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Abstract
We show that with small-to-medium training001
data, fine-tuning only the bias terms (or a sub-002
set of them) of pre-trained BERT models is003
competitive with (and sometimes better than)004
fine-tuning the entire model. For larger data,005
bias-only fine-tuning is competitive with other006
sparse fine-tuning methods. Besides their prac-007
tical utility, these findings are relevant for the008
question of understanding the commonly-used009
process of finetuning: they support the hy-010
pothesis that finetuning is mainly about expos-011
ing knowledge induced by language-modeling012
training, rather than learning new task-specific013
linguistic knowledge.014

1 Introduction015

Large pre-trained transformer based language mod-016

els, and in particular bidirectional masked language017

models from the BERT family (Devlin et al., 2018;018

Liu et al., 2019; Joshi et al., 2019), are responsible019

for significant gains in many NLP tasks. Under020

the common paradigm, the model is pre-trained021

on large, annotated corpora with the LM objec-022

tive, and then finetuned on task-specific supervised023

data. The large size of these models make them024

expensive to train and, more importantly, expensive025

to deploy. This, along with theoretical questions026

on the extent to which finetuning must change the027

original model, has led researchers to consider fine-028

tuning variants where one identifies a small subset029

of the model parameters which need to be changed030

for good performance in end-tasks, while keeping031

all others intact (§2).032

We present a simple and effective approach to033

fine tuning (§3), which has the following benefits:034

1. Changing very few parameters per fine-tuned035

task.036

2. Changing the same set of parameters for every037

tasks (task-invariance).038

3. The changed parameters are both isolated and039

localized across the entire parameter space.040

4. For small to medium training data, changing 041

only these parameters reaches the same task 042

accuracy as full fine-tuning, and sometimes 043

even improves results. 044

Specifically, we show that freezing most of the 045

network and fine-tuning only the bias-terms is 046

surprisingly effective. Moreover, if we allow the 047

tasks to suffer a small degradation in performance, 048

we can fine-tune only two bias components (the 049

“query” and “middle-of-MLP” bias terms), amount- 050

ing to half of the bias parameters in the model, and 051

only 0.04% of all model parameters. 052

This result has a large practical utility in de- 053

ploying multi-task fine-tuned models in memory- 054

constrained environments, as well as opens the way 055

to trainable hardware implementations in which 056

most of the parameters are fixed. 057

2 Background: fine-tuning and 058

parameter-efficient fine-tuning 059

In transfer-learning via model fine-tuning, a pre- 060

trained encoder network takes the input and pro- 061

duces contextualized representations. Then, a task- 062

specific classification layer (here we consider linear 063

classifiers) is added on top of the encoder, and the 064

entire network (encoder+task specific classifiers) is 065

trained end-to-end to minimize the task loss. 066

Desired properties. While fine-tuning per-task 067

is very effective, it also results in a unique, large 068

model for each pre-trained task, making it hard to 069

reason about as well as hard to deploy, especially as 070

the number of tasks increases. Ideally, one would 071

want a fine-tuning method that: 072

(i) matches the results of a fully fine-tuned model; 073

(ii) changes only a small portion of the model’s 074

parameters; and (iii) enables tasks to arrive in a 075

stream, instead of requiring simultaneous access to 076

all datasets. For efficient hardware based deploy- 077

ments, it is further preferred that (iv): the set of 078

parameters that change values is consistent across 079
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different tasks.080

