
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKELORA: LEARNABLE ACTIVATION SPARSITY FOR
LOW-RANK ADAPTATION USING SPIKING NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) is a fine-tuning method that freezes the parameters
of a pre-trained model and injects small trainable matrices. LoRA-based meth-
ods focus on parameter-level efficiency, but do not directly control the activations
in the low-rank space. We introduce SpikeLoRA, a spiking low-rank adaptation
fine-tuning method that leverages the leaky integrate-and-fire (LIF) neuron to in-
troduce learnable sparsity with minimal computational overhead. The LIF neuron
gates the activations from the A-matrix in LoRA, sparsifying them while pre-
serving learned information. This design makes SpikeLoRA a sparse fine-tuning
method for both spiking and traditional LLMs, with the additional efficiency ben-
efit of being compatible with neuromorphic hardware. Our experiments show that
over 70% sparsity is achievable without a significant drop in performance. Fur-
ther, improved performance as compared to LoRA is observed for smaller datasets
and higher-rank settings. We also show that SpikeLoRA indirectly mitigates over-
fitting, particularly for higher ranks.

1 INTRODUCTION

Fine-tuning forms part of the transfer learning domain (Raffel et al., 2020), and allows a pre-trained
model to specialise in a downstream task, incorporating a specific domain of expertise, task, or
knowledge. To achieve this, fine-tuning adjusts the weights of a pre-trained model to minimise
some loss on a downstream task.

The problem with fine-tuning, however, is that parameters of the original model have to be updated
(retrained). This results in computational inefficiencies and potential catastrophic forgetting, where
pre-trained knowledge may be lost (Song et al., 2025). Adapter modules, or adapters, were proposed
as a solution to fine-tuning inefficiencies, and add small fully-connected networks on top of the
frozen pre-trained parameters (Houlsby et al., 2019). However, each downstream task requires its
own adapter, making it difficult to switch tasks easily. Low-rank Adaptation (LoRA) is a novel
fine-tuning approach which freezes the weights of the pre-trained model and uses low-rank matrix
decomposition to parameterise the weight update (Hu et al., 2022). This substantially reduces the
trainable parameters, does not introduce additional inference, and eliminates the need to calculate
gradients for frozen parameters.

LoRA has evolved to multiple methods, including adaptive low-rank adaptation (AdaLoRA) (Zhang
et al., 2023), adaptive learning low-rank adaptation (ALLoRA) (Huang & Balestriero, 2024),
weight-decomposed low-rank adaptation (DoRA) (Liu et al., 2024), and quantised low-rank adap-
tation (QLoRA) (Dettmers et al., 2023), among others. These methods attempt to enhance LoRA’s
efficiency without compromising performance by introducing adaptive low-rank updates, weight de-
composition, and quantisation techniques. Fundamentally, AdaLoRA dynamically adjust the rank
of each respective LoRA module, ALLoRA eliminates dropout and scaling by introducing an adap-
tive learning rate, DoRA stabilises training by controlling weight redundancy, and QLoRA quantises
the base model’s weights while fine-tuning with LoRA. Furthermore, Huang & Balestriero (2024)
investigated an adaptive scaling factor for LoRA (ASF-LoRA). Different from the constant scaling
factor in Hu et al. (2022), ASF-LoRA makes the scaling factor learnable, but introduces potential
ripple effects across blocks, which degrade performance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

All of the above LoRA variants operate directly on the model’s low-rank weight matrices. In this
work, we argue that efficiency is achievable not only on parameter level, but also on the activation
level. Dropout (Srivastava et al., 2014) is a well-known regularisation method that stochastically
zeroes activations during training to prevent co-adaptation of neurons. Notably, dropout has been
successfully implemented in the context of LoRA, and shown to reduce the generalisation gap (Lin
et al., 2024). While dropout suppresses activations stochastically, a learnable activation suppression
pattern may yield more targeted and effective sparsity, and yield further benefits for both efficiency
and generalisation. Spiking neural networks (SNNs) offer a mechanic ideally suited for this task.

SNNs are designed to be more biologically plausible than traditional artificial neural networks
(ANNs), and make use of event-driven (discrete) spikes to transmit information (Singh et al., 2020).
This makes SNNs inherently sparse and eliminates the need for continuous activations. SNNs have
been successfully utilised in spiking large language models (LLMs), such as SpikeGPT (Zhu et al.,
2024). SNNs offer promising biologically-inspired capabilities, and are more energy-efficient when
deployed on specialised neuromorphic hardware. Since SNNs are sparse in nature, they possess the
mechanic to learn when to sparsify activations. We apply SNN mechanics to LoRA and show that
learnable sparsity can act as a compression (i.e., sparsification) mechanism with potential benefits
of mitigating overfitting, especially for higher LoRA ranks.

In this paper, we contribute the following:

1. SpikeLoRA: A novel spiking version of LoRA is proposed, enabling more efficient fine-
tuning on downstream tasks. By coupling the LoRA module with a leaky integrate-and-fire
(LIF) neuron, biologically inspired parametric sparsification is introduced with minimal
computational overhead. This allows SpikeLoRA to learn when to suppress activations
while achieving accuracy comparable with classic LoRA.

2. Application of LoRA and SpikeLoRA to SpikeGPT: We fine-tune SpikeGPT (Zhu et al.,
2024) using both LoRA and SpikeLoRA to show the possibility and potential of LoRA in
a fully-spiking pipeline. Coupled with SpikeLoRA, we make the entire fine-tuning process
compatible with neuromorphic hardware.

