Unsupervised Model-based Pre-training
for Data-efficient Reinforcement Learning from Pixels

Sai Rajeswar “ ' 2 Pietro Mazzaglia“> Tim Verbelen® Alexandre Piché?> Bart Dhoedt® Aaron Courville'*
Alexandre Lacoste 2

Abstract

Reinforcement learning (RL) aims at au-
tonomously performing complex tasks. To this
end, a reward signal is used to steer the learning
process. While successful in many circumstances,
the approach is typically data hungry, requiring
large amounts of task-specific interaction between
agent and environment to learn efficient behav-
iors. To alleviate this, unsupervised RL proposes
to collect data through self-supervised interaction
to accelerate task-specific adaptation. However,
whether current unsupervised strategies lead to
improved generalization capabilities is still un-
clear, more so when the input observations are
high-dimensional. In this work, we advance the
field by closing the performance gap in the Unsu-
pervised RL Benchmark, a collection of tasks to
be solved in a data-efficient manner, after interact-
ing with the environment in a self-supervised way.
Our approach uses unsupervised exploration for
collecting experience to pre-train a world model.
Then, when fine-tuning for downstream tasks, the
agent leverages the learned model and a hybrid
planner to efficiently adapt for the given tasks,
achieving comparable results to task-specific base-
lines, while using 20x less data. We extensively
evaluate our work, comparing several exploration
methods and improving the fine-tuning process
by studying the interactions between the learned
components. Furthermore, we investigate the lim-
itations of the pre-trained agent, gaining insights
into how these influence the decision process and
shedding light on new research directions.

“Equal contribution 'Mila, Université de Montréal ServiceNow
Research *Ghent University - imec, Belgium *CIFAR Fellow. Cor-
respondence to: Sai Rajeswar <rajsai24 @ gmail.com>, Pietro Maz-
zaglia <pietro.mazzaglia@ugent.be>.

Decision Awareness in Reinforcement Learning Workshop at the
39th International Conference on Machine Learning (ICML), Bal-
timore, Maryland, USA, 2022. Copyright 2022 by the author(s).

Il Laskin et al. 2021 Ours
I I

Normalized Return (%)
==

N W S U O N 0 © O

O O O O O oo o o o o

=
o o
L

Walker Quadruped Jaco Overall

Figure 1. Progress on the URL benchmark from pixels. Compar-
ison of the overall best performing approach from the URLB paper,
i.e. Disagreement (Pathak et al., 2019) (39.0£6.8%), with our best
performing approach (98.54+4.7%). Returns are normalized using
the scores of supervised RL agents (details in Appendix).

1. Introduction

Modern successes of Reinforcement Learning (RL) have
been realized through specialized agents that rely on task-
specific rewards. Such autonomous agents have shown
promising results scaling to raw high-dimensional inputs,
e.g. playing Atari video games directly from pixels (Silver
et al., 2016; Mnih et al., 2016), learning robotic manipula-
tion policies from raw sensory input (Levine et al., 2016),
etc. However, training an agent for each task individually
requires a large amount of task-specific environment in-
teractions, incurring huge redundancy. On the other hand,
training agents that can generalize quickly on more than a
single task is often desirable towards building intelligent
autonomous systems. Developing algorithms that can effi-
ciently adapt and generalize to new downstream tasks has
hence become an active area of research in the RL commu-
nity.

In computer vision and natural language processing, unsu-
pervised learning strategies have enabled learning represen-
tations without supervision, that can quickly be adapted for
a variety of tasks (Chen et al., 2020; Radford et al., 2019). In
a similar fashion, unsupervised RL (URL) methods have fo-

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

cused on improving exploration performance (Pathak et al.,
2017; Burda et al., 2019a; Bellemare et al., 2016) or learning
generalizable skills (Eysenbach et al., 2019; Hansen et al.,
2019). A key aspect here is to be able to generate useful
behaviors in a self-supervised manner, without requiring
any reward annotations, and subsequently adapt the learned
behaviors to downstream tasks.

Recently, Laskin et al. (2021) introduced the Unsupervised
RL Benchmark (URLB), where agents are tested on dif-
ferent downstream tasks across three challenging continu-
ous control domains of the DM Control Suite (Tassa et al.,
2018). In this benchmark, an agent is first allowed a task-
agnostic pre-training stage, where it can interact with the
environment in an unsupervised way, followed by a fine-
tuning stage where, given a limited budget of interactions
with the environment, the agent should be able to quickly
adapt for a specific task. The results obtained by Laskin
et al. (2021) suggest that none of the tested unsupervised
RL algorithms completely solve the benchmark and that
models pre-trained by unsupervised RL are not universally
better than random initialization. Furthermore, a large gap
in performance was found between using state-based inputs
versus high-dimensional pixel-based inputs, as the latter
proved to be more difficult and sample inefficient. However,
a string of recent literature on representation learning and
model-based RL has shown that learning from pixel-based
inputs can be effective, given an appropriate representation
of input (Srinivas et al., 2020; Laskin et al., 2020) and/or
learning the environment dynamics (Hafner et al., 2019a;b).
On control tasks (Tassa et al., 2018), these algorithms match
state-based efficiency when learning from pixels, in a fully
supervised setting. So the question remains as to how do we
translate similar performance gains to unsupervised RL.

In this work, we show that, with the right precautions,
unsupervised RL can be employed to nearly solve the
URL benchmark from pixels. We present an unsupervised
model-based RL approach that significantly improves data-
efficiency when fine-tuned in a low-data regime, by planning
and adapting task-specific policies on the synthetic data gen-
erated by the unsupervised pre-trained model. Furthermore,
we empirically study the interactions between the multi-
ple modules learned during unsupervised pre-training and
analyze the quality of the learned model, identifying ap-
propriate design choices and shedding light on what could
prevent the agents from adapting faster.

Our efforts are aimed at understanding and scaling un-
supervised RL algorithms to operate efficiently on high-
dimensional images. Our contributions can be summarized
as: (i) the design of a class of model-based unsupervised
RL approaches, which enable fast adaptation after an un-
supervised pre-training stage, (ii) a study of the interplays
between the pre-trained modules that allow to improve sam-

ple efficiency during the fine-tuning stage, (iii) an analysis
of the model learned through unsupervised interaction with
the environment, aimed at understanding what aspects could
be improved to facilitate fast adaptation, (iv) novel quanti-
tative metrics to evaluate misspecifications in the learned
model.

We demonstrate through extensive experimentation that,
following our approach, it is possible to bridge the perfor-
mance gap between state-based and pixel-based inputs, and
to achieve the asymptotic performance of supervised RL
agents (Figure 1).

