
On the Convergence of Encoder-only
Shallow Transformers

Yongtao Wu
LIONS, EPFL

yongtao.wu@epfl.ch

Fanghui Liu∗

University of Warwick
fanghui.liu@warwick.ac.uk

Grigorios G Chrysos∗
LIONS, EPFL

University of Wisconsin-Madison
chrysos@wisc.edu

Volkan Cevher
LIONS, EPFL

volkan.cevher@epfl.ch

Abstract

In this paper, we aim to build the global convergence theory of encoder-only shal-
low Transformers under a realistic setting from the perspective of architectures,
initialization, and scaling under a finite width regime. The difficulty lies in how to
tackle the softmax in self-attention mechanism, the core ingredient of Transformer.
In particular, we diagnose the scaling scheme, carefully tackle the input/output
of softmax, and prove that quadratic overparameterization is sufficient for global
convergence of our shallow Transformers under commonly-used He/LeCun initial-
ization in practice. Besides, neural tangent kernel (NTK) based analysis is also
given, which facilitates a comprehensive comparison. Our theory demonstrates
the separation on the importance of different scaling schemes and initialization.
We believe our results can pave the way for a better understanding of modern
Transformers, particularly on training dynamics.

1 Introduction

Transformers [Vaswani et al., 2017] have demonstrated unparalleled success in influential applica-
tions [Devlin et al., 2019, Brown et al., 2020, Wang et al., 2018, Dosovitskiy et al., 2021, Liu et al.,
2022b]. A fundamental theoretical topic concerns the global convergence, i.e., the training dynamics
of Transformers, which would be helpful for further analysis, e.g., in-context learning [von Oswald
et al., 2022, Akyürek et al., 2023], generalization [Li et al., 2023]. In fact, even within a simplified
Transformer framework under certain specific regimes, the global convergence guarantees still remain
an elusive challenge.

To theoretically understand this, let us first recall the exact format of the self-attention mechanism,
the core ingredient of the Transformer. Given the input X ∈ Rds×d (ds is the number of tokens and
d is the feature dimension of each token), a self-attention mechanism is defined as:

Self-attention(X) ≜ σs

(
τ0(XW⊤

Q)
(
XW⊤

K

)⊤) (
XW⊤

V

)
= σs

(
τ0XW⊤

QWKX⊤) (XW⊤
V

)
,

where σs is the row-wise softmax function, τ0 ∈ R+ is the scaling factor, and the learnable weights
are WQ,WK ,WV ∈ Rdm×d with the width dm. Given X , the input of softmax depends on
τ0W

⊤
QWK , including the scaling factor τ0 and initialization schemes for learnable parameters, and

thus determines the output of softmax and then affects the performance of Transformers in both
∗Work done at LIONS, EPFL.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

theory and practice. There are several scaling schemes in previous literature. For instance, given WQ

and WK initialized by standard Gaussian, the scaling factor τ0 is chosen by

• τ0 = d
−1/2
m in the original Transformer [Vaswani et al., 2017]: each element in τ0W

⊤
QWK is a

random variable with mean 0 and variance 1. This scaling avoids the blow-up of value inside
softmax as dm increases [Hron et al., 2020].

• τ0 = d−1
m : This scaling stems from the neural tangent kernel (NTK) analysis [Jacot et al.,

2018], a commonly used technical tool for convergence analysis of fully-connected (or con-
volutional) networks under an infinite-width setting dm → ∞. However, for Transformer, if
one uses this scaling under the infinite-width setting, then by the law of large numbers, we have
limdm→∞ τ0[W

⊤
QWK](ij) = 0. As a result, the input of softmax is zero and the softmax degener-

ates to a pooling layer. That means, the non-linearity is missing, which motivates researchers to
carefully rethink this setting.

For instance, under the τ0 = d−1
m setting, Yang [2020] use the same query and key matrices to

prevent the softmax from degenerating into a pooling layer. Besides, to avoid the analytic difficulty
of softmax due to the fact that each element of the output depends on all inputs, Hron et al. [2020]
substitute softmax with ReLU under the τ0 = d

−1/2
m and infinite width setting for simplicity.

Clearly, there exists a gap between theoretical analysis and practical architectures on the use of
softmax, and accordingly, this leads to the following open question:

How can we ensure the global convergence of Transformers under a realistic setting?

The primary contribution of this work is to establish the convergence theory of shallow Transformer
under a realistic setting. Despite its shallow and encoder-only architecture, our Transformer model
captures all the fundamental components found on typical Transformers, including the self-attention
mechanism with the softmax activation function, one feedforward ReLU layer, one average pooling
layer, and a linear output layer, cf. Eq. (1.2). We adopt the τ0 = d

−1/2
m scaling under the finite-width

setting and compare the results of LeCun/He initializations, which are commonly used in practical
applications. Besides, the convergence result under the τ0 = d−1

m setting (as well as the NTK based
analysis) is also studied, which facilitates a comprehensive comparison. Our theoretical results
demonstrate notable separations among scaling settings, initializations, and architectures as below:

• Scaling: The global convergence can be achieved under both τ0 = d
−1/2
m and τ0 = d−1

m . Neverthe-
less, as suggested by our theory: for a small dm, there is no significant difference for these two
scaling schemes on the convergence; but for a large enough dm, the τ0 = d

−1/2
m scaling admits a

faster convergence rate of Transformers than that with τ0 = d−1
m . Interestingly, under this τ0 = d−1

m
setting, our theory also demonstrates the separation on the convergence result, depending on
whether the input is formed along sequence dimension (d = 1) or embedding dimension (ds = 1).

• Initialization: Under LeCun and He initialization, our shallow Transformer admits a faster conver-
gence rate than the NTK initialization. This could be an explanation for the seldom usage of NTK
initialization for Transformer training in practice.

• Architecture: Quadratic over-parameterization is enough to ensure the global convergence of
our shallow Transformer. As a comparison, if the self-attention mechanism is substituted by a
feed-forward ReLU layer, our shallow Transformer is close to a three-layer fully-connected ReLU
neural networks to some extent, requiring cubic over-parameterization for global convergence.

We firmly believe that our theoretical analysis takes a significant step towards unraveling the mysteries
behind Transformers from the perspective of global convergence. We hope that our analytical
framework and insights on various initialization and scaling techniques would be helpful in training
modern, large-scale Transformer-based models [Radford et al., 2018, Brown et al., 2020].

2 Related work

Self-attention, Transformer: Regarding training dynamics, Snell et al. [2021] explain why single-
head attention focuses on salient words by analyzing the evolution throughout training. Hron et al.
[2020] show that the output of Transformer converges to Gaussian process kernel and provide the

2

NTK formulation of Transformer. Recently, Li et al. [2023] provide sample complexity of shallow
Transformer to study its generalization property under a good initialization from pretrained model.
The separation between the Transformer and CNN is recently explored. Jelassi et al. [2022] provably
demonstrate that Vision Transformer (ViT) has the ability to learn spatial structure without additional
inductive bias such as the spatial locality in CNN. Chen et al. [2022] study the loss landscape of ViT
and find that ViT converges at sharper local minima than ResNet. Park and Kim [2022] show that ViT
is a low-pass filter while CNN is a high-pass filter, thus, these two models can be complementary.

NTK, lazy training, Hessian: The NTK was introduced by Jacot et al. [2018] to connect the
infinite-width neural network trained by gradient descent and the kernel regression. The roles of such
kernel include analysis of the training dynamics of the neural network in the over-parameterization
regime [Allen-Zhu et al., 2019a, Chizat et al., 2019, Du et al., 2019a,b, Zou et al., 2020]. The global
convergence, generalization bound, and memorization capacity largely depend on the minimum
eigenvalue of the NTK [Cao and Gu, 2019, Zhu et al., 2022, Nguyen et al., 2021, Bombari et al.,
2022]. Even though the NTK is extended from FCNN to several typical networks including Trans-
former [Tirer et al., 2020, Huang et al., 2020, Arora et al., 2019b, Alemohammad et al., 2021, Nguyen
and Mondelli, 2020], it has not been used to analyze the global convergence of Transformer. On the
other hand, the stability of the tangent kernel during training is required when connecting to kernel
regression, but such stability can not be explained by the phenomenon of lazy training [Chizat et al.,
2019], which indicates a small change of the parameters from initialization. The hessian spectral
bound is the main reason for the stability of kernel, as mentioned in Liu et al. [2020].

Over-parameterization for convergence analysis: Due to over-parameterization, neural networks
(NNs) can fit arbitrary labels with zero training loss when trained with (stochastic) gradient descent
(SGD), both theoretically Li and Liang [2018], Du et al. [2019b] and empirically [Zhang et al., 2017].
This leads to an interesting question in theory: how much overparameterization is enough to ensure
global convergence of NNs? A common recipe for the proof of global convergence relies on the
variant of Polyak-Lojasiewicz condition [Polyak, 1963, Liu et al., 2022a], NTK [Du et al., 2019b,a,
Zou and Gu, 2019, Allen-Zhu et al., 2019a], or the minimum eigenvalue of the gram matrix [Nguyen,
2021, Bombari et al., 2022]. In Appendix B.3, we provide a comprehensive overview of a recent
line of work that improves the over-parameterization condition for ensuring the convergence of NNs.
However, the over-parameterization condition for Transformer to achieve global convergence remains
elusive from existing literature and we make an initial step towards this question.

3 Problem setting

This section includes the problem setting with notations and model formulation of the shallow
Transformer that is studied in this paper.

3.1 Notation

Vectors (matrices) are symbolized by lowercase (uppercase) boldface letters, e.g., w, W . We use
∥ · ∥F and ∥ · ∥2 to represent the Frobenius norm and the spectral norm of a matrix, respectively. The
Euclidean norm of a vector is symbolized by ∥ · ∥2. The superscript with brackets is used to represent
the element of a vector/matrix, e.g., w(i) is the ith element of w. The superscript without brackets
symbolizes the parameters at different training step, e.g., θt. We denote by [N] = {1, . . . , N} for
short. We use σmin(·) and λmin(·) to represent the minimum singular value and minimum eigenvalue
of a matrix. The NTK matrix and hessian matrix of the network are denoted by K and H , respectively.
The order notation, e.g., Õ, Ω̃, omits the logarithmic factor. More detailed notation can be found in
Table 2 of the appendix.

Let X ⊆ Rds×d be a compact metric space and Y ⊆ R, where d is the dimension of each token, ds is
the total sequence length of the input. The training set {(Xn, yn)}Nn=1 is assumed to be iid sampled
from an unknown probability measure on X × Y . In this paper, we focus the regression task by
employing the squared loss. The goal of our regression task is to find a hypothesis, i.e., a Transformer
f : X → Y in our work, such that f(X;θ) parameterized by θ is a good approximation of the label
y ∈ Y corresponding to a new sample X ∈ X . We use a vector θ to denote the collection of all
learnable parameters.

3

Table 1: Common initialization methods with
their variances of Gaussian distribution and scal-
ing factors. The choice of τ1 = d

−1/2
m is based

on standard NTK initialization on prior litera-
ture [Du et al., 2019b].

Init. ηO ηV ηQ ηK τ1

LeCun d−1
m d−1 d−1 d−1 1

He 2d−1
m 2d−1 2d−1 2d−1 1

NTK 1 1 1 1 d
−1/2
m

Algorithm 1: Gradient descent training

Input: data (Xn, yn)
N
n=1, step size γ.

Initialize weights as follows:
θ0 := {W 0

Q,W
0
K ,W 0

V ,W
0
O}.

for t = 0 to t′ − 1 do
W t+1

Q = W t
Q − γ · ∇WQ

ℓ(θt),
W t+1

K = W t
K − γ · ∇WK

ℓ(θt),
W t+1

V = W t
V − γ · ∇WV

ℓ(θt),
W t+1

O = W t
O − γ · ∇WO

ℓ(θt).
end for
Output: the model based on θt′ .

3.2 Model formulation of shallow Transformer

Throughout this work, we consider the encoder of Transformer, which can be applied to both
regression and classification tasks [Yüksel et al., 2019, Dosovitskiy et al., 2021]. Given an input
X ∈ Rds×d, the model is defined as below:

A1 = Self-attention(X) ≜ σs

(
τ0(XW⊤

Q)
(
XW⊤

K

)⊤) (
XW⊤

V

)
, (1.1)

A2 = τ1σr(A1WH) , a3 = φ(A2), f(X;θ) = a⊤
3 wO , (1.2)

where the output is f(X;θ) ∈ R, τ0 and τ1 are two scaling factors. The ingredients of a Transformer
with width dm are defined as follows:

• A self-attention mechanism (Eq. (1.1)): σs is the row-wise softmax function; the learnable pa-
rameters are WQ,WK ,WV ∈ Rdm×d. We employ Gaussian initialization W

(ij)
Q ∼ N (0, ηQ),

W
(ij)
K ∼ N (0, ηK), W (ij)

V ∼ N (0, ηV) with i ∈ [dm] and j ∈ [d]. Refer to Table 1 for typical
initialization examples.

• A feed-forward ReLU layer (in Eq. (1.2)): σr is the ReLU activation function; the learnable
parameter is WH ∈ Rdm×dm . Following Yang et al. [2022], we combine WV and WH together
(by setting WH = I) for ease of the analysis. Note that it does not mean its training dynamics are
the same as the joint-training of these two adjacent matrices.

• An average pooling layer (in Eq. (1.2)): φ indicates the column-wise average pooling. Note that the
average pooling layer is applied along the sequence length dimension to ensure the final output is a
scalar, which is commonly used in practical Vision Transformer or theoretical analysis [Dosovitskiy
et al., 2021, Yang, 2020].

• An output layer (in Eq. (1.2)) with learnable parameter wO ∈ Rdm , initialized by w
(i)
O ∼ N (0, ηO).

Remarks: Proper initialization and scaling are required to ensure the convergence and learnability,
as seen in previous work [Jacot et al., 2018, Tirer et al., 2022, Lee et al., 2019]. For our convergence
analysis, we consider standard Gaussian initialization with different variances and different scaling
factor that includes three typical initialization schemes in practice. In Table 1, we detail the formula
of LeCun initialization, He initialization, and NTK initialization.

Given N input samples {Xn}Nn=1, the corresponding ground truth label, the final output of network,
and the output of the last hidden layer, are denoted by:

y ≜ {yn}Nn=1 ∈ RN , f(θ) ≜ {f(Xn;θ)}Nn=1 ∈ RN , Fpre(θ) ≜ {a3(Xn;θ)}Nn=1 ∈ RN×dm .

We consider standard gradient descent (GD) training of Transformer, as illustrated in Algorithm 1.
Here the squared loss is expressed as ℓ(θ) = 1

2 ∥f(θ)− y∥22.

4 Main results

In this section, we study the convergence guarantee of Transformer training by GD under the squared
loss. Firstly, we provide a general analytical framework in Section 4.1 covering different initialization

4

schemes, where we identify the condition for achieving global convergence. Next, we validate these
conditions for several practical initialization schemes under τ0 = d

−1/2
m in Section 4.2 and τ0 = d−1

m
in Section 4.3, respectively. We include NTK-based results for self-completeness. Discussion on the
convergence results with different scalings, initializations, and architectures is present in Section 4.4.

4.1 General framework for convergence analysis

Before presenting our result, we introduce a basic assumption.
Assumption 1. The input data is bounded ∥X∥F ≤

√
dsCx with some positive constant Cx.

Remark: This assumption is standard as we can always scale the input. The embedding of token is
usually assumed to have a unit norm [Li et al., 2023], which is unrelated to d.

Now we are ready to present our proposition, with the proof deferred to Appendix C.2. Notice
that our proposition holds with high probability under some conditions, which depend on certain
initialization schemes and scaling factors. Since our proposition is devoted to a unifying analysis
framework under various initialization schemes, we do not include specific probabilities here. The
validation of the required conditions and probability is deferred to Sections 4.2 and 4.3, respectively.
Proposition 1. Consider the Transformer with dm ≥ N . Let CQ, CK , CV , CO be some positive
constants, and define the following quantities at initialization for simplification:

• The norm of the parameters:

λ̄Q ≜
∥∥W 0

Q

∥∥
2
+ CQ, λ̄K ≜

∥∥W 0
K

∥∥
2
+ CK , λ̄V ≜

∥∥W 0
V

∥∥
2
+ CV , λ̄O ≜

∥∥w0
O

∥∥
2
+ CO.

• Two auxiliary terms: ρ ≜ N1/2d
3/2
s τ1Cx, z ≜ λ̄2

O

(
1 + 4τ20C

4
xd

2
sλ̄

2
V

(
λ̄2
Q + λ̄2

K

))
.

Under Assumption 1, we additionally assume that the minimum singular value of F 0
pre, i.e., α ≜

σmin

(
F 0
pre

)
satisfies the following condition at initialization:

α2 ≥ 8ρmax
(
λ̄V C

−1
O , λ̄OC

−1
V , 2τ0C

2
xdsλ̄K λ̄V λ̄OC

−1
Q , 2τ0C

2
xdsλ̄Qλ̄V λ̄OC

−1
K

)√
2ℓ(θ0) , (2)

α3 ≥ 32ρ2z
√
2ℓ(θ0)/λ̄O . (3)

If the step size satisfies γ ≤ 1/C with a constant C depending on (λ̄Q, λ̄K , λ̄V , λ̄O, ℓ(θ
0), ρ, τ0),

then GD converges to a global minimum as follows:

ℓ(θt) ≤
(
1− γ

α2

2

)t

ℓ(θ0) , ∀t ≥ 0 . (4)

Remark: The parameter α in Eqs. (2) and (3) controls the convergence rate of global convergence,
and the condition will be verified in the next subsection. The step-size γ is inversely proportional to
N1/2 due to the construction of C in Appendix C.2.

