluations, we consider two types
of index lookup: point query lookups and range query lookups. A point query retrieves the index
of a single attribute value, while a range query looks up the indexes for a continuous set of attribute
values. For example, a query like “get indexes for tuples where attribute Ai = xj” is a point query
lookup, whereas “get indexes for tuples where attribute Ai ∈ [xj , xk]” is a range query lookup.

Implementation and privacy settings. The FMI is implemented and trained using PyTorch (v2.4.0)
with CUDA 12.6. The private DP-SGD training is implemented using the Privacy Engine from
Opacus package (Yousefpour et al., 2021). For all experiments, including our baselines, we set a
maximum privacy budget of ϵ = 1. For DP-FMI, we allocate 0.8 of the budget to DP-SGD and
the remainder to the report noisy max error mechanism. The default privacy multiplier in DP-
SGD is set to 4.0 (adjusted to 3.0 for the transaction dataset due to better model outcomes), and
we use Opacus’s Privacy Engine with the default moments accountant method to track cumulative
privacy loss, stopping training when it reaches 0.8. For the report noisy max error method, we set a
conservative sensitivity bound of 10−3|D|, where |D| is the size of the dataset. All implementations
and benchmark data are anonymously open-sourced at https://github.com/uu60/learned-index-fmi.

System Configuration. The experiments were performed on a machine running Ubuntu 22.04.5
LTS (Jammy Jellyfish). The system is equipped with an Intel(R) Xeon(R) w3-2423 processor (6
cores, 12 threads), 64 GB of RAM, and an NVIDIA RTX A6000 GPU.

4.2 RESULTS

In the benchmark, we train a DP-FMI and create a SPECIAL index for each dataset. We then gener-
ate 50 random point and range queries to be processed by both indexing structures. The overhead for
each method is measured, which refers to the additional data fetched beyond the true indexed data
during lookup operations. Formally, let D represent a sorted dataset, and V = D[v0, v1] denote the
true indexing range, while Ṽ = D[ṽ0, ṽ1] represents the range produced by DP-FMI. The overhead
is then computed as |Ṽ |−|V |. We also calculate the relative overhead as (|Ṽ | − |V |)/|V |. Since the
lookup cost is minimal compared to the cost of fetching extra data, overhead serves as the primary
performance metric. We report and compare the average and maximum overheads of DP-FMI and
SPECIAL indexes in Figure 5.
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Figure 5: Approach evaluation based on absolute & relative maximum (Max) overhead includes 2
synthetic datasets with varying distributions and data sizes, and 3 real sampled datasets: R1 with
1M records from the Czech Financial dataset, R2 with 250K records from the bureau credit dataset,
and R3 with 1M records from the bureau credit dataset.

As shown in Figure 5, the DP-FMI model consistently exhibits significantly lower overhead than
SPECIAL indexes, especially in larger, uniformly distributed datasets. For instance, in real-world
datasets, DP-FMI achieves up to 925.6× improvement in point query lookups. Even in the worst
case, such as the point query lookups on the transaction data, DP-FMI still provides a 2.6× improve-
ment over SPECIAL. The reduced improvement in the transaction data is due to its small number
of unique keys—only 4,500. Since SPECIAL’s noise scale, which is the primary source of its over-
head, is proportional to O(

√
N/ϵ), where N is the number of unique keys, it performs better in

cases with fewer unique keys. However, as the unique key size grows, such as in the credit data
with 250K unique keys, DP-FMI demonstrates dramatic improvements, with a minimum of 400×.
A similar trend is also observed in the 1M credit data group, which contains 605,429 unique keys,
where DP-FMI achieves at least a 389.5× improvement over SPECIAL.