The rest of the paper is structured as follows: Section 2 covers relevant background, including SNNs,
SpikeGPT, and LoRA. Section 3 formally introduces SpikeLoRA. Section 4 presents and discusses
the experimental setup and results. Section 5 concludes the paper and outlines future work.

2 BACKGROUND

2.1 SPIKING NEURAL NETWORKS (SNNS)

SNNs are often referred to as the 3rd generation of neural networks (Capatina et al., 2023; Maass,
1997; Yang et al., 2024), and attempt to closely mimic the biological brain to solve known problems
in deep learning, such as excessive memory usage, computational complexity (Eshraghian et al.,
2023), and the lack of sufficient parallelism (Pfeiffer & Pfeil, 2018). Memory usage is reduced
via the inherent sparsity of the SNNs. Computational complexity is reduced by using bio-inspired
discrete spikes instead of continuous activations seen in ANNs. Parallelism is improved through the
event-driven nature of SNNs.

In SNNs, neuron activation is driven by temporal binary signals, referred to as spike trains. An
integrate-and-fire (IF) neuron ingests a spike train and accumulates the binary signals in the current
membrane potential. When the membrane potential reaches a pre-defined voltage threshold, the
neuron fires (i.e., activates), and the membrane potential is reset. The membrane potential will con-
tinue to build up until the voltage threshold is reached. If a neuron fires, it will contribute to the next
neuron’s membrane potential; otherwise, it acts as a silent neuron, which accounts for the sparsity
of SNNs. Due to the dependency of membrane potential on past spikes, SNNs inherently possess
recurrent properties. Neuromorphic hardware allows for true sparsity and event-driven activations,
such that silent neurons do not use any memory, therefore offering a significant reduction in energy
use.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1.1 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

Biological neurons lose their membrane potential over time, whereas IF neurons are incapable of
doing so. To better model biological neurons, LIF neurons introduce a leaky aspect to capture the
temporal effects. The first-order LIF neuron model has been widely used to understand and model
SNNs (Kim et al., 2023). A first-order LIF neuron model (Dayan & Abbott, 2001) performs activa-
tion for time step t by calculating membrane potential and comparing it to a set voltage threshold,
Vθ. The function Vp[t] updates the membrane potential of a neuron per time step t as follows:

Vp[t] = β · Vp[t− 1] +W ·X[t]− S[t− 1] · Vθ, (1)

where β is a predefined decay factor (such as e−1/τ (Eshraghian et al., 2023)) of Vp[t − 1], and
Vp[t − 1] is the previous state of the neuron’s membrane potential. β is used to simulate the leaky
aspect of an IF neuron. If β = 1, then Eq.(1) simply models a non-leaky IF neuron. W ·X[t] is the
weighted input to the LIF-neuron. S[t− 1] determines whether to reset the membrane potential, and
is defined as follows:

S[t] = Θ(Vp[t]− Vθ), (2)
where Θ is the Heaviside function (Legua et al., 2006). S[t] ∈ {0, 1} since Θ ∈ {0, 1}. Therefore,
Vp[t] (Eq.(1)) causes the membrane potential to accumulate when the neuron does not fire (i.e.,
where Vp[t] < Vθ) (Tavanaei et al., 2019). When a neuron fires, reset-by-subtraction (Eq.(2)) will
subtract the threshold, whereas reset-to-zero will reset the membrane potential to zero (Eshraghian
et al., 2023).

For backpropagation, an arctangent surrogate gradient function has proven to be effective in ap-
proximating gradients (Eshraghian et al., 2023). The arctangent surrogate gradient solves the non-
differentiable nature of the Heaviside function. However, since these functions approximate gradi-
ents, a loss in performance can be expected (Pfeiffer & Pfeil, 2018).

2.2 SPIKEGPT

SpikeGPT (Zhu et al., 2024) is a generative spike-based LLM based on the receptance weighted
key value (RWKV) architecture (Peng et al., 2023). SpikeGPT is suitable for natural language
understanding (NLU) and natural language generation (NLG) tasks.

Rather than introducing an additional temporal dimension, Eshraghian et al. (2023) suggests directly
adapting the neurons with spiking thresholds in the attention head to learn long-term dependencies.
SpikeGPT’s novel spiking RWKV (SRWKV) (Zhu et al., 2024) follows this approach by adapting
neurons with spiking thresholds at the embedding layer in the RWKV architecture. SRWKV em-
ploys the same foundation as RWKV’s time-mixing block, but to create a spiking version, it uses the
recurrent properties of SNNs. SWRKV unrolls the sequence X ∈ RT×d to represent X[t] ∈ R1×d.
Similar to RWKV, SRWKV uses R, K, and V with linear transformations. These transformations
are then used as inputs to the rest of the time-mixer block.

To adapt the feedforward network (FFN) block to be an SNN, Zhu et al. (2024) propose a spiking
receptance FFN (SRFFN). The SRFFN functions similarly to the channel mixer. This is coupled
with a spiking gating mechanism. SRFFN contains learnable parameters and utilises LIF neurons as
resulting outputs.

To build a spike train, SpikeGPT uses binary embeddings (BEs) to transform continuous outputs into
binary spikes (Zhu et al., 2024). The BEs reside at the embedding layer only; therefore, SpikeGPT
still utilises some continuous activations. This implies that a LoRA module would still have to
process continuous inputs rather than binary embeddings. LIF neurons can, however, process raw
continuous inputs, which is more compatible and avoids the overhead of explicit encoding in non-
spiking settings, but results in reduced biological plausibility.