Proof sketch: The main idea of our convergence analysis is based on the variant of Polyak-
Lojasiewicz (PL) inequality [Polyak, 1963, Nguyen, 2021], i.e., ||∇ℓ(θ)||22 ≥ 2λmin(K)ℓ(θ) ≥
2λmin(FpreF

⊤
pre)ℓ(θ). Thus, if the minimum singular value of Fpre is strictly greater than 0, then

minimizing the gradient on the LHS will drive the loss to zero. To this end, Proposition. 1 can be
split into two parts. First, by induction, at every time step, each parameter in the Transformer can be
bounded w.h.p; the minimum singular value of Fpre is bounded away for some positive quality at the
initialization point. Secondly, we prove that the Lipschitzness of the network gradient, which means
the loss function is almost smooth. Combining the above two results, the global convergence can be
achieved. Furthermore, based on different initialization and scaling schemes, we are able to validate
Eqs. (2) and (3) via the spectral norm estimation of λ̄Q, λ̄K , λ̄V , λ̄O and a positive lower bound for
Fpre in the following section.

4.2 LeCun and He initialization under the d
−1/2
m setting

Here we aim to show that, under the LeCun/He initialization with the setting of d−1/2
m , the conditions

in Eqs. (2) and (3) will be satisfied with high probability and scaling schemes in Table 1 and hence

5

lead to global convergence. To derive our result, we need the following assumptions on the input data
regarding the rank and dissimilarity of data.

Assumption 2. We assume that the input data X has full row rank.

Remark: This assumption requires that each row X(i,:) is linearly independent for any i ∈ [ds],
which is fair and attainable in practice. For example, for language tasks, even though there might be
some repeated token in X , each row in X can be uncorrelated when added with positional embedding.
Similarly, in image tasks with Visual Transformer, the raw image is grouped by patch and mapped
via a linear layer to construct X , thus each row in X can be uncorrelated.

Assumption 3. For any data pair (Xn,Xn′), with n ̸= n′ and n, n′ ∈ [N], then we assume that
P
(∣∣〈X⊤

n Xn,X
⊤
n′Xn′

〉∣∣ ≥ t
)
≤ exp(−tĉ) with some constant ĉ > 0.

Remark: We discuss the rationale behind this assumption:

0.00 0.25 0.50 0.75
t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
Figure 1: Validation of Asm. 3.

The idea behind Assumption 3 is that different data points admit
a small similarity. To be specific, for two data points Xn and
Xn′ with n ̸= n′, their inner product reflects the similarity of
their respective (empirical) covariance matrix. We expect that
this similarity is small with a high probability. The spirit of
this assumption also exists in previous literature, e.g., Nguyen
et al. [2021]. The constant ĉ determines the decay of data
dissimilarity. A larger ĉ results in less separable data. Our
assumption has no requirement on ĉ such that ĉ can be small
enough, which allows for a general data distribution.

Verification of assumption. Here we experimentally validate
this assumption under a standard language IMDB dataset [Maas
et al., 2011]. We randomly sample 100 (normalized) sentences with embedding and plot the probabil-
ity (frequency) of P

(∣∣〈X⊤
n Xn,X

⊤
n′Xn′

〉∣∣ ≥ t
)

as t increases. We repeat it over 10 runs and plot
the result in Figure 1. We can observe an exponential decay as t increases, which implies that our
assumption is fair. Besides, the validation of Assumption 3 on image data, e.g., MNIST by ViT, is
deferred to Appendix E.2.

Now we are ready to present our main theorem under the d
−1/2
m setting. The proof is deferred

to Appendix C.3.

Theorem 1. Under the setting of LeCun/He initialization in Table 1 and Assumptions 1 to 3, suppose
dm ≥ d, and given τ0 = d

−1/2
m , dm = Ω̃(N3), then with probability at least 1 − 8e−dm/2 −

δ − exp (−Ω((N − 1)−ĉd−1
s)) for proper δ, the GD training of Transformer converges to a global

minimum with sufficiently small step size γ as in Eq. (4).

Remark: The probability relates to several randomness sources, e.g., data sampling, dissimilarity of
data, and parameter initialization. The quantity exp (−Ω((N − 1)−ĉd−1

s)) can be small for a small
enough ĉ as discussed in Assumption 3. Further discussion on our result refers to Section 4.4 for
details. Besides, our proof framework is also valid for the τ0 = d−1

m setting. We demonstrate that
dm = Ω̃(N2) suffices to achieve global convergence, see Appendix C.3 for details.

Proof sketch: To check whether the conditions in Eqs. (2) and (3) hold, the key idea is to provide
the lower bound of α. Then we upper bound λ̄Q, λ̄K , λ̄V , λ̄O based on concentration inequalities to
upper bound the initial loss, one key step is to utilize Gershgorin circle theorem [Gershgorin, 1931]
to provide a lower bound for α. Lastly, we plug these bound into the condition Eqs. (2) and (3) in
order to obtain the requirement for the width dm.

4.3 NTK initialization under the d−1
m setting

The NTK theory, as a representative application of the τ0 = d−1
m setting, can be also used for analysis

of training dynamics. We also include the NTK results in this section for self-completeness. In this
section, we first derive the limiting NTK formulation of Transformer under the d−1

m scaling scheme,
and then show the global convergence of Transformers.

6

Lemma 1. Denote Φ⋆ =: [1
ds
X⊤

1 1ds , ...,
1
ds
X⊤

N1ds]
⊤ ∈ RN×d, then the limiting NTK matrix

K ∈ RN×N of Transformer under the NTK initialization with τ0 = d−1
m has the following form:

K = d2sEw∼N (0,I)

(
σr (Φ

⋆w)σr (Φ
⋆w)

⊤
)
+ d2sEw∼N (0,I)

(
σ̇r (Φ

⋆w) σ̇r (Φ
⋆w)

⊤
) (

Φ⋆Φ⋆⊤) .
Remark: The formulation of Φ⋆ implies that the self-attention layer degenerates as 1

ds
1ds×dsXW⊤

V ,
i.e., the dimension missing effect as mentioned before.

Now we are ready to present our convergence result under the d−1
m scaling with the proof deferred to

Appendix C.4.
Theorem 2. Under the setting of NTK initialization in Table 1 and Assumptions 1 to 3 , suppose
dm = Ω̃(N), then with probability at least 1− 8e−dm/2 − δ − exp (−Ω((N − 1)−ĉd−1

s)), the GD
training of Transformer converges to a global minimum with sufficiently small γ as in Eq. (4).

Proof sketch: The overall idea is the same as the proof of the previous theorem, i.e., we need to
provide the lower bound of α. However, in this case, the limit for the output of softmax exists so that
we can apply concentration inequality to lower bound the α. Lastly, we plug these bound into the
condition Eqs. (2) and (3) in order to obtain the requirement for the width dm.

Besides, the stability of NTK during training allows us to build a connection on training dynamics
between the Transformer (assuming a squared loss) and the kernel regression predictor. Next, in
order to show that the NTK is stable during GD training, below we prove that the spectral norm of
Hessian is controlled by the width.
Theorem 3 (Hessian norm is controlled by the width). Under Assumption 1 and scaling τ0 = d−1

m ,
given any fixed R > 0, and any θt ∈ B(θ, R) := {θ : ∥θ − θ0∥2 ≤ R}, θ0 as the weight at
initialization, then with probability at least 1− 8e−dm/2, the Hessian spectral norm of Transformer
satisfies: ∥H(θt)∥2 ≤ O

(
d
−1/2
m

)
.

Remark: By [Liu et al., 2020, Proposition 2.3], the small Hessian norm is a sufficient condition
for small change of NTK. Thus, Theorem 3 can be an indicator for the stability of NTK. Besides,
Theorem 3 supplements the result in [Park and Kim, 2022] which exhibits empirically a relationship
between the Hessian norm and the width but lacks theoretical proof.

4.4 Discussion on convergence results

We compare the derived results under different scaling schemes, initializations, and architectures.

Comparison of scaling schemes: The global convergence can be achieved under both τ0 = d
−1/2
m

and τ0 = d−1
m . Nevertheless, as suggested by our theory, for a small dm, there is no significant

difference between these two scaling schemes on the convergence; but for a large enough dm, the
τ0 = d

−1/2
m scaling admits a faster convergence rate of Transformers than that of τ0 = d−1

m due to a
more tight estimation of the lower bound of α, see Appendix C.6 for details. The intuition behind the
lower convergence rate under the setting of large width and τ0 = d−1

m is that the input of softmax is
close to zero such that softmax roughly degenerates as a pooling layer, losing the ability to fit data.
This can be also explained by Lemma 1 from the perspective of dimension missing: self-attention
(X) degenerates as 1

ds
1ds×ds

XW⊤
V .

The result under the τ0 = d−1
m setting requires weaker over-parameterization than the τ0 = d

−1/2
m

setting. Nevertheless, we do not claim that τ0 = d−1
m is better than τ0 = d

−1/2
m . This is because,

under the over-parameterization regime, the scaling τ0 = d−1
m makes the self-attention layer close to

a pooling layer. This analysis loses the ability to capture the key characteristics of the self-attention
mechanism in Transformers.

Note that the lower bound of the minimum eigenvalue is in the constant order, which is tight (since it
matches the upper bound). Based on this, by studying the relationship between dm and λ0, we can
prove that quadratic (cubic) over-parameterization is required for d−1

m (d−1/2
m) scaling. This quadratic

over-parameterization requirement could be relaxed if a better relationship is given while it is still
unclear and beyond our proof technique.

7

Comparison on initializations: Though our results achieve the same convergence rate under these
initialization schemes, we can still show the separation on α that affects the convergence in Eq. (4)
among these initialization schemes. To be specific, we verify that under LeCun and He initialization,
the lower bound of α2 is tighter than that of NTK initialization, and hence admits faster convergence,
see Appendix C.5 for further details. This can be an explanation of the seldom usage of NTK
initialization in practice. Besides, the NTK initialization scheme allows for a larger step size than
LeCun/He initialization for training. That means, if α is the same in these three initialization schemes,
we usually choose a large step size under the NTK initialization scheme, see Appendix E.1.

Comparison on architectures: Note that the Transformer defined in Eq. (1.2) includes a self-
attention layer, a feedforward ReLU layer, and an output layer. Our result proves that a cubic
(quadratic) over-parameterization condition is required for d−1/2

m (d−1
m) under LeCun initialization.

As a comparison, a three-layer fully-connected ReLU network under LeCun initialization requires
dm = Ω̃(N3) [Nguyen, 2021].

The aforementioned result holds for matrix input. Although not as frequent, some data inputs are
naturally in vector form. Two ways to feed the input into Transformer are either formulating along
sequence dimension (d = 1) or along embedding dimension (ds = 1). The following result shows the
separation under these two settings to understand when the Transformer works well or not regarding
the input.
Corollary 1 (Convergence of vector input). Consider LeCun initialization with τ0 = d−1

m scaling,
given vector input x ∈ Rd̃, if one feeds the input to Transformer by setting ds = 1, d = d̃, then

training with GD can converge to a global minimum. On the contrary, if one sets ds = d̃, d = 1, the
conditions in Eqs. (2) and (3) do not hold, the convergence can not be guaranteed by our theory.
Remark: Such a result is motivated by considering least squares. Specifically, given input X ∈
RN×1, then the NTK XX⊤ is a rank-one matrix. As a result, when the augmented matrix [X,y] is
not rank-one, then there is no solution to the linear system so that GD training can not converge to
zero loss. The empirical validation can be found in Figure 3.

Technical difficulty. The technical difficulty of our analysis includes handling the softmax function
and scaling schemes beyond NTK initialization. Previous convergence analysis, e.g., [Du et al.,
2019b, Nguyen, 2021] cannot be applied to our setting because of the following issues. First, different
from classical activation functions, e.g., ReLU, in softmax each element of the output depends on all
input. To tackle the interplay between dimensions, we build the connection between the output of
softmax and XX⊤ to disentangle the nonlinear softmax function. By doing so, a lower bound on the
minimum singular value of Fpre in Proposition. 1 can be well controlled by XX⊤ and the output of
softmax.

Regarding different initializations and scaling, previous NTK-based analysis is only valid under the
d−1
m setting (the softmax degenerates to an all-one vector) but is inapplicable to the realistic d

−1/2
m

setting, as discussed in the introduction. To tackle this issue, we analyze the input/output of softmax
under LeCun/He initialization and identify the optimization properties of the loss function for global
convergence under the finite-width setting.

5 Experimental validations

Our experiments are organized as follows: In Section 5.1, we conduct experiments with the model
Eq. (1.2) on synthetic data and study the training dynamics. Next, we show convergence results on
ViT [Dosovitskiy et al., 2021] on the standard MNIST dataset in Section 5.2. Additional results and
detail on the experimental setup are deferred to Appendix E.

5.1 Fitting synthetic data

In this section, we corroborate our theoretical findings on the synthetic data. We generate 100
data points where the input X ∈ R10×100 is sampled from standard Gaussian distribution. The
corresponding label y ∈ R is generated from standard Gaussian distribution. Squared loss is selected
as the criterion. We apply gradient descent on the shallow Transformer defined in Eq. (1.2) with
LeCun initialization and τ0 = d

−1/2
m for 400 epochs with a fixed step size γ = 1. We test different

widths of the network including dm = {10, 100, 1000, 4000} and plot the training progress in

8

0 50 100 150 200 250 300 350 400

Epochs

10 8

10 6

10 4

10 2

100

Tr
ai

ni
ng

 lo
ss

dm=10
dm=100
dm=1000
dm=4000

(a) Convergence curve.

0 50 100 150 200 250 300 350 400

Epochs

10 2

10 1

100

Ch
an

ge
 o

f w
ei

gh
ts

: ||
t

0 ||
2

||
0 ||

2

dm=10
dm=100
dm=1000
dm=4000

(b) Weight movement.

0 50 100 150 200
Epochs

0

25

50

75

100

125

150

175

200

Ep
oc

hs

dm=10

0 50 100 150 200
Epochs

0

25

50

75

100

125

150

175

200

Ep
oc

hs

dm=100

0 50 100 150 200
Epochs

0

25

50

75

100

125

150

175

200

Ep
oc

hs

dm=1000

0 50 100 150 200
Epochs

0

25

50

75

100

125

150

175

200

Ep
oc

hs

dm=4000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(c) Kernel distance.

Figure 2: Visualization of the training process of Transformers with LeCun initialization and τ0 =

d
−1/2
m scaling on synthetic data. (a) Linear convergence. (b) Rate of change of the weights during

training. Observe that the weights change very slowly after the 50th epoch. (c) Evolution of the
NTK during the training. The result mirrors the plot (b) and demonstrates how the kernel varies
significantly at the beginning of the training and remains approximately constant later. As the width
increases, the empirical NTK becomes more stable.

Figure 2. The result shows that the training can converge except for the case with sub-linear width,
see the linear convergence rate in Figure 2a and the small movement of the weight in Figure 2b. For
these cases, the weights do not change much after 50 epochs while the losses are still decreasing. In
Figure 2c, we keep track of the evolution of NTK along each epoch. Specifically, the kernel distance
is given by:

Distance
(
K, K̃

)
= 1−

Tr
(
KK̃⊤

)
√

Tr (KK⊤)

√
Tr
(
K̃K̃⊤

) ,

which quantitatively compares two kernels by the relative rotation, as used in Fort
et al. [2020]. Figure 2c shows that the kernel changes rapidly at the begin-
ning of training while being approximately constant at later stages. The experi-
ment with τ0 = d−1

m , which is deferred to Appendix E.1, obtains similar results.

0 50 100 150 200 250 300 350 400

Epochs

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Tr
ai

ni
ng

 lo
ss

Transformer, d = 1, ds = 100
Transformer, d = 100, ds = 1
FCNN, d = 100

Figure 3: Convergence result on syn-
thetic data with vector input.

Additionally, the experiment with other initialization
schemes is deferred to Appendix E.1, where we observe
that NTK initialization indeed yields slower convergence
than LeCun/He initialization, which is consistent with our
theoretical finding.

Next, in order to verify corollary 1, we feed vector
input xn ∈ R100 into Transformer by setting either
ds = 1, d = 100 or ds = 100, d = 1 under LeCun
initialization with τ0 = d−1

m . Figure 3 shows that the
training of Transformer with ds = 1, d = 100 is similar to
that of two-layer FCNN with the same width dm = 100.
However, the case of ds = 100, d = 1 fails to converge,
which is consistent with our theoretical finding.

5.2 Fitting real-world dataset

Beyond synthetic data, in this section, we examine the convergence performance of Vision
Transformer (ViT) on classification task on MNIST dataset [LeCun et al., 1998], which includes
10 classes of images with size 28× 28. We use a single layer and single head ViT. The dimension
of d is 64. We change the dimension of the query, key, and value from 16 to 1024 and 16384. The
network is optimized with SGD with step size 0.1, and momentum 0.9 for 50 epochs. We repeat
the experiment for three runs. We present the convergence results over 3 runs in Figure 4a, which
shows that when the width is smaller, e.g., 16, both τ0 = d−1

m and τ0 = d
−1/2
m scaling have similar

9

0 10 20 30 40 50

Epochs

10 2
Tr

ai
ni

ng
 lo

ss

dm = 16, 0 = d 1
m

dm = 16, 0 = d 1/2
m

dm = 1024, 0 = d 1
m

dm = 1024, 0 = d 1/2
m

dm = 16384, 0 = d 1
m

dm = 16384, 0 = d 1/2
m

(a) Convergence curve.

