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ABSTRACT

Low-rank adaptation (LoRA) is a fine-tuning method that freezes the parameters
of a pre-trained model and injects small trainable matrices. LoRA-based meth-
ods focus on parameter-level efficiency, but do not directly control the activations
in the low-rank space. We introduce SpikeL.oRA, a spiking low-rank adaptation
fine-tuning method that leverages the leaky integrate-and-fire (LIF) neuron to in-
troduce learnable sparsity with minimal computational overhead. The LIF neuron
gates the activations from the A-matrix in LoRA, sparsifying them while pre-
serving learned information. This design makes SpikeLoRA a sparse fine-tuning
method for both spiking and traditional LLMs, with the additional efficiency ben-
efit of being compatible with neuromorphic hardware. Our experiments show that
over 70% sparsity is achievable without a significant drop in performance. Fur-
ther, improved performance as compared to LoRA is observed for smaller datasets
and higher-rank settings. We also show that SpikeLoRA indirectly mitigates over-
fitting, particularly for higher ranks.

1 INTRODUCTION

Fine-tuning forms part of the transfer learning domain (Raffel et al.,|2020), and allows a pre-trained
model to specialise in a downstream task, incorporating a specific domain of expertise, task, or
knowledge. To achieve this, fine-tuning adjusts the weights of a pre-trained model to minimise
some loss on a downstream task.

The problem with fine-tuning, however, is that parameters of the original model have to be updated
(retrained). This results in computational inefficiencies and potential catastrophic forgetting, where
pre-trained knowledge may be lost (Song et al.||2025)). Adapter modules, or adapters, were proposed
as a solution to fine-tuning inefficiencies, and add small fully-connected networks on top of the
frozen pre-trained parameters (Houlsby et al.| [2019). However, each downstream task requires its
own adapter, making it difficult to switch tasks easily. Low-rank Adaptation (LoRA) is a novel
fine-tuning approach which freezes the weights of the pre-trained model and uses low-rank matrix
decomposition to parameterise the weight update (Hu et al.| |2022). This substantially reduces the
trainable parameters, does not introduce additional inference, and eliminates the need to calculate
gradients for frozen parameters.

LoRA has evolved to multiple methods, including adaptive low-rank adaptation (AdaLoRA) (Zhang
et al., |2023), adaptive learning low-rank adaptation (ALLoRA) (Huang & Balestriero, [2024),
weight-decomposed low-rank adaptation (DoRA) (Liu et al.| [2024), and quantised low-rank adap-
tation (QLoRA) (Dettmers et al., [2023), among others. These methods attempt to enhance LoRA’s
efficiency without compromising performance by introducing adaptive low-rank updates, weight de-
composition, and quantisation techniques. Fundamentally, AdaLoRA dynamically adjust the rank
of each respective LORA module, ALLoRA eliminates dropout and scaling by introducing an adap-
tive learning rate, DoRA stabilises training by controlling weight redundancy, and QLoRA quantises
the base model’s weights while fine-tuning with LoRA. Furthermore, Huang & Balestriero| (2024
investigated an adaptive scaling factor for LoORA (ASF-LoRA). Different from the constant scaling
factor in [Hu et al.| (2022)), ASF-LoRA makes the scaling factor learnable, but introduces potential
ripple effects across blocks, which degrade performance.
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All of the above LoRA variants operate directly on the model’s low-rank weight matrices. In this
work, we argue that efficiency is achievable not only on parameter level, but also on the activation
level. Dropout (Srivastava et al., [2014) is a well-known regularisation method that stochastically
zeroes activations during training to prevent co-adaptation of neurons. Notably, dropout has been
successfully implemented in the context of LoRA, and shown to reduce the generalisation gap (Lin
et al.,2024). While dropout suppresses activations stochastically, a learnable activation suppression
pattern may yield more targeted and effective sparsity, and yield further benefits for both efficiency
and generalisation. Spiking neural networks (SNNs) offer a mechanic ideally suited for this task.

SNNs are designed to be more biologically plausible than traditional artificial neural networks
(ANNSs), and make use of event-driven (discrete) spikes to transmit information (Singh et al.| [2020).
This makes SNNs inherently sparse and eliminates the need for continuous activations. SNNs have
been successfully utilised in spiking large language models (LLMs), such as SpikeGPT (Zhu et al.|
2024). SNNs offer promising biologically-inspired capabilities, and are more energy-efficient when
deployed on specialised neuromorphic hardware. Since SNNs are sparse in nature, they possess the
mechanic to learn when to sparsify activations. We apply SNN mechanics to LoRA and show that
learnable sparsity can act as a compression (i.e., sparsification) mechanism with potential benefits
of mitigating overfitting, especially for higher LoRA ranks.

