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Abstract—Seismocardiography is a potent non-invasive car-
diovascular monitoring technique whose widespread adoption is
currently limited in ambulatory settings due to its susceptibility
to corruption from environmental noise. In the absence of a
clean concurrently collected electrocardiogram (ECG) signal as
a heartbeat reference, template matching paired with windowing
methods can serve as a useful method by which to assess
seismocardiogram (SCG) signal quality. However, windowing
methods can introduce a time-shift in the segmentation of the
SCG beats as compared to a template due to persistently
adapting heart rate. In this study, we assess the performance
of a state-of-the-art SCG signal quality assessment algorithm,
dynamic time feature matching (DTFM), in ranking SCG beats
by signal-to-noise ratio when introducing an artificial time-
delay. We compare this performance against that of a novel
methodology based on topological data analysis (TDA) using
persistence diagrams. We found no significant difference (p>0.05)
in ranking performance between topological data analysis (TDA)
and dynamic time feature matching (DTFM) when SCG beats
were segmented by true R-peak locations. However, we found that
TDA significantly outperformed DTFM (p<0.001) when SCG
beats were segmented 100, 200, or 300 ms earlier than the R-peak
locations. These results suggest the potential promise of TDA-
based methods for robust ECG-free SCG signal quality analysis.
These advancements may facilitate the analysis of longitudinal
SCG data taken in out-of-clinic settings in situations where ECG
monitoring is not viable.

Index Terms—Topological Data Analysis, Persistence Diagram,
Dynamic Time Feature Matching, Seismocardiogram, Signal
Quality, Electrocardiogram-Free, Time-Delay Invariance

I. INTRODUCTION

Seismocardiogram (SCG) derived features such as left ven-
tricular ejection time, SCG magnitude, heart rate (HR) and HR
variability (HRV) have demonstrable utility in the assessment
of conditions such as heart failure and hypovolemia [1], [2].
However, despite its unique utility in non-invasive monitoring
of cardiac mechanical function, the SCG is limited in ambu-
latory settings due to its susceptibility to environmental noise
such as that induced by motion artifacts [3]. This can impact
SCG preprocessing and the efficacy of feature extraction. Due
to this susceptibility, a concurrently obtained electrocardio-
gram (ECG) trace is often used to localize the heartbeat and
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Fig. 1. Time-Shifts in Window-Based SQI Metrics: Window-based signal
quality indexing can be performed by identifying a template beat and
comparing to target SCG segments of the same window size. As the sliding
window moves, varying amounts of time-shifts are introduced due to mismatch
with heart rate, offsetting key SCG morphological features.

segment the SCG signal as part of preprocessing [4], [5].
However, reliance on ECG may not be feasible in scenarios
where additional bulk, skin irritation, and sweat or body fluids
limit its usability (e.g. military scenarios, neonatal care and
trauma environments) [6], [7]. Thus, a major challenge is to
reliably assess SCG signal quality without a reference ECG to
enable the robust assessment of abnormal blood volume status
or cardiac function in critical care settings.

Time-domain approaches to assessing signal quality are
advantageous as they may more directly reflect the quality of
fiducial points on the SCG waveform which are used for fea-
ture extraction. Among these, template-matching algorithms
are advantageous as they do not make any assumptions about
the shape of a prototypical SCG beat which is unstandardized
due to intrasubject variability [4]. Cross-correlation between
a template waveform and the SCG trace can help to iden-
tify heartbeat locations [8]. However, direct correlation-based
methods are limited as they do not account for stretching and
compression of the SCG beat with changes in HR. Dynamic
time warping (DTW) is robust to such deformations in time.
However, the DTW algorithm aims to reduce Euclidean dis-
tance between a template and target beat without accounting
for prominent features in the signal [4].