Before training After training

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0

0.2

0.4

0.6

0.8

(b) Attention map, dm = 16384.

Figure 4: Convergence curve on MNIST dataset with different scaling schemes and different widths
in (a). Visualization of attention map in (b).

convergence results. However, as the width increases to 1024 and 16384, the τ0 = d−1
m setting admits

a slower rate than that of τ0 = d
−1/2
m , especially a extremely slow rate under dm = 16384. This is

consistent with our theoretical result on the dimension missing effect such that the τ0 = d−1
m setting

makes Transformer difficult to fit data. Additionally, we visualize the attention map in Figure 4b, i.e.,
the output of softmax in the self-attention layer before training and after training under τ0 = d

−1/2
m

setting. We could see that the self-attention layer changes a lot during training.

6 Conclusion
We present a comprehensive analysis of the global convergence properties of shallow Transformer
under various scaling and initialization schemes. Regarding scaling schemes, for a large width
setting, the difference on convergence between τ0 = d

−1/2
m and τ0 = d−1

m can be demonstrated both
theoretically and empirically. Our theory is able to explain this in a dimension missing view. Regarding
initialization schemes, our theory prefers to using LeCun and He initialization in Transformer training,
which allows for a faster convergence rate than NTK initialization. Though our analysis is limited to
shallow Transformers, we believe our framework can be extended to deep Transformers. We provide
further discussion into this extension in Appendix C.7. Exploring the convergence properties of deep
Transformers is indeed an intriguing avenue for future research.

Acknowledgements

We thank the reviewers for their constructive feedback. We thank Zhenyu Zhu for the discussion
and help in this work. This work has received funding from the Swiss National Science Foundation
(SNSF) under grant number 200021_205011. This work was supported by Hasler Foundation
Program: Hasler Responsible AI (project number 21043). Corresponding author: Fanghui Liu.

10

References
Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning

algorithm is in-context learning? investigations with linear models. In International Conference
on Learning Representations (ICLR), 2023.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. In International Conference on Learning Representations (ICLR), 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning (ICML), pages 242–252.
PMLR, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In Advances in neural information processing systems (NeurIPS), volume 32, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning (ICML), 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems (NeurIPS), 32, 2019b.

Simone Bombari, Mohammad Hossein Amani, and Marco Mondelli. Memorization and optimization
in deep neural networks with minimum over-parameterization. In Advances in neural information
processing systems (NeurIPS), 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPS), 2020.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. In Advances in neural information processing systems (NeurIPS), 2019.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. In International Conference on Learning
Representations (ICLR), 2022.

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is
sufficient to learn deep re{lu} networks? In International Conference on Learning Representations
(ICLR), 2021.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems (NeurIPS), 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations (ICLR), 2021.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning (ICML),
2019a.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations
(ICLR), 2019b.

11

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning (ICML),
pages 5793–5831, 2022.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. In Advances in neural information
processing systems (NeurIPS), 2020.

Semyon Aranovich Gershgorin. About delimiting the intrinsic values of a matrix. Proc. Russian
Acad. Sci, page 749–754, 1931.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of Statistics, 2022.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
ntk for deep attention networks. In International Conference on Machine Learning (ICML), 2020.

Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks generalize
better than deep feedforward networks?—a neural tangent kernel perspective. Advances in neural
information processing systems (NeurIPS), 33:2698–2709, 2020.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in neural information processing systems (NeurIPS),
2018.

Samy Jelassi, Michael Eli Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
neural information processing systems (NeurIPS), 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems (NeurIPS), 2019.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision
transformers: Learning, generalization, and sample complexity. In International Conference on
Learning Representations (ICLR), 2023.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems (NeurIPS), 2018.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize.
The Annals of Statistics, 2020.

Zhenyu Liao and Romain Couillet. On the spectrum of random features maps of high dimensional
data. In International Conference on Machine Learning, pages 3063–3071. PMLR, 2018.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when and
why the tangent kernel is constant. Advances in neural information processing systems (NeurIPS),
2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 2022a.

Fanghui Liu, Zhenyu Liao, and Johan Suykens. Kernel regression in high dimensions: Refined
analysis beyond double descent. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2022b.

12

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Leon Mirsky. A trace inequality of john von neumann. Monatshefte für mathematik, 79:303–306,
1975.

Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural networks: Mem-
orization and generalization under lazy training. The Annals of Statistics, 50(5):2816–2847,
2022.

Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu networks with
linear widths. In International Conference on Machine Learning (ICML), 2021.

Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight bounds on the smallest eigenvalue of
the neural tangent kernel for deep relu networks. In International Conference on Machine Learning
(ICML), 2021.

Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer
followed by pyramidal topology. Advances in neural information processing systems (NeurIPS),
2020.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference on
Learning Representations (ICLR), 2022.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. 2018.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan Cevher.
Subquadratic overparameterization for shallow neural networks. In Advances in neural information
processing systems (NeurIPS), 2021.

Tom Tirer, Joan Bruna, and Raja Giryes. Kernel-based smoothness analysis of residual networks.
arXiv preprint arXiv:2009.10008, 2020.

Tom Tirer, Joan Bruna, and Raja Giryes. Kernel-based smoothness analysis of residual networks. In
Mathematical and Scientific Machine Learning, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems (NeurIPS), 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, page 210–268.
Cambridge University Press, 2012. doi: 10.1017/CBO9780511794308.006.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge University Press, 2018.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
arXiv preprint arXiv:2212.07677, 2022.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

13

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Yongyi Yang, Zengfeng Huang, and David Wipf. Transformers from an optimization perspective. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in neural
information processing systems (NeurIPS), 2022.

Atıf Emre Yüksel, Yaşar Alim Türkmen, Arzucan Özgür, and Berna Altınel. Turkish tweet classifica-
tion with transformer encoder. In Proceedings of the International Conference on Recent Advances
in Natural Language Processing (RANLP 2019), pages 1380–1387, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations (ICLR), 2017.

Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, and Volkan Cevher. Generalization properties of
nas under activation and skip connection search. In Advances in neural information processing
systems (NeurIPS), 2022.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In Advances in neural information processing systems (NeurIPS), volume 32, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 2020.

14

Contents of the Appendix

The Appendix is organized as follows:

• In Appendix A, we summarize the symbols and notation used in this work.

• In Appendix B.1, we provide a theoretical overview for neural tangent kernel (NTK). The back-
ground in Sub-Exponential random variables is elaborated in Appendix B.2. More detailed related
work on the convergence analysis of nerual networks can be found in Appendix B.3.

• The proofs for the convergence of Transformer are included in Appendix C.

• The derivations and the proofs for the NTK are further elaborated in Appendix D, including the
formulation of NTK, minimum eigenvalue of NTK, and the relationship between the Hessian and
the width.

• Further details on the experiments are developed in Appendix E.

• Limitations and societal impact of this work are discussed in Appendix F and Appendix G,
respectively.

15

A Symbols and Notation

We include the core symbols and notation in Table 2 for facilitating the understanding of our work.

Table 2: Core symbols and notations used in this paper.
Symbol Dimension(s) Definition
N (µ, σ) - Gaussian distribution of mean µ and variance σ
∥w∥2 - Euclidean norms of vectors w
∥W ∥2 - Spectral norms of matrix W
∥W ∥F - Frobenius norms of matrix W
∥W ∥∗ - Nuclear norms of matrix W

λmin(W), λmax(W) - Minimum and maximum eigenvalues of matrix W
σmin(W), σmax(W) - Minimum and Maximum singular values of matrix W

w(i) - i-th element of vectors w
W (i,j) - (i, j)-th element of matrix W
W t - W at time step t
◦ - Hadamard product

σs(W) - Row-wise Softmax activation for matrix W
σr(W) - Element-wise ReLU activation for matrix W
1 {event} - Indicator function for event

N - Size of the dataset
dm - Width of intermediate layer
ds - Sequence length of the input
d - Dimension of each token

ηQ, ηK , ηV , ηO - Variance of Gaussian initialization of WQ,WK ,WV ,wO
τ0, τ1 - Scaling factor
γ - Step size

Xn Rds×d The n-th data point
yn R The n-th target
DX - Input data distribution
DY - Target data distribution

βi,n := σs
(
τ0X

(i,:)
n W⊤

QWKX
⊤
n

)⊤
Rds The i-th row of the output of softmax of the n-th data point

y := [y1, ..., yN]
⊤ RN Ground truth label of the data samples {Xn}Nn=1

f(θ) := [f(X1;θ), ..., f(XN ;θ)]
⊤ RN Network output given data samples {Xn}Nn=1

Fpre(θ) := [a3(X1;θ), ...,a3(XN ;θ)]
⊤ RN×dm Output of the last hidden layer given {Xn}Nn=1

f(θ) := f(X;θ) R Network output given data samples X
fpre := a3(X;θ) Rdm Output of the last hidden layer givenX

WQ,WK Rdm×d,Rdm×d Learnable parameters
WV ,wO Rdm×d,Rdm Learnable parameters

λ̄Q ≜
∥∥∥W 0

Q

∥∥∥
2
+ CQ, λ̄K ≜

∥∥W 0
K

∥∥
2
+ CK R Parameters norm

λ̄V ≜
∥∥W 0

V

∥∥
2
+ CV , λ̄O ≜

∥∥w0
O

∥∥
2
+ CO R Parameters norm

ρ ≜ N 1/2d
3/2
s τ1Cx, z ≜ λ̄2

O

(
1 + 4τ 20C

4
xd

2
sλ̄

2
V

(
λ̄2
Q + λ̄2

K

))
R Auxiliary terms

fi R Output of network for input Xi

O, o, Ω and Θ - Standard Bachmann–Landau order notation

* The superscript with bracket represents the element of a vector/matrix, e.g., w(i) is the ith element of w.
* The superscript without bracket symbolizes the parameters at different training steps, e.g., θt.
* The subscript without bracket symbolizes the variable associated to the n-th data sample, e.g., Xn.

B Theoretical background

B.1 Preliminary on NTK

In this section, we summarize how training a neural network by minimizing squared loss, i.e., ℓ(θt) =
1
2

∑N
n=1(f(Xn;θ

t) − yn)
2, via gradient descent can be characterized by the kernel regression

predictor with NTK.

By choosing an infinitesimally small learning rate, we can obtain the following gradient flow:

dθt

dt
= −∇ℓ(θt) .

16

By substituting the loss into the above equation and using the chain rule, we can find that the network
outputs f(θt) ∈ RN admit the following dynamics:

df(θt)

dt
= −Kt(f(θt)− y) , (5)

where Kt =
(

∂f(θt)
∂θ

)(
∂f(θt)

∂θ

)⊤
∈ RN×N . Jacot et al. [2018], Arora et al. [2019b] have shown

that for fully-connected neural networks, under the infinite-width setting and proper initialization,
Kt will be stable during training and K0 will converge to a fixed matrix K⋆ ∈ RN×N , where
(K⋆)(ij) = K⋆(Xi,Xj) is the NTK value for the inputs Xi and Xj . Then, we rewrite Eq. (5) as:

df(θt)

dt
= −K⋆(f(θt)− y) .

This implies the network output for any X ∈ Rds×d can be calculated by the kernel regression
predictor with the associated NTK:

f(X) = (K⋆(X,X1), · · · ,K⋆(X,XN)) · (K⋆)
−1

y ,

where K⋆(X,Xn) is the kernel value between test data X and training data Xn.

B.2 Preliminary on Sub-Exponential random variables

Below, we overview the definition of a sub-exponential random variable and few related lemma based
on Wainwright [2019]. A random variable X with mean µ is called sub-exponential random variable
if there exist non-negative parameters (ν, α) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1

α
,

and we denote by X ∼ SE(ν, α).
Lemma 2. The multiplication of a scalar s ∈ R+ and a sub-exponential random variable X ∼
SE(ν, α) is still a sub-exponential random variable: sX ∼ SE(sν, sα).
Lemma 3. Given a set of independent sub-exponential random variables Xi ∼ (νi, αi) for i ∈
1, ..., N , then

∑N
i=1 Xi ∼ (

√∑N
i=1 ν

2
i ,maxi αi).

Lemma 4. Given a sub-exponential random variable X ∼ SE(ν, α) with mean µ, the following
inequality holds with probability at least 1− δ:

|X − µ| < max

(
ν

√
2 log

2

δ
, 2α log

2

δ

)
.

B.3 Related work on over-parameterization for convergence analysis

Recent empirical observation shows that neural networks can fit arbitrary labels with zero training
loss when applying the first-order methods, e.g., gradient descent (GD) [Zhang et al., 2017]. Due
to the highly non-convex and non-smooth instinct of the neural network, a large body of work have
attempted to explain such a phenomenon. Early work studied the convergence of stochastic gradient
descent (SGD) for training two-layer over-parameterized ReLU neural network with cross-entropy
loss [Li and Liang, 2018]. Du et al. [2019b] show that only training the first layer of two-layer
ReLU network with square loss by GD can lead to global convergence under the assumption that
the Gram matrix is positive definite. Du et al. [2019a] extend the result to deep neural network with
smooth activation function and shows that the convergence is guaranteed when the widths of all
the hidden layers scale in Ω(N4), where N is the number of data points. Meanwhile, Zou and Gu
[2019] prove that the condition for the convergence of GD for deep ReLU network is Ω(N8), which
improves upon Allen-Zhu et al. [2019a] that show the result of Ω(N24). Allen-Zhu et al. [2019a]
also provide several convergence analyses under the setting of SGD and various loss functions. The
assumption regarding the positive definiteness of the Gram matrix made in Du et al. [2019b] has
been rigorously proved in Nguyen et al. [2021]. This facilitates Nguyen [2021] to demonstrate that
deep ReLU network under LeCUN initialization with width in the order Ω(N3) is enough for global
convergence. Recent breakthrough [Bombari et al., 2022] improves previous results by showing that
sub-linear layer widths suffice for deep neural network with smooth activation function.

17

Table 3: Over-parameterization conditions for the convergence analysis of neural network under
gradient descent training with squared loss. L is the depth of the network.

Model Depth Initialization Activation Width

Allen-Zhu et al. [2019a] FCNN/CNN Deep NTK ReLU Ω(N24L12)

Du et al. [2019a] FCNN/CNN Deep NTK Smooth Ω(N42O(L))

Oymak and Soltanolkotabi [2020] FCNN Shallow Standard Gaussian ReLU Ω(N2)

Zou and Gu [2019] FCNN Deep He ReLU Ω(N8L12)

Du et al. [2019b] FCNN Shallow NTK ReLU Ω(N6)

Nguyen [2021] FCNN Deep LeCun ReLU Ω(N3)

Chen et al. [2021] FCNN Deep NTK ReLU Ω(L22)

Song et al. [2021] FCNN Shallow He/Lecun Smooth Ω(N3/2)

Bombari et al. [2022] FCNN Deep He/LeCun Smooth Ω(
√
N)

Allen-Zhu et al. [2019b] RNN - NTK ReLU Ω(Nc), c > 1

Hron et al. [2020] Transformer Deep NTK ReLU -

Yang [2020] Transformer Deep NTK Softmax+ReLU -

Our Transformer Shallow Table 1 Softmax+ReLU Ω(N)

C Proof for convergence analysis

This section is developed for the proof of the convergence result and we outline the flowchart below:
Specifically, in Appendix C.1, we provide some auxiliary lemmas. Lemma 5 and Lemma 6 show
that the norm of the parameters can be bounded with high probability at initialization. Lemmas 7, 9
and 10 present that the network output and the output of softmax between two adjacent time steps
can be upper bounded. The Lipschitzness of network gradient and its norm is bounded in Lemmas 13
and 14. In Appendix C.2, we prove the convergence of the general cases, i.e., Proposition. 1. In
Appendix C.3 and C.4 we present the proof for d−1/2

m and d−1
m scaling.

C.1 Auxiliary lemmas

Lemma 5 (Corollary 5.35 of Vershynin [2012]). For a weight matrix W ∈ Rd1×d2 where each
element is sampled independently from N (0, 1), for every ζ ≥ 0, with probability at least 1 −
2exp(−ζ2/2) one has:√

d1 −
√
d2 − ζ ≤ σmin(W) ≤ σmax(W) ≤

√
d1 +

√
d2 + ζ,

where σmax(W) and σmin(W) represents the maximum and minimum singular value of W , respec-
tively.
Lemma 6 (Upper bound of spectral norms of initial weight). For a weight matrix W ∈ Rdm×d

where dm > d , each element is sampled independently from N (0, 1), with probability at least
1− 2 exp(−dm/2), one has:

∥W ∥2 ≤ 3
√

dm.

Proof of Lemma 6. Following Lemma 5, one has:

∥W ∥2 ≤
√

dm +
√
d+ ζ.

Letting ζ =
√
dm and using the fact that dm > d complete the proof.

Lemma 7. Recall from Table 2, βi = σs

(
τ0X

(i,:)W⊤
QWKX⊤)⊤ is the i-th row of the output

of Softmax, if max (
∥∥W t

Q

∥∥
2
,
∥∥∥W t′

Q

∥∥∥
2
) ≤ λ̄Q,max (∥W t

K∥2 ,
∥∥∥W t′

K

∥∥∥
2
) ≤ λ̄K , then its difference

18

between t′ step and t step has the following upper bound:∥∥∥βt′

i − βt
i

∥∥∥
2
≤ 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

)
.