In addition to the significant performance improvements of DP-FMI over SOTA DP indexes, we
observe several interesting trends: First, for uniform datasets, DP-FMI shows a steady increase in
performance improvement over SPECIAL as the data size grows. This is because the number of
unique keys increases proportionally with the dataset size (from 100 to 99,995 as the size grows
from 1K to 1M), leading to a substantial increase in SPECIAL’s CDF error. In contrast, lognormal
datasets experience slower growth in unique keys (from 75 to 1,808) when expanding data sizes,
thus resulting in more modest performance gains for DP-FMI compared to SPECIAL. Moreover, in
chart (d) for the uniform dataset, the relative overhead of range queries decreases as the dataset size
grows. This is because FMI maintains a fixed maximum error for each key, keeping the predicted
overhead ranges Ṽo consistent. As the real range V increases linearly with dataset size, the relative
overhead, computed as |Ṽo|/|V |, decreases accordingly.

5 CONCLUSION

In this work, we propose DP-FMI, the first DP learned index that is both lossless and efficient.
Benchmark comparisons show that DP-FMI achieves up to 925.6× improvement over the SOTA
DP indexes. Despite this, further optimization is possible. For example, the sensitivity bound in
the report noisy max error mechanism is set conservatively large, which can also inflate overhead.
A tighter sensitivity estimate could improve DP-FMI’s performance. Moreover, to achieve lossless,
another approach could involve mimicking SPECIAL, learning two noisy indexes (one overestimat-
ing and the other underestimating the cumulative frequency) by adjusting the loss function to favor
positive or negative errors. This may eliminate the need for max error based range overestimation
and further reducing overhead. Finally, while this work focuses on static data, extending DP-FMI to
support private, efficient, and lossless updates for dynamic data is an intriguing future direction.
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A APPENDIX

A.1 PROOF OF FMI TRAINING SATISFIES DP

We say that the private training on our FMI is inherently the directly adoption of DP-SGD, so that
it does not affect the privacy guarantees from those provided by DP-SGD. For completeness, we
provide a formal privacy analysis to here, which is in herently derived from the proof technique of
DP-SGD Goodfellow et al. (2016). Specifically, we will consider two neighboring datasets D and
D′, and we abstract the training process as a probabilistic mechanismM. We will set the constraint
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σ ≥ 2ϵ−1C
√
2 ln(1.25/δ), and then compute the ratio of the probabilities for the output of the

mechanismM(D) andM(D′) as:

ln

(
Pr[M(D) = Θ]

Pr[M(D′) = Θ]

)
= ln

 1
(2πσ2C2)d/2

exp
(
−∥Θ−g̃(D)∥2

2

2σ2C2

)
1

(2πσ2C2)d/2
exp

(
−∥Θ−g̃(D′)∥2

2

2σ2C2

)


= ln

(
exp

(
∥Θ− g̃(D′)∥22 − ∥Θ− g̃(D)∥22

2σ2C2

))
=
∥Θ− g̃(D′)∥22 − ∥Θ− g̃(D)∥22

2σ2C2

=
∥Θ− g̃(D) + g̃(D)− g̃(D′)∥22 − ∥Θ− g̃(D)∥22

2σ2C2

=
∥Θ− g̃(D)∥22 + 2(g̃(D)− g̃(D′))⊤(Θ− g̃(D)) + ∥g̃(D)− g̃(D′)∥22 − ∥Θ− g̃(D)∥22

2σ2C2

=
2(g̃(D)− g̃(D′))⊤(Θ− g̃(D)) + ∥g̃(D)− g̃(D′)∥22

2σ2C2
= ∗

Here, we apply Cauchy-Schwarz inequality, and which then gives us

∗ ≤ 2∥g̃(D)− g̃(D′)∥2 · ∥Θ− g̃(D)∥2 + ∥g̃(D)− g̃(D′)∥22
2σ2C2

= ∗∗

Since the gradients are clipped to have max ℓ2 norm of C, so that ∥g̃(D)− g̃(D′)∥2 ≤ 2C, and thus
we can derive that the following

∗ ∗ ≤ 2C · ∥Θ− g̃(D)∥2 + 4C2

2σ2C2
=

C · ∥Θ− g̃(D)∥2
σ2C2

+
2C2

σ2C2
=
∥Θ− g̃(D)∥2

σ2C
+

2

σ2

We substitute σ =
2C
√

2 ln(1.25/δ)

ε , to the above equation, then we obtain

∥Θ− g̃(D)∥2
σ2C

+
2

σ2
≤ ε

A.2 PROOF OF THE REPORT NOISY MAX ERROR IS DP

We say that to prove that Algorithm 1 satisfies DP is equivalent to demonstrate the following.