Dynamic Time Feature Matching (DTFM) addresses this
issue by incorporating constraints on the warp path to ac-
count for important SCG fiducial points [4]. However, the
algorithm’s primary use-case is with ECG-segmented SCG
beats. In the absence of an ECG, SCG segmentation may be
performed by identifying repeatable signal features (e.g. the
aortic opening location) [5]. However, this approach relies on
the presence of clean features, defeating the purpose of signal



Fig. 2. Example seismocardiogram beat traces and corresponding persistence diagrams (PDs): We extracted PDs for the unshifted template beat and beats
containing varying levels of added synthetic noise at multiple shift amounts. Beats of four SNR levels (10000, 5, 0, and -10) which were segmented 100 ms
earlier than the ECG R-peak are shown above with decreasing SNR. Peaks and valleys are colored in accordance with their matching points on the PDs.

quality assessment. Another segmentation method is to utilize
a sliding window across the SCG trace. However, the position
of SCG beats within a window is not known a-priori. Thus, the
beat can be misaligned from the template as shown in Figure
1. Assessing the difference in quality of a time-delayed target
beat and a template may thus pose a challenge to state-of-the-
art SCG SQI detection algorithms reliant on signal alignment.

Topological data analysis (TDA) may serve as a promising
method to capture feature characteristics of the SCG waveform
while overcoming the challenge of template alignment. Persis-
tence diagrams (PD) are a powerful compact representation of
waveform morphology and have been used successfully for
mechanical biosignal analysis [9]. The extraction of PDs is
invariant to smooth deformations in the signal such as skewing,
stretching, rotations, and translations in time [10].

Thus, in this study, we analyze the effect of time-shifted
segmentation of SCG beats on the ability of topological
data analysis using persistence diagrams and DTFM to rank
the signal-to-noise ratio of SCG beats. Such findings may
help to inform the development of future ECG-free signal
quality assessment algorithms. By enabling SCG signal quality
assessment without the reliance on ECG, these algorithms can
help to unlock the SCG’s potential for longitudinal monitoring
of cardiac mechanical function in ambulatory settings and
critical care environments.

II. METHODS

A. Experimental Protocol

This study uses a dataset described in detail in prior work by
Zia et. al [2]. The protocol was approved by the Institutional
Animal Care and Use Committees of the Georgia Institute of
Technology, Translational Testing and Training Labs Inc. and
the Department of the Navy Bureau of Medicine and Surgery.
The data were collected from six anesthetized pigs who under-
went an exsanguination procedure to induce hypovolemia at up
to four different blood volume loss levels (7, 14, 21, and 28%
of total blood volume or until cardiac collapse). Blood was

refilled at the same increments, if possible, after exsanguina-
tion. A pause was taken for 5-10 minutes after reaching each
blood volume loss level to allow the cardiovascular system
to stabilize. In this study, data from one pig was discarded
due to noise corruption. This is to ensure that the ground
truth clean templates were reflective of optimal SCG signal
quality. A BIOPAC MP160 data acquisition system was used
to sample the electrocardiogram and seismocardiogram at 2
kHz throughout the protocol. An ADXL354 accelerometer
(Analog Devices Inc., Norwood, Massachusetts, USA) was
used to collect SCG signals at the mid-sternum.

B. Data Preprocessing

The data was first preprocessed by bandpass filtering
the ECG and SCG signals with finite impulse response
(FIR) band-pass filters with Kaiser windows. The cutoff
frequencies were set to 0.5–30 Hz and 1–40 Hz for
the ECG and SCG respectively. Filtering was performed
in the forward and reverse directions to offset phase
shift. Gaussian noise was added to the SCG signal at
six signal-to-noise ratio (SNR) levels (10000, 10, 5, 0,
-5, and -10 dB). These levels were chosen to match the
SNR of SCG signals corrupted by vehicle vibrations,
and calculated as 10log10(MSP (signal)/MSP (noise)),
MSP (s) =