Proof.∥∥∥βt′

i − βt
i

∥∥∥
2

≤
∥∥∥βt′

i − βt
i

∥∥∥
1

≤ 2
∥∥∥τ0X(i,:)W t′⊤

Q W t′

KX⊤ − τ0X
(i,:)W t⊤

Q W t
KX⊤

∥∥∥
∞

(By Corollary A.7 in Edelman et al. [2022])

= 2max
j

|τ0X(i,:)W t′⊤
Q W t′

KX(j,:)⊤ − τ0X
(i,:)W t⊤

Q W t
KX(j,:)⊤|

≤ 2max
j

(
τ0

∥∥∥X(i,:)
∥∥∥
2

∥∥∥W t′⊤
Q W t′

K −W t⊤
Q W t

K

∥∥∥
2

∥∥∥X(j,:)
∥∥∥
2

)
(By Cauchy-Schwarz inequality)

≤ 2τ0C
2
xds

∥∥∥W t′⊤
Q W t′

K −W t⊤
Q W t

K

∥∥∥
2

(By Assumption 1)

≤ 2τ0C
2
xds

(∥∥∥W t′

Q

∥∥∥
2

∥∥∥W t′

K −W t
K

∥∥∥
2
+
∥∥W t

K

∥∥
2

∥∥∥W t′

Q −W t
Q

∥∥∥
2

)
(By Cauchy-Schwarz inequality, Triangle inequality)

≤ 2τ0C
2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

)
.

Lemma 8 (Upper bound the Euclidean norm of the output of softmax). Suppose v = Softmax(u) ∈
Rds , then one has: 1/

√
ds ≤ ∥v∥2 ≤ 1 .

Proof. By the inequality of arithmetic and geometric mean:

1√
ds

=

∑ds

i=1 v
(i)

√
ds

≤ ∥v∥2 =

√√√√ ds∑
i=1

(
(v(i))2

)
≤

√√√√(ds∑
i=1

(v(i))

)2

= 1 .

Lemma 9. If at t′ and t step, max (
∥∥W t

Q

∥∥
2
,
∥∥∥W t′

Q

∥∥∥
2
) ≤ λ̄Q,max (∥W t

K∥2 ,
∥∥∥W t′

K

∥∥∥
2
) ≤

λ̄K ,max (∥W t
V ∥2 ,

∥∥∥W t′

V

∥∥∥
2
) ≤ λ̄V , then the difference between the output of the last hidden

layer at t′ step and t can be upper bounded by:∥∥∥F t′

pre − F t
pre

∥∥∥
F
≤ ρ

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
.

Proof. Note that Fpre ∈ RN×dm is the output of the last hidden layer given {Xn}Nn=1 sample as
defined in Table 2. We firstly analyze each sample, i.e., fpre ∈ Rdm and we drop the index n for
simplification.

19

∥∥∥f t′

pre − f t
pre

∥∥∥
2
= τ1

∥∥∥∥∥
ds∑
i=1

σr

(
W t′

V X⊤βt′

i

)
−

ds∑
i=1

σr

(
W t

V X
⊤βt

i

)∥∥∥∥∥
2

≤ τ1

ds∑
i=1

∥∥∥W t′

V X⊤βt′

i −W t
V X

⊤βt
i

∥∥∥
2

(By Lipschitz continuity of σr)

≤ τ1

ds∑
i=1

(∥∥∥(W t′

V −W t
V)X

⊤βt′

i

∥∥∥
2
+
∥∥∥W t

V X(βt′

i − βt
i)
∥∥∥
2

)
(By Triangle inequality)

≤ τ1

ds∑
i=1

(∥∥∥W t′

V −W t
V

∥∥∥
2
∥X∥2

∥∥∥βt′

i

∥∥∥
2
+
∥∥W t

V

∥∥
2
∥X∥2

∥∥∥βt′

i − βt
i

∥∥∥
2

)
(By Cauchy-Schwarz inequality)

≤ τ1Cx

√
ds

ds∑
i=1

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V

∥∥∥βt′

i − βt
i

∥∥∥
2

)
(By Lemma 8 and Assumption 1)

≤ τ1Cxd
3/2
s

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
(By Lemma 7) .

(6)

Next, we bound the difference given N data sample:∥∥∥F t′

pre − F t
pre

∥∥∥
F
≤

√
Nτ1Cxd

3/2
s

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
= ρ

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
,

where the last equality is by the definition of ρ in Proposition. 1.

Lemma 10. If at t′ and t step, max (
∥∥W t

Q

∥∥
2
,
∥∥∥W t′

Q

∥∥∥
2
) ≤ λ̄Q,max (∥W t

K∥2 ,
∥∥∥W t′

K

∥∥∥
2
) ≤

λ̄K ,max (∥W t
V ∥2 ,

∥∥∥W t′

V

∥∥∥
2
) ≤ λ̄V ,max (∥wt

O∥2 ,
∥∥∥wt′

O

∥∥∥
2
) ≤ λ̄O, then the difference between

the network output at t′ step and t step can be upper bounded by:∥∥∥f t′ − f t
∥∥∥
2
≤ ρλ̄V

∥∥∥wt′

O −wt
O

∥∥∥
2
+ λ̄O

∥∥∥F t′

pre − F t
pre

∥∥∥
F
.

Proof.∥∥∥f t′ − f t
∥∥∥
2
=
∥∥∥F t′

prew
t′

O − F t
prew

t
O

∥∥∥
2
≤
∥∥∥F t′

pre

∥∥∥
2

∥∥∥wt′

O −wt
O

∥∥∥
2
+
∥∥wt

O

∥∥
2

∥∥∥F t′

pre − F t
pre

∥∥∥
2
,

where we use triangle inequality. Then, the first term of the RHS can be bounded by:

∥∥∥F t′

pre

∥∥∥
2
≤
∥∥∥F t′

pre

∥∥∥
F
=

∥∥∥∥∥∥∥∥∥


τ1
∑ds

i=1 σr

(
W t′

V X⊤
1 βt′

i,1

)
...

τ1
∑ds

i=1 σr

(
W t′

V X⊤
Nβt′

i,N

)

∥∥∥∥∥∥∥∥∥
F

≤ τ1
√
Nd3/2s Cx

∥∥∥W t′

V

∥∥∥
2
= ρ

∥∥∥W t′

V

∥∥∥
2
,

where the last equality is by the definition of ρ in Proposition. 1.

Lemma 11 (Jacobian of Softmax). Suppose v = Softmax(u) ∈ Rds , then ∂v
∂u = diag(v)− vv⊤.

Proof. We can reformulate v as: v =


exp (u(1))∑ds
i=1 exp (u(i))

...
exp (u(ds))∑ds
i=1 exp (u(i))

 .

20

Then, we have

∂v(j)

∂u(k)
=

∂ exp (u(j))∑ds
i=1 exp (u(i))

∂u(k)
=


− exp (u(j))−exp (u(k))

(
∑ds

i=1 exp (u(i)))2
if j ̸= k

exp (u(k))
∑ds

i=1 exp (u(i))−(exp (u(k)))2

(
∑ds

i=1 exp (u(i)))
2 if j = k

=

{
−v(j)v(k) if j ̸= k
v(k) − v(j)v(k) if j = k

Thus

∂v

∂u
= diag(v)− vv⊤ .

Lemma 12 (Upper bound for the loss gradient norm). If
∥∥W t

Q

∥∥
2
≤ λ̄Q, ∥W t

K∥2 ≤ λ̄K , ∥W t
V ∥2 ≤

λ̄V , ∥wt
O∥2 ≤ λ̄O, then the gradient norm with respect to WQ,WK ,WV ,wO can be upper bounded

by:

∥∥∇WQ
ℓ(θ⊤)

∥∥
F
≤ 2ρτ0λ̄K λ̄V λ̄OdsC

2
x

∥∥f t − y
∥∥
2
,

∥∥∇WK
ℓ(θ⊤)

∥∥
F
≤ 2ρτ0λ̄Qλ̄V λ̄OdsC

2
x

∥∥f t − y
∥∥
2
,∥∥∇WV

ℓ(θ⊤)
∥∥
F
≤ ρλ̄O

∥∥f t − y
∥∥
2
,

∥∥∇wO
ℓ(θ⊤)

∥∥
2
≤ ρλ̄V

∥∥f t − y
∥∥
2
.

Proof. To simplify the notation, in the proof below, we hide the index t. Firstly, consider the gradient
w.r.t WV ,

∥∇WV
ℓ(θ)∥F =

∥∥∥∥∥−
N∑

n=1

(f(Xn)− yn)
∂f(Xn)

∂WV

∥∥∥∥∥
F

= τ1

∥∥∥∥∥
N∑

n=1

(f(Xn)− yn)

ds∑
i=1

(
wO ◦ σ̇r

(
WV X

⊤
n βi,n

))
β⊤
i,nXn

∥∥∥∥∥
F

≤ τ1

N∑
n=1

|(f(Xn)− yn)| d3/2s λ̄OCx

≤ τ1

√√√√N

N∑
n=1

|(f(Xn)− yn)|2d3/2s λ̄OCx = τ1d
3/2
s λ̄OCx

√
N ∥f − y∥2 = ρλ̄O ∥f − y∥2 ,

(7)

where the last equality is by the definition of ρ in Proposition. 1. Next, consider the gradient w.r.t
wO,

∥∇wO
ℓ(θ)∥2 =

∥∥∥∥∥−
N∑

n=1

(f(Xn)− yn)
∂f(Xn)

∂wO

∥∥∥∥∥
2

= τ1

∥∥∥∥∥
N∑

n=1

(f(Xn)− yn)

ds∑
i=1

σr

(
WV X

⊤
n βi,n

)∥∥∥∥∥
2

≤ τ1

N∑
n=1

|(f(Xn)− yn)| d3/2s λ̄V Cx ≤ τ1

√√√√N

N∑
n=1

|(f(Xn)− yn)|2d3/2s λ̄V Cx = ρλ̄V ∥f − y∥2 ,

(8)

21

Next, consider the gradient w.r.t WQ,

∥∥∇WQ
ℓ(θ)

∥∥
F
=

∥∥∥∥∥−
N∑

n=1

(f(Xn)− yn)
∂f(Xn)

∂WQ

∥∥∥∥∥
F

= τ0τ1

∥∥∥∥∥
N∑

n=1

(f(Xn)− yn)

ds∑
i=1

WkX
⊤
n

(
diag(βi,n)− βi,nβ

⊤
i,n

)
XnW

⊤
V

(
wO ◦ σ̇r

(
WV X

⊤
n βi,n

))
X(i,:)

n

∥∥∥∥∥
F

≤ 2τ0τ1

N∑
n=1

|(f(Xn)− yn)| dsλ̄K λ̄V λ̄O(Cx

√
ds)

3

≤ 2τ0τ1

√√√√N

N∑
n=1

|(f(Xn)− yn)|2dsλ̄K λ̄V λ̄O(Cx

√
ds)

3

= 2ρτ0λ̄K λ̄V λ̄OdsC
2
x ∥f − y∥2 .

(9)

Similarly, for the gradient w.r.t WK , we have:

∥∇WK
ℓ(θ)∥F ≤ 2ρτ0λ̄Qλ̄V λ̄OdsC

2
x ∥f − y∥2 . (10)

Lemma 13 (Upper bound for the network function gradient norm). If
∥∥W t

Q

∥∥
2
≤ λ̄Q, ∥W t

K∥2 ≤
λ̄K , ∥W t

V ∥2 ≤ λ̄V , ∥wt
O∥2 ≤ λ̄O, then one has:∥∥∇θf

t
∥∥
2
≤ c2 ,

where

c2 ≜ ρ
√
λ̄2
O + λ̄2

V + (2τ0λ̄K λ̄V λ̄OdsC2
x)

2 + (2τ0λ̄Qλ̄V λ̄OdsC2
x)

2 . (11)

Proof. To simplify the notation, in the proof below, we hide the index t. Firstly, note that:

∥∇θf∥2 ≤ ∥∇θf∥F

=

√√√√ N∑
n=1

(
∥∇wO

f(Xn;θ)∥22 +
∥∥∇wQ

f(Xn;θ)
∥∥2
F
+ ∥∇wK

f(Xn;θ)∥2F + ∥∇WV
f(Xn;θ)∥2F

)
.

(12)

Then following the step as in Eqs. (7) to (10), each term can be bounded as follows:

N∑
n=1

(
∥∇WV

f(Xn;θ)∥2F
)
≤ (ρλ̄O)

2,

N∑
n=1

(∥∇wO
f(Xn;θ)∥2) ≤ (ρλ̄V)

2 ,

N∑
n=1

(∥∥∇wQ
f(Xn;θ)

∥∥
F

)
≤ (2ρτ0λ̄K λ̄V λ̄OdsC

2
x)

2,

N∑
n=1

(∥∇wK
f(Xn;θ)∥F) ≤ (2ρτ0λ̄Qλ̄V λ̄OdsC

2
x)

2 .

Plugging these bounds back Eq. (12) finishes the proof.

Lemma 14 (Upper bound for the Lipschitzness of the network gradient). Suppose
max (

∥∥W t
Q

∥∥
2
,
∥∥∥W t′

Q

∥∥∥
2
) ≤ λ̄Q,max (∥W t

K∥2 ,
∥∥∥W t′

K

∥∥∥
2
) ≤ λ̄K ,max (∥W t

V ∥2 ,
∥∥∥W t′

V

∥∥∥
2
) ≤

λ̄V ,max (∥wt
O∥2 ,

∥∥∥wt′

O

∥∥∥
2
) ≤ λ̄O, and define z ≜ 2τ0C

2
xds(λ̄Q + λ̄K), then one has∥∥∥∇θf

t′ −∇θf
t
∥∥∥
2
≤ c3

∥∥∥θt′ − θt
∥∥∥
2
, (13)

22

where

(c3)
2 ≜ N(τ1Cxd

3/2
s (1 + λ̄V z))

2

+N

{
τ1Cxd

3/2
s

[
λ̄Oz + λ̄OCx

√
ds(1 + λ̄V z) + 1

]}2

+N
{
τ0τ1Cxds

{
2λ̄KdsC

2
x

[
λ̄V

(
λ̄OCx

√
ds(1 + λ̄V z) + 1

)
+ λ̄O

]
+ λ̄V λ̄O[C

2
xds + 3λ̄Kz]

}}2

+N
{
τ0τ1Cxds

{
2λ̄QdsC

2
x

[
λ̄V

(
λ̄OCx

√
ds(1 + λ̄V z) + 1

)
+ λ̄O

]
+ λ̄V λ̄O[C

2
xds + 3λ̄Kz]

}}2

.

(14)

Proof. Firstly, note that:∥∥∥∇θf
t′ −∇θf

t
∥∥∥2
2

≤
N∑

n=1

(∥∥∥∇wO
f(Xn;θ

t′)−∇wO
f(Xn;θ

t)
∥∥∥2
2
+
∥∥∥∇WV

f(Xn;θ
t′)−∇WV

f(Xn;θ
t)
∥∥∥2
F

+
∥∥∥∇WQ

f(Xn;θ
t′)−∇WQ

f(Xn;θ
t)
∥∥∥2
F
+
∥∥∥∇WK

f(Xn;θ
t′)−∇WK

f(Xn;θ
t)
∥∥∥2
F

)
.

(15)

Then, we will prove each term separately. Regarding the first term in Eq. (15), we have∥∥∥∇wO
f(Xn;θ

t′)−∇wO
f(Xn;θ

t)
∥∥∥
2

=
∥∥∥f t′

pre − f t
pre

∥∥∥
2

≤ τ1Cxd
3/2
s

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
≤ τ1Cxd

3/2
s

(
1 + λ̄V 2τ0C

2
xds

(
λ̄Q + λ̄K

)) ∥∥∥θt′ − θt
∥∥∥
2

= τ1Cxd
3/2
s (1 + λ̄V z)

∥∥∥θt′ − θt
∥∥∥
2
.

(16)

where the first inequality is by Eq. (6), and in the last equality is by the definition of z in the lemma.
Regarding the second term in Eq. (15), we have:∥∥∥∇WV f(Xn;θ

t′)−∇WV f(Xn;θ
t)
∥∥∥
F

= τ1

∥∥∥∥∥
ds∑
i=1

(
wt′

O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

))
βt′

i,n

⊤
Xn −

ds∑
i=1

(
wt

O ◦ σ̇r

(
W t

V X⊤
n βt

i,n

))
βt

i,n
⊤
Xn

∥∥∥∥∥
F

≤ τ1Cx

√
ds

ds∑
i=1

∥∥∥∥(wt′
O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

))
βt′

i,n

⊤
−

(
wt

O ◦ σ̇r

(
W t

V X⊤
n βt

i,n

))
βt

i,n
⊤
∥∥∥∥

F

≤ τ1Cx

√
ds

ds∑
i=1

[∥∥∥wt′
O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

)∥∥∥
2

∥∥∥βt′
i,n − βt

i,n

∥∥∥
2
+

∥∥βt
i,n

∥∥
2

∥∥∥wt′
O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

)
− w̃t

O ◦ σ̇r

(
W̃ t

V X⊤
mβ̃t

i,n

)∥∥∥
2

]

≤ τ1Cx

√
ds

ds∑
i=1

[
λ̄O

∥∥∥βt′
i,n − βt

i,n

∥∥∥
2
+

∥∥∥wt′
O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

)
−wt

O ◦ σ̇r

(
W t

V X⊤
n βt

i,n

)∥∥∥
2

]
.