2.3 LOW-RANK ADAPTATION (LORA)

Formally, h as the output of the forward pass in a neural network with LoRA is defined as:

h = W0x+∆Wx, (3)

where W0 is the frozen weight matrix of the input activation vector x, and ∆Wx = BA is the
low-rank weight matrix decomposition, where B ∈ Rd×r and A ∈ Rr×k. The rank r must be less

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

than d and k to ensure LoRA remains low-rank and efficient. The forward pass of a network is then
calculated as usual, but during backpropagation, only the low-rank matrices are updated. LoRA
typically applies a scaling factor α to control the magnitude of the low-rank update, and ∆Wx then
becomes ∆Wx = α

rBA.

When fine-tuning with LoRA, some of the new dimensions introduced by the low-rank decomposi-
tion, referred to as intruder dimensions, may dominate the weight update. This can cause generali-
sation problems across domains (Shuttleworth et al., 2024). Intruder dimensions capture misleading
correlations rather than learning generalisable features, which causes overfitting. On the other hand,
it is also likely that some features in ∆W might be duplicated from W , which can amplify important
features (Hu et al., 2022). This highlights the need for a method that is able to suppress misleading
intruder dimensions while retaining useful amplifications.

3 SPIKELORA METHOD

We aim to leverage the promising capabilities of SNNs and LoRA to develop a more robust
parameter-efficient fine-tuning variant that is both energy-efficient on neuromorphic hardware and
is less prone to overfitting. To this end, we introduce SpikeLoRA, based on the original LoRA
definition (Hu et al., 2022), where ∆W (Eq.(3)) is modified as:

∆W = B · (SN (A)⊙A), (4)

where SN is the LIF neuron that takes A ∈ Rr×k as input such that SN (A) = LIF(A) ∈ {0, 1}r×k.
The LIF neuron outputs a binary mask, which is applied to the original down projection from A
via element-wise product. This helps preserve previously learned information while zeroing out
activations corresponding to the LIF nodes which did not spike (see Fig. 1). The inputs to the LIF
neurons in the SpikeLoRA module are derived from continuous activations rather than explicitly
employing encoding schemes such as rate or temporal encoding Eshraghian et al. (2023). As such,
SpikeLoRA is applicable to both traditional and spiking LLMs (Zhu et al., 2024).

Figure 1: High-level diagram of SpikeLoRA during forward pass. For illustration purposes, only a
vector is shown as input. In practice, a multi-dimensional tensor is passed as input. Adapted from
the original LoRA definition (Hu et al., 2022).

In SpikeLoRA, each LoRA module is coupled with one LIF node, effectively gating the activations
of the A-matrix (i.e., the adapter-in matrix). Since the LIF node resides in the low-rank space of the
LoRA module, the element-wise multiplication has an O(rk) complexity. If the BA-matrix (i.e. the
adapter-out matrix) was gated such that ∆W = SN (BA)⊙BA, the complexity would increase to
O(dk), since r ≪ min(d, k) and BA ∈ Rd×k. Gating BA would also bring α, the scaling factor,
into play, which can cause extreme sparsity or extreme magnitude updates. For this reason, we only
gate the activations of the A-matrix.

Since our modification of LoRA is primarily based on the addition of a LIF neuron, SpikeLoRA
can easily be coupled with other LoRA variations, such as AdaLoRA (Zhang et al., 2023). Simi-
lar to dropout, SpikeLoRA does not directly affect the underlying mechanisms of these variations,
allowing for efficient cooperability. E.g., AdaLoRA’s definition can be modified as:

∆ = (SN (P )⊙ P ) · Λ ·Q, (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where SN (P ) is the spiking activation of the left singular vector P . Additionally, other matrices can
be sparsified through spiking, similarly to how Lin et al. (2024) experimented with applying dropout
to various parts of AdaLoRA. For a method like AdaLoRA, it is important to mention that the
forward pass is mostly trivial, while the backwards pass requires careful handling to avoid double-
counting gradient modifications. It is possible to detach the LIF neuron from the computational
graph, but this impacts its ability to learn. We leave the exploration of adapting AdaLoRA and other
LoRA methods with SpikeLoRA for future work.

Unlike stochastic activation suppression methods, SpikeLoRA is a trainable and adaptive method
that directly targets the activations in the low-rank space. We hypothesise that SpikeLoRA’s learned
sparsity will amplify important features and suppress spurious and non-salient features. While di-
recting the focus towards important features could potentially lead to fitting the problems better, we
expect activation sparsification to implicitly aid in mitigating overfitting.

4 EXPERIMENTS

To evaluate SpikeLoRA, we divide our experiments into three sections:

1. SpikeLoRA on a traditional LLM (Section 4.1): A traditional LLM is fine-tuned using
the proposed SpikeLoRA module. We explore various setups to assess the impact of hy-
perparameters. We use the General Language Understanding Evaluation (GLUE) (Wang
et al., 2019) benchmark to compare SpikeLoRA to classic LoRA.

2. SpikeLoRA analysis (Section 4.2): We discuss SpikeLoRA’s characteristics, such as spar-
sity, efficiency, and its ability to mitigate overfitting.

3. LoRA and SpikeLoRA on SpikeGPT (Section 4.3): SpikeGPT is fine-tuned using both
LoRA and SpikeLoRA. We utilise the NLU results from Zhu et al. (2024) to conduct a
comparative performance analysis, and demonstrate the potential of an efficient spiking
fine-tuning pipeline compatible with neuromorphic hardware.

For the traditional LLM, we use DeBERTaV3-Base (He et al., 2023) to conduct the experiments. For
SpikeGPT, we make use of existing benchmark results (Zhu et al., 2024) as a baseline. LoRA and
SpikeLoRA are applied to all linear layers in both DeBERTaV3-Base and SpikeGPT. Depending on
availability, experiments were done using various Nvidia GPUs with at least 16GB VRAM. Each
experiment is averaged over 5 independent runs with different seeds.