2. Preliminaries

The RL setting can be formalized as a Markov Decision
Process (MDP), denoted with the tuple {S, A, T, R,~v},
where S is the set of states, A is the set of actions, T is
the state transition dynamics, R is the reward function, and
v is a discount factor. The objective of an RL agent is
to maximize the expected discounted sum of rewards over
time for a given task, also called return, and indicated as
G, = Zzztﬂ y(+=t=1y;. In continuous action settings,
one popular approach to predict the most rewarding actions
is to combine a model that learns to output the best action
given a certain state, referred to as the actor model, and
a model that learns to estimate the expected value of the
actor’s actions over time, given a certain state, referred to as
the critic model. Actor-critic algorithms can be combined
with the expressiveness of neural network models to solve
complex continuous control tasks (Haarnoja et al., 2018;
Lillicrap et al., 2016; Schulman et al., 2017).

In this work, we investigate the problem of fast adapta-
tion for a downstream task, after a phase of unsupervised
training and interaction with the environment. We adopt
the URL benchmark, which consists of three control do-
mains, Walker, Quadruped and Jaco, and twelve tasks, four
per each domain. Consistently with URLB (Laskin et al.,
2021), our experimental procedure is made of two phases: a
pre-training (PT) phase, where the agent can interact with a
task-agnostic version of the environment for up to 2 steps,
and a fine-tuning phase (FT), where the agent interacts with
the same environment, being provided a task to solve and a
limited budget of 100k steps. During the PT phase, rewards
are removed from the environment. Sensible information
about the environment can be obtained by exploring the
domain-dependent dynamics, which will remain unchanged
in the downstream tasks. During FT, the agent receives task-
specific rewards when interacting with the environment. As
the agent has no prior knowledge of the task, it should both
understand the task and solve it efficiently, in the limited
budget.

Crucially, we focus on the pixel-based setup of URLB,

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

Environment State

|

model
Unsuperwsed —) | state action \? >
exploranon \

World Task-: agnoshc
Model SCtCrCHtc Environment

Pre-training

Weight
Initialize

Environment State

model

Reward —) state
Predlctor

Planner action
—_—

World Downstream
Model Task
T Actor-Critic

Fine'tuning Task Reward

Figure 2. Approach Overview. The unsupervised benchmark consists of pre-training (PT) and fine-tuning (FT) stages. During pre-
training, the agent interacts with the environment through an unsupervised RL strategy, maximizing an intrinsic reward function, and
concurrently training a world model on the data collected. During fine-tuning, the agent exploits the world-model learned to efficiently
plan and adapt for different downstream tasks, where it receives rewards from the environment to maximize.

where the environment is perceived by the agent only
through images. In this setting, the performance of sev-
eral exploration strategies, combined with a state-of-the-art
model-free approach (Yarats et al., 2021a), were shown to
lack behind the asymptotic performance of an RL agent
trained on the downstream task, as reported in (Laskin et al.,
2021) and Figure 1. We believe one of the causes of this is
that model-free RL algorithms cannot successfully leverage
the information observed about the environment dynamics
during PT, as they rely uniquely on actor and critic’s predic-
tions. To overcome this limitation, we ground our work on
a model-based RL agent, whose learned model should allow
preserving important information about the environment.

3. Approach

In order to perform well on the URL benchmark, it is im-
portant that an agent: (i) meaningfully interacts with the
environment during the PT phase, to discover useful tran-
sitions; (ii) successfully reuses the modules learned during
PT for fast adaptation; and (iii) efficiently employs the FT
phase to understand and master the downstream task. In this
section, we expand on how we addressed these challenges,
giving rise to an approach that nearly solves the benchmark
by achieving 98.54+4.7 % of a supervised RL agent’s overall
performance (Figure 1). An overview of the end-to-end
approach is illustrated in Figure 2 and a detailed algorithm
is presented in Appendix C for reference.

3.1. Model-based Agent

We build our model-based agent upon DreamerV2 (Hafner
et al., 2021), whose agent attempts to learn a world model
(Ha & Schmidhuber, 2018; Hafner et al., 2019b; 2021) that
allows predicting the outcomes of future actions in the en-
vironment. The environment dynamics is captured into a
latent space Z, which allows a compact representation of
the high-dimensional inputs of the agent. The world model

consists of the following components:

Encoder: = fo(st),
Dynamics: Do (zt|2e—1, at—-1),
Posterior: (Zf |2e—1, ar—1, €t),
Image Decoder: Do (stlzt),

Reward Predictor: Do (re|2t).

The model states z; have both a deterministic component,
modeled using the recurrent state of a GRU (Chung et al.,
2014), and a (discrete) stochastic component. The encoder
and decoder are convolutional neural networks (CNNs)
and the remaining components are multi-layer perceptrons
(MLPs). The world model is trained end-to-end by optimiz-
ing an evidence lower bound (ELBO) on the log-likelihood
of the data collected in the environment (Hafner et al.,
2019bsa).

In order to plan actions, the agent learns latent actor and
critic networks:
Actor: mg(at|zt), Critic: vy ().

The actor is used to generate actions, given the model state,
while the critic estimates the expected return for a certain
model state, when following the actor’s actions. Both com-
ponents are trained online within the world model, by imag-
ining the model state outcomes of the actions produced by
the actor, using the model dynamics. Rewards for imag-
ined trajectories are provided by the reward predictor and
combined with the critic predictions to produce a GAE-\
estimate of the returns (Schulman et al., 2015). The actor
maximizes such an estimate of the returns, backpropagating

its gradients through the model dynamics.

For the encoder and the decoder networks, we used the same
architecture as in Hafner et al. (2021). The hyperparameters
for the agent, which we keep fixed across all domains and
tasks, can be found in Appendix D.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

B Dreamer@100k Random e ICM

Pre-training for 100k steps Pre-training for 500k steps

120 120

s Plan2Explore

N RND EEE |BS mmm APT mmE DIAYN

Pre-training for 1M steps Pre-training for 2M steps

120

100 100

80

601"

4018

Normalized Return (%)

2018

Walker Walker

Quadruped Jaco Quadruped Jaco

120

100 100

80 80
601 = 601
401f - 401 &

2010 = 20 {08

Walker Walker

Quadruped Jaco Quadruped Jaco

Figure 3. Model-based URLB. We studied multiple unsupervised RL approaches for our model-based agent and present the performance
across the different domains of URLB, after 100k steps of fine-tuning. Each plot presents result for snapshots taken after a certain number

of pre-training, 100k, 500k, 1M and 2M steps, from left to right.

3.2. Unsupervised Pre-training

In the PT stage, different unsupervised RL strategies can
be used to explore the environment and train the compo-
nents of the agent. The resulting networks are then used to
initialize respective components in the agent deployed for
the downstream task, aiming to reduce sample complexity
during FT.