(17)

The term
∥∥∥βt′

i,n − βt
i,n

∥∥∥
2

can be bounded by Lemma 7 as follows:∥∥∥βt′

i,n − βt
i,n

∥∥∥
2
≤ 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

)
≤ z

∥∥∥θt′ − θt
∥∥∥
2
. (18)

23

The term
∥∥∥wt′

O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

)
−wt

O ◦ σ̇r

(
W t

V X
⊤
n βt

i,n

)∥∥∥
2

can be bounded by the triangle
inequality, Cauchy–Schwarz inequality, and the same method in Eq. (6) as follows:

∥∥∥wt′

O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

)
−wt

O ◦ σ̇r

(
W t

V X
⊤
n βt

i,n

)∥∥∥
2

≤
∥∥∥wt′

O

∥∥∥
2

∥∥∥σ̇r

(
W t′

V X⊤
n βt′

i,n

)
− σ̇r

(
WV X

⊤
n βt

i,n

)∥∥∥
2
+
∥∥∥σ̇r

(
W t

V X
⊤
n βt

i,n

)
◦
(
wt′

O −wt
O

)∥∥∥
2

≤ λ̄O

∥∥∥W t′

V X⊤
n βt′

i,n −W t
V X

⊤
n βt

i,n

∥∥∥
2
+
∥∥∥wt′

O −wt
O

∥∥∥
2

≤ λ̄OCx

√
ds

(∥∥∥W t′

V −W t
V

∥∥∥
2
+ λ̄V 2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

))
+
∥∥∥wt′

O −wt
O

∥∥∥
2

≤
[
λ̄OCx

√
ds(1 + λ̄V z) + 1

] ∥∥∥θt′ − θ⊤
∥∥∥
2
.

(19)

Plugging Eq. (18) and Eq. (19) back Eq. (17), we obtain:

∥∥∥∇WV
f(Xn;θ

t′)−∇WV
f(Xn;θ

t)
∥∥∥
F

≤ τ1Cxd
3/2
s

[
λ̄Oz + λ̄OCx

√
ds(1 + λ̄V z) + 1

] ∥∥∥θt′ − θ⊤
∥∥∥
2
.

(20)

Regarding the third term in Eq. (15), let us denote by:

U t′

i,n = W t′

KX⊤
n

(
diag(βt′

i,n)− βt′

i,nβ
t′

i,n

⊤)
Xn, ht′

i,n = W t′

V

⊤ (
wt′

O ◦ σ̇r

(
W t′

V X⊤
n βt′

i,n

))
,

U t
i,n = W t

KX⊤
n

(
diag(βt

i,n)− βt
i,nβ

t
i,n

⊤
)
Xn, ht

i,n = W t
V
⊤ (

wt
O ◦ σ̇r

(
W t

V X
⊤
n βt

i,n

))
.

Then:

∥∥∥∇WQ
f(Xn;θ

t′)−∇WQ
f(Xn;θ

t)
∥∥∥
F
= τ0τ1

∥∥∥∥∥
ds∑
i=1

U t′

i,nh
t′

i,nX
(i,:)
n −

ds∑
i=1

U t
i,nh

t
i,nX

(i,:)
n

∥∥∥∥∥
F

≤ τ0τ1Cx

∥∥∥∥∥
ds∑
i=1

U t′

i,nh
t′

i,n −
ds∑
i=1

U t
i,nh

t
i,n

∥∥∥∥∥
2

≤ τ0τ1Cx

ds∑
i=1

(∥∥∥U t′

i,n

∥∥∥
2

∥∥∥ht′

i,n − ht
i,n

∥∥∥
2
+
∥∥ht

i,n

∥∥
2

∥∥∥U t′

i,n −U t
i,n

∥∥∥
2

)
.

(21)

We bound each term separately:

∥∥∥U t′

i,n

∥∥∥
2
≤
∥∥∥W t′

K

∥∥∥
2
∥Xn∥22

∥∥∥diag(βt′

i,n)− βt′

i,nβ
t′

i,n

⊤∥∥∥
2
≤ 2λ̄KdsC

2
x .

∥∥ht
i,n

∥∥
2
≤
∥∥W t

V

∥∥
2

∥∥wt
O

∥∥
2
≤ λ̄V λ̄O .

∥∥∥ht′
i,n − ht

i,n

∥∥∥
2
≤

∥∥∥W t′
V

∥∥∥
2

∥∥∥wt′
O ◦ σ̇r

(
W t′

V X⊤
n βt′

i.n

)
−wt

O ◦ σ̇r

(
W̃ t

V X⊤
n βt

i.n

)∥∥∥
2
+

∥∥∥W t′
V −W t

V

∥∥∥
2
∥wO∥2

≤
[
λ̄V

(
λ̄OCx

√
ds(1 + λ̄V z) + 1

)
+ λ̄O

] ∥∥∥θt′ − θt
∥∥∥
2
.

24

where the second inequality uses the result in Eq. (19).∥∥∥U t′

i,n −U t
i,n

∥∥∥
2

≤
∥∥∥W t′

KX⊤
n

(
diag(βt′

i,n)− βt′

i,nβ
t′

i,n

⊤)
−W t

KX⊤
n

(
diag(βt

i,n)− βt
i,nβ

t
i,n

⊤
)∥∥∥

2
∥Xn∥2

≤ Cx

√
ds

[∥∥∥W t′

K −W t
K

∥∥∥
2
∥Xn∥2

∥∥∥diag(βt′

i,n)− βt′

i,nβ
t′

i,n

⊤∥∥∥
2

+
∥∥W t

K

∥∥
2
∥Xn∥2

∥∥∥diag(βt′

i,n)− βt′

i,nβ
t′

i,n

⊤
− diag(βt

i,n)− βt
i,nβ

t
i,n

⊤
∥∥∥
2

]
≤ C2

xds

[∥∥∥θt′ − θt
∥∥∥
2
+ λ̄K

(∥∥∥diag(βt′

i,n)− diag(βt
i,n)
∥∥∥
2
+
∥∥∥βt′

i,nβ
t′

i,n

⊤
− βt

i,nβ
t
i,n

⊤
∥∥∥
2

)]
≤ C2

xds

[∥∥∥θt′ − θt
∥∥∥
2
+ λ̄K

(∥∥∥βt′

i,n − βt
i,n

∥∥∥
∞

+
(∥∥∥βt′

i,n

∥∥∥
2
+
∥∥βt

i,n

∥∥
2

)∥∥∥βt′

i,n − βt
i,n

∥∥∥
2

)]
≤ C2

xds

[∥∥∥θt′ − θt
∥∥∥
2
+ 3λ̄K

∥∥∥βt′

i,n − βt
i,n

∥∥∥
2

]
≤ C2

xds

[∥∥∥θt′ − θt
∥∥∥
2
+ 3λ̄K2τ0C

2
xds

(
λ̄Q

∥∥∥W t′

K −W t
K

∥∥∥
2
+ λ̄K

∥∥∥W t′

Q −W t
Q

∥∥∥
2

)]
≤ [C2

xds + 3λ̄Kz]
∥∥∥θt′ − θt

∥∥∥
2
,

(22)

where the last second inequality is by Lemma 7. Plugging back Eq. (21), we obtain:∥∥∥∇WQ
f(Xn;θ

t′)−∇WQ
f(Xn;θ

t)
∥∥∥
F

≤ τ0τ1Cxds

{
2λ̄KdsC

2
x

[
λ̄V

(
λ̄OCx

√
ds(1 + λ̄V z) + 1

)
+ λ̄O

]
+ λ̄V λ̄O[C

2
xds + 3λ̄Kz]

}∥∥∥θt′ − θt
∥∥∥
2
.

(23)

Similarly, the fourth term in Eq. (15) can be bounded by:∥∥∥∇WK
f(Xn;θ

t′)−∇WK
f(Xn;θ

t)
∥∥∥
F

≤ τ0τ1Cxds

{
2λ̄QdsC

2
x

[
λ̄V

(
λ̄OCx

√
ds(1 + λ̄V z) + 1

)
+ λ̄O

]
+ λ̄V λ̄O[C

2
xds + 3λ̄Kz]

}∥∥∥θt′ − θt
∥∥∥
2
.

(24)

Plugging the upper bound for these four terms back Eq. (15) finishes the proof.

C.2 Proof of Proposition. 1

Proof. We can reformulate Eq. (1.2) as:

f(X) = τ1w
⊤
O

ds∑
i=1

σr

(
WV X

⊤βi

)
= w⊤

Ofpre ,

with βi := σs

(
τ0X

(i,:)W⊤
QWKX⊤)⊤ ∈ Rds . We show by induction for every t ≥ 0
∥∥W s

Q

∥∥
2
≤ λ̄Q, ∥W s

K∥2 ≤ λ̄K , s ∈ [0, t],

∥W s
V ∥2 ≤ λ̄V , ∥ws

O∥2 ≤ λ̄O, s ∈ [0, t],

σmin

(
F s
pre

)
≥ 1

2α, s ∈ [0, t],

ℓ(θs) ≤
(
1− γ α2

2

)s
ℓ(θ0), s ∈ [0, t].

(25)

It is clear that Eq. (25) holds for t = 0. Assume that Eq. (25) holds up to iteration t. By the triangle
inequality, we have∥∥∥W t+1

Q −W 0
Q

∥∥∥
F
≤

t∑
s=0

∥∥∥W s+1
Q −W s

Q

∥∥∥
F
= γ

t∑
s=0

∥∥∇WQ
ℓ(θs)

∥∥
F

≤ 2γρτ0λ̄K λ̄V λ̄OdsC
2
x

t∑
s=0

√
2ℓ(θs) ≤ 2γρτ0λ̄K λ̄V λ̄OdsC

2
x

t∑
s=0

(
1− γ

α2

2

)s/2√
2ℓ(θ0) ,

(26)

25

where the second inequality follows from the upper bound of the gradient norm in Lemma 12, and
the last inequality follows from induction assumption. Let u :=

√
1− γα2/2, we bound the RHS of

the previous expression:

ρ2τ0λ̄K λ̄V λ̄OdsC
2
x

2

α2
(1− u2)

1− ut+1

1− u

√
2ℓ(θ0) (27)

≤ ρ2τ0λ̄K λ̄V λ̄OdsC
2
x

4

α2

√
2ℓ(θ0), (since u ∈ (0, 1)) (28)

≤ CQ. (by Eq. (2)) . (29)

By Weyl’s inequality, this implies:∥∥∥W t+1
Q

∥∥∥
2
≤
∥∥W 0

Q

∥∥
2
+ CQ = λ̄Q . (30)

Similarly,

∥∥wt+1
O −w0

O

∥∥
2
≤

t∑
s=0

∥∥ws+1
O −ws

O

∥∥
2
= γ

t∑
s=0

∥∇wO
Φ(W s)∥2 ≤ γρλ̄V

t∑
s=0

√
2ℓ(θs)

≤ γρλ̄V

t∑
s=0

(
1− γ

α2

2

)s/2√
2ℓ(θ0) ≤ ρλ̄V

2

α2
(1− u2)

1− ut+1

1− u

√
2ℓ(θ0) ≤ ρλ̄V

4

α2

√
2ℓ(θ0) ≤ CO .

(31)

By Weyl’s inequality, this implies∥∥wt+1
O

∥∥
2
≤
∥∥w0

O

∥∥
2
+ CO = λ̄O . (32)

Similarly, we can obtain that∥∥W t+1
K −W 0

K

∥∥
F
≤ 2ρτ0λ̄Qλ̄V λ̄OdsC

2
x

4

α2

√
2ℓ(θ0),

∥∥W t+1
K

∥∥
2
≤ λ̄K , (33)∥∥W t+1

V −W 0
V

∥∥
F
≤ ρλ̄O

4

α2

√
2ℓ(θ0),

∥∥W t+1
V

∥∥
2
≤ λ̄V . (34)

Next, we will prove the fifth inequality in Eq. (25):∥∥F t+1
pre − F 0

pre

∥∥
F

≤ ρ
{∥∥W t+1

V −W 0
V

∥∥
2
+
∥∥W 0

V

∥∥
2
2τ0C

2
x

(∥∥∥W t+1
Q

∥∥∥
2

∥∥W t+1
K −W 0

K

∥∥
2
+
∥∥W 0

K

∥∥
2

∥∥∥W t+1
Q −W 0

Q

∥∥∥
2

)}
≤

t∑
s=0

γρ
{
ρλ̄O

√
2ℓ(θs) + λ̄V 2τ0C

2
xds[2ρτ0(λ̄

2
K + λ̄2

Q)λ̄V λ̄OC
2
xds
√
2ℓ(θs)]

}
(by Lemma 12)

≤ ρ2λ̄O

[
1 + 4τ20C

4
xd

2
sλ̄

2
V

(
λ̄2
Q + λ̄2

K

)] 16
α2

√
2ℓ(θ0)

= ρ2
z

λ̄O

16

α2

√
2ℓ(θ0)

≤ 1

2
α, (by Eq. (3))

where the first inequality holds by Lemma 9. This result further implies that σmin

(
F t+1
pre

)
≥ 1

2α by
Weyl’s inequality. It remains to prove the last inequality in Eq. (25) holds for step t+ 1.

We start by proving the Lipschitz constant for the gradient of the loss restricted to the interval
[θ⊤,θt+1]. We define θt+ϕ := θ⊤ + ϕ(θt+1 − θ⊤), for ϕ ∈ [0, 1]. Then, by triangle inequality and
Cauchy–Schwarz inequality, we have:∥∥∇θℓ(θ

t+ϕ)−∇θℓ(θ
⊤)
∥∥
2

=
∥∥∇θf

t+ϕ · (f t+ϕ − y)−∇θf
t · (f t − y)

∥∥
2

≤
∥∥f t+ϕ − f t

∥∥
2

∥∥∇θf
t+ϕ
∥∥
2
+
∥∥∇θf

t+ϕ −∇θf
t
∥∥
2

∥∥f t − y
∥∥
2

≤
∥∥f t+ϕ − f t

∥∥
2

∥∥∇θf
t+ϕ
∥∥
2
+ 2

∥∥∇θf
t+ϕ −∇θf

t
∥∥
2
ℓ(θ0) ,

(35)

26

where the last inequality is by induction rule. Then, we bound each term separately. Note that:∥∥∥W t+ϕ
Q −W 0

Q

∥∥∥
F
≤
∥∥∥W t+ϕ

Q −W t
Q

∥∥∥
F
+

t−1∑
s=0

∥∥∥W s+1
Q −W s

Q

∥∥∥
F

= ϕγ
∥∥∇WQ

ℓ(θ⊤)
∥∥
F
+ γ

t−1∑
s=0

∥∥∇WQ
ℓ(θs)

∥∥
F
≤ γ

t∑
s=0

∥∥∇WQ
ℓ(θs)

∥∥
F
.

Then following exact the same step as in Eqs. (26), (27) and (30), we have:
∥∥∥W t+ϕ

Q

∥∥∥
2
≤ λ̄Q. By the

same method, we have:
∥∥∥W t+ϕ

K

∥∥∥
2
≤ λ̄K ,

∥∥∥W t+ϕ
V

∥∥∥
2
≤ λ̄V ,

∥∥∥wt+ϕ
O

∥∥∥
2
≤ λ̄O. Now we proceed to

bound the first term in Eq. (35).∥∥∥f t+ϕ − f t
∥∥∥
2

≤ ρ
∥∥∥W t+ϕ

V

∥∥∥
2

∥∥∥wt+ϕ
O −wt

O

∥∥∥
2
+

∥∥wt
O

∥∥
2

∥∥∥F t+ϕ
pre − F t

pre

∥∥∥
2

≤ ρ
∥∥∥W t+ϕ

V

∥∥∥
2

∥∥∥wt+ϕ
O −wt

O

∥∥∥
2

+ ρ
∥∥wt

O

∥∥
2

(∥∥∥W t+ϕ
V −W t

V

∥∥∥
2
+

∥∥W t
V

∥∥
2
2τ0C

2
xds

(∥∥∥W t+ϕ
Q

∥∥∥
2

∥∥∥W t+ϕ
K −W t

K

∥∥∥
2
+

∥∥W t
K

∥∥
2

∥∥∥W t+ϕ
Q −W t

Q

∥∥∥
2

))
≤ ρλ̄V

∥∥∥θt+ϕ − θ⊤
∥∥∥
2
+ ρλ̄O(1 + λ̄V 2τ0C

2
xds(λ̄Q + λ̄K))

∥∥∥θt+ϕ − θ⊤
∥∥∥
2

= ρ(λ̄V + λ̄O + λ̄V 2τ0C
2
xds(λ̄Q + λ̄K))

∥∥∥θt+ϕ − θ⊤
∥∥∥
2

≜ c1

∥∥∥θt+ϕ − θ⊤
∥∥∥
2
,

(36)

where the first inequality is by Lemma 10, the second inequality is by Lemma 9. Next, the second
term in Eq. (35) can be bounded by Lemma 13. The third term in Eq. (35) can be bounded by
Lemma 14. As a result, Eq. (35) has the following upper bound:∥∥∇θℓ(θ

t+ϕ)−∇θℓ(θ
⊤)
∥∥
2
≤ c1c2

∥∥θt+ϕ − θ⊤∥∥
2
+ 2c3ℓ(θ

0)
∥∥θt+ϕ − θ⊤∥∥

2
≜ C

∥∥θt+ϕ − θ⊤∥∥
2
,

(37)

where c1, c2, c3 are defined at Eqs. (11), (14) and (36), and we further define C ≜ c1c2 + 2c3ℓ(θ
0) .