Unless otherwise stated, we use a learning rate warmup ratio of 6%, gradient clipping at 1.0, and
a weight decay of 0.01. For LoRA, we use a rank of 8 and a dropout rate of 0. We found that
the selection of the dropout rate did not significantly impact our findings. The results of different
dropout rates are reported in Appendix A. We also use rsLoRA (Kalajdzievski, 2023) to stabilise the
rank using the scaling factor α =

√
r. By stabilising the rank with α, rsLoRA enables a balanced

tradeoff between fine-tuning efficiency and performance. The learning rate, batch size, and number
of epochs are optimised per dataset, and reported in Appendix A.

For SpikeLoRA, we set the LIF’s Vθ to 0.1, and report low-rank sparsity. We define sparsity as the
percentage of zero activations after gating the A-matrix activations with the LIF neuron. Unless
otherwise stated, sparsity values are reported as the average sparsity across all modules.

The Corpus of Linguistic Acceptability (CoLA) dataset (Warstadt et al., 2019), which forms part
of the GLUE benchmark, consists of only 8.5k training, 1043 validation, and 1063 test samples.
Fine-tuning on CoLA, a small and skewed dataset, is susceptible to overfitting, and, in general, fine-
tuning tends to perform worse on CoLA compared to other datasets in the GLUE benchmark (Zhang
et al., 2023; Huang & Balestriero, 2024; Liu et al., 2024; Dettmers et al., 2023; Hu et al., 2022). We
use the CoLA dataset in the majority of our experiments, as its small size and imbalanced label
distribution provide a good test of robustness and generalisation when fine-tuning with SpikeLoRA.
CoLA is evaluated using Matthew’s correlation coefficient (Matthews, 1975), which is well-suited
for imbalanced binary classification.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 SPIKELORA ON A TRADITIONAL LLM

To establish the viability and competitiveness of SpikeLoRA, we fine-tune DeBERTaV3-Base with
both LoRA and SpikeLoRA on the GLUE benchmark, and investigate the effects of varying voltage
threshold (Section 4.1.1), rank (Section 4.1.2), and learning rate (Section 4.1.3) on the SpikeLoRA’s
performance.

4.1.1 DIFFERENT Vθ

Prior to performing comparisons with LoRA, we conduct an experiment to determine the appropriate
Vθ, i.e., voltage threshold value. Fig. 2 shows the effect of increasing Vθ for the CoLA dataset.
Increasing Vθ causes an increase in the activation sparsity in the low-rank space. Since sparsity is
desired, our goal is to maximise Vθ and the validation metric (e.g., accuracy), and minimise the
validation loss. More formally, let LVθ

be the validation loss, and AVθ
be the validation metric

using Vθ:
A∗ = max(AVθ

), L∗ = min(LVθ
), (6)

then the goal is to solve max(Vθ) with the following constraints:
AVθ

≥ A∗ − δA, LVθ
≥ L∗ + δL, (7)

where δA and δL are tolerated accuracy/loss parameters. In our experiments, we observed model
collapse when Vθ ⪆ 1.0 (Fig. 2). When Vθ ≤ 1.0, minimal accuracy tradeoffs are made for
increased sparsity (up to 97.24% during evaluation). As such, we conservatively set Vθ to 0.1 for
the rest of the experiments. In Sections 4.1.2 and 4.1.3, with Vθ = 0.1, we found that training starts
with a global sparsity (average over each module per block) of 0.71± 0.04, and diverges from there
on, depending on the setup.

0.0 0.5 1.0 1.5 2.0

Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

E
v
al

 L
os

s

Min Loss

Max Loss

0.0 0.5 1.0 1.5 2.0

Threshold

0.2

0.3

0.4

0.5

0.6

0.7

E
v
al

 M
C

C

Min MCC

Max MCC

0.0 0.5 1.0 1.5 2.0

Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
v
al

 S
p
ar

si
ty

Min Sparsity

Max Sparsity

Figure 2: The effect of different Vθ threshold values on SpikeLoRA when fine-tuning on the CoLA
dataset. Left: minimum and maximum evaluation loss across different Vθ. Middle: Matthew’s
correlation coefficient (MCC) across different Vθ. Right: global sparsity across all blocks as a
result of the chosen Vθ. The red lines indicate the minimum and maximum respective metrics when
Vθ = 1.0. Actual values and standard deviations are reported in Appendix A.

4.1.2 DIFFERENT RANKS

Table 1 summarises the results of the experiments conducted to assess the effects of different ranks.
We compare LoRA and SpikeLoRA to see if similar accuracy could be maintained by SpikeLoRA,
while introducing sparsity. Table 1 shows that SpikeLoRA performs better in most cases, except
for ranks 1 and 4. For higher ranks, our results show that SpikeLoRA can better control overfitting
(quantified via the generalisation gap) by introducing more sparsity, whereas LoRA’s performance
deteriorates beyond r = 16. This aligns with Mao et al. (2024): a higher rank can attain a richer
representation, but is more susceptible to overfitting.