As we employ a model-based agent, we use the experience
collected to train the agent’s world model, along with the
actor and the critic networks. We note that, during PT, the
reward predictor of the world model is either unused or used
to predict intrinsic rewards, according to the unsupervised
approach employed, as reward information should not be
available to the agent. During FT, the reward predictor is
trained to predict the downstream task rewards.

Unsupervised RL methods can be grouped in three cat-
egories: knowledge-based, data-based and competence-
based (Schmidhuber, 2010; Laskin et al., 2021). We study
multiple approaches, focusing primarily on knowledge-
based methods as these combine well with the model-based
nature of our agent, and implement LBS (Mazzaglia et al.,
2021), ICM (Pathak et al., 2017), RND (Burda et al., 2019b),
and Plan2Explore (Sekar et al., 2020). As a data-based ap-
proach, we choose APT (Liu & Abbeel, 2021b), and as a
competence-based approach, we use DIAYN (Eysenbach
et al., 2019). Finally, we add a Random action baseline,
as a maximum entropy approach (Haarnoja et al., 2018).
Details on these methods and how we combined them with
our model-based agent are discussed in Appendix B.

3.3. Fine-tuning for Downstream Tasks

During the unsupervised PT phase, the agent collects ex-
perience from the environment that is used to train several
components: a task-agnostic world model (without the re-
ward predictor), an actor and a critic network. Moving to

the FT phase, the pre-trained weights of these components
can be copied into a new instance of the model, aiming to
leverage previous experience for faster adaptation.

Since the domain dynamics stays the same between the
PT and FT phases, initializing the world model with the
pre-trained one should facilitate adaptation. However, the
reward is changing from pseudo-reward to task reward when
changing from the PT phase to FT phase. Hence, it is not
clear if pre-training of the actor and critic can help for the
downstream task. To shed light on this question, we conduct
experiments in Section 4 to determine if it useful to transfer
the actor and the critic. Unless specified, for our Default
FT model, which we refer to as (w/ model, w/ actor, w/o
critic), we copy the weights of the pre-trained world model
and actor but initialize the critic from scratch.

As we train a latent world model, we can exploit model-
based planning to adapt with limited additional environment
interaction. When an accurate model of the environment is
available, traditional model-based control approaches, such
as Model Predictive Control (MPC) (Williams et al., 2015;
Chua et al., 2018; Richards, 2005), can be used to plan the
agent’s action. Nonetheless, using an actor and a critic has
several advantages, such as amortizing the cost of planning
by caching previously computed (sub)optimal actions and
amortizing the cost of computing long-term returns from
a certain state, without the need to imagine outcomes that
are far in the future. We found it useful to adopt a hybrid
planning strategy, which exploits the actor and critic’s pre-
dictions as well as an evolutionary sampling strategy based
on the Cross-Entropy Method (CEM; Rubinstein & Kroese
(2004)).

4. Experiments and Analysis

In all the experiments, the results show average normalized
returns with error bars showing the standard deviation. To
normalize results in a comparable way for all tasks, we train

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

a fully-supervised agent with 2M steps per each task. We
use the mean performance of this agent, which we refer to as
"oracle", as the reference scores to normalize results in the
plots (details in Appendix A). For all experiments, results
are presented with at least three random seeds.

Model-based URLB. The results of the different explo-
ration approaches are shown in Figure 3. Results are pre-
sented by taking snapshots of the agent at different times
during training, i.e. 100k, 500k, 1M and 2M steps, and
fine-tuning the pre-trained policies and models for 100k
steps. As opposed to the model-free experiments in URLB,
where they fine-tuned the actor and the critic, we found
that leveraging a pre-trained world model during fine-tuning
dramatically improves the performance. Simply using ran-
dom actions for unsupervised exploration already increases
performance compared to a supervised agent trained from
scratch for 100k steps (Dreamer@ 100k). This is in contrast
to the results in (Laskin et al., 2021), where the improve-
ments when exploiting pre-training were less significant.

Unsupervised exploration strategies generally lead to higher
performance in complex tasks, with performance that in-
creases over time in the Walker and Quadruped tasks. We
note that the performance in the Jaco domain is less con-
sistent over time and tends to have higher variance. We
hypothesize that this is due to a greater discrepancy be-
tween pseudo-reward and task-reward for this environment.
DIAYN underperforms compared to the other methods, pro-
viding some support to the observation in (Laskin et al.,
2021), claiming that current competence-based approaches
tend to perform worse than the rest.

Exploiting Pre-Trained Modules. The results of the ab-
lation studies on fine-tuning different sets of pre-trained
modules are presented in Figure 4, averaging across all un-

Pre-training for 2M steps
120

mmm Default w/ PT Critic w/o PT Actor ~ == w/o PT Model

Normalized Return (%)

Walker

Quadruped Jaco Overall

Figure 4. Exploiting Pre-Trained Modules. Comparison of the
results when fine-tuning different pre-trained components of the
agent. Results are averaged across all unsupervised RL methods
(2M steps pre-training).

Pre-training for 2M steps
120

mmm Default Default + Plan Jaco w/o PT Actor + Plan
100 | ml I
S
£ 80 ‘ ‘
S
=
9]
o
- 60
]
N
©
40
E
o
=2
20
0
Walker Quadruped Jaco Overall

Figure 5. Leveraging Planning. Improved results on the bench-
mark, obtained by combining actor-critic and MPC-like planning.
Results are averaged across all unsupervised RL methods (2M
steps pre-training).

supervised RL methods. Overall, the default configuration,
which reuses the weights of the world model and the actor
performs best. Initializing the agent with the pre-trained
actor is particularly useful in the Walker and Quadruped
domains, but it is harmful in the Jaco tasks. A possible
explanation for this could be that the exploration actor that
is transferred from pre-training might have a precise explo-
rative goal when brought to the fine-tuning stage, which may
be particularly far from the target state of the task. In the
Walker and Quadruped tasks, where the rewards are denser,
exploring multiple states, even far from the downstream task
behavior, provides useful reward information to exploit for
the task. On the other hand, for the Jaco sparser tasks, if the
exploration is initialized to reach a point that is too far from
the reaching target, it might become arduous to encounter
useful rewarding states within the reduced budget of FT.
This hypothesis is supported by the fact that the random ac-
tion methods and the DIAYN approach, which are believed
to explore less than the others (thus, staying closer to the
initial agent’s position), perform well, and in some cases
even better, than the other approaches (Figure 3).

Initializing the critic with the pre-trained one has little im-
pact in Walker and Quadruped but has been problematic
in the Jaco domain, likely because of the more sparse re-
wards of the Jaco tasks, which are very different from the
dense pseudo-rewards used to pre-train the critic. For this
reason, we default to not reusing the critic’s weights. Fi-
nally, the world model is confirmed to be the most valuable
component to initialize, as, independently from the other
components, initializing the world model brings a signifi-
cant improvement in performance. Detailed results per each
method are available in Appendix E.