In this paper, we contribute the following:

1. SpikeLoRA: A novel spiking version of LoRA is proposed, enabling more efficient fine-
tuning on downstream tasks. By coupling the LORA module with a leaky integrate-and-fire
(LIF) neuron, biologically inspired parametric sparsification is introduced with minimal
computational overhead. This allows SpikeLoRA to learn when to suppress activations
while achieving accuracy comparable with classic LoRA.

2. Application of LoRA and SpikeLoRA to SpikeGPT: We fine-tune SpikeGPT (Zhu et al.
2024) using both LoRA and SpikeLoRA to show the possibility and potential of LoRA in
a fully-spiking pipeline. Coupled with SpikeLoRA, we make the entire fine-tuning process
compatible with neuromorphic hardware.

The rest of the paper is structured as follows: Section[2|covers relevant background, including SNNs,
SpikeGPT, and LoRA. Section [3| formally introduces SpikeLoRA. Section ] presents and discusses
the experimental setup and results. Section [5|concludes the paper and outlines future work.

2 BACKGROUND

2.1 SPIKING NEURAL NETWORKS (SNNS)

SNNs are often referred to as the 3rd generation of neural networks (Capatina et al.| 2023} Maass|,
1997; Yang et al.,2024), and attempt to closely mimic the biological brain to solve known problems
in deep learning, such as excessive memory usage, computational complexity (Eshraghian et al.,
2023)), and the lack of sufficient parallelism (Pfeiffer & Pfeil, [2018). Memory usage is reduced
via the inherent sparsity of the SNNs. Computational complexity is reduced by using bio-inspired
discrete spikes instead of continuous activations seen in ANNSs. Parallelism is improved through the
event-driven nature of SNNs.

In SNNs, neuron activation is driven by temporal binary signals, referred to as spike trains. An
integrate-and-fire (IF) neuron ingests a spike train and accumulates the binary signals in the current
membrane potential. When the membrane potential reaches a pre-defined voltage threshold, the
neuron fires (i.e., activates), and the membrane potential is reset. The membrane potential will con-
tinue to build up until the voltage threshold is reached. If a neuron fires, it will contribute to the next
neuron’s membrane potential; otherwise, it acts as a silent neuron, which accounts for the sparsity
of SNNs. Due to the dependency of membrane potential on past spikes, SNNs inherently possess
recurrent properties. Neuromorphic hardware allows for true sparsity and event-driven activations,
such that silent neurons do not use any memory, therefore offering a significant reduction in energy
use.
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2.1.1 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

Biological neurons lose their membrane potential over time, whereas IF neurons are incapable of
doing so. To better model biological neurons, LIF neurons introduce a leaky aspect to capture the
temporal effects. The first-order LIF neuron model has been widely used to understand and model
SNNs (Kim et al.| [2023). A first-order LIF neuron model (Dayan & Abbott, |2001) performs activa-
tion for time step ¢ by calculating membrane potential and comparing it to a set voltage threshold,
Vp. The function V,,[t] updates the membrane potential of a neuron per time step ¢ as follows:

Volt] = - Vplt = 1] + W - X[t] = S[t —1] - Vp, ey

where [ is a predefined decay factor (such as e~ (Eshraghian et al., [2023)) of V}D[t — 1], and
Vp[t — 1] is the previous state of the neuron’s membrane potential. 3 is used to simulate the leaky
aspect of an IF neuron. If 8 = 1, then Eq. simply models a non-leaky IF neuron. W - Xt] is the
weighted input to the LIF-neuron. S|t — 1] determines whether to reset the membrane potential, and
is defined as follows:

S[t] = O(V,[t] - Vo), @)
where O is the Heaviside function (Legua et al.,[2006). S[t] € {0, 1} since © € {0, 1}. Therefore,
Vplt] (Eq.) causes the membrane potential to accumulate when the neuron does not fire (i.e.,
where V;[t < Vp) (Tavanaei et al., |2019). When a neuron fires, reset-by-subtraction (Eq.) will
subtract the threshold, whereas reset-to-zero will reset the membrane potential to zero (Eshraghian
et al., 2023)).

For backpropagation, an arctangent surrogate gradient function has proven to be effective in ap-
proximating gradients (Eshraghian et al.| 2023). The arctangent surrogate gradient solves the non-
differentiable nature of the Heaviside function. However, since these functions approximate gradi-
ents, a loss in performance can be expected (Pfeiffer & Pfeil, [2018]).