Learning vs. Exposing. The feasibility of fulfill-081

ing the above requirements depends on a fundamen-082

tal question regarding the nature of the fine-tuning083

process of large pre-trained LMs: to what extent084

does the fine-tuning process induces the learning of085

new capabilities, vs. the exposing of existing capa-086

bilities, which were learned during the pre-training087

process.088

Existing approaches. Two recent works have089

demonstrated that adaptation to various end-tasks090

can in fact be achieved by changing only a small091

subset of parameters. The first work, by Houlsby092

et al. (2019) (“Adapters”), achieves this goal by in-093

jecting small, trainable task-specific “adapter” mod-094

ules between the layers of the pre-trained model,095

where the original parameters are shared between096

tasks. The second work, by Guo et al. (2020)097

(“Diff-Pruning”), achieves the same goal by adding098

a sparse, task-specific difference-vector to the orig-099

inal parameters, which remain fixed and are shared100

between tasks. The difference-vector is regular-101

ized to be sparse. Both methods allow adding only102

a small number of trainable parameters per-task103

(criteria ii), and each task can be added without104

revisiting previous ones (criteria iii). They also par-105

tially fulfill criteria (i), suffering only a small drop106

in performance compared to full fine-tuning. The107

Adapter method, but not the Diff-Pruning method,108

also supports criteria (iv). However, Diff-Pruning is109

more parameter efficient than the Adapter method110

(in particular, it adds no new parameters), and also111

achieves better task scores. We compare against112

Diff-Pruning and Adapters in the experiments sec-113

tion, and show that we perform favorably on many114

tasks while also satisfying criteria (iv).115

3 Bias-terms Fine-tuning (BitFit)116

We propose a method we call BitFit (BIas-Term117

FIne-Tuning), in which we freeze most of the118

transformer-encoder parameters, and train only the119

bias-terms and the task-specific classification layer.120

The approach is parameter-efficient: each new121

task requires storing only the bias terms parameter122

vectors (which amount to less than 0.1% of the123

total number of parameters), and the task-specific124

final linear classifier layer.125

Concretely, the BERT encoder is composed of126

L layers, where each layer ℓ starts with M self-127

attention heads, where a self attention head (m, ℓ)128

has key, query and value encoders, each taking the129

form of a linear layer: 130

Qm,ℓ(x) = Wm,ℓ
q x+ bm,ℓ

q 131

Km,ℓ(x) = Wm,ℓ
k x+ bm,ℓ

k 132

Vm,ℓ(x) = Wm,ℓ
v x+ bm,ℓ

v 133

Where x is the output of the former encoder layer 134

(for the first encoder layer x is the output of the 135

embedding layer). These are then combined using 136

an attention mechanism that does not involve new 137

parameters: 138

hℓ
1 = att

(
Q1,ℓ,K1,ℓ,V1,ℓ, . . . ,Qm,ℓ,Km,ℓ,Vm,l

)
139

and then fed to an MLP with layer-norm (LN): 140

hℓ
2 = Dropout

(
Wℓ

m1
· hℓ

1 + bℓ
m1

)
(1) 141

hℓ
3 = gℓ

LN1
⊙ (hℓ

2 + x)− µ

σ
+ bℓ

LN1
(2) 142

hℓ
4 = GELU

(
Wℓ

m2
· hℓ

3 + bℓ
m2

)
(3) 143

hℓ
5 = Dropout

(
Wℓ

m3
· hℓ

4 + bℓ
m3

)
(4) 144

outℓ = gℓ
LN2

⊙ (hℓ
5 + hℓ3)− µ

σ
+ bℓ

LN2
(5) 145

The collection of all matrices Wℓ,(·)
(·) and vectors 146

gℓ
(·), b

ℓ,(·)
(·) , indicated in blue and purple are the net- 147

work’s parameters Θ, where the subset of purple 148

vectors bℓ,(·)
(·) are the bias terms.1 149

The bias terms are additive, and correspond to a 150

very small fraction of the network, in BERTBASE 151

and BERTLARGE bias parameters make up 0.09% 152

and 0.08% of the total number of parameters in 153

each model, respectively. 154

We show that by freezing all the parameters 155

W(·) and g(·) and fine-tuning only the additive 156

bias terms b(·), we achieve transfer learning perfor- 157

mance which is comparable (and sometimes bet- 158

ter!) than fine-tuning of the entire network, 159

We also show that we can fine-tune only a subset 160

of the bias parameters, namely those associated 161

with the query and the second MLP layer (only 162

b
(·)
q and b

(·)
m2), and still achieve accuracies that 163

rival full-model fine-tuning. 164

4 Experiments and Results 165

Datasets. We evaluate BitFit on the GLUE bench- 166

mark (Wang et al., 2018).2 Consistent with previ- 167

ous work (Houlsby et al., 2019; Guo et al., 2020) 168

1In Appendix §A.1 we relate this notation with parameter
names in HuggingFace implementation.