Lastly, by applying Lemma 4.3 in Nguyen and Mondelli [2020] and Eq. (37), we have:

ℓ(θt+1) ≤ ℓ(θ⊤) + ⟨∇θℓ(θ
⊤),θt+1 − θ⊤⟩+ C

2

∥∥θt+1 − θ⊤∥∥2
F

= ℓ(θ⊤)− γ
∥∥∇θℓ(θ

⊤)
∥∥2
F
+

C

2
γ2
∥∥∇θℓ(θ

⊤)
∥∥2
F

≤ ℓ(θ⊤)− 1

2
γ
∥∥∇θℓ(θ

⊤)
∥∥2
F

(By the condition on γ)

≤ ℓ(θ⊤)− 1

2
γ
∥∥∇woℓ(θ

⊤)
∥∥2
2

= ℓ(θ⊤)− 1

2
γ
∥∥(F t

pre)
⊤(f t − y)

∥∥2
2

≤ ℓ(θ⊤)− 1

2
γ(σmin

(
F t
pre

)
)2
∥∥f t − y

∥∥2
2

≤ (1− γ
α

2
)ℓ(θ⊤) (By induction assumption) ,

which concludes the proof.

C.3 Proof of Theorem 1

Lemma 15. Let Φ = [X⊤
1 β1,1, ...,X

⊤
Nβ1,N]⊤ ∈ RN×d , where β1,n =

σs

(
τ0X

(1,:)
n W⊤

QWKX⊤
n

)⊤
, n ∈ [N], then under Assumptions 2 and 3, with probability at

27

least 1 − exp (−Ω((N − 1)−ĉd−1
s)), one has: λ0 := λmin

(
Ew∼N (0,ηV Id)[σr(Φw)σr(Φw)T]

)
≥

Θ(ηV /ds).

Proof. Due to Assumption 2, for any data X , the matrix XX⊤ is positive definite and thus has
positive minimum eigenvalue. We denote it as λmin(XX⊤) ≥ Cλ.

According to [Nguyen et al., 2021, Lemma 5.3], using the Hermite expansion of σr , one has:

λ0 ≥ ηV µ(σr)
2λmin(ΦΦ⊤) , (38)

where µ(σr) is the 1-st Hermite coefficient of ReLU satisfying µ(σr) > 0.

Now we proceed to provide a lower bound for λmin(ΦΦ⊤). For notational simplicity, define:

Bij = β1,iβ
⊤
1,j ∈ Rds×ds ,Cij = XiX

⊤
j ∈ Rds×ds .

Then we can rewrite ΦΦ⊤ as follows:

ΦΦ⊤ =


Trace(B⊤

11C11) Trace(B⊤
12C12) · · · Trace(B⊤

1NC1N)
Trace(B⊤

21C21) Trace(B⊤
22C22) · · · Trace(B⊤

2NC2N)
...

...
...

...
Trace(B⊤

N1CN1) Trace(B⊤
N2CN2) · · · Trace(B⊤

NNCNN)

 .

By Gershgorin circle theorem [Gershgorin, 1931], there exists k ∈ [N] such that:

λmin(ΦΦ⊤) ≥ Trace(B⊤
kkCkk)−

∑
j ̸=k

Trace(B⊤
kjCkj) . (39)

Using Von Neumann’s trace inequality [Mirsky, 1975] and noting that Bkj is a rank one matrix, one
has:

Trace(B⊤
kjCkj) ≤ σmax(Bkj)σmax(Ckj) = ∥β1,k∥2 ∥β1,j∥2

√
λmax(CkjC⊤

kj)

≤ ∥β1,k∥2
√
Trace(CkjC⊤

kj) = ∥β1,k∥2
√

⟨X⊤
k Xk,X⊤

j Xj⟩ ,
(40)

where we use the definition of the inner product between two matrices and ∥β1,j∥2 ≤ 1. By
Assumption 2, we have λmin(XkX

⊤
k) ≥ Cλ, where Cλ is some positive constant. By setting

t := ∥β1,k∥22 C
2
λ/(N − 1)2 in Assumption 3, with probability at least 1 − exp (−Ω((N − 1)−ĉ)),

one has √
⟨X⊤

k Xk,X⊤
j Xj⟩ ≤ ∥β1,k∥2 Cλ(N − 1)−1 , ∀j ̸= k .

Plugging back Eq. (39) and Eq. (40), we obtain:

λmin(ΦΦ⊤) ≥ Trace(B⊤
kkCkk)− Cλ ∥β1,k∥22 ≥ λmin(Ckk)Trace(Bkk)− Cλ ∥β1,k∥22

= λmin(XkX
⊤
k) ∥β1,k∥22 − Cλ ∥β1,k∥22 ≥ Θ(∥β1,k∥22) ≥ Θ(1/ds) ,

(41)

where the last inequality is by the lower bound of β1,k in Lemma 8. Lastly, plugging the lower bound
of λmin(ΦΦ⊤) back Eq. (38) finishes the proof.

Remark: The estimation of λ0 is actually tight because its upper bound is also in a constant order.
To be specific, denote G := σr(Φw)σr(Φw)⊤, we have

λ0 := λmin (EwG) ≤ tr(EwG)

N
=

∑N
n=1 Ew[σr(Φ

(n,:)w)]2

N
, (42)

where Φ(n,:) = β⊤1,nXn. Next, by Liao and Couillet [2018] (Sec.A in Supplementary Material):

Ew[σr(Φ
(n,:)w)]2 =

ηV
2π

∥∥∥Φ(n,:)
∥∥∥2 arccos(−1) =

∥∥Φ(n,:)
∥∥2

2
. (43)

28

Combine Eq. (42) and Eq. (43), we have

λ0 ≤
∑N

n=1 ηV ∥Φ(n,:)∥22
2N

≤ ηV dsC
2
x ≤ O(1) .

That means, our estimation on λ0 is tight as its upper and lower bounds match with each other.

Now we are ready to present the proof for LeCun initialization under τ0 = d
−1/2
m scaling.

Proof. We select CQ = CK = 1 = CV = CO = 1, then by Lemma 5, with probability at least
1− 8e−dm/2 , we have:

λ̄V = O(
√
dm/d), λ̄O = O(1) ,

λ̄Q = O(
√
dm/d), λ̄K = O(

√
dm/d) .

(44)

Plugging Eq. (44) into Eqs. (2) and (3) , it suffices to prove the following equations.

α2 ≥ O
(√

Nd3/2s Cx

√
dm/d

)√
2ℓ(θ0) (45)

α3 ≥ O
(
Nd3sC

2
x(1 + 4C4

xd
2
sdmd−2)

)√
2ℓ(θ0) (46)

Next, we will provide the lower bound for α2 = λmin((F
0
pre)(F

0
pre)

⊤). In the following context, we
hide the index 0 for simplification. One can note that FpreF

⊤
pre is the summation of PSD matrices,

thus, it suffices to lower bound: λmin(F̂preF̂
⊤
pre), where we introduce the following notations:

F̂preF̂
⊤
pre = τ21σr(ΦW⊤

v)σr(ΦW⊤
v)⊤

Φ = [X⊤
1 β1,1, ...,X

⊤
Nβ1,N]⊤

β1,n = σs

(
τ0X

(1,:)
n W⊤

QWKX⊤
n

)⊤
n ∈ [N].

(47)

By Matrix-Chernoff inequality, we can obtain that (e.g. Lemma 5.2 of Nguyen et al. [2021]) w.p at
least 1− δ1,

λmin(F̂preF̂
⊤
pre) ≥ dmλ0/4, (48)

as long as it holds dm ≥ Ω̃(N/λ0), where λ0 = λmin

(
Ew∼N (0,ηV Id)[σr(Φw)σr(Φw)⊤]

)
, and Ω̃

hides logarithmic factors depending on δ1. Lastly, w.p. at least 1− δ2, one has
√
2ℓ(θ0) ≤ Õ(

√
N).

Plugging back Eqs. (2) and (3), it suffices to prove the following inequality.

dmλ0/4 ≥ Õ(Nd3/2s Cx

√
dm/d) , (49)

(dmλ0/4)
3/2 ≥ Õ(N3/2d3sC

2
x(1 + 4C4

xd
2
sdmd−2)) , (50)

By Lemma 15, with probability at least 1− exp (−Ω((N − 1)−ĉd−1
s)), one has λ0 ≥ Θ(ηV /ds) =

Θ(d−1d−1
s). Thus, when dm ≥ Ω̃(N3), all of the above conditions hold. As a result, the conditions

in Eqs. (45) and (46) are satisfied and the convergence of training Transformer is guaranteed as in
Eq. (4). Note that one can achieve the same width requirement and probability for He initialization,
and the proof bears resemblance to the LeCun initialization.

For the proof under LeCun initialization and τ0 = d−1
m scaling, we follow the same strategy. Specif-

ically: As the same in the proof with τ0 = d
−1/2
m scaling, we select CQ = CK = CV = CO = 1,

then plugging Eq. (44) into Eqs. (2) and (3), it suffices to prove the following equations.

α2 ≥ O
(√

Nd3/2s Cx

√
dm/d

)√
2ℓ(θ0) , (51)

α3 ≥ O
(
Nd3sC

2
x(1 + 4C4

xd
2
sd

−2)
)√

2ℓ(θ0) . (52)

Next, we will provide the lower bound for α2 = λmin((F
0
pre)(F

0
pre)

⊤). In the following context, we
hide the index 0 for simplification. One can note that FpreF

⊤
pre is the summation of PSD matrices,

29

thus, it suffices to lower bound: λmin(F̂preF̂
⊤
pre), where we introduce the following notations:

F̂preF̂
⊤
pre = τ21σr(ΦW⊤

v)σr(ΦW⊤
v)⊤ ,

Φ = [X⊤
1 β1,1, ...,X

⊤
Nβ1,N]⊤ ,

β1,n = σs

(
τ0X

(1,:)
n W⊤

QWKX⊤
n

)⊤
n ∈ [N] .

(53)

By Eq. (48) w.p at least 1 − δ1, λmin(F̂preF̂
⊤
pre) ≥ dmλ0/4,, as long as it holds dm ≥ Ω̃(N/λ0),

where λ0 = λmin

(
Ew∼N (0,ηV Id)[σr(Φw)σr(Φw)⊤]

)
, and Ω̃ hides logarithmic factors depending

on δ1. Lastly, note that the activation function in the output layer σr is 1-Lipschitz and is applied
to σr

(
WV X

⊤βi

)
, where X⊤βi is bounded due to the softmax’s property in Lemma 8, then by

Lemma C.1 of Nguyen and Mondelli [2020], w.p. at least 1 − δ3, one has
√
2ℓ(θ0) ≤ Õ(

√
N).

Plugging back Eqs. (2) and (3), it suffices to prove the following inequality.

dmλ0/4 ≥ Õ(Nd3/2s Cx

√
dm/d) , (54)

(dmλ0/4)
3/2 ≥ Õ(N3/2d3sC

2
x(1 + 4C4

xd
2
sd

−2)) . (55)

By Lemma 15, with probability at least 1− exp (−Ω((N − 1)−ĉd−1
s)), one has λ0 ≥ Θ(ηV /ds) =

Θ(d−1d−1
s). Thus, when dm ≥ Ω̃(N2), all of the above conditions hold. As a result, the conditions

in Eqs. (45) and (46) are satisfied and the convergence of training Transformer is guaranteed as in
Eq. (4). Note that one can achieve the same width requirement and probability for He initialization,
and the proof bears resemblance to the LeCun initialization.

C.4 Proof of Theorem 2 (NTK analysis)

Proof. Below, we present the proof for NTK initialization. We select CQ = CK = CV = CO = 1,
then by Lemma 5, with probability at least 1− 8e−dm/2, we have:

λ̄V = O(
√
dm +

√
d), λ̄O = O(

√
dm) ,

λ̄Q = O(
√

dm +
√
d), λ̄K = O(

√
dm +

√
d) .

(56)

When dm ≥ d, plugging Eq. (56) into Eqs. (2) and (3), it suffices to prove the following equations.

α2 ≥ O(
√
Nd5/2s C3

x)
√
2ℓ(θ0) , (57)

α3 ≥ O(Nd3sC
2
x(1 + 4C4

xd
2
s))
√
2ℓ(θ0) . (58)

Next, we will provide the lower bound for α2 = λmin((F
0
pre)(F

0
pre)

⊤). In the following context, we
hide the index 0 for simplification. One can note that FpreF

⊤
pre is the summation of PSD matrices,

thus, it suffices to lower bound: λmin(F̂preF̂
⊤
pre), where we introduce the following notations:

F̂preF̂
⊤
pre = τ21σr(ΦW⊤

v)σr(ΦW⊤
v)⊤ ,

Φ = [X⊤
1 β1,1, ...,X

⊤
Nβ1,N]⊤ ,

β1,n = σs

(
τ0X

(1,:)
n W⊤

QWKX⊤
n

)⊤
n ∈ [N].

(59)

By Eq. (48), w.p at least 1 − δ, λmin(F̂preF̂
⊤
pre) ≥ dmλ0/4, as long as it holds dm ≥ Ω̃(N/λ0),

where λ0 = λmin

(
Ew∼N (0,Id)[σr(Φw)σr(Φw)⊤]

)
, and Ω̃ hides logarithmic factors depending on

δ1. Lastly, w.p. at least 1 − δ3, one has
√

2ℓ(θ0) ≤ Õ(
√
N). Plugging back Eqs. (2) and (3), it

suffices to prove the following inequality.

dmλ0/4 ≥ Õ(Nd5/2s C3
x) , (60)

(dmλ0/4)
3/2 ≥ Õ(N3/2d3sC

2
x(1 + 4C4

xd
2
s)) . (61)

By Lemma 15, with probability at least 1− exp (−Ω((N − 1)−ĉd−1
s)), we have λ0 ≥ Ω(1). Thus,

all of the above conditions hold when dm = Ω̃(N). As a result, the conditions in Eqs. (57) and (58)
are satisfied and the convergence of training Transformer is guaranteed.

30

C.5 Discussion for different initialization schemes

Recall that the convergence result in Theorem 2 shows:

ℓ(θ⊤) ≤
(
1− γ

α2

2

)t

ℓ(θ0).

Thus, to discuss the convergence speed for different initialization, we need to check the lower bound
for α2. From the proofs for different initialization schemes above, we have the following lower bound
for α2, i.e.,

α2 = λmin(F̂preF̂
⊤
pre) ≥ τ21 dmλ0/4 ≥ τ21 ηV dmΩ(N/d),

with high probability. Plugging the value of τ1 and ηV , we observe that for LeCun initialization
and He initialization: α2 ≥ Ω(dmN/d) while for NTK initialization: α2 ≥ Ω(N/d). Thus, the
convergence speed of LeCun initialization and He initialization is faster than NTK initialization. As a
result, faster step-size is required for NTK intialization.

C.6 Discussion for τ0 = d−1
m and τ0 = d

−1/2
m

Eq. (4) indicates that the convergence speed is affected by α, there we compare the lower bound for
α for these two scaling. In Appendix C.3, we have proved that under the LeCun initialization, one
has α2 ≥ dmλ0/4 ≥ dmηV µ(σr)

2Θ(∥β1,k∥22). Note that this bound holds for these two different
scaling, which is inside β. Thus in the next, we need to see the difference between the lower bound of
∥β1,k∥22) in the case of these two scalings. Specifically, for τ0 = d

−1/2
m scaling, we have proved that

∥β1,k∥22 ≥ 1/ds by Lemma 8. However, for the case of τ0 = d−1
m scaling, when the width is large

enough, the value inside the softmax tends to zero, as a result, ∥β1,k∥22 ≈ 1/ds. Thus, we can see
that as the width increases, the convergence speed of τ0 = d

−1/2
m could be faster. Lastly, we remark

on the difference in the step size for these two scales, which can be seen from the definition of C and
its corresponding c1, c2, c3 in Appendix C.2.

C.7 Discussion for extension to deep Transformer and residual Transformer

Extension from our shallow Transformer to deep Transformer is not technically difficult as they
share the same analysis framework. Nevertheless, the extension requires several tedious derivations
and calculations involving the query, key, and value matrices along different layers. Here we point
out the proof roadmap for this extension. The first step is following Proposition. 1 to provide the
sufficient condition for the convergence guarantee, e.g., Eqs. (2) and (3). The second step is similar to
Theorem 2, where we need to verify the aforementioned assumptions for different initialization. In the
second part, the main task is to prove the lower bound of α := σmin

(
F 0
pre

)
, where Fpre is the output

of the last hidden layer. One can apply concentration inequality to bound the difference between
σmin

(
F 0
pre

)
and σmin

(
F ⋆0
pre

)
, where the latter is the corresponding limit in infinite width. Lastly,

one needs to plug the lower bound into the assumptions in order to obtain the width requirement.

Our proof framework is general and can handle the following residual Transformer. Here we give
a proof sketch to show how to achieve this. Specifically, we consider the residual block in the
self-attention layer:

A1 = Self-attention(X) ≜ σs

(
τ0(XW⊤

Q)
(
XW⊤

K

)⊤) (
XW⊤

V

)
+X.