2.2  SPIKEGPT

SpikeGPT (Zhu et al., [2024) is a generative spike-based LLM based on the receptance weighted
key value (RWKYV) architecture (Peng et al., 2023). SpikeGPT is suitable for natural language
understanding (NLU) and natural language generation (NLG) tasks.

Rather than introducing an additional temporal dimension, [Eshraghian et al.|(2023) suggests directly
adapting the neurons with spiking thresholds in the attention head to learn long-term dependencies.
SpikeGPT’s novel spiking RWKV (SRWKYV) (Zhu et al., |2024) follows this approach by adapting
neurons with spiking thresholds at the embedding layer in the RWKYV architecture. SRWKV em-
ploys the same foundation as RWKV’s time-mixing block, but to create a spiking version, it uses the
recurrent properties of SNNs. SWRKYV unrolls the sequence X € RT*9 to represent X [t] € R'*4,
Similar to RWKYV, SRWKYV uses R, K, and V with linear transformations. These transformations
are then used as inputs to the rest of the time-mixer block.

To adapt the feedforward network (FFN) block to be an SNN, Zhu et al.| (2024) propose a spiking
receptance FFN (SRFFN). The SRFFN functions similarly to the channel mixer. This is coupled
with a spiking gating mechanism. SRFFN contains learnable parameters and utilises LIF neurons as
resulting outputs.

To build a spike train, SpikeGPT uses binary embeddings (BEs) to transform continuous outputs into
binary spikes (Zhu et al.| 2024)). The BEs reside at the embedding layer only; therefore, SpikeGPT
still utilises some continuous activations. This implies that a LoORA module would still have to
process continuous inputs rather than binary embeddings. LIF neurons can, however, process raw
continuous inputs, which is more compatible and avoids the overhead of explicit encoding in non-
spiking settings, but results in reduced biological plausibility.

2.3 LoOW-RANK ADAPTATION (LORA)

Formally, h as the output of the forward pass in a neural network with LoRA is defined as:
h =Wyx + AW,, 3)

where W) is the frozen weight matrix of the input activation vector x, and AW, = BA is the
low-rank weight matrix decomposition, where B € R4*" and A € R"**, The rank r must be less



Under review as a conference paper at ICLR 2026

than d and k to ensure LoRA remains low-rank and efficient. The forward pass of a network is then
calculated as usual, but during backpropagation, only the low-rank matrices are updated. LoRA
typically applies a scaling factor « to control the magnitude of the low-rank update, and AW, then
becomes AW, = = BA.

When fine-tuning with LoRA, some of the new dimensions introduced by the low-rank decomposi-
tion, referred to as intruder dimensions, may dominate the weight update. This can cause generali-
sation problems across domains (Shuttleworth et al.| 2024)). Intruder dimensions capture misleading
correlations rather than learning generalisable features, which causes overfitting. On the other hand,
it is also likely that some features in AW might be duplicated from W, which can amplify important
features (Hu et al.| 2022)). This highlights the need for a method that is able to suppress misleading
intruder dimensions while retaining useful amplifications.

3 SPIKELORA METHOD

We aim to leverage the promising capabilities of SNNs and LoRA to develop a more robust
parameter-efficient fine-tuning variant that is both energy-efficient on neuromorphic hardware and
is less prone to overfitting. To this end, we introduce SpikeLoRA, based on the original LoRA
definition (Hu et al.| [2022)), where AW (Eq.@) is modified as:

AW = B - (SN(4) & A), )

where SN is the LIF neuron that takes A € R™*¥ as input such that SA'(A) = LIF(A) € {0, 1}"**,
The LIF neuron outputs a binary mask, which is applied to the original down projection from A
via element-wise product. This helps preserve previously learned information while zeroing out
activations corresponding to the LIF nodes which did not spike (see Fig. [I). The inputs to the LIF
neurons in the SpikeLoRA module are derived from continuous activations rather than explicitly
employing encoding schemes such as rate or temporal encoding |[Eshraghian et al.[(2023)). As such,
SpikeLoRA is applicable to both traditional and spiking LLMs (Zhu et al., [2024).
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Figure 1: High-level diagram of SpikeLLoRA during forward pass. For illustration purposes, only a
vector is shown as input. In practice, a multi-dimensional tensor is passed as input. Adapted from
the original LoRA definition (Hu et al., [2022).