2Appendix §A.3 lists the tasks and evaluation metrics.
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%Param QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.
Train size 105k 67k 393k 393k 8.5k 3.7k 7k 2.5k 364k

(V) Full-FT† 100% 93.5 94.1 86.5 87.1 62.8 91.9 89.8 71.8 87.6 84.8
(V) Full-FT 100% 91.7±0.1 93.4±0.2 85.5±0.4 85.7±0.4 62.2±1.2 90.7±0.3 90.0±0.4 71.9±1.3 87.5±0.4 84.1
(V) Diff-Prune† 0.5% 93.4 94.2 86.4 86.9 63.5 91.3 89.5 71.5 86.6 84.6
(V) BitFit 0.08% 91.4±2.4 93.2±0.4 84.4±0.2 84.8±0.1 63.6±0.7 91.7±0.5 90.3±0.1 73.2±3.7 85.4±0.1 84.2
(T) Full-FT‡ 100% 91.1 94.1 86.7 86.0 59.6 88.9 86.6 71.2 71.7 81.2
(T) Full-FT† 100% 93.4 94.9 86.7 85.9 60.5 89.3 87.6 70.1 72.1 81.8
(T) Adapters‡ 3.6% 90.7 94.0 84.9 85.1 59.5 89.5 86.9 71.5 71.8 81.1
(T) Diff-Prune† 0.5% 93.3 94.1 86.4 86.0 61.1 89.7 86.0 70.6 71.1 81.5
(T) BitFit 0.08% 92.0 94.2 84.5 84.8 59.7 88.9 85.5 72.0 70.5 80.9

Table 1: BERTLARGE model performance on the GLUE benchmark validation set (V) and test set (T). Lines with †
and ‡ indicate results taken from Guo et al. (2020) and Houlsby et al. (2019) (respectively).

we exclude the WNLI task, on which BERT models169

do not outperform the majority baseline.170

Models and Optimization. We use the publicly171

available pre-trained BERTBASE, BERTLARGE (De-172

vlin et al., 2018) and RoBERTaBASE (Liu et al.,173

2019) models, using the HuggingFace (Wolf et al.,174

2020) interface and implementation. Appendix175

§A.2 lists optimization details.176

Comparison to Diff-Pruning and Adapters (Ta-177

ble 1) In the first experiment, we compare Bit-178

Fit to Diff-Pruning method and Adapters method,179

when using a fewer number of parameters. Table 1180

reports the dev-set and test-set performance com-181

pared to the Diff-Pruning and Adapters numbers182

reported by Guo et al. (2020) and Houlsby et al.183

(2019) (respectively). This experiment used the184

BERTLARGE model.185

On validation set, BitFit outperforms Diff-186

Pruning on 4 out of 9 tasks, while using 6x fewer187

trainable parameters 3. As for test-set results, two188

clear wins compared to Diff-Pruning and 4 clear189

wins compared to Adapters while using 45x fewer190

trainable parameters.191

Different Base-models (Table 2) We repeat192

the BERTLARGE results on different base-models193

(the smaller BERTBASE and the better performing194

RoBERTaBASE). The results in Table 2 show that195

the trends remain consistent.196

Are bias parameters special? Are the bias pa-197

rameters special, or will any random subset do? We198

randomly sampled the same amount of parameters199

as in BitFit from the entire model, and fine-tuned200

only them (“rand uniform” line in Table 3). The201

results are substantially worse across all tasks; sim-202

ilar patterns are observed when the random param-203

eters are sampled as complete rows/columns in the204

parameter matrices (“rand row/col” line in Table205

3QNLI results are not directly comparable, as the GLUE
benchmark updated the test set since then.