Leveraging Planning. In order to better exploit the pre-
trained model during FT, while also leveraging the advan-

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

tages of using an RL-like learning mechanism, we employ
a hybrid planning strategy that combines MPC and tempo-
ral difference actor-critic learning, as in the recently pro-
posed TD-MPC approach (Hansen et al., 2022). TD-MPC
claims improved performance, thanks to the combination
of short-term planning using MPC and long-term predic-
tions, using the actor-critic architecture. We implement the
hybrid planner on top of our models and compare the per-
formance with the standard actor-critic learning in Figure
5. We observe that using a planner slightly improves the
performance in all domains. Combining the improved plan-
ning strategy with the previous insight of not initializing the
weights of the actor in the Jaco domain, we obtain our over-
all best performance (Jaco w/o PT actor + Plan), with the
LBS-based model being the overall best-performing method
(98.54+4.7%: Figure 1). Detailed results for each method
are available in Appendix E.

4.1. Analysis

First, we showed how we managed to bridge the perfor-
mance gap in the URL benchmark by leveraging model-
based unsupervised RL, improving the exploitation of the
different agent’s components during FT, and leveraging plan-
ning to improve data efficiency. Now, we focus on providing
an analysis of the world model learned during the unsuper-
vised pre-training stage, aiming to gain insights on which
aspects improve decision awareness in the URLB setting,
i.e. how can we best exploit the two stages of training to
improve the agent’s decision making. To shed light on this,
we analyze discrepancies in the model’s dynamics and in
the reward prediction process that is leveraged during the
fine-tuning planning.

Pre-training for 2M steps
120

I Dreamer@100k MPC (ZS) s MPC (FT) B Actor-Critic

Normalized Return (%)

Walker

Quadruped Jaco Overall

Figure 6. Model Predictive Control. Exploiting a pre-trained
reward predictor to test whether is there a gap between zero-

shot (ZS) and fine-tuned (FT) MPC performance. Results refer to
the Plan2Explore pre-trained agent (2M steps pre-training).

Zero-shot Performance. How useful is the model learned
during the unsupervised pre-training stage? To gain insights
into this matter, we perform some additional tests where we
provide the FT agent with a pre-trained reward predictor,
that we train on the data collected during PT, separately from
the agent. Given such a reward predictor, it should be possi-
ble to achieve high performance on the downstream tasks
by simply planning within the model, e.g. performing MPC
in a zero-shot setting. This assumes that the model correctly
learned the dynamics of the environment and explored re-
warding transitions that are relevant to the downstream task.
In Figure 6, we compare the results of performing MPC in a
zero-shot setting with the performance of an MPC agent that
is allowed the typical 100k steps for fine-tuning. As for the
MPC method, we employ Model Predictive Path Integral
control (MPPI) (Williams et al., 2015). Because MPC is par-
ticularly expensive to test, we just perform this experiment
on top of the models trained with the Plan2Explore URL
approach. We also plot the performance of a non-pre-trained
model and of using an actor-critic planning strategy (also
provided with the reward predictor since the beginning of
fine-tuning), for comparison.

We observe that the performance of MPC (zero-shot) is gen-
erally weak. While it overall performs better than the non-
pre-trained model, simply applying MPC leveraging only
the pre-trained modules and the reward predictor trained
on the PT stage data is not sufficient to guarantee satisfac-
tory performance. The fact that exploiting the fine-tuning
stage using the same MPC approach generally boosts perfor-
mance demonstrates that the model has a major benefit from
the fine-tuning stage. Still, the performance of MPC gener-
ally lacks behind the actor-critic performance, suggesting
that, especially in a higher-dimensional action space such
as the Quadruped one, amortizing the cost of planning with
actor-critic seems crucial to achieve higher performance.

Learning the Reward Predictor. Given that the agent
strongly benefits from the 100k fine-tuning steps, we are
interested in quantifying how much of this improvement is
related to the necessity of learning a good reward function
for the downstream task. In Figure 7, we measure the gap
in performance between pre-trained agents that have no
knowledge of the reward function at the beginning of fine-
tuning and agents whose reward predictor is initialized from
a reward predictor learned on top of the unsupervised pre-
training data. Interestingly, the performance gap is overall
small and irrelevant in the Quadruped and Walker domains.
In the Jaco tasks, which have sparser reward functions, an a
priori knowledge of the downstream task at the beginning
of FT strongly improves performance.

According to our results, it is important that during the 100k
steps of fine-tuning the actor is able to quickly obtain in-
formation about the downstream task. This might be easier

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

Pre-training for 2M steps
Emm Default

120

B w/ learned Reward Predictor

100

801 ROl | L R R

60| R T

40 T R

Normalized Return (%)

20 R R

Walker Quadruped Jaco Overall

Figure 7. Model-based agent reward predictor ablation. Evalu-
ating performance when providing a task-specific reward predictor
trained on the transitions collected during the unsupervised pre-
training stage. Results are averaged across all unsupervised RL

methods (2M steps pre-training).

for dense reward tasks, such as the Walker and Quadruped
ones, but trickier in sparse settings like Jaco. As the ini-
tialization of the actor-critic modules also showed to be a
compelling issue in our ablation study on the pre-trained
modules exploitation (Figure 4), finding more efficient ways
to pre-train/fine-tune the actor-critic modules could be an
impactful research direction that will facilitate the adoption
of unsupervised pre-training for RL.

Latent Dynamics Discrepancy. A useful measure to as-
sess the uncertainty or inaccuracy of a given model’s dy-
namics is the model’s misspecification, generally measured
as the difference between the dynamics predictions and the
real environment dynamics. When this metric is available,
it is also possible to build robust RL strategies, that take the
dynamics uncertainty into account while searching for the
optimal behavior (Talvitie, 2018). Dealing with pixel-based
inputs, we observe the dynamics of the environment through
high-dimensional images, which hinders the possibility to
evaluate such a metric, as distances in pixel space can be
misleading.