In SpikeLoRA, each LoRA module is coupled with one LIF node, effectively gating the activations
of the A-matrix (i.e., the adapter-in matrix). Since the LIF node resides in the low-rank space of the
LoRA module, the element-wise multiplication has an O(rk) complexity. If the B A-matrix (i.e. the
adapter-out matrix) was gated such that AW = SN (BA) ® BA, the complexity would increase to
O(dk), since r < min(d, k) and BA € R?**_ Gating BA would also bring c, the scaling factor,
into play, which can cause extreme sparsity or extreme magnitude updates. For this reason, we only
gate the activations of the A-matrix.

Since our modification of LoRA is primarily based on the addition of a LIF neuron, SpikeLoRA
can easily be coupled with other LoRA variations, such as AdaLoRA (Zhang et al.| 2023)). Simi-
lar to dropout, SpikeLoRA does not directly affect the underlying mechanisms of these variations,
allowing for efficient cooperability. E.g., AdaLLoRA’s definition can be modified as:

A=(SN(P)oP) A-Q, 5)
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where SN (P) is the spiking activation of the left singular vector P. Additionally, other matrices can
be sparsified through spiking, similarly to how Lin et al.| (2024) experimented with applying dropout
to various parts of AdalLoRA. For a method like AdalLoRA, it is important to mention that the
forward pass is mostly trivial, while the backwards pass requires careful handling to avoid double-
counting gradient modifications. It is possible to detach the LIF neuron from the computational
graph, but this impacts its ability to learn. We leave the exploration of adapting AdaLLoRA and other
LoRA methods with SpikeLLoRA for future work.

Unlike stochastic activation suppression methods, SpikeLoRA is a trainable and adaptive method
that directly targets the activations in the low-rank space. We hypothesise that SpikeL.oRA’s learned
sparsity will amplify important features and suppress spurious and non-salient features. While di-
recting the focus towards important features could potentially lead to fitting the problems better, we
expect activation sparsification to implicitly aid in mitigating overfitting.

4 EXPERIMENTS

To evaluate SpikeLoRA, we divide our experiments into three sections:

1. SpikeLoRA on a traditional LLM (Section [4.1): A traditional LLM is fine-tuned using
the proposed SpikeLoRA module. We explore various setups to assess the impact of hy-
perparameters. We use the General Language Understanding Evaluation (GLUE) (Wang
et al.l 2019) benchmark to compare SpikeLoRA to classic LoRA.

2. SpikeLoRA analysis (Section[d.2): We discuss SpikeLoRA’s characteristics, such as spar-
sity, efficiency, and its ability to mitigate overfitting.

3. LoRA and SpikeLoRA on SpikeGPT (Section[4.3): SpikeGPT is fine-tuned using both
LoRA and SpikeLoRA. We utilise the NLU results from [Zhu et al.| (2024)) to conduct a
comparative performance analysis, and demonstrate the potential of an efficient spiking
fine-tuning pipeline compatible with neuromorphic hardware.

For the traditional LLM, we use DeBERTaV3-Base (He et al.,2023) to conduct the experiments. For
SpikeGPT, we make use of existing benchmark results (Zhu et al.| |2024) as a baseline. LoRA and
SpikeLoRA are applied to all linear layers in both DeBERTaV3-Base and SpikeGPT. Depending on
availability, experiments were done using various Nvidia GPUs with at least 16GB VRAM. Each
experiment is averaged over 5 independent runs with different seeds.

Unless otherwise stated, we use a learning rate warmup ratio of 6%, gradient clipping at 1.0, and
a weight decay of 0.01. For LoRA, we use a rank of 8 and a dropout rate of 0. We found that
the selection of the dropout rate did not significantly impact our findings. The results of different
dropout rates are reported in Appendix [Al We also use rsLoRA (Kalajdzievskil [2023)) to stabilise the
rank using the scaling factor & = /7. By stabilising the rank with «, rsLoRA enables a balanced
tradeoff between fine-tuning efficiency and performance. The learning rate, batch size, and number
of epochs are optimised per dataset, and reported in Appendix

For SpikeLoRA, we set the LIF’s Vj to 0.1, and report low-rank sparsity. We define sparsity as the
percentage of zero activations after gating the A-matrix activations with the LIF neuron. Unless
otherwise stated, sparsity values are reported as the average sparsity across all modules.