4.1.3 DIFFERENT LEARNING RATES

Table 2 summarises the performance comparison between LoRA and SpikeLoRA on the CoLA
dataset for various learning rates. It is evident from Table 2 that the sparsity of the low-rank space is
directly proportional to the selected learning rate. When the learning rate is set between 1e−4 and
5e−4, the generalisation gap difference remains minimal. When the learning rate is set to 7e−4 or
higher, the generalisation gap of SpikeLoRA remains stable, while for LoRA it increases. Further,
SpikeLoRA outperforms LoRA in terms of accuracy for all learning rate settings.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Variant Metric r = 1 r = 2 r = 4 r = 8 r = 16 r = 32 r = 64

LoRA CoLAMCC 67.68 67.01 68.40 68.07 67.30 68.75 57.93
Gen. Gap 0.75 0.83 0.85 0.80 1.13 1.14 1.44

SpikeLoRA
CoLAMCC 67.37-0.31 67.22+0.12 67.47-0.93 68.37+0.30 68.65+1.35 69.43+0.68 67.71+9.78
Gen. Gap 0.71-0.04 0.81-0.02 0.93+0.08 0.77-0.03 1.04-0.09 1.08-0.06 1.14-0.30
Sparsity% 33.47 43.67 52.75 69.74 73.83 80.87 92.69

Table 1: Matthew’s correlation coefficient (MCC) and sparsity across blocks (%) when fine-tuning
on the CoLA dataset using different ranks for LoRA and SpikeLoRA. The generalisation gap in-
dicates the difference between evaluation and training loss (lower is better). Subscripts indicate
SpikeLoRA’s performance relative to LoRA, where green corresponds to improvement and red to
reduction in performance. For each rank, the best accuracy is shown in bold.

Setup 1e−4 3e−4 5e−4 7e−4 9e−4

LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA LoRA SpikeLoRA

CoLAMCC 66.75 68.16+1.41 68.07 68.37+0.30 67.94 68.04+0.08 67.02 67.39+0.37 65.78 67.46+1.68
Sparsity% – 51.56 – 69.74 – 77.88 – 82.58 – 85.49
Gen. Gap 0.66 0.65-0.01 0.80 0.77-0.03 1.08 1.06-0.02 1.15 1.02-0.13 1.17 1.04-0.13

Table 2: Matthew’s correlation coefficient (MCC) and sparsity across blocks (%) when fine-tuning
on the CoLA dataset using different learning rates for LoRA and SpikeLoRA. The third row shows
the generalisation gap, indicating the difference between evaluation and training loss (lower is bet-
ter). Subscripts indicate SpikeLoRA’s performance relative to LoRA, where green corresponds to
improvement and red to a reduction in performance. For each learning rate, the best accuracy is
shown in bold.

4.1.4 GLUE BENCHMARK

Table 3 presents the results for GLUE when fine-tuning with LoRA and SpikeLoRA. It is evident
from Table 3 that SpikeLoRA performed competitively, marginally outperforming LoRA for CoLA,
SST-2, MRPC, and RTE, and performing comparably to LoRA for STS-B, MNLI, QNLI, and QQP.
Table 3 also lists the sparsity achieved by SpikeLoRA per dataset, and shows that the resulting low-
rank activations were at least 67% sparse. We conclude that SpikeLoRA provides sparsification
without a noticeable drop in performance metrics. Notably, our results suggest that SpikeLoRA
performs better on smaller datasets (CoLA, MRPC, and RTE), indicating its potential to enhance
generalisation in low-resource environments.

Setup CoLAMCC SST-2Acc MRPCAcc/F1 STS-BCorr MNLIAcc QNLIAcc RTEAcc QQPAcc Avg.

LoRA 68.07 95.55 89.41/92.47 91.36 90.44 94.17 86.07 91.83 88.36
SpikeLoRA 68.37 95.73 89.56/92.55 91.13 90.21 93.91 86.28 91.57 88.35
Sparsity% 69.74 83.39 84.85 67.26 77.91 77.13 89.97 76.23 78.31

Table 3: GLUE benchmark comparison for fine-tuning using LoRA and SpikeLoRA. For each
dataset, the best accuracy is shown in bold. The third row shows the sparsity of SpikeLoRA in
the low-rank space. Average score across datasets is included.

4.2 SPIKELORA ANALYSIS

In this section, we examine SpikeLoRA’s behaviour to further understand its internal dynamics. We
analyse SpikeLoRA in terms of sparsity (Section 4.2.1), regularisation (Section 4.2.2), and efficiency
trade-offs (Section 4.2.3).

4.2.1 SPARSITY

Figure 3 presents a sparsity heatmap of LoRA trained on CoLA, organised in terms of individual
modules and blocks. A traditional Transformer block consists of a query (Q), key (K), value (V), and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11

Block

Query

Key

Value

Attn.Output

FF.W1

FF.W2

0.92 0.93 0.81 0.92 0.89 0.92 0.76 0.90 0.91 0.93 0.81 0.72

0.91 0.68 0.84 0.85 0.92 0.74 0.79 0.81 0.87 0.87 0.92 0.96

0.99 0.78 0.49 0.50 0.81 0.66 0.59 0.74 0.67 0.73 0.63 0.56

0.99 0.81 0.62 0.37 0.50 0.50 0.47 0.74 0.70 0.52 0.69 0.46

0.15 0.32 0.20 0.48 0.18 0.31 0.57 0.57 0.58 0.62 0.46 0.61

0.85 0.98 0.82 0.94 0.93 0.97 0.99 1.00 0.97 0.81 0.41 0.80

Avg

0.87

0.85

0.68

0.61

0.42

0.87
0.0

0.2

0.4

0.6

0.8

1.0

S
p
ar

si
ty

Figure 3: Sparsity of SpikeLoRA modules in various modules (x-axis) and blocks (y-axis) for the
CoLA dataset.

output module within the self-attention head, as well as an FFN consisting of an intermediate layer
(FF.W1) and an output layer (FF.W2) (Vaswani et al., 2017). We observe notably low sparsity in the
intermediate layer compared to the other modules. Skean et al. (2025) noted that the intermediate
layer signals encode richer information compared to other modules. As such, we conclude that
learned sparsification is most beneficial in modules where richer information can be found. This
conclusion is in line with our hypothesis that learned sparsity amplifies important features, i.e.,
features reach in information.