Given two neighboring datasets x and x′, which differ by at most one record, and a score function
q(y;x) for each possible output y ∈ Y = {1, 2, . . . , d}, the score function q(y;x) has sensitivity
|q(y;x)− q(y;x′)| ≤ ∆ for all y. We then add to each score q(y;x) a random variable drawn from
an exponential distribution Zy ∼ Exp

(
ϵ

2∆

)
.

Let the mechanism RNM(x) = argmaxy (q(y;x) + Zy). We prove that for any y, and any neigh-
boring datasets x and x′, the following holds:

Pr[RNM(x) = y] ≤ eϵ · Pr[RNM(x′) = y] + δ.

So in fact if we set q(y;x) to be |ŷ(x)− y| then the aforementioned scenario is equivalent to Algo-
rithm 1. Hence, in what follows, we focus on proving the above scenario.

1. RNM follows exponential distribution. To prove DP, we will first need to compute the proba-
bility distribution of RNM. The probability that y is selected is:

Pr[RNM(x) = y] = Pr (q(y;x) + Zy > q(u;x) + Zu, ∀u ̸= y) .

Because the exponential distribution is memoryless and the noise variables Zy are i.i.d., so we can
then describe the probability of selecting y (under x and x′), using the exponential distribution

Pr[RNM(x) = y] =
exp

(
ϵ·q(y;x)

2∆

)
∑

u∈Y exp
(

ϵ·q(u;x)
2∆

) ; Pr[RNM(x′) = y] =
exp

(
ϵ·q(y;x′)

2∆

)
∑

u∈Y exp
(

ϵ·q(u;x′)
2∆

) .
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2. Probability ratio between x and x′ is bounded by eϵ. In what follows, without loss of generity,
we will assume x′ ≤ x, and we only prove one direction of the probability ratio, while by symmetric,
the other side can be trivially implied. Now, we compute:

Pr[RNM(x) = y]

Pr[RNM(x′) = y]
=

exp
(

ϵ·q(y;x)
2∆

)
exp

(
ϵ·q(y;x′)

2∆

) · ∑u exp
(

ϵ·q(u;x′)
2∆

)
∑

u exp
(

ϵ·q(u;x)
2∆

) .

Note that ∀y|q(y;x)− q(y;x′)| ≤ ∆.⇒ q(y;x) ≤ q(y;x′) + ∆, q(y;x′) ≤ q(y;x) + ∆., thus:

exp

(
ϵ · q(y;x)

2∆

)
≤ exp

(
ϵ · (q(y;x′) + ∆)

2∆

)
= e

ϵ
2 · exp

(
ϵ · q(y;x′)

2∆

)
.

For the denominator, since the exponential function is monotonic (and x > x′), so that:∑
u

exp

(
ϵ · q(u;x)

2∆

)
≥ exp

(
ϵ · q(y;x)

2∆

)
⇒
∑
u

exp

(
ϵ · q(u;x′)

2∆

)
≤ e

ϵ
2 · exp

(
ϵ · q(u;x)

2∆

)
.

By applying the above bounds, we re-compute the probability ratio as

Pr[RNM(x) = y]

Pr[RNM(x′) = y]
≤ e

ϵ
2 · e ϵ

2 = eϵ.