The Corpus of Linguistic Acceptability (CoLA) dataset (Warstadt et al., 2019), which forms part
of the GLUE benchmark, consists of only 8.5k training, 1043 validation, and 1063 test samples.
Fine-tuning on CoLA, a small and skewed dataset, is susceptible to overfitting, and, in general, fine-
tuning tends to perform worse on CoLA compared to other datasets in the GLUE benchmark (Zhang
et al.,2023; Huang & Balestriero, [2024} Liu et al., 2024} Dettmers et al., 2023; Hu et al.| 2022). We
use the CoLA dataset in the majority of our experiments, as its small size and imbalanced label
distribution provide a good test of robustness and generalisation when fine-tuning with SpikeLoRA.
CoLA is evaluated using Matthew’s correlation coefficient (Matthews| [1975)), which is well-suited
for imbalanced binary classification.
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4.1 SPIKELORA ON A TRADITIONAL LLM

To establish the viability and competitiveness of SpikeLoRA, we fine-tune DeBERTaV3-Base with
both LoRA and SpikeL.oRA on the GLUE benchmark, and investigate the effects of varying voltage
threshold (Section[d.1.1)), rank (Section[4.1.2)), and learning rate (Sectiond.1.3)) on the SpikeLoRA’s
performance.

4.1.1 DIFFERENT Vjy

Prior to performing comparisons with LoRA, we conduct an experiment to determine the appropriate
Vp, i.e., voltage threshold value. Fig. 2] shows the effect of increasing Vj for the CoLA dataset.
Increasing Vj causes an increase in the activation sparsity in the low-rank space. Since sparsity is
desired, our goal is to maximise Vj and the validation metric (e.g., accuracy), and minimise the
validation loss. More formally, let Ly, be the validation loss, and Ay, be the validation metric
using Vjp:

A* = max(AVe), L* = min(LVQ), (6)
then the goal is to solve max(Vjp) with the following constraints:
Ay, > A" =4, Ly, > L* +6p, )

where § 4 and J, are tolerated accuracy/loss parameters. In our experiments, we observed model
collapse when V, Z 1.0 (Fig. . When Vy < 1.0, minimal accuracy tradeoffs are made for
increased sparsity (up to 97.24% during evaluation). As such, we conservatively set Vy to 0.1 for
the rest of the experiments. In Sections and[@.1.3] with V = 0.1, we found that training starts
with a global sparsity (average over each module per block) of 0.71 4= 0.04, and diverges from there
on, depending on the setup.
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Figure 2: The effect of different Vj threshold values on SpikeLoRA when fine-tuning on the CoLA
dataset. Left: minimum and maximum evaluation loss across different V. Middle: Matthew’s
correlation coefficient (MCC) across different V. Right: global sparsity across all blocks as a
result of the chosen Vj. The red lines indicate the minimum and maximum respective metrics when
Vo = 1.0. Actual values and standard deviations are reported in Appendix [A]

4.1.2 DIFFERENT RANKS

Table [[]summarises the results of the experiments conducted to assess the effects of different ranks.
We compare LoRA and SpikeLoRA to see if similar accuracy could be maintained by SpikeLoRA,
while introducing sparsity. Table (1| shows that SpikeLoRA performs better in most cases, except
for ranks 1 and 4. For higher ranks, our results show that SpikeLoRA can better control overfitting
(quantified via the generalisation gap) by introducing more sparsity, whereas LoRA’s performance
deteriorates beyond » = 16. This aligns with Mao et al.|(2024): a higher rank can attain a richer
representation, but is more susceptible to overfitting.

4.1.3 DIFFERENT LEARNING RATES

Table 2] summarises the performance comparison between LoRA and SpikeLoRA on the CoLA
dataset for various learning rates. It is evident from Table 2] that the sparsity of the low-rank space is
directly proportional to the selected learning rate. When the learning rate is set between le—4 and
5e—4, the generalisation gap difference remains minimal. When the learning rate is set to 7e—4 or
higher, the generalisation gap of SpikeLoRA remains stable, while for LoRA it increases. Further,
SpikeLoRA outperforms LoRA in terms of accuracy for all learning rate settings.
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Variant Metric r=1 r=2 r=4 r=38 r=16 r=232 r =64

LoRA CoLAmcc 67.68 67.01 68.40 68.07 67.30 68.75 57.93
Gen. Gap 0.75 0.83 0.85 0.80 1.13 1.14 1.44
CoLAmcc  67.37031 6722010 6747003 68.37.030 68.65.135 69.43,065 67.71.975

SpikeLoRA  Gen. Gap ~ 0.7100s  0.81002 093,008  0.77.003 1.04.9,00 1.08.0.06 1.14.030
Sparsityg, 33.47 43.67 52.75 69.74 73.83 80.87 92.69

Table 1: Matthew’s correlation coefficient (MCC) and sparsity across blocks (%) when fine-tuning
on the CoLA dataset using different ranks for LoRA and SpikeLoRA. The generalisation gap in-
dicates the difference between evaluation and training loss (lower is better). Subscripts indicate
SpikeLoRA’s performance relative to LoRA, where green corresponds to improvement and red to
reduction in performance. For each rank, the best accuracy is shown in bold.