4.2.2 REGULARISATION

Results in Tables 1 and 2 demonstrate that SpikeLoRA in general tends to have a lower generalisation
gap than LoRA. To further study the training dynamics, we investigated gradient norms for both
methods. We found that SpikeLoRA’s gradient norm maintains a moderately strong correlation
with LoRA’s (Pearson’s r = 0.678, p = 2.49e-8), but with a slightly lower mean and standard
deviation (1.592±1.418 (LoRA) down to 1.554±1.292 (SpikeLoRA)). This shows that SpikeLoRA
retains learning ability similar to LoRA while reducing extreme gradient updates, indicating that
SpikeLoRA indirectly mitigates overfitting. We found this correlation to be particularly prevalent in
higher-rank spaces (Table 1).

We discovered that even when stochastic dropout is applied, SpikeLoRA consistently exhibits
a smaller generalisation gap than LoRA while maintaining performance. This suggests that
SpikeLoRA surpasses the effect of stochastic dropout, reducing overfitting without impacting per-
formance. Results are reported in Appendix A.

4.2.3 EFFICIENCY

Despite promising results, we experienced a slight increase in training time when fine-tuning with
SpikeLoRA: from 19.42± 0.02 minutes (LoRA) to 21.68± 0.12 minutes (SpikeLoRA) on average
for the CoLA dataset. There are a couple of reasons why this is the case:

• LIF neurons introduce additional trainable parameters, although small in size (one neuron
per module). Effectively, in large models, #ParamsSpikeLoRA ≈ #ParamsLoRA. Kim et al.
(2023) propose sharing LIF neurons across modules, which might reduce the number of
LIF neurons and improve efficiency in future implementations.

• The additional O(rk) complexity of scaling the output of the LIF with the original learned
information contributes to the overall performance overhead of SpikeLoRA.

• In our implementation, we used dense PyTorch layers, which regard zeroes as part of the
computation. This means that the FLOPS is not reduced when scaling with the previously
learned information.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To reduce the training time, quantisation techniques such as QLoRA (Dettmers et al., 2023) can be
incorporated, which SpikeLoRA is compatible with. We leave experiments with quantisation for
future work.

As noted above, traditional hardware and dense layer implementation cannot fully exploit the bene-
fits of sparsity. However, significant energy savings may be achievable should the model be deployed
on neuromorphic hardware.

4.3 FINE-TUNING SPIKEGPT WITH LORA AND SPIKELORA

We show the potential of fine-tuning SpikeGPT, which serves as the main inspiration for
SpikeLoRA, with both LoRA and SpikeLoRA. Because of time and resource constraints, we limit
our experiments to the subjectivity dataset (Pang & Lee, 2004).

Table 4 shows a performance comparison of different fine-tuning methods on SpikeGPT. As ex-
pected, full fine-tuning achieves the highest accuracy (95.30%), but is time-consuming, and tasks
cannot be switched easily. LoRA and SpikeLoRA offer parameter-efficient alternatives to full fine-
tuning, and SpikeLoRA outperforms LoRA (+0.4%), indicating its potential effectiveness in a fully
spiking fine-tuning pipeline. Notably, such a pipeline is compatible with neuromorphic hardware.

SpikeGPT*† Full FT* LoRA SpikeLoRA

Subj. 89.10 95.30 90.70 91.10

Table 4: Fine-tuning performance for SpikeGPT on the subjectivity dataset (Pang & Lee, 2004).
Results are measured using classification accuracy. * indicates numbers published by Zhu et al.
(2024). † indicates that the SpikeGPT variants are trained from scratch on the respective dataset.

5 CONCLUSION & FUTURE WORK

Our work proposes SpikeLoRA, a sparse and efficient method to fine-tune large language models.
We have shown that by adapting LoRA with a LIF neuron, it is possible to efficiently learn acti-
vation sparsity in the low-rank space. Through the empirical results, we have demonstrated that a
high degree of sparsity (over 70%) can be achieved across blocks during fine-tuning, while main-
taining performance comparable to or surpassing LoRA. Furthermore, as a side effect, we found
that SpikeLoRA can mitigate overfitting, particularly in higher ranks and for smaller datasets, where
LoRA is most susceptible to overfitting. These results suggest that spiking-inspired methods offer
practical tools for efficient and robust low-rank adaptation.

By proposing SpikeLoRA, we not only contribute to the realm of parameter-efficient fine-tuning,
but also show that SNNs are ready to be integrated with current mainstream approaches. Assuming
that SNNs and neuromorphic hardware become more widely adopted, SpikeLoRA may serve as the
foundation for the next generation of efficient fine-tuning.

Future work includes investigating the effect of sparsity dynamics and designing an adaptive
SpikeLoRA that controls sparsity by dynamically adjusting Vθ during training, similar to a learning
rate scheduler. Furthermore, applying SpikeLoRA to embeddings, convolutional networks, graph
neural networks, and multimodal LLMs presents exciting avenues for exploration. Future work
also includes coupling SpikeLoRA with other methods, such as AdaLoRA and QLoRA, to further
enhance efficiency. Finally, testing the proposed spiking pipeline on neuromorphic hardware is nec-
essary to fully validate the approach.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that the results are reproducible in this paper. An implementation,
along with scripts to run the benchmarks, will be released upon acceptance. Section 4 provides the
training setup, while Appendix A provides the dataset-specific hyperparameters. These references
provide sufficient information to replicate the results in this paper.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Laura Capatina, Alexandra Cernian, and Mihnea Alexandru Moisescu. Efficient training models of
Spiking Neural Networks deployed on a neuromorphic computing architectures. In 2023 24th
International Conference on Control Systems and Computer Science (CSCS), pp. 383–390, 2023.
doi: 10.1109/CSCS59211.2023.00067.