Figure 1: Change in bias components (RTE task).

3). 206

Fewer bias parameters (Table 3) Can we fine- 207

tune on only a subset of the bias-parameter? 208

We define the amount of change in a bias vector 209

b to be 1
dim(b) ∥b0 − bF ∥1, that is, the average 210

absolute change, across its dimensions, between the 211

initial LM values b0 and its fine-tuned values bF . 212

Figure 1 shows the change per bias term and layer, 213

for the RTE task (other tasks look very similar, 214

see Appendix §A.4). The ‘key’ bias bk has zero 215

change, consistent with the theoretical observation 216

in Cordonnier et al. (2020). In contrast, bq, the bias 217

of the queries, and bm2, the bias of the intermediate 218

MLP layers (which take the input from 768-dims 219

to 3072), change the most. Table 3 reports dev- 220

set results when fine-tuning only the b(·)
q and b(·)

m2 221

bias terms, for the BERTBASE model. Results are 222

only marginally lower than when tuning all bias 223

parameters. Tuning either b(·)
q or b(·)

m2 alone yields 224

substantially worse results, indicating both bias 225

types are essential. As expected, using a frozen 226

BERTBASE model yields much worse results. 227

Generalization gap. We find that the generaliza- 228

tion gap (Shalev-Shwartz and Ben-David, 2014)— 229
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Method %Param QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.
BB Full-FT 100% 90.7±0.2 92.0±0.4 83.5±0.1 83.7±0.3 56.4±0.9 89.0±1.0 88.9±0.7 70.5±0.6 87.1±0.1 82.3
BB BitFit 0.09% 90.2±0.2 92.1±0.3 81.4±0.2 82.2±0.2 58.8±0.5 90.4±0.5 89.2±0.2 72.3±0.9 84.0±0.2 82.4
BL Full-FT 100% 91.7±0.1 93.4±0.2 85.5±0.4 85.7±0.4 62.2±1.2 90.7±0.3 90.0±0.4 71.9±1.3 87.5±0.4 84.1
BL BitFit 0.08% 91.4±2.4 93.2±0.4 84.4±0.2 84.8±0.1 63.6±0.7 91.7±0.5 90.3±0.1 73.2±3.7 85.4±0.1 84.2
Ro Full-FT 100% 92.3±0.2 94.2±0.4 86.4±0.3 86.9±0.3 61.1±0.8 92.5±0.4 90.6±0.2 77.4±1.0 88.0±0.2 85.3
Ro BitFit 0.09% 91.3±0.2 93.7±0.1 84.8±0.1 85.2±0.2 61.8±1.3 92.0±0.4 90.8±0.3 77.8±1.7 84.5±0.2 84.6

Table 2: Dev-set results for different base models. BB: BERTBASE. BL: BERTLARGE. Ro: RoBERTaBASE.

% Param QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP Avg.
Full-FT 100% 90.7±0.2 92.0±0.4 83.5±0.1 83.7±0.3 56.4±0.9 89.0±1.0 88.9±0.7 70.5±0.6 87.1±0.1 82.3
BitFit 0.09% 90.2±0.2 92.1±0.3 81.4±0.2 82.2±0.2 58.8±0.5 90.4±0.5 89.2±0.2 72.3±0.9 84.0±0.2 82.4
bm2,bq 0.04% 89.4±0.1 91.2±0.2 80.4±0.2 81.5±0.2 57.4±0.8 89.0±0.2 88.4±0.1 68.6±0.6 83.7±0.2 81.1
bm2 0.03% 88.9±0.1 91.1±0.3 79.9±0.3 80.7±0.2 54.9±0.9 87.9±0.6 88.2±0.1 66.8±0.6 82.1±0.4 80.0
bq 0.01% 86.8±0.1 89.6±0.2 74.4±0.3 75.7±0.2 49.1±1.5 84.4±0.2 85.6±0.1 61.4±1.1 80.6±0.4 76.6
Frozen 0.0% 68.7±0.3 81.7±0.1 42.4±0.1 43.8±0.1 31.9±1.1 81.1±0.1 71.4±0.1 56.9±0.4 62.4±0.2 62.1
rand uniform 0.09% 87.8±0.3 90.5±0.3 78.3±0.3 78.8±0.2 54.1±1.0 84.3±0.3 87.2±0.4 62.9±0.9 82.4±0.3 78.5
rand row/col 0.09% 88.4±0.2 91.0±0.3 79.4±0.3 80.1±0.3 53.4±0.6 88.0±0.7 87.9±0.2 65.1±0.7 82.3±0.2 79.5