Setup le—4 3e—4 5e—4 Te—4 9e—4

LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA
CoLApce  66.75 68.16.; 4 68.07 68.37.30 67.94  68.04. 5 67.02  67.39.3; 65.78 6746, ¢3
Sparsitys, - 51.56 - 69.74 - 77.88 - 82.58 - 85.49
Gen. Gap 0.66 0.65.0.01 0.80 0.770.03 1.08 1.06.0.02 1.15 1.02.0 13 1.17 1.04.0.13

Table 2: Matthew’s correlation coefficient (MCC) and sparsity across blocks (%) when fine-tuning
on the CoLA dataset using different learning rates for LoORA and SpikeLoRA. The third row shows
the generalisation gap, indicating the difference between evaluation and training loss (lower is bet-
ter). Subscripts indicate SpikeLoRA’s performance relative to LoRA, where green corresponds to
improvement and red to a reduction in performance. For each learning rate, the best accuracy is
shown in bold.

4.1.4 GLUE BENCHMARK

Table [3| presents the results for GLUE when fine-tuning with LoRA and SpikeLoRA. It is evident
from Table 3] that SpikeLoRA performed competitively, marginally outperforming LoRA for CoLA,
SST-2, MRPC, and RTE, and performing comparably to LoRA for STS-B, MNLI, QNLI, and QQP.
Table [3|also lists the sparsity achieved by SpikeLoRA per dataset, and shows that the resulting low-
rank activations were at least 67% sparse. We conclude that SpikeLoRA provides sparsification
without a noticeable drop in performance metrics. Notably, our results suggest that SpikeLoRA
performs better on smaller datasets (CoLA, MRPC, and RTE), indicating its potential to enhance
generalisation in low-resource environments.

Setup ‘ COLAMCC SST—ZACC MRPCACC/FI STS-BCO" MNLIACC QNLIACC RTEACC QQPAcc ‘ AVg
LoRA | 68.07 95.55 89.41/92.47 91.36 90.44 94.17 86.07 91.83 | 88.36
SpikeLoRA 68.37 95.73 89.56/92.55 91.13 90.21 93.91 86.28 91.57 88.35
Sparsityg, 69.74 83.39 84.85 67.26 7791 77.13 89.97 76.23 | 78.31

Table 3: GLUE benchmark comparison for fine-tuning using LoRA and SpikeLoRA. For each
dataset, the best accuracy is shown in bold. The third row shows the sparsity of SpikeLoRA in
the low-rank space. Average score across datasets is included.

4.2 SPIKELORA ANALYSIS

In this section, we examine SpikeLLoRA’s behaviour to further understand its internal dynamics. We
analyse SpikeLoRA in terms of sparsity (Section[d.2.1)), regularisation (Section[d.2.2)), and efficiency
trade-offs (Section4.2.3)).

4.2.1 SPARSITY

Figure [3| presents a sparsity heatmap of LoRA trained on CoLA, organised in terms of individual
modules and blocks. A traditional Transformer block consists of a query (Q), key (K), value (V), and
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Figure 3: Sparsity of SpikeLoRA modules in various modules (z-axis) and blocks (y-axis) for the
CoLA dataset.

output module within the self-attention head, as well as an FFN consisting of an intermediate layer
(FF.W1) and an output layer (FF . W2) (Vaswani et al.,[2017). We observe notably low sparsity in the
intermediate layer compared to the other modules. [Skean et al.| (2025)) noted that the intermediate
layer signals encode richer information compared to other modules. As such, we conclude that
learned sparsification is most beneficial in modules where richer information can be found. This
conclusion is in line with our hypothesis that learned sparsity amplifies important features, i.e.,
features reach in information.