Additional discussions. We conduct additional discussions on the case where we set a smaller the
sensitivity bound ∆ in the purist of better performance (e.g., smaller scale of noise to be added
to emax). However we may now assume ∆ might be violated, for instance with small probability
δ > 0. In this case, the probability ratio bound might no longer hold. However, by definition, this
failure happens with probability at most δ. This then translate into the (ϵ, δ)-DP guarantee.

A.3 ADDITIONAL EXPERIMENTS

Privacy tradeoff experiment. In this experiment, the trend of the maximum error of the FMI model
during each training epoch, along with the corresponding epsilon values, is presented in Figure 6. We
observe that as epsilon increases, the FMI model shows a reduction in maximum error, reflecting
improved performance. This relationship allows us to select the most suitable model for specific
privacy requirements.
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Figure 6: Max Error vs Epsilon: The left chart shows the maximum error as epsilon increases for
four datasets, each containing 1 million records. The right chart includes all datasets of various
record sizes.

Accuracy comparison results. In this experiment, we compare the rate of missing data (i.e., the
proportion of data that is not successfully retrieved) for three indexing methods: Cryptϵ, SPECIAL,
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and FMI. The results, as shown in Table 1, highlight significant differences in the performance of
these methods across various datasets for both point queries and range queries. Formally, let D rep-
resent a sorted dataset, and V = D[v0, v1] denote the true indexing range, while Ṽ = D[ṽ0, ṽ1]
represents the range produced by indexing mechanism. The missing data rate is computed as
max(0,min(v1,ṽ1)−max(v0,ṽ0))

|V | .

Both SPECIAL and FMI maintain a 0.0 missing data rate across all datasets and query types, mean-
ing that they never fail to retrieve the correct data, ensuring complete accuracy for both point and
range queries. However, Cryptϵ performs substantially worse, with consistently high missing data
rates, particularly in larger datasets, rendering it unsuitable for practical use. For instance, in the
uniform 1K dataset, Cryptϵ has a missing data rate of 0.4899 for point queries and 0.1618 for range
queries, meaning that nearly half of the data for point queries and over 16% of the data for range
queries are not retrieved correctly.

As the dataset size increases, Cryptϵ’s performance even gets worse, remaining significantly inferior
to SPECIAL and FMI. Expect uniform distribution dataset with less than 1M records, for example,
Cryptϵ’s missing data rate for point queries increases to nearly 100%. This level of performance is
unacceptable in real-world applications, especially when SPECIAL and FMI continue to show a 0.0
missing data rate, regardless of the dataset size.

In summary, while SPECIAL and FMI maintain flawless performance with 0.0 missing data across
all datasets and query types, Cryptϵ’s performance is consistently poor, particularly in smaller
datasets, lognormal distributions and real-world datasets. Its high rate of missing data close to over
90% makes it impractical for real-world use. These results underscore the superiority of SPECIAL
and FMI in providing reliable, accurate indexing, while Cryptϵ proves inadequate for tasks requiring
high precision.

Table 1: Accuracy comparison between Cryptϵ, SPECIAL, and FMI
Model Dataset Point (Avg) Point (Max) Range (Avg) Range (Max)

Cryptϵ

uniform 1K 0.4899 1.0 0.1618 0.3333
uniform 10K 0.6365 1.0 0.0688 0.2034
uniform 100K 0.9970 1.0 0.1528 0.3353
uniform 1M 1.0 1.0 1.0 1.0
lognormal 1K 0.9406 1.0 0.8542 1.0
lognormal 10K 1.0 1.0 1.0 1.0
lognormal 100K 1.0 1.0 0.9986 1.0
lognormal 1M 1.0 1.0 0.9940 1.0
trans 1M 1.0 1.0 0.9904 1.0
bureau 250k 1.0 1.0 0.9423 1.0
bureau 1M 1.0 1.0 0.9264 1.0

SPECIAL All datasets 0.0 0.0 0.0 0.0
FMI All datasets 0.0 0.0 0.0 0.0
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