Table 3: Fine-tuning using a subset of the bias parameters. Reported results are for the BERTBASE model.

the difference between training error and test error—230

is substantially smaller for the BitFit models: while231

for full fine-tuning the train set accuracy reaches232

nearly 100%, in the bias-only fine-tuned models233

the difference between the train and test set perfor-234

mance is often less than 2%.235

Token-level tasks. The GLUE tasks are all sen-236

tence level. We also experimented with token-level237

PTB POS-tagging. Full-FT results for BERTBASE,238

BERTLARGE and RoBERTaBASE are 97.2, 97.4,239

97.2, while BitFit results are 97.2, 97.4, 97.1.240

Size of training data. The GLUE results suggest a241

reverse correlation between BitFit ability to reach242

Full-FT performance, and training set size. To test243

this (and to validate another token-level task), we244

train on increasing-sized subsets of SQuAD v1.0245

Rajpurkar et al. (2016a). The results on Figure 2246

show a clear trend: BitFit dominates over Full-FT247

in the smaller-data regime, while the trend is re-248

versed when more training data is available. We249

conclude that BitFit is a worthwhile targetted fine-250

tuning method in small-to-medium data regimes.251

5 Related Work252

Bias terms and their importance are rarely dis-253

cussed in the literature.4 Zhao et al. (2020) describe254

a masking-based fine-tuning method, and explicitly255

mention ignoring the bias terms, as handling them256

“did not observe a positive effect on performance”.257

An exception is the work of Wang et al. (2019)258

who analyzed bias terms from the perspective of259

4Indeed, the equations in the paper introducing the Trans-
former model (Vaswani et al., 2017) do not include bias terms
at all, and their existence in the BERT models might as well
be a fortunate mistake.

Figure 2: Comparison of BitFit and Full-FT with
BERTBASE exact match score on SQuAD validation set.

attribution method. They demonstrate that the last 260

layer bias values are responsible for the predicted 261

class, and propose a way to back-propagate their 262

importance. Michel and Neubig (2018) finetuned 263

the biases of the output softmax in an NMT sys- 264

tems, to personalize the output vocabulary. Finally, 265

Cai et al. (2020) demonstrate that bias-only fine- 266

tuning similar to ours is effective also for adapta- 267

tion of pre-trained computer vision models. 268

6 Discussion 269

Besides its empirical utility, the remarkable ef- 270

fectiveness of bias-only fine-tuning raises intrigu- 271

ing questions on the fine-tuning dynamics of pre- 272

trained transformers, and the relation between the 273

bias terms and transfer between LM and new tasks. 274

We aim to study those questions in a future work. 275
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A Appendices393

A.1 Layer naming394

For convenience, we relate the notation used in the395

paper with the names of the corresponding parame-396

ters in the popular HuggingFace (Wolf et al., 2020)397

implementation.398

HuggingFace Parameter Name BitFit notation
attention.self.query.bias bq

attention.self.key.bias bk

attention.self.value.bias bv

attention.output.dense.bias bm1

attention.output.LayerNorm.bias bLN1

intermediate.dense.bias bm2

output.dense.bias bm3

output.LayerNorm.bias bLN2

Table 4: Mapping the HuggingFace’s BertLayer bias
parameters names to BitFit paper bias notation.