4.2.2 REGULARISATION

Results in Tables[I|and2]demonstrate that SpikeLoRA in general tends to have a lower generalisation
gap than LoRA. To further study the training dynamics, we investigated gradient norms for both
methods. We found that SpikeLoRA’s gradient norm maintains a moderately strong correlation
with LoRA’s (Pearson’s r = 0.678, p = 2.49¢-8), but with a slightly lower mean and standard
deviation (1.592+1.418 (LoRA) down to 1.554+1.292 (SpikeLoRA)). This shows that SpikeLoRA
retains learning ability similar to LoRA while reducing extreme gradient updates, indicating that
SpikeLoRA indirectly mitigates overfitting. We found this correlation to be particularly prevalent in
higher-rank spaces (Table|[T).

We discovered that even when stochastic dropout is applied, SpikeLoRA consistently exhibits
a smaller generalisation gap than LoRA while maintaining performance. This suggests that
SpikeLoRA surpasses the effect of stochastic dropout, reducing overfitting without impacting per-
formance. Results are reported in Appendix [A]

4.2.3 EFFICIENCY

Despite promising results, we experienced a slight increase in training time when fine-tuning with
SpikeLoRA: from 19.42 &+ 0.02 minutes (LoRA) to 21.68 % 0.12 minutes (SpikeLoRA) on average
for the CoL A dataset. There are a couple of reasons why this is the case:

* LIF neurons introduce additional trainable parameters, although small in size (one neuron
per module). Effectively, in large models, #Paramsgpirerora A #Paramsyora.
propose sharing LIF neurons across modules, which might reduce the number of
LIF neurons and improve efficiency in future implementations.

* The additional O(rk) complexity of scaling the output of the LIF with the original learned
information contributes to the overall performance overhead of SpikeLoRA.

* In our implementation, we used dense PyTorch layers, which regard zeroes as part of the
computation. This means that the FLOPS is not reduced when scaling with the previously
learned information.
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To reduce the training time, quantisation techniques such as QLoRA (Dettmers et al., [2023) can be
incorporated, which SpikelLoRA is compatible with. We leave experiments with quantisation for
future work.

As noted above, traditional hardware and dense layer implementation cannot fully exploit the bene-
fits of sparsity. However, significant energy savings may be achievable should the model be deployed
on neuromorphic hardware.

4.3 FINE-TUNING SPIKEGPT WITH LORA AND SPIKELORA

We show the potential of fine-tuning SpikeGPT, which serves as the main inspiration for
SpikeLoRA, with both LoRA and SpikeLoRA. Because of time and resource constraints, we limit
our experiments to the subjectivity dataset (Pang & Lee, [2004).

Table @] shows a performance comparison of different fine-tuning methods on SpikeGPT. As ex-
pected, full fine-tuning achieves the highest accuracy (95.30%), but is time-consuming, and tasks
cannot be switched easily. LoRA and SpikeLoRA offer parameter-efficient alternatives to full fine-
tuning, and SpikeLoRA outperforms LoRA (+0.4%), indicating its potential effectiveness in a fully
spiking fine-tuning pipeline. Notably, such a pipeline is compatible with neuromorphic hardware.

SpikeGPT*'  Full FT* LoRA  SpikeLoRA
Suby;. 89.10 95.30 90.70 91.10

Table 4: Fine-tuning performance for SpikeGPT on the subjectivity dataset (Pang & Leel [2004).
Results are measured using classification accuracy. * indicates numbers published by [Zhu et al.
(2024). T indicates that the SpikeGPT variants are trained from scratch on the respective dataset.

5 CONCLUSION & FUTURE WORK

Our work proposes SpikeLoRA, a sparse and efficient method to fine-tune large language models.
We have shown that by adapting LoRA with a LIF neuron, it is possible to efficiently learn acti-
vation sparsity in the low-rank space. Through the empirical results, we have demonstrated that a
high degree of sparsity (over 70%) can be achieved across blocks during fine-tuning, while main-
taining performance comparable to or surpassing LoRA. Furthermore, as a side effect, we found
that SpikeLoRA can mitigate overfitting, particularly in higher ranks and for smaller datasets, where
LoRA is most susceptible to overfitting. These results suggest that spiking-inspired methods offer
practical tools for efficient and robust low-rank adaptation.

By proposing SpikeLoRA, we not only contribute to the realm of parameter-efficient fine-tuning,
but also show that SNNs are ready to be integrated with current mainstream approaches. Assuming
that SNNs and neuromorphic hardware become more widely adopted, SpikeLoRA may serve as the
foundation for the next generation of efficient fine-tuning.