As a result, the output becomes

f(X) = τ1w
⊤
O

ds∑
i=1

σr

(
WV X

⊤βi + (X(i:))
⊤)

.

To prove the convergence of the above residual Transformer, the first part that will be modified is the
proof for Proposition 1. The formula for fpre becomes as follows:

fpre = τ1w
⊤
O

ds∑
i=1

σr

(
WV X

⊤βi + (X(i:))
⊤)

.

31

Lemmas 7 and 8 remain unchanged. In Lemma 9, only the first step in the proof changes while the
remaining part does not change because the term X(i:)⊤ in two adjacent time steps cancels out. In
Lemma 10, we have

||τ1
ds∑
i=1

σr

(
W t′

V X⊤
1 βt′

i,1(X
(i:))
)
||2 ≤ τ1ds

(
||W t′

V ||2d1/2s Cx + Cx

)
.

Similarly, in the remaining lemmas, we need to add the additional term Cx for the upper bound of
||X(i:)||2.

The second part is the proof for Theorem 1 regarding the lower bound for α0. By Weyl’s inequality:

α0 = σmin(Fpre) ≥ σmin(F
∗
pre)− ||Fpre − F ∗

pre||2,

where we denote by Fpre = [fpre(X1), · · · ,fpre(XN)], and F ∗
pre is the corresponding one without

the residual connection. Then we can upper bound the second term can be bounded as follows:

||Fpre − F ∗
pre||2 ≤ ||Fpre − F ∗

pre||F

≤
√
N ||τ1w⊤

O

ds∑
i=1

σr

(
WV X

⊤βi + (X(i:))
⊤)

− τ1w
⊤
O

ds∑
i=1

σr

(
WV X

⊤βi

)
||2

≤
√
Nτ1ds||wO||2||WV ||2Cx.

(62)

The remains step follows the same as previous analysis.

C.8 Linear over-parametrization and attention module behaving as a pooling layer

In this section, we discuss the link between the linear over-parametrization and attention module
behaving as a pooling layer under the d−1

m scaling. First, due to the d−1
m scaling, the attention module

degenerates to a pooling layer according to the law of large numbers. In this case, the nonlinearity on
X disappears and thus the minimum eigenvalue of ΘΘ⊤ can be estimated via XX⊤. Accordingly,
this leads to the minimum eigenvalue in the order of Ω(N/d), and thus linear over-parameterization
is enough.

D Proof for NTK

In this section, we elaborate the proof for Lemma 1 in Appendix D.1, the proof for Theorem 3 in
Appendix D.3, respectively.

D.1 Proof of Lemma 1

Proof. We will compute the inner product of the Jacobian of each weight separately. Firstly, we
analyze wO. Let us denote by βi := σs

(
τ0X

(i,:)W⊤
QWKX⊤)⊤ ∈ Rds . Then:

∂f(X)

∂wO
= τ1

ds∑
i=1

σr

(
WV X

⊤βi

)
.

The inner product of the gradient is:

lim
dm→∞

〈
∂f(X)

∂wO
,
∂f(X ′)

∂wO

〉
= τ21

ds∑
i=1,j=1

lim
dm→∞

(
σr

(
WV X

′⊤β′
j

))⊤ (
σr

(
WV X

⊤βi

))
= d2sEw∼N (0,I)

(
σr

(
w⊤X ′⊤1ds

)) (
σr

(
w⊤X⊤1ds

))
,

(63)

where the second equality uses the law of large numbers. Secondly, we analyze WQ:

∂f(X)

∂W
(p,q)
Q

= τ0τ1

ds∑
i=1

(
wO ◦ σ̇r

(
WV X

⊤βi

))⊤
WV X

⊤ (diag(βi)− βiβ
⊤
i

)
XW⊤

Kepe
⊤
q X

(i,:)⊤ .

32

Thus:
∂f(X)

∂WQ
= τ0τ1

ds∑
i=1

WkX
⊤ (diag(βi)− βiβ

⊤
i

)
XW⊤

V

(
wO ◦ σ̇r

(
WV X

⊤βi

))
X(i,:) .

The inner product of the gradient is:

lim
dm→∞

〈
∂f(X)

∂WQ
,
∂f(X ′)

∂WQ

〉
= lim

dm→∞
τ20 τ

2
1

ds∑
i=1,j=1

Trace
(
WkX

⊤ (diag(βi)− βiβ
⊤
i

)
XW⊤

V

(
wO ◦ σ̇r

(
WV X

⊤βi

))
X(i,:)

X(j,:)⊤ (wO ◦ σ̇r

(
WV X

′⊤β′
j

))⊤
WV X

′⊤ (diag(β′
j)− β′

jβ
′⊤
j

)
X ′W⊤

k

)
= lim

dm→∞

ds∑
i=1,j=1

X(i,:)X(j,:)⊤⟨τ0τ1
(
X⊤ (diag(βi)− βiβ

⊤
i

)
XW⊤

V

(
wO ◦ σ̇r

(
WV X

⊤βi

))
,

τ0τ1W
⊤
k WkX

′⊤ (diag(β′
j)− β′

jβ
′⊤
j

)
X ′W⊤

V

(
wO ◦ σ̇r

(
WV X

′⊤β′
j

)))
⟩ .

For the first term of the inner product, we have:
lim

dm→∞
τ0τ1X

⊤ (diag(βi)− βiβ
⊤
i

)
XW⊤

V

(
wO ◦ σ̇r

(
WV X

⊤βi

))

= lim
dm→∞

X⊤ (diag(βi)− βiβ
⊤
i

)
X


τ0τ1

∑dm

k=1 W
(k,1)
V w

(k)
O σ̇r

(
WV X

⊤βi

)(k)
...

τ0τ1
∑dm

k=1 W
(k,d)
V w

(k)
O σ̇r

(
WV X

⊤βi

)(k)


= X⊤ (diag(1ds
)− 1ds

1⊤
ds

)
X

0...
0

 = 0 ,

where the second equality is by the law of large numbers and Ew = 0 for a random variable
w ∼ N (0, 1). Thus: limdm→∞

〈
∂f(X)
∂WQ

, ∂f(X′)
∂WQ

〉
= 0. Similarly, limdm→∞

〈
∂f(X)
∂WK

, ∂f(X′)
∂WK

〉
= 0.

Lastly, we analyze WV :

∂f(X)

∂W
(p,q)
V

= τ1

ds∑
i=1

(
wO ◦ σ̇r

(
WV X

⊤βi

))⊤
epe

⊤
q X

⊤βi.

Thus:
∂f(X)

∂WV
= τ1

ds∑
i=1

(
wO ◦ σ̇r

(
WV X

⊤βi

))
β⊤
i X .

The inner product of the gradient is:

lim
dm→∞

〈
∂f(X)

∂WV
,
∂f(X ′)

∂WV

〉
= lim

dm→∞
τ21

ds∑
i=1,j=1

Trace
((

wO ◦ σ̇r

(
WV X

⊤βi

))
β⊤
i XX ′⊤β′

j

(
wO ◦ σ̇r

(
WV X

′⊤β′
j

))⊤)

= lim
dm→∞

τ21

ds∑
i=1,j=1

(
wO ◦ σ̇r

(
WV X

′⊤β′
j

))⊤ (
wO ◦ σ̇r

(
WV X

⊤βi

))
β⊤
i XX ′⊤β′

j

= lim
dm→∞

τ21

ds∑
i=1,j=1

dm∑
k=1

(w
(k)
O)2σ̇r

(
W

(k,:)
V X ′⊤β′

j

)
σ̇r

(
W

(k,:)
V X⊤βi

)
β⊤
i XX ′⊤β′

j

= d2sEw∼N (0,I)

(
σ̇r

(
w⊤X ′⊤1ds

)) (
σ̇r

(
w⊤X⊤1ds

)) (
1⊤
ds
XX ′⊤1ds

)
,

(64)
where the last equality uses the law of large numbers.

33

D.2 NTK minimum eigenvalue

Lemma 16. Given Φ defined in Eq. (53) and Φ⋆ defined in Lemma 1, denote λ∗ = λmin(Φ
⋆Φ⋆⊤),

and suppose the width satisfies dm = Ω(
N2

√
log(2d2N2/δ)

λ2
∗

) , then with probability at least 1− δ, one

has
∥∥ΦΦ⊤ −Φ⋆Φ⋆⊤

∥∥
F
≤ λ∗

4 and λmin(ΦΦ⊤) ≥ 3λ∗
4 .

Proof. In the following content, the variable with ⋆ indicates the corresponding variable with infinite
width dm. According to the definition of Φ in Eq. (53) and Φ⋆ in Lemma 1, for each entry in ΦΦ⊤

and Φ⋆Φ⋆⊤, we have

|(ΦΦ⊤ −Φ⋆Φ⋆⊤)(n,r)| = |β⊤
1,nXnX

⊤
r β1,r − β⋆⊤

1,nXnX
⊤
r β⋆

1,r|
≤
∥∥XnX

⊤
r (β1,n − β⋆

1,n)
∥∥
2
+
∥∥XnX

⊤
r (β1,r − β⋆

1,r)
∥∥
2
≤ C2

xds(
∥∥β1,n − β⋆

1,n

∥∥
2
+
∥∥β1,r − β⋆

1,r

∥∥
2
) .

(65)

Next, we will bound
∥∥β1,n − β⋆

1,n

∥∥
2
,∥∥β1,n − β⋆

1,n

∥∥
2
=

∥∥∥∥σs

(
τ0X

(1,:)
n W⊤

QWKX⊤
n

)⊤
− σs

(
τ0X

(1,:)
n W ⋆⊤

Q W ⋆
KX⊤

n

)⊤∥∥∥∥
2

≤ 2C2
xds

∥∥τ0W⊤
QWK − τ0W

⋆⊤
Q W ⋆

K

∥∥
F

(By Lemma 7) .
(66)

Let first consider the absolute value of each element of τ0W⊤
QWK − τ0W

⋆⊤
Q W ⋆

K , i.e.,

|τ0W⊤
QWK − τ0W

⋆⊤
Q W ⋆

K |(i,j) = |τ0
dm∑
q=1

W
(q,i)
Q W

(q,j)
k − τ0

dm∑
q=1

W
⋆(q,i)
Q W

⋆(q,j)
k |.

Since W
(q,i)
Q W

(q,j)
k ∼ SE(

√
2ηQK ,

√
2ηQK) is sub-exponential random variable, by Lemma 2 and

Lemma 3, τ0
∑dm

q=1 W
(q,i)
Q W

(q,j)
k ∼ SE(τ0ηQK

√
2dm,

√
2τ0ηQK), by Bernstein’s inequality, when

dm ≥ 2 log(2/δ), the following inequality holds with probability at least 1− δ:

|τ0
dm∑
q=1

W
(q,i)
Q W

(q,j)
k − τ0

dm∑
q=1

W
⋆(q,i)
Q W

⋆(q,j)
k | ≤ 2τ0ηQK

√
dm log (2/δ) . (67)

Substituting δ = δ′

d2 and applying union bound, we can obtain that when dm ≥ 2 log 2d2

δ′ , with
probability at least 1− δ′:∥∥β1,n − β⋆

1,n

∥∥
2
≤ 4τ0ηQKC2

xdsd
√
dm log(2d2/δ′) . (68)

Substituting back to Eq. (65), the following inequality holds with the same width requirement and
probability. |(ΦΦ⊤ −Φ⋆Φ⋆⊤)(n,r)| ≤ 8τ0ηQKC4

xdsd
√

dm log(2d2/δ′) Applying the union bound
over the index (n, r) for n ∈ [N] and r ∈ [N], and substituting δ′ = δ′′

N2 , we obtain that when the
width dm ≥ 2 log 2d2N2

δ′′ , the following inequality holds with probability at least 1− δ′′:

∥∥ΦΦ⊤ −Φ⋆Φ⋆⊤∥∥
F
=

√√√√ N∑
n=1

N∑
r=1

|(ΦΦ⊤ −Φ⋆Φ⋆⊤)(n,r)|2 ≤ 8Nτ0ηQKC4
xdsd

√
dm log(2d2N2/δ′′) .

In the case of LeCun initialization when dm = Ω(
N2

√
log(2d2N2/δ′′)

λ2
0

) ,
∥∥ΦΦ⊤ −Φ⋆Φ⋆⊤

∥∥
F
≤ λ∗

4 .
Lastly, one has:

λmin(ΦΦ⊤) ≥ λ∗ −
∥∥ΦΦ⊤ −Φ⋆Φ⋆⊤∥∥

2
≥ λ∗ −

∥∥ΦΦ⊤ −Φ⋆Φ⋆⊤∥∥
F
≥ 3λ∗

4
.

where the first inequality is by Weyl’s inequality. One can easily check that the same result also holds
for He initialization and NTK initialization.

Lemma 17. Given the Φ⋆ defined in Lemma 1, then when N ≥ Ω(d4), with probability at least
1− e−d one has: λmin(Φ

⋆Φ⋆⊤) ≥ Θ(N/d) .

34

Proof. Firstly, let us define Z⋆ = Φ⋆Σ−1/2, then:

λmin(Φ
⋆Φ⋆⊤) = λmin(Φ

⋆⊤Φ⋆) = λmin(Σ
1/2Z⋆⊤Z⋆Σ1/2⊤)

≥ λmin(Z
⋆⊤Z⋆)λmin(Σ) ≥ λmin(Z

⋆⊤Z⋆)CΣ ,

where the last inequality is by Assumption 4). Note that we can reformulate Z⋆ by plugging Φ⋆ as
follows:

Z⋆ = Φ⋆Σ−1/2 =


1
ds

∑ds

i=1 X
(i,:)
1 Σ−1/2

...
1
ds

∑ds

i=1 X
(i,:)
N Σ−1/2

 .

Recall that in Assumption 4, we define the random vector x = X
(i,:)⊤
n and write the covariance

matrix for each feature of x as Σ = E[xx⊤]. Here we further define the random vector z = Σ−1/2x .
Clearly, the covariance matrix for each feature of z is Σz = E[zz⊤] = Id. Therefore, by Proposition
4 of Zhu et al. [2022]), we have λmin(Z

⋆⊤Z⋆) ≥ Θ(N/d), which finishes the proof.

Lemma 18. Suppose the number of samples N ≥ Ω(d4) and the width dm = Ω̃(N2λ−2
∗), where

λ∗ = λmin(Φ
⋆Φ⋆⊤), then under Assumption 4, with probability at least 1 − δ − e−d, one has

λ0 = λmin

(
Ew∼N (0,ηV Id)[σr(Φw)σr(Φw)T]

)
≥ Θ(ηV N/d).

Proof. By the Hermite expansion of σr , one has:

λ0 ≥ ηV µ(σr)
2λmin(ΦΦ⊤) ,

where µ(σr) is the 1-st Hermite coefficient of ReLU satisfying µ(σr) > 0. By Lemma 16, , when the
width satisfies dm = Ω̃(N2λ−2

∗), then with probability at least 1− δ, one has λmin(ΦΦ⊤) ≥ 3
4λ∗ .

Furthermore, by Lemma 17, when N ≥ Ω(d4) w.p. at least 1− e−d one has λ∗ = Θ(N/d) . Thus,
with probability at least 1− δ − e−d, one has:

λ0 ≥ 3

4
ηV µ(σr)

2λ∗ ≥ Θ(ηV N/d)).

Below, we provide a lower bound for the minimum eigenvalue of NTK, which plays a key role
in analyzing convergence, generalization bounds, and memorization capacity [Arora et al., 2019a,
Nguyen et al., 2021, Montanari and Zhong, 2022, Bombari et al., 2022].

To prove this, we need the following assumption.

Assumption 4. Let x =
∑ds

i=1(X
(i,:))⊤, Σ = E[xx⊤], then we assume that Σ is positive definite,

i.e., λmin(Σ) ≥ CΣ for some positive constant CΣ.

Remark: This assumption implies that the covariance matrix along each feature dimension is positive
definite. In statistics and machine learning [Liu et al., 2021, Liang and Rakhlin, 2020, Vershynin,
2018, Hastie et al., 2022], the covariance of x is frequently assumed to be an identity matrix or
positive definite matrix.
Lemma 19 (Minimum eigenvalue of limiting NTK). Under Assumptions 1 and 4 and scaling
τ0 = d−1

m , when N ≥ Ω(d4), the minimum eigenvalue of K can be lower bounded with probability at
least 1− e−d as: λmin(K) ≥ µ(σr)

2Ω(N/d) , where µ(σr) represents the first Hermite coefficient
of the ReLU activation function.

Proof. By the Hermite expansion of σr , we have:

λmin(K) > λmin(Ew∼N (0,I)

(
σr (Φ

⋆w)σr (Φ
⋆w)

⊤
)
)

= λmin

(∞∑
s=0

µs(σr)
2 ⃝s

i=1 (Φ
⋆Φ⋆⊤)

)
[Nguyen and Mondelli, 2020, Lemma D.3]

≥ µ(σr)
2λmin(Φ

⋆Φ⋆⊤) .

35

Note that when N ≥ Ω(d4), based on Lemma 17 and the fact that Φ⋆Φ⋆⊤ and Φ⋆⊤Φ⋆ share the
same non-zero eigenvalues, with probability at least 1− e−d one has:

λmin(K) ≥ µ(σr)
2(
N

d
− 9N2/3d1/3) = µ(σr)

2Θ(N/d) ,

which completes the proof.