In our approach, we use a model-based RL agent that learns
a model of the environment in a compact latent space Z.
In order to quantify the “misspecification” of the learned
latent dynamics, we propose a new metric, which we call
Latent Dynamics Discrepancy, that suits the setup of URLB.
We aim to quantify the distance between the predictions
of the pre-trained model and the same model after fine-
tuning on a downstream task. However, as the decoder of
the world model gets updated during fine-tuning, the latent
space mapping between model states z and environment
states s might drift. For this reason, we ran fine-tuning
experiments where the agent’s decoder weights are frozen,
so that the decoder cannot be updated and the model can

Quadruped jump °
0.7 e Walker stand

L]
0.6 Quadruped stand

0.5 Quadruped run iaco top left

Walker flip

uadruped walk

0.4 * ARuzdiup

L]

Walker walk
L]
0.3 Walker run Jaco.bottom left Jaco top right
0.2 Jaco bottom right
L]
8 10 12 14 16 18

Performance ratio (Zero-shot / Fine-tuned)

Latent Dynamics Discrepancy

Figure 8. Correlation between latent dynamics discrepancy and
task performance. Results refer to the Plan2Explore pre-trained
agent using MPC, before and after fine-tuning.

only improve the posterior and the dynamics. This ensures
that the mapping Z — S remains unchanged and allows to
compare the dynamics model after fine-tuning with the one
before fine-tuning. In order to measure the distance between
the distribution output by the dynamics network, we chose
the symmetrical Jensen-Shannon divergence:

E (2, a0) [Dislprr(zes1lze, an)llper(zega |z, an)]], (1)

where the expectation is taken over the previous model
states z; sampled from the fine-tuned posterior grr(z:), ac-
tions a;_; sampled from an oracle actor 7*(a¢|z:), so that
we evaluate the metric on optimal trajectories, whose en-
vironment’s state distribution corresponds to the stationary
distribution induced by the actor s; ~ d™ (s;). We used 30
trajectories per task in our evaluation.

In Figure 8, we plot the correlation between our metric
and the performance ratio between a zero-shot model and
a fine-tuned model, where Plan2Explore was used for the
2M steps pre-training phase. We observed a strong negative
Pearson correlation (—0.62), with a p-value of 0.03 < 0.05,
asserting that we must reject the null hypothesis, i.e. there
exists a correlation between the two factors. This means
that major updates in the model dynamics during fine-tuning
played an important role in improving the agent’s perfor-
mance, compared to the pre-trained model and zero-shot
performance. Future research may attempt to reduce such
link, by either improving the model’s learning process, so
that the pre-trained dynamics could have greater accuracy,
or the data collection process, proposing URL methods that
directly aid to reduce such uncertainty.

Unsupervised Rewards and Performance. How well
can the unsupervised RL approaches we employed help
improving adaptation further? To answer this question, we
analyze the correlation between the normalized performance
of the different agents and the intrinsic rewards they provide

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

Pre-training for 2M environment steps
ICM | LBS | P2E | RND
Pearson Correlation | -0.54 | -0.60 | -0.34 | -0.03
p-value 0.07 | 0.04 | 0.28 | 091

Table 1. Correlation between performance and intrinsic re-
wards. Each column shows the Pearson correlation index and
the p-value between fine-tuned performance across the URLB
tasks and the intrinsic rewards computed on some oracle episodes.

for optimal trajectories obtained by an oracle agent. A
strong negative correlation between the two factors would
indicate that the agent will be more interested in seeing the
optimal trajectories when its performance is low on the task.
We summarize the results of our analysis in Table 1.

We observe that there is negative correlation between
Plan2Explore (P2E), ICM, LBS’s performance and their
intrinsic rewards, while we found ~O0 correlation for RND.
In particular, the correlation for LBS, which overall per-
formed best in the benchmark, has a statistical significance,
as its p-value is < 0.05. Given such correlation, we believe
the intrinsic rewards of LBS might be one of the causes of
its outstanding performance. As LBS searches for transi-
tions of the environment that are difficult to predict for its
dynamics, the model likely learns those transitions more
accurately, facilitating planning during the fine-tuning stage
and eventually leading to higher performance (particularly
in the most difficult domain, Quadruped). It is important
that future work would consider learning a less ambiguous
dynamics during the unsupervised RL phase, which can be
efficiently leveraged by the agent for fine-tuning.

5. Related Work

Our work lies at the intersection of unsupervised RL, model-
based RL, and representation learning for RL. We discuss
below the relevant literature in these three fields.

5.1. Model Based RL

In continuous control, model-based RL combined with pow-
erful search methods has led to impressive results on a wide
variety of tasks (Hafner et al., 2019a). In this work, we
used the MPC approach MPPI, which is based on the Cross-
Entropy Method (CEM Rubinstein & Kroese (2004)). These
methods perform trajectory optimization by fitting a multi-
variate Gaussian distribution to the imagined future actions
allowing them to search the space efficiently. Alternative
search methods such as Monte Carlo Tree search (Coulom,
2006) and Sequential Monte Carlo planning (Piché et al.,
2018) could also have been used. Given that we do not have
the reward information during pre-training, we base our
model on the Dreamer architecture which reconstructs the

future frames to learn a transition model. This has the advan-
tage of being simple and not requiring the task specification
a priori, whereas task and reward awareness is otherwise
necessary to learn a model to be self-consistent in latent
space (Schrittwieser et al., 2020; Grimm et al., 2020).

5.2. Unsupervised RL

Research in Unsupervised RL spans many fields, from com-
putational accounts of useful intrinsic motivations (Barto,
2004) to empirical evidence for certain intrinsic costs in
humans (Kool et al., 2013). Such intrinsic behavior learning
could aid an RL agent to adapt across tasks posed by the en-
vironment in a sample-efficient manner. Oudeyer & Kaplan
(2008) classified intrinsic motivation algorithms into three
different kinds - knowledge-based, competence-based and
data-based models. Knowledge-based models Schmidhuber
(2010) rely on a prediction-error signal to build pseudo-
rewards (Pathak et al., 2017; 2019; Burda et al., 2019a;
Mazzaglia et al., 2021; Burda et al., 2019b; Rajeswar et al.,
2021). Competence models aim at learning a set of diverse
and repeatable policies through information-theoretic ob-
jectives (Mohamed & Rezende, 2015). This is achieved
by maximizing the mutual information between the trajec-
tory or states and latent skill variables (Eysenbach et al.,
2019; Gregor et al., 2016; Liu & Abbeel, 2021a; Frank et al.,
2014). Data-based methods try to increase the diversity of
the dataset, often times through explicit maximum entropy
objectives or count-based objectives. Bellemare et al. (2016);
Ostrovski et al. (2017); Liu & Abbeel (2021b); Yarats et al.
(2019). An unsupervised RL approach that is closely related
to our method is Plan2Explore (Sekar et al., 2020), which
combines Disagreement (Pathak et al., 2019), a knowledge-
based exploration approach, with the first iteration of the
Dreamer agent (Hafner et al., 2019a), showing improved
performance in a few-shot adaptation setting. We improve
upon their work by considering several unsupervised RL
strategies (and finding LBS to be the best performing one),
better exploiting the pre-trained components of the agent for
fast adaptation, and employing a hybrid planning strategy
to improve data-efficiency.