Future work includes investigating the effect of sparsity dynamics and designing an adaptive
SpikeLLoRA that controls sparsity by dynamically adjusting Vy during training, similar to a learning
rate scheduler. Furthermore, applying SpikeLoRA to embeddings, convolutional networks, graph
neural networks, and multimodal LLMs presents exciting avenues for exploration. Future work
also includes coupling SpikeLoRA with other methods, such as AdaLoRA and QLoRA, to further
enhance efficiency. Finally, testing the proposed spiking pipeline on neuromorphic hardware is nec-
essary to fully validate the approach.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that the results are reproducible in this paper. An implementation,
along with scripts to run the benchmarks, will be released upon acceptance. Section [ provides the
training setup, while Appendix [A] provides the dataset-specific hyperparameters. These references
provide sufficient information to replicate the results in this paper.
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A ADDITIONAL DETAILS

For all GLUE experiments, we set the LoRA rank to 8, dropout to 0, and Vj to 0.1. Table E] shows
the empirically selected hyperparameters used to perform GLUE experiments. For our Vj and rank
scaling analysis, we set the learning rate to 5e-4.

Task | Learning Rate Batch Size  Epochs
CoLA 3e-4 32 20
SST-2 8e-4 64 4
MRPC le-3 32 20
STS-B 3e-4 16 8
MNLI 3e-4 64 3
QNLI 3e-4 32 3
RTE 1.2e-3 32 15
QQP 3e-4 64 3

Table 1: Hyperparameters for DeBERTA-v3 Base on the GLUE benchmark.

For Vj scaling analysis on LoRA and SpikeLoRA (r = 8), we report the results in Table 2] (mean +
standard deviation). Relative drop in MCC is computed against the LoRA baseline.

. Relative

Vo Sparsity MCC Loss Drop
0.0 0.238 £0.013  0.666 £ 0.013 1.156 4+ 0.037 0.018
0.01 0.279 £0.017  0.665 £ 0.015 1.170 £ 0.049 0.019
0.05 0.352 £0.011  0.657 £ 0.010 1.183 4+ 0.030 0.031
0.1 0.461 £0.005  0.668 £ 0.006 1.124 +£0.014 0.015
0.25 0.671 £0.010  0.666 £ 0.008 1.129 4+ 0.020 0.018
0.5 0.835 £ 0.007  0.653 £ 0.006 1.150 4+ 0.029 0.037
0.75 0.943 £0.005 0.663 £0.013  0.942 £+ 0.093 0.022
1.0 0.972£0.005 0.652£0.013  0.720 £ 0.070 0.038
1.5 0.989 £0.004 0.614 £0.032 0.484 +0.061  0.094
2.0 0.997 £0.003 0.351 £0.168  0.502 4+ 0.051 0.482
LoRA | - 0.678 £0.009 1.096 £+ 0.029 -

Table 2: Evaluation metrics grouped by different Vj.

Figure || presents the investigation of the training dynamics of SpikeLoRA. Pearson correlation
coefficient is 0.678 (p-value: 2.488e—8), indicating a moderately strong correlation between the
gradient norms of SpikeLoRA and LoRA.
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Figure 1: Scatterplot to show the gradnorm relationship between SpikeLoRA and LoRA.
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Figure[2Jand Table[3]show that SpikeLoRA consistently achieves a lower generalisation gap, whether
or not dropout is applied, while maintaining similar performance.
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Figure 2: Boxplots showing the effect of dropout on MCC (higher is better) and generalisation gap
(lower is better) for both LoRA (blue) and SpikeLoRA (brown).

Dropout Method MCC Gen. Gap

LoRA 0.6807 + 0.0082 0.7993 £ 0.0467
SpikeLoRA  0.6837 +0.0116 0.7698 £ 0.0174

LoRA 0.6867 £0.0130 0.8199 +0.0313

0.0

0.025 SpikeLoRA  0.6811 +£0.0084  0.7984 + 0.0480
0.05 LoRA 0.6808 £ 0.0095 0.8299 £ 0.0496
’ SpikeLoRA  0.6871 +0.0065 0.7817 £ 0.0185
0.075 LoRA 0.6909 £ 0.0067  0.7797 £ 0.0451
’ SpikeLoRA  0.6850 +0.0101  0.7155 £ 0.0270
0.1 LoRA 0.6812 £ 0.0054  0.8485 =+ 0.0539
’ SpikeLoRA  0.6799 +0.0161  0.7515 £ 0.0442
< 0.0 LoRA 0.6849 =0.0100 0.8195 £+ 0.0522

SpikeLoRA  0.6833 £0.0113  0.7618 £+ 0.0483

Table 3: Summary of different dropout rates applied to LoORA and SpikeLoRA when fine-tuning on
the CoLLA dataset.
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