Remark: The minimum eigenvalue of the NTK plays an important role in the global convergence,
similar to α in Proposition. 1. By defining α ≜ σmin

(
F 0
pre

)
, under the over-parameterized regime

with dm ≥ N , we have α2 = λmin((F
0
pre)

⊤F 0
pre), which is the exact minimum eigenvalue of the

empirical NTK with respect to the weight in the output layer.

D.3 Proof of Theorem 3

Proof. Before starting the proof, we introduce some useful lemmas that are used to analyze the
randomness of initialized weight.

Lemma 20. Given an initial weight vector w ∈ Rdm where each element is sampled independently
from N (0, 1), for any w̃ such that ∥w̃−w∥2 ≤ R, with probability at least 1− 2 exp(−dm/2), one
has:

∥w̃∥2 ≤ R+ 3
√
dm . (69)

Proof of Lemma 20. By triangle inequality and Lemma 6:

∥w̃∥2 ≤ ∥w̃ −w∥2 + ∥w∥2 ≤ R+ 3
√
dm . (70)

Now we are ready to start our proof, in the following content, we avoid the tilde symbol (̃·) over the
weight for simplicity. Because we aim to study the effect of width (dm), to simplify the proof, we set
the embedding dimension of the input as one, we can write the output layer of the network into the
following form:

f(x) = τ0

ds∑
i=1

σr

(
σs

(
τ1x

(i)w⊤
QwKx⊤

) (
wV x

⊤))⊤ wO (71)

The Hessian matrix H of the network can be written as the following structure:

H =

 HQ,Q HQ,K HQ,V HQ,O

HK,Q HK,K HK,V HK,O

HV,Q HV,K HV,V HV,O

HO,Q HO,K HO,V HO,O

 , (72)

where we partition the Hessian H of the network to each Hessian block e.g., HQ,Q =
∂2f

∂wQ∂wQ
,HQ,K = ∂2f

∂wQ∂wK
, etc. Based on the triangle inequality of the norm, the spectral

norm of the Hessian H can be upper bounded by the sum of the spectral norm of each Hessian block.
We start by analyzing HQ,Q. The time step t is hidden for simplification.

∂f(x)

∂w
(j)
Q

= τ0τ1

ds∑
i=1

x(i)w
(j)
K w⊤

V

(
wO ◦ σ̇r

(
wV x

⊤βi

))
x⊤ (diag(βi)− βiβ

⊤
i

)
x , (73)

where the Jacobian of Softmax is given by Lemma 11. Next, we calculate the second-order derivative.
Each element of the Hessian HQ,Q is

H
(j,p)
Q,Q =

∂2f(x)

∂w
(j)
Q ∂w

(p)
Q

= τ20 τ1

ds∑
i=1

w
(j)
K w

(p)
K (x(i))2w⊤

V

(
wO ◦ σ̇r

(
wV x

⊤βi

))
x⊤Γix ,

36

where we denote by Γi =

{
diag

(
βi ◦ x− βiβi

⊤x
)

−
(
diag (βi)− βiβi

⊤)xβi
⊤ −

βix
⊤ (diag (βi)− βiβi

⊤)x} , ◦ symbolizes Hadamard product. According to initialization of

wO, wV , wQ, wK and Lemma 20, with probability at least 1− 8e−dm/2, we have

∥wV ∥2 ≤ 3
√
ηV dm +R, ∥wO∥2 ≤ 3

√
ηOdm +R,

∥wQ∥2 ≤ 3
√
ηQdm +R, ∥wK∥2 ≤ 3

√
ηKdm +R .

The spectral norm of HQ,Q can be bounded with probability at least 1− 8e−dm/2:

∥HQ,Q∥2 = ∥τ20 τ1
ds∑
i=1

(x(i))2w⊤
V

(
wO ◦ σ̇r

(
wV x

⊤βi

))
x⊤ΓixwKw⊤

K∥2

≤ |τ20 τ1
ds∑
i=1

(x(i))2w⊤
V

(
wO ◦ σ̇r

(
wV x

⊤βi

))
x⊤Γix|∥wKw⊤

K∥2 (Homogeneity of norm)

≤ |τ20 τ1
ds∑
i=1

(x(i))2x⊤Γix|∥wO∥2∥wV ∥2∥wK∥22 (Cauchy–Schwarz inequality)

≤ τ20 τ1|
ds∑
i=1

(x(i))2x⊤Γix|
(
3
√

ηOdm +R
)(

3
√
ηV dm +R

)
(3
√

ηQdm +R)(3
√
ηKdm +R) (Lemma 20)

= O(1/
√
dm) ,

where the last equality is by the bound of ∥Γi∥2, by triangle inequality:

∥Γi∥2 ≤
∥∥diag

(
βi ◦ x− βiβi

⊤x
)∥∥

2
+
∥∥(diag (βi)− βiβi

⊤)xβi
⊤∥∥

2
+
∥∥βix

⊤ (diag (βi)− βiβi
⊤)x∥∥

2
.

(74)

For the first part of Eq. (74), we have∥∥diag
(
βi ◦ x− βiβi

⊤x
)∥∥

2
≤
∥∥diag

(
βi ◦ x− βiβi

⊤x
)∥∥

2
≤
∥∥(βi ◦ x− βiβi

⊤x
)∥∥

∞

≤ ∥(βi ◦ x)∥∞ +
∥∥βiβi

⊤x
∥∥
∞ ≤ ∥x∥∞ + |βi

⊤x| ≤ ∥x∥2 + ∥βi∥2 ∥x∥2 ≤ 2Cx .

For the second part of Eq. (74), we have∥∥(diag (βi)− βiβi
⊤)xβi

⊤∥∥
2
≤
(
∥βi∥∞ +

∥∥βiβi
⊤∥∥

2

) ∥∥xβi
⊤∥∥

2

≤ 2
∥∥xβi

⊤∥∥
2
≤ 2 ∥x∥2

∥∥βi
⊤∥∥

2
≤ 2Cx .

For the third part of Eq. (74), we have∥∥βix
⊤ (diag (βi)− βiβi

⊤)x∥∥
2
≤
∥∥βix

⊤∥∥
2

∥∥(diag (βi)− βiβi
⊤)∥∥

2
∥x∥2 .

Next, we analyze the Hessian HQ,K , where each element is:

H
(j,p)
Q,K =

∂2f

∂w
(j)
Q ∂w

(p)
K

=
∂2f(x)

∂w
(j)
Q ∂w

(p)
Q

= τ20 τ1

ds∑
i=1

w
(j)
K w

(p)
Q (x(i))2w⊤

V

(
wO ◦ σ̇r

(
wV x

⊤βi

))
x⊤Γix .

Due to the symmetry, similar to HQ,Q, the spectral norm of HQ,K can be bounded with probability
at least 1− 8e−dm/2: ∥HQ,K∥2 = O(1/

√
dm).

Next, we analyze the Hessian HQ,V , where each element is:

H
(j,p)
Q,V =

∂2f

∂w
(j)
Q ∂w

(p)
V

= τ0τ1

ds∑
i=1

w
(j)
K x(i)w

(p)
O σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
x .

37

The spectral norm of HQ,V can be bounded with probability at least 1− 8e−dm/2:

∥HQ,V ∥2 = ∥τ0τ1
ds∑
i=1

x(i)σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
xwKwO

⊤∥2

≤ |τ0τ1
ds∑
i=1

x(i)σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
x|∥wKwO

⊤∥2 (Homogeneity of norm)

≤ τ0τ1

ds∑
i=1

|xi|∥diag(βi)− βiβ
⊤
i ∥2∥x∥22∥wK∥2∥wO∥2 (Cauchy–Schwarz inequality)

≤ τ0τ1

ds∑
i=1

|xi|∥diag(βi)− βiβ
⊤
i ∥2∥x∥22

(
3
√
ηQKdm +R

)(
3
√

ηOdm +R
)

(Lemma 20)

= O(1/dm) ,

where the last step is by Weyl’s inequality and the range of the output of Softmax (from zero to one):(
min
j

(β
(j)
i) + ∥βi∥22

)2

≤ ∥diag(βi)− βiβ
⊤
i ∥22 ≤

(
max

j
(β

(j)
i) + ∥βi∥22

)2

= O(1) .

It suffices to bound ∥βi∥2, i.e., ∥σs

(
x(i)xw⊤

QwK

)
∥2. Since the range of each element of the output

of Softmax is from 0 to 1 and the sum of is one, ∥βi∥ ≤ 1.

Next, we analyze the Hessian HQ,O, where each element is:

H
(j,p)
Q,O =

∂2f

∂w
(j)
Q ∂w

(p)
V

= τ0τ1

ds∑
i=1

w
(j)
K x(i)w

(p)
V σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
x .

The spectral norm of HQ,V can be bounded with probability at least 1− 8e−dm/2:

∥HQ,O∥2 = ∥τ0τ1
ds∑
i=1

x(i)σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
xwKwV

⊤∥2

≤ |τ0τ1
ds∑
i=1

x(i)σ̇r

(
w

(p)
V x⊤βi

)
x⊤ (diag(βi)− βiβ

⊤
i

)
x|∥wKwV

⊤∥2 (Homogeneity of norm)

≤ τ0τ1

ds∑
i=1

|xi|∥diag(βi)− βiβ
⊤
i ∥2∥x∥22∥wK∥2∥wV ∥2 (Cauchy–Schwarz inequality)

≤ τ0τ1

ds∑
i=1

|xi|∥diag(βi)− βiβ
⊤
i ∥2∥x∥22

(
3
√
ηQKdm +R

)(
3
√

ηV dm +R
)

(Lemma 20)

= O(1/dm) .

Next, we analyze the Hessian HO,V . Each element of HO,V is:

H
(p,j)
OV =

∂2f(x)

∂w
(p)
O ∂w

(j)
V

= τ1

ds∑
i=1

σ̇r

(
w

(p)
V β⊤

i x
)
x⊤βi1{j=p} .

Note that HO,V is a diagonal matrix. Consequently, the spectral norm of HO,V is:

∥HO,V ∥2 = max
j∈[dm]

|H(jj)
O,V | ≤ |τ1

ds∑
i=1

x⊤βi| ≤ τ1

ds∑
i=1

∥x∥2∥βi∥2 = O(1/dm) .

Next, since each element of HO,O and HV,V is zero, the corresponding spectral norm is zero. Lastly,
due to the symmetry of wK and wQ, we can obtain the same bound for the corresponding Hessian
block. Thus, the spectral norm of Hessian H is upper bounded by O(1/

√
dm), which completes the

proof.

38

0 50 100 150 200 250 300 350 400

Epochs

10 8

10 6

10 4

10 2

100

Tr
ai

ni
ng

 lo
ss

dm=10
dm=100
dm=1000
dm=4000

(a) LeCun initialization, γ = 1.

0 50 100 150 200 250 300 350 400

Epochs
10 10

10 8

10 6

10 4

10 2

100

102

Tr
ai

ni
ng

 lo
ss

:

dm=10
dm=100
dm=1000
dm=4000

(b) He initialization, γ = 1.

0 50 100 150 200 250 300 350 400

Epochs
10 10

10 8

10 6

10 4

10 2

100

102

Tr
ai

ni
ng

 lo
ss

:

dm=10
dm=100
dm=1000
dm=4000

(c) NTK initialization, γ = 1.

0 50 100 150 200 250 300 350 400

Epochs
10 10

10 8

10 6

10 4

10 2

100

102

Tr
ai

ni
ng

 lo
ss

:

dm=10
dm=100
dm=1000
dm=4000

(d) NTK initialization, γ = 10.

Figure 5: Comparison of convergence curve for different initialization schemes. The convergence
speed under Lecun/He initialization is generally faster than that of NTK initialization with the same
step size.

E Additional details on experiments

E.1 Additional result in Section 5.1
In this section, we present the convergence curve for different initialization schemes following the
setup in Section 5.1. The results in Figures 5a to 5c show that when using the same step size
γ = 1 for LeCun and He initialization exhibits similar behavior while NTK initialization leads to
slower convergence. This is consistent with our theoretical finding. We also depict the result with
larger step size γ = 10 for NTK initialization in Figure 5d, following our analysis in Appendix C.5.

0.00 0.25 0.50 0.75
t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 6: Verification of Assump-
tion 3 on MNIST dataset.

E.2 Additional result and set-up in Section 5.2

We have validated Assumption 3 on language data in the main
paper. Here we will validate it on image dataset. Specifically,
we choose MNIST dataset and consider the embedding in the
ViT as X , then we plot P

(∣∣〈X⊤
n Xn,X

⊤
n′Xn′

〉∣∣ ≥ t
)

as t
increases in Figure 6, where we could see exponential decay.
The architecture of ViT is the same as in Section 5.2.

Additionally, in Figure 7, we can see that d−1/2
m setting achieves

faster convergence in training loss and higher test accuracy. In
Figure 8, we conduct the experiment on MNIST with regres-
sion task by using the same architecture. We take two classes
{0, 1} in MNIST for binary classification, the output of our
regression is taken by sign(f), and the training error is given by∑N

n=1[sign(f(Xn))− yn]
2. We can see that the convergence

speed of d−1/2
m is faster than that of d−1

m . Overall, these separa-
tion results on both classification and regression tasks provide
good justification for the d

−1/2
m scaling.

39

0 10 20 30 40 50

Epochs

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
%

dm = 16, 0 = d 1
m

dm = 16, 0 = d 1/2
m

dm = 1024, 0 = d 1
m

dm = 1024, 0 = d 1/2
m

dm = 16384, 0 = d 1
m

dm = 16384, 0 = d 1/2
m

Pooling

Figure 7: Test accuracy of classification task on MNIST dataset.

0 500 1000 1500 2000 2500

Iterations
10 4

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

dm = 16, 0 = d 1
m dm = 16, 0 = d 1/2

m dm = 1024, 0 = d 1
m dm = 1024, 0 = d 1/2

m

Figure 8: Regression task (with MSE loss) on MNIST dataset.

0 50 100 150 200 250 300 350 400

Epochs

10 8

10 6

10 4

10 2

100

Tr
ai

ni
ng

 lo
ss

:
(W

t)

dm=10
dm=100
dm=1000
dm=4000

(a) Convergence curve.

0 50 100 150 200 250 300 350 400

Epochs

10 2

10 1

100

Ch
an

ge
 o

f w
ei

gh
ts

: ||W
t

W
0 ||

F
||W

0 ||
F

dm=10
dm=100
dm=1000
dm=4000

(b) Weight movement.

0 100 200 300 400
Epochs

0

50

100

150

200

250

300

350

400

Ep
oc

hs

dm=10

0 100 200 300 400
Epochs

0

50

100

150

200

250

300

350

400

Ep
oc

hs

dm=100

0 100 200 300 400
Epochs

0

50

100

150

200

250

300

350

400

Ep
oc

hs

dm=1000

0 100 200 300 400
Epochs

0

50

100

150

200

250

300

350

400

Ep
oc

hs

dm=4000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(c) Kernel distance.

Figure 9: Experimental validation of the theoretical results on Transformers with τ0 = d−1
m scaling

trained on synthetic data. (a) Linear convergence. (b) Rate of change of the weights during training.
Observe that the weights change very slowly after the 50th epoch. (c) Evolution of the NTK during
the training. The result mirrors the plot (b) and demonstrates how the kernel varies significantly at
the beginning of the training and remains approximately constant later. As the width increases, the
NTK becomes more stable.

F Limitation

Firstly, in this work, we prove the global convergence guarantee for Transformer under different
initialization schemes. Nevertheless, we only consider the gradient descent training under squared loss.

40

Our result does not cover SGD training and other loss functions, e.g., hinge loss and cross-entropy
loss. Secondly, the model architecture being analyzed in this work is the encoder of Transformer
which is widely used for regression problems or image classification problems. We do not consider
the entire Transformer including the decoder, which is designed for sequence-to-sequence modeling.
Lastly, our model does not cover the deep Transformer. We believe our analytic framework paves a
way for further analyzing large-scale Transformer.

G Societal impact

This work offers a convergence analysis for the Transformer, which is a core element within con-
temporary large language models. Our theoretical analysis with realistic initializations and scaling
schemes lays a theoretical foundation for the interested practitioner in the ML community to further
study other priorities of Transformer such as generalization and in-context learning. We do not expect
any negative societal bias from this work.

41

	Introduction
	Related work
	Problem setting
	Notation
	Model formulation of shallow Transformer

	Main results
	General framework for convergence analysis
	LeCun and He initialization under the dm-1/2 setting
	NTK initialization under the dm-1 setting
	Discussion on convergence results

	Experimental validations
	Fitting synthetic data
	Fitting real-world dataset

	Conclusion
	Symbols and Notation
	Theoretical background
	Preliminary on NTK
	Preliminary on Sub-Exponential random variables
	Related work on over-parameterization for convergence analysis

	Proof for convergence analysis
	Auxiliary lemmas
	Proof of Lg
	Proof of Lg
	Proof of Lg
	Discussion for different initialization schemes
	Discussion for 0 = dm-1 and 0 = dm-1/2
	Discussion for extension to deep Transformer and residual Transformer
	Linear over-parametrization and attention module behaving as a pooling layer

	Proof for NTK
	Proof of Lg
	NTK minimum eigenvalue
	Proof of Lg

	Additional details on experiments
	Additional result in sec:exprandomdata
	Additional result and set-up in sec:exprealworld

	Limitation
	Societal impact