5.3. Representation Learning

When inputs are high-dimensional images, it is beneficial
to learn compact state representations of the inputs. Much
progress in unsupervised representation learning for RL has
been influenced by developments in vision-based unsuper-
vised learning (Chen et al., 2020; Kingma & Welling, 2013).
More recently, a number of works have investigated rep-
resentation learning for RL (Srinivas et al., 2020; Laskin
et al., 2020; Yarats et al., 2021b). In our work, we focus
on representation learning with autoencoders (Hafner et al.,
2019b; Yarats et al., 2019). Specifically, we ground upon
DreamerV2 (Hafner et al., 2021), as predicting ahead in

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

learned latent space allows to efficiently predict thousands
of compact state sequences in parallel. Learning a sensible
representation is also crucial when aiming to generalize to
different domains and/or tasks (van Driessel & Francois-
Lavet, 2021; Sasso et al., 2022).

6. Conclusion

Unsupervised RL has been a promising direction aimed
at training generalist fast adapting agents. However, the
existing approaches have only yielded sub-optimal results
when evaluated on a standardized setup, especially on high-
dimensional pixel inputs. We build on existing unsupervised
RL algorithms with a model-based formulation to improve
the sample-efficiency and performance on pixel-based in-
puts. We empirically show that algorithms that learn a
world model through self-supervised exploration can signif-
icantly improve their performance, compared to model-free
approaches. Specifically, with our approach we were able
to attain near-optimal performance on URLB, a challenging
benchmark to evaluate unsupervised RL algorithms. Further-
more, we propose useful evaluation strategies to assess the
quality of the learned model, quantify the uncertainty of the
latent dynamics, and assess the intrinsic rewards provided
by different unsupervised RL strategies, granting additional
understanding of our approach.

Given that our model-based framework relies on the pre-
dictions of a learned reward function and, in turn, from the
value predictions of the critic, we aim to find faster ways to
adapt those functions, given the pre-trained experience. One
idea would be to leverage the flexibility of successor repre-
sentations and features (Barreto, 2018), which allow learn-
ing a task-agnostic estimate of the features expected under
the actions of a certain actor. These predictions could then
be exploited for transfer and adaptation. If we could learn
useful successor features during pre-training, we might use
them to solve downstream tasks faster during fine-tuning.

We aimed at improving the action selection process during
fine-tuning, by employing a hybrid planner that adopts both
a classical MPC-based planner and an actor-critic architec-
ture. However, our strategy overlooks the uncertainty of
the model. In order to account for this, Bayes-adaptive RL
strategies could be attempted (Mehta et al., 2021).

Different approaches to learning could also be studied for
this particular training setting, where the agent experiences
training through two different stages: pre-training and fine-
tuning. Meta-learning, or learning to learn, strategies for RL
could help designing a new approach to tackle the problem
end-to-end (Finn et al., 2017; Gupta et al., 2018).

Acknowledgements

PM., T.V,, and B.D. received funding from the Flemish
Government under the “Onderzoeksprogramma Artificiéle
Intelligentie (AI) Vlaanderen” programme.

References

Barreto, A. Transfer in reinforcement learning with suc-
cessor features and generalised policy improvement. In
ICML, 2018.

Barto, A. G. Intrinsically motivated learning of hierarchical
collections of skills. pp. 112—-119, 2004.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, volume 29, 2016.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell,
T., and Efros, A. A. Largescale study of curiosity-driven
learning. ICLR, 2019a.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O.
Exploration by random network distillation. ICLR, 2019b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In Proceedings of the 37th International
Conference on Machine Learning, pp. 1597-1607, 2020.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models, 2018.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. In NIPS Workshop on Deep Learning, 2014,
2014.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72-83. Springer, 2006.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks, 2017.

Frank, M., Leitner, J., Stollenga, M., Forster, A., and
Schmidhuber, J. Curiosity driven reinforcement learning

for motion planning on humanoids. Frontiers in Neuro-
robotics, 7, 2014.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. CoRR, 2016.

Grimm, C., Barreto, A., Singh, S., and Silver, D. The
value equivalence principle for model-based reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 33:5541-5552, 2020.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsuper-
vised meta-learning for reinforcement learning. CoRR,
2018.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2019a.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555-2565, 2019b.

Hafner, D., Lillicrap, T. P, Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. In International
Conference on Learning Representations, 2021.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control, 2022.

Hansen, S., Dabney, W., Barreto, A., Van de Wiele, T.,
Warde-Farley, D., and Mnih, V. Fast task inference with
variational intrinsic successor features, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kool, W., McGuire, J., Wang, G., and Botvinick, M. Neu-
ral and behavioral evidence for an intrinsic cost of self-
control. PloS one, 8, 2013.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learming with augmented
data. arXiv:2004.14990, 2020.

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu, K.,
Cang, C., Pinto, L., and Abbeel, P. URLB: Unsupervised
reinforcement learning benchmark. In NeurIPS Datasets
and Benchmarks Track (Round 2), 2021.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. J. Mach. Learn.
Res., 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR, 2016.

Liu, H. and Abbeel, P. Aps: Active pretraining with suc-
cessor features. In Proceedings of the 38th International
Conference on Machine Learning, pp. 6736-6747, 2021a.

Liu, H. and Abbeel, P. Unsupervised active pre-training for
reinforcement learning. ICLR, 2021b.

Mazzaglia, P., Catal, O., Verbelen, T., and Dhoedt, B.
Curiosity-driven exploration via latent bayesian surprise.
ArXiv, abs/2104.07495, 2021.

Mehta, V., Paria, B., Schneider, J., Ermon, S., and
Neiswanger, W. An experimental design perspective on
model-based reinforcement learning, 2021.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lilli-
crap, T., Harley, T., Silver, D., and Kavukcuoglu, K.
Asynchronous methods for deep reinforcement learning.
ICML, 2016.

Mohamed, S. and Rezende, D. J. Variational informa-
tion maximisation for intrinsically motivated reinforce-
ment learning. In Proceedings of the 28th International
Conference on Neural Information Processing Systems,
NIPS’15, pp. 2125-2133. MIT Press, 2015.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and
Munos, R. Count-based exploration with neural density
models. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, 2017.

Oudeyer, P.-Y. and Kaplan, F. How can we define intrinsic
motivation ? In the 8th International Conference on
Epigenetic Robotics: Modeling Cognitive Development
in Robotic Systems. Lund University Cognitive Studies,
Lund:LUCS, Brighton, 2008.

Pathak, D., Agrawal, P., Efros, A., and Darrell, T. Curiosity-
driven exploration by self-supervised prediction. /CML,
2017.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised
exploration via disagreement. In /ICML, 2019.

Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal,
C. Probabilistic planning with sequential monte carlo
methods. In International Conference on Learning Rep-
resentations, 2018.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rajeswar, S., Ibrahim, C., Surya, N., Golemo, F., Vazquez,
D., Courville, A., and Pinheiro, P. O. Haptics-based cu-
riosity for sparse-reward tasks. In 5th Annual Conference
on Robot Learning, 2021.

Richards, A. G. Robust constrained model predictive control.
PhD thesis, Massachusetts Institute of Technology, 2005.

Rubinstein, R. Y. and Kroese, D. P. The cross-entropy
method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation, and machine learning, vol-
ume 133. Springer, 2004.

Sasso, R., Sabatelli, M., and Wiering, M. A. Multi-source
transfer learning for deep model-based reinforcement
learning, 2022.

Schmidhuber, J. Formal theory of creativity, fun, and in-
trinsic motivation (1990-2010). IEEE Transactions on
Autonomous Mental Development, pp. 230-247, 2010.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604—-609, 2020.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In ICML, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., Driessche, G. V. D., Schrittwieser, J., Antonoglou, L.,
Panneershelvam, V., and Lanctot, M. Mastering the game
of go with deep neural networks and tree search. nature,
2016.

Singh, H., Hnizdo, V., Demchuk, A., and Misra, N. Near-
est neighbor estimates of entropy. American Journal of
Mathematical and Management Sciences, 23, 02 2003.
doi: 10.1080/01966324.2003.10737616.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
Proceedings of the 37th International Conference on
Machine Learning, Vienna, Austria, PMLR 119, 2020.
arXiv:2004.04136.

Talvitie, E. Learning the reward function for a misspecified
model. In ICML, volume 80 of Proceedings of Machine
Learning Research, pp. 4838-4847. PMLR, 10-15 Jul
2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel,
J., Lefrancq, A., Lillicrap, T. P., and Riedmiller, M. A.
Deepmind control suite. CoRR, abs/1801.00690, 2018.

van Driessel, G. and Francois-Lavet, V. Component transfer
learning for deep rl based on abstract representations,
2021.

Williams, G., Aldrich, A., and Theodorou, E. Model pre-
dictive path integral control using covariance variable
importance sampling, 2015.

Yarats, D., Zhang, A., Kostrikov, 1., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-free
reinforcement learning from images. 2019.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Master-
ing visual continuous control: Improved data-augmented
reinforcement learning, 2021a.

Yarats, D., Kostrikov, 1., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In International Conference on Learning
Representations, 2021b.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

A. Reference scores

Pre-trainining for 2M environment steps
Domain Task URLB Expert URLB Disagreement | Dreamer @2M Ours

Flip 799 346 £13 778 938 £ 12
Walker Run 796 208 £ 15 724 596 £ 38
Stand 984 746 £ 34 909 973 £ 14

Walk 971 549 £ 37 965 959 £ 1
Jump 888 389 £ 62 753 822 £33
Quadruped Run 888 337 + 30 904 642 + 99
Stand 920 512 £ 89 945 927 £ 28
Walk 866 293 + 37 947 816 £ 61

Reach bottom left 193 124 £7 222 225+ 6
Jaco Reach bottom right 203 115 £ 10 225 221 £ 10

Reach top left 191 106 £ 12 213 226 £ 5

Reach top right 223 139 £7 224 227 +£2

Table 2. Performance of expert baseline and the best method on pixel-based URLB from (Laskin et al., 2021) and performance of our
oracle baseline (Dreamer@2M) and best approach (using LBS and TD-MPC), after pre-training for 2M steps and fine-tuning for 100k
steps.

In Table 2, we report the mean scores for DrQ-v2 (URLB Expert), used as normalization scores in the URLB paper, and for
Dreamer, which we use to normalize returns in our work, where both supervised baselines have been trained individually on
each of the 12 tasks from URLB for 2M steps. We additionally report mean and standard deviations for the best performing
unsupervised baseline from URLB. which is Disagreement (Pathak et al., 2019), and our best performing method, which
employs LBS and the hybrid planner (with no actor initialization for Jaco).

We notice that the LBS + Plan (Ours) scores approach the Dreamer@2M’s scores in several tasks, eventually outperforming
them in a few tasks (e.g. Walker Flip, Quadruped Jump). We believe this merit of LBS + Plan is due both to the exploration
pre-training, which may have found more rewarding trajectories than greedy supervised RL optimization, and of the
improved planning strategy (Hansen et al., 2022).

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

B. Unsupervised Reinforcement Learning Strategies

We summarize the unsupervised RL approaches adopted in our work. For all approaches, rewards have been normalized
during training using an exponential moving average with momentum 0.95, with the exception of RND that follows its
original implementation reward normalization (Burda et al., 2019b).

ICM. The Intrinsic Curiosity Module (ICM; Pathak et al. (2017)) defines intrinsic rewards as the error between states
projected in a feature space and a feature dynamics model’s predictions. We use the Dreamer agent encoder e; = fy(s;) to
obtain features and train a forward dynamics model g(e;|e;—1,a:—1) to compute rewards as:

™Mo [g(edler—1, ar—1) — e

As ICM requires environment states to compute rewards, we train a reward predictor to allow estimating rewards in
imagination.

Plan2Explore. The Plan2Explore algorithm (Sekar et al., 2020) is an adaptation of the Disagreement algorithm (Pathak
et al., 2019) for latent dynamics models. An ensemble of forward dynamics models is trained to predict the features
embedding e, = f(s:), given the previous latent state and actions, i.e. g(e¢|z;—1, ar—1, W), where wy, are the parameters
of the k-th predictor. Intrinsic rewards are defined as the variance of the ensemble predictions:

¢ 2E o Var({g(et|zt—1,at_1,wi)|k € [1, ..., K]}).

Plan2Explore requires only latent states and actions, thus it can be computed directly in imagination. We used an ensemble
of 5 models.

RND. Random Network Distillation (RND; Burda et al. (2019b)) learns to predict the output of a randomly initialized
network n(s;) that projects the states into a more compact random feature space. As the random network is not updated
during training, the prediction error should diminish for already visited states. Intrinsic reward here is defined as:
RND 2
Tt o [lg(se) — n(se)|l
As RND requires environment states to compute rewards, we train a reward predictor to allow estimating rewards in
imagination.

LBS. In Latent Bayesian Surprise (LBS; Mazzaglia et al. (2021)), they use the KL divergence between the posterior
and the prior of a latent dynamics model as a proxy for the information gained with respect to the latent state variable, by
observing new states. Rewards are computed as:

TtLBS x DKL[C](Zt|Zt—17 ag_1,€t) HP(Zt‘thly atfl)]

As LBS requires environment states to compute rewards, we train a reward predictor to allow estimating rewards in
imagination.