A.2 Training Details399

To perform classification with BERT, we follow the400

approach of Devlin et al. (2018), and attach a linear401

layer to the contextual embedding of the [CLS]402

token to predict the label. The GLUE tasks are fed403

into BERT using the standard procedures.404

We optimize using AdamW (Loshchilov and Hut-405

ter, 2017), with batch sizes of 16. For full fine-406

tuning, we used initial learning rates in {1e-5, 2e-5,407

3e-5, 5e-5}, and for the bias-only experiments we408

used initial learning rates in {1e-4, 4e-4, 7e-4, 1e-409

3} as the smaller rates took a very long time to410

converge on some of the tasks. With the larger411

learning rates, the bias-only fine-tuning converged412

in 8 or fewer epochs for most tasks, and up to 20413

epochs on the others. We did not perform hyper-414

parameter optimization beyond the minimal search415

over 4 learning rates. In each evaluation we report416

X±Y where X is the average result for training417

5 models with 5 different random seeds, Y is the418

standard deviation.419

To perform classification with RoBERTaBASE, we420

follow the above details but without hyperparam-421

eter search over the learning rates, for bias-only422

fine-tuning we used 1e-4 as learning rate and for423

full fine-tuning we used 1e-5 as learning rate.424

As Mosbach et al. (2020) show, fine-tuning425

BERTLARGE and RoBERTaBASE is a unstable due426

to vanishing gradients. BitFit allows for the usage427

of bigger learning rates, and overall the optimiza-428

tion process is much more stable, when compared429

Task Name Metric
QNLI acc.
SST-2 acc.
MNLI matched acc./mismatched acc.
CoLA Matthews corr.
MRPC F1
STS-B Spearman corr.
RTE acc.
QQP F1

Table 5: Metrics that we use to evaluate GLUE Bench-
mark.

Task Name BERTBASE BERTLARGE
QNLI 1e-4 7e-4
SST-2 4e-4 4e-4
MNLI 1e-4 1e-4
CoLA 7e-4 4e-4
MRPC 7e-4 1e-3
STS-B 1e-4 1e-4
RTE 1e-3 4e-4
QQP 4e-4 4e-4

Table 6: Learning rate configurations for best perform-
ing models.

with a full fine-tuning. 430

A.3 GLUE Benchmark 431

We provide information on the GLUE tasks we 432

evaluated on, as well as on the evaluation metrics. 433

We test our approach on the following subset of 434

the GLUE (Wang et al., 2018) tasks: The Corpus 435

of Linguistic Acceptability (CoLA; Warstadt et al. 436

(2018)), The Stanford Sentiment Treebank (SST- 437

2; Socher et al. (2013)), The Microsoft Research 438

Paraphrase Corpus (MRPC; Dolan and Brockett 439

(2005)), The Quora Question Pairs (QQP; Iyer et al. 440

(2017)), The Semantic Textual Similarity Bench- 441

mark (STS-B; Cer et al. (2017)), The Multi-Genre 442

Natural Language Inference Corpus (MNLI; Bow- 443

man et al. (2015)), The Stanford Question Answer- 444

ing Dataset (QNLI; Rajpurkar et al. (2016b)) and 445

The Recognizing Textual Entailment (RTE; Dagan 446

et al. (2005)). 447

The metrics that we used to evaluate GLUE 448

Benchmark are in Table 5. Learning rate config- 449

urations for best performing models are in Table 450

6. For all the experiments we used the common 451

train:dev:test partition of GLUE. 452

A.4 Amount of change in bias terms 453
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Figure 3: Change in bias components (CoLA task).

Figure 4: Change in bias components (MRPC task).

Figure 5: Change in bias components (STS-B task).

A.5 SQuAD F1 Results454

Figure 6: Comparison of BitFit and Full-FT with
BERTBASE F1 score on SQuAD validation set.
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