Peter Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling
of neural systems. Computational neuroscience. Massachusetts Institute of Technology Press,
Cambridge, Mass, 2001. ISBN 978-0-262-04199-7.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Effi-
cient Finetuning of Quantized LLMs. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html.

Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. Training Spiking Neural Networks
Using Lessons From Deep Learning. Proc. IEEE, 111(9):1016–1054, 2023. doi: 10.1109/JPROC.
2023.3308088. URL https://doi.org/10.1109/JPROC.2023.3308088.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa us-
ing ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=
sE7-XhLxHA.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Hai Huang and Randall Balestriero. ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws,
October 2024. URL http://arxiv.org/abs/2410.09692. arXiv:2410.09692 [cs].

Damjan Kalajdzievski. A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA, November
2023. URL http://arxiv.org/abs/2312.03732. arXiv:2312.03732 [cs].

Youngeun Kim, Yuhang Li, Abhishek Moitra, Ruokai Yin, and Priyadarshini Panda. Sharing Leaky-
Integrate-and-Fire Neurons for Memory-Efficient Spiking Neural Networks, May 2023. URL
http://arxiv.org/abs/2305.18360. arXiv:2305.18360 [cs].

MP Legua, I Morales, and LS Ruiz. The heaviside function and Laplace transforms. Proceedings of
the 10th WSEAS International Confenrence on Applied Mathematics, Dallas, TX, USA, pp. 1–3,
2006.

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. LoRA Dropout
as a Sparsity Regularizer for Overfitting Control, April 2024. URL http://arxiv.org/
abs/2404.09610. arXiv:2404.09610 [cs].

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-Decomposed Low-Rank Adaptation, July
2024. URL http://arxiv.org/abs/2402.09353. arXiv:2402.09353 [cs].

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997. Publisher: Elsevier.

10

http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.1109/JPROC.2023.3308088
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2410.09692
http://arxiv.org/abs/2312.03732
http://arxiv.org/abs/2305.18360
http://arxiv.org/abs/2404.09610
http://arxiv.org/abs/2404.09610
http://arxiv.org/abs/2402.09353


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on LoRA of large language models. Frontiers of Computer Science, 19(7):197605, December
2024. ISSN 2095-2236. doi: 10.1007/s11704-024-40663-9. URL https://doi.org/10.
1007/s11704-024-40663-9.

B. W. Matthews. Comparison of the predicted and observed secondary structure of T4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975.
ISSN 0005-2795. doi: https://doi.org/10.1016/0005-2795(75)90109-9. URL https://www.
sciencedirect.com/science/article/pii/0005279575901099.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity. In Pro-
ceedings of ACL, pp. 271–278, 2004.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden
Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang
Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs
for the Transformer Era, December 2023. URL http://arxiv.org/abs/2305.13048.
arXiv:2305.13048 [cs].

Michael Pfeiffer and Thomas Pfeil. Deep Learning With Spiking Neurons: Opportunities and
Challenges. Frontiers in Neuroscience, 12:774, October 2018. ISSN 1662-453X. doi: 10.
3389/fnins.2018.00774. URL https://www.frontiersin.org/article/10.3389/
fnins.2018.00774/full.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. LoRA vs Full Fine-
tuning: An Illusion of Equivalence, October 2024. URL http://arxiv.org/abs/2410.
21228. arXiv:2410.21228 [cs].

Sonali Singh, Anup Sarma, Nicholas Jao, Ashutosh Pattnaik, Sen Lu, Kezhou Yang, Abhronil
Sengupta, Vijaykrishnan Narayanan, and Chita R. Das. NEBULA: A Neuromorphic Spin-
Based Ultra-Low Power Architecture for SNNs and ANNs. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture (ISCA), pp. 363–376, 2020. doi:
10.1109/ISCA45697.2020.00039.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by Layer: Uncovering Hidden Representations in Language Models. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=WGXb7UdvTX.

Shezheng Song, Hao Xu, Jun Ma, Shasha Li, Long Peng, Qian Wan, Xiaodong Liu, and Jie
Yu. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise
and Element-Wise Regularization, February 2025. URL http://arxiv.org/abs/2501.
13669. arXiv:2501.13669 [cs].

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–63, 2019.
doi: 10.1016/J.NEUNET.2018.12.002. URL https://doi.org/10.1016/j.neunet.
2018.12.002.

11

https://doi.org/10.1007/s11704-024-40663-9
https://doi.org/10.1007/s11704-024-40663-9
https://www.sciencedirect.com/science/article/pii/0005279575901099
https://www.sciencedirect.com/science/article/pii/0005279575901099
http://arxiv.org/abs/2305.13048
https://www.frontiersin.org/article/10.3389/fnins.2018.00774/full
https://www.frontiersin.org/article/10.3389/fnins.2018.00774/full
http://arxiv.org/abs/2410.21228
http://arxiv.org/abs/2410.21228
https://openreview.net/forum?id=WGXb7UdvTX
https://openreview.net/forum?id=WGXb7UdvTX
http://arxiv.org/abs/2501.13669
http://arxiv.org/abs/2501.13669
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neunet.2018.12.002


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=rJ4km2R5t7.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural Network Acceptability Judg-
ments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi:
10.1162/tacl a 00290. URL https://aclanthology.org/Q19-1040/. Place: Cam-
bridge, MA Publisher: MIT Press.