APT. Active Pre-training (APT; Liu & Abbeel (2021b)) uses a particle-based estimator based on the K nearest-neighbors
algorithm (Singh et al., 2003) to estimate entropy for a given state. We implement APT on top of the deterministic component
of the latent states z;, providing rewards as:

k
r AT o Zlog |2: — Zi||2,
i

where k are the nearest-neighbors states in latent space. As APT requires only latent states, it can be computed directly in
imagination. We used k£ = 12 nearest neighbors.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

DIAYN. Diversity is All you need (DIAYN; Eysenbach et al. (2019)) maximizes the mutual information between the
states and latent skills w. We implement DIAYN on top of the latent space of the model, writing the mutual information as
I(wy, 2¢) = H(wy) — H(w¢|z:). The entropy H (w;) is kept maximal by sampling w; ~ p(w;) from a discrete uniform
prior distribution, while H (w;|z;) is estimated learning a discriminator ¢(w¢|z;). Additionally, DIAYN maximizes the
entropy of the actor, so we compute intrinsic rewards as:

tDIAYN

T o log q(wt|2t) — log 7T(at|zt)

As DIAYN requires environment states and sampled skills to compute rewards, we train a reward predictor to allow
estimating rewards in imagination.

C. Algorithm

Algorithm 1 Model-based Unsupervised RL

Require: Actor 6, Critic v, World Model ¢
Require: Intrinsic reward rint extrinsic reward r
Require: Environment, M, downstream tasks T, k € [1,..., M]
Require: Pre-train steps Npr, fine-tune steps Ngr, environment steps/update 7
Require: Initial model state zg, hybrid planner Plan, replay buffers Dpr, Dgr
1: fort=0,..., Npr do
: Draw action from the actor, a; ~ g (a¢|2¢)

ext

2

3 Apply action to the environment, s;11 ~ P(:|s¢, a;)

4: Add transition to replay buffer, Dpr < Dpr U (s¢, at, St41)

5: Infer model state, z;+1 ~ q(zi41|2¢, ar, fo(Se41))

6 if ¢ mod 7 =0 then

7 Update world model parameters ¢ on the data from the replay buffer Dpr
8 Update actor-critic parameters {6, } in imagination, maximizing ri"
9 end if

10: end for

11: Output pre-trained parameters {pr, Opr, dpr }

12: for T}, € [T, ..., T do

13: Initialize fine-tuning world-model with ¢pr

14: (Optional) Initialize fine-tuning actor with py

15: fort =0,..., Ngrdo

16: Use the planner for selecting action, a; ~ Plan(z;)

17: Apply action to the environment, ;1,75 ~ P(-|s¢, at)

18: Add transition to replay buffer, Dpr <— Dpr U (s¢, ag, 5™, S¢11)

19: Infer model state, zi1 ~ q(2e41]2¢, ar, fo(Se41))

20: if ¢ mod 7 =0 then

21: Update world model parameters ¢ on the data from the replay buffer Dgr
22: Update actor-critic parameters {6, +} in imagination, maximizing 7'
23: end if

24: end for

25: Evaluate performance on T}

26: end for

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

D. Hyperparameters

Most of the hyperparameters we used for world-model training are the same as in the original DreamerV2 work (Hafner

et al., 2021). Specific details are as outline here:

Name Value
World Model

Batch size 50
Sequence length 50
Discrete latent state dimension 32
Discrete latent classes 32
GRU cell dimension 200
KL free nats 1
KL balancing 0.8
Adam learning rate 3-1074
Slow critic update interval 100
Actor-Critic

Imagination horizon 15

~ parameter 0.99
A parameter 0.95
Adam learning rate 8-107°
Actor entropy loss scale 1-10~*
TD-MPC

Iterations 12
Number of samples 512
Number of elite actions 64
Mixture coefficient (Actor/CEM) 0.05
Min std (fixed) 0.1
Temperature 0.5
Momentum 0.1
Horizon 5
Common

Environment steps/update 5
MLP number of layers 4
MLP number of units 400
Hidden layers dimension 400
Adam epsilon 1-107°
Weight decay 1-1076
Gradient clipping 100

Table 3. World model, actor-critic, planner (TD-MPC) and common hyperparameters.

For the pure MPC-based experiments, we increased the number of MPPI samples from 512 to 1000, the number of elite
actions from 64 to 100, and the horizon from 5 to 15.

Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels

E. Additional Results

We present complete results, for each unsupervised RL method, for the experiments in Section 4, when using only the

actor-critic algorithm, in Figure 9, and when also employing the hybrid planner, in Figure 10.

m ICM
s Plan2Explore

mmm RND
N |BS

. APT
EmE DIAYN

Pre-training for 2M steps

= ICM
I Plan2Explore

mmm RND
N |BS

. APT
EmE DIAYN

Pre-training for 2M steps

120 120
100 100
c 8011 SN pm | c 807 [S
=1 2
[[
o o
o 601 SomE BE EeE B o 601 [R | [
(7] (9]
N N
‘© ©
E 407 e B e E 407 umeR BN e = |
o o
4 4
201 ommE B e BN el 201 ommER BR EEEE R |
0- 0
Walker Quadruped Jaco Walker Quadruped Jaco
(a) Default (b) w/ PT Critic
= ICM mmm RND mmm APT
B Plan2Explore N (BS N DIAYN
120 Pre-training for 2M steps
100
S
SEUAR | U
2
3
- 601 E e TR e
[
N
©
E 401 | S B | SRR S
o
P4
201 o BRSO R B | R
0
Walker Quadruped Jaco
(c) w/o PT Actor
Figure 9. Results for all unsupervised approaches, when using actor-critic for action selection.
EmE |CM + Plan == RND + Plan mmE APT + Plan EmE |CM + Plan == RND + Plan mmE APT + Plan
BN P2E +Plan EEE LBS+Plan EEE DIAYN + Plan BN P2E +Plan EEE LBS+Plan EEE DIAYN + Plan
Pre-training for 2M steps Pre-training for 2M steps
120 120
100 | 100 | S
c 801 Sy & c 801 mreme I | imw| 90 remm 0 ©
2 2
[[
o o
- 601 memEEE B | EEEEEE | | BEEN || b | Bommes o 601 pEmEEE B | SRS | | S = | ¢
() (9]
N N
© ©
£ 40 e Rl R S £ 40 | e I RS
o o
=z =z
201 CEEEEE BN EEEEER BN | SRR B | RO 201 CEEEEE BN | EEEEEE B | BOEmeE & | B

Walker

Quadruped Jaco

Overall

(a) Default + Plan

Walker Quadruped Jaco*

Overall

(b) Jaco w/o PT Actor + Plan

Figure 10. Results for all unsupervised approaches, when using the hybrid planner.