Shu Yang, Hanzhi Ma, Chengting Yu, Aili Wang, and Er-Ping Li. SDiT: Spiking Diffusion
Model with Transformer, February 2024. URL http://arxiv.org/abs/2402.11588.
arXiv:2402.11588 [cs].

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. AdaLoRA: Adaptive Budget Allocation for Parameter-
Efficient Fine-Tuning, December 2023. URL http://arxiv.org/abs/2303.10512.
arXiv:2303.10512 [cs].

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason Eshraghian. SpikeGPT: Generative Pre-trained
Language Model with Spiking Neural Networks. Trans. Mach. Learn. Res., 2024, 2024. URL
https://openreview.net/forum?id=gcf1anBL9e.

12

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/Q19-1040/
http://arxiv.org/abs/2402.11588
http://arxiv.org/abs/2303.10512
https://openreview.net/forum?id=gcf1anBL9e


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS

For all GLUE experiments, we set the LoRA rank to 8, dropout to 0, and Vθ to 0.1. Table 1 shows
the empirically selected hyperparameters used to perform GLUE experiments. For our Vθ and rank
scaling analysis, we set the learning rate to 5e-4.

Task Learning Rate Batch Size Epochs

CoLA 3e-4 32 20
SST-2 8e-4 64 4
MRPC 1e-3 32 20
STS-B 3e-4 16 8
MNLI 3e-4 64 3
QNLI 3e-4 32 3
RTE 1.2e-3 32 15
QQP 3e-4 64 3

Table 1: Hyperparameters for DeBERTA-v3 Base on the GLUE benchmark.

For Vθ scaling analysis on LoRA and SpikeLoRA (r = 8), we report the results in Table 2 (mean ±
standard deviation). Relative drop in MCC is computed against the LoRA baseline.

Vθ Sparsity MCC Loss Relative
Drop

0.0 0.238± 0.013 0.666± 0.013 1.156± 0.037 0.018
0.01 0.279± 0.017 0.665± 0.015 1.170± 0.049 0.019
0.05 0.352± 0.011 0.657± 0.010 1.183± 0.030 0.031
0.1 0.461± 0.005 0.668± 0.006 1.124± 0.014 0.015
0.25 0.671± 0.010 0.666± 0.008 1.129± 0.020 0.018
0.5 0.835± 0.007 0.653± 0.006 1.150± 0.029 0.037
0.75 0.943± 0.005 0.663± 0.013 0.942± 0.093 0.022
1.0 0.972± 0.005 0.652± 0.013 0.720± 0.070 0.038
1.5 0.989± 0.004 0.614± 0.032 0.484± 0.061 0.094
2.0 0.997± 0.003 0.351± 0.168 0.502± 0.051 0.482

LoRA - 0.678± 0.009 1.096± 0.029 -

Table 2: Evaluation metrics grouped by different Vθ.

Figure 1 presents the investigation of the training dynamics of SpikeLoRA. Pearson correlation
coefficient is 0.678 (p-value: 2.488e−8), indicating a moderately strong correlation between the
gradient norms of SpikeLoRA and LoRA.

0 1 2 3 4 5

LoRA Gradnorm

0

1

2

3

4

5

S
p
ik

eL
oR

A
 G

ra
d
n
or

m

y=x

Figure 1: Scatterplot to show the gradnorm relationship between SpikeLoRA and LoRA.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 2 and Table 3 show that SpikeLoRA consistently achieves a lower generalisation gap, whether
or not dropout is applied, while maintaining similar performance.

0.0 0.025 0.05 0.075 0.1
Dropout

0.66

0.67

0.68

0.69

0.70

M
C

C

0.0 0.025 0.05 0.075 0.1
Dropout

0.70

0.75

0.80

0.85

0.90

G
en

. 
G

ap

Figure 2: Boxplots showing the effect of dropout on MCC (higher is better) and generalisation gap
(lower is better) for both LoRA (blue) and SpikeLoRA (brown).

Dropout Method MCC Gen. Gap

0.0 LoRA 0.6807± 0.0082 0.7993± 0.0467
SpikeLoRA 0.6837± 0.0116 0.7698± 0.0174

0.025 LoRA 0.6867± 0.0130 0.8199± 0.0313
SpikeLoRA 0.6811± 0.0084 0.7984± 0.0480

0.05 LoRA 0.6808± 0.0095 0.8299± 0.0496
SpikeLoRA 0.6871± 0.0065 0.7817± 0.0185

0.075 LoRA 0.6909± 0.0067 0.7797± 0.0451
SpikeLoRA 0.6850± 0.0101 0.7155± 0.0270

0.1 LoRA 0.6812± 0.0054 0.8485± 0.0539
SpikeLoRA 0.6799± 0.0161 0.7515± 0.0442

> 0.0
LoRA 0.6849± 0.0100 0.8195± 0.0522

SpikeLoRA 0.6833± 0.0113 0.7618± 0.0483

Table 3: Summary of different dropout rates applied to LoRA and SpikeLoRA when fine-tuning on
the CoLA dataset.

14


	Introduction
	Background
	Spiking Neural Networks (SNNs)
	Leaky Integrate-and-Fire (LIF) Neuron

	SpikeGPT
	Low-Rank Adaptation (LoRA)

	SpikeLoRA Method
	Experiments
	SpikeLoRA on a Traditional LLM
	Different V
	Different Ranks
	Different Learning Rates
	GLUE Benchmark

	SpikeLoRA Analysis
	Sparsity
	Regularisation
	Efficiency

	Fine-tuning SpikeGPT with LoRA and SpikeLoRA

	Conclusion & Future Work
	Additional Details