∑
(s2)/length(s) [11]. For each pig, p, we

used the Pan-Tompkin’s algorithm to detect Np + 1 R-peaks
from the ECG signal corresponding to Np heartbeats.
Four levels of time-delay (shifts), s, in milliseconds were
induced in the SCG beats s = {0, 100, 200, 300}. The
beat was segmented according to the detected ECG R-
peaks resulting in an unshifted beat (s = 0) or the start
and end of beat segmentation was set to be earlier than
the R-peak locations s = 100, 200, 300 resulting in a
time-delayed beat. Every 50th beat was utilized for this
analysis, and thus, for each pig and time-shift experiment,
the processed dataset contained Mp = ⌊Np/50⌋ observations
{O1,s, O2,s...OMp,s} of heartbeats. Each observation
comprised of the original clean unshifted template beat, as



Fig. 3. Separability of SNR Levels Across Models: We used three models,
Topological Data Analysis using Persistence Diagrams (TDA), Dynamic Time
Feature Matching (DTFM) with Default Max Distance (DTFMD), and DTFM
with Time-Shift Information Included (DTFMS) to quantify the difference
between a reference unshifted clean template and noisy target beats segmented
at varying shift amounts. TDA maintains robust separability in the unshifted
and shifted cases while DTFM can only do so in the unshifted case.

well as its time-shifted noisy correspondent beats (e.g., Ox,s =
{Ox,s,template, Ox,s,SNR10000

, Ox,s,SNR10
, Ox,s,SNR5

,
Ox,s,SNR0

, Ox,s,SNR−5
, Ox,s,SNR−10

}. Figure 2 illustrates
an observation with a subset of the noise levels for clarity.

C. Model Descriptions and Ranking Task

A separate experiment was conducted at each time-shift
condition to understand model ranking performance. For every
shift level, s, three models were used to obtain a vector of
distance values corresponding to beats of different SNR levels
from observation Ox,s|x ∈ [1, ...,Mp] and pig p. The first
model employed topological data analysis using persistence
diagrams. In this model, persistence diagrams were extracted
via a sublevel set filtration procedure described in [9] from
the clean unshifted template beat Ox,s,template and each of the
shifted noisy target beats {Ox,s,SNR[10000,...,−10]

}. The distance
from each of these shifted noisy beats was determined by tak-
ing the Wasserstein distance between their persistence diagram
and that of the template. The second model employed DTFM
with the maximum distance between target and template beat
features set to the default 50 ms (DTFMD). The third model
utilized DTFM with the maximum distance set to the shift
amount added to the default search distance (e.g., 200 ms shift
+ 50 ms default for a total maximum distance of 250 ms).
This reasoning behind this design choice was to test DTFM
performance when provided with a search window which
overlaps with the true feature locations in the shifted noisy
beat. The DTFM distance metric, defined as the minimum

Fig. 4. Distributions of Kendall’s tau values (ranging from 1: perfectly ranked
to -1: oppositely ranked) for all beats per model and shift: Topological Data
Analysis using Persistence Diagrams (TDA) does comparably to DTFMD
and DTFMS when there is no time-delay. TDA ranking performance remains
robust with time-delay while DTFM performance diminishes.

Euclidean distance between warped template and target signals
after feature mapping, is described in detail by Zia et al [4].

D. Quantification of Performance

Kendall’s Tau is a non-parametric correlation coefficient
which measures the agreement in ordering between two sets of
data. In this case, it measures each model’s ability to order the
beats in terms of decreasing SNR. For each possible pair of
ranking values, the pair is concordant if the model’s ranking is
consistent with the ground truth and discordant if not. τ is then
calculated as τ = (Nc−Nd)/(Nc+Nd) where Nc and Nd are
the number of concordant and discordant pairs, respectively.
τ = 1 if the model’s ranking is perfectly consistent with the
ground truth and τ = −1 if the ranking perfectly disagrees.
τ = 0 would result from no association or random ordering.

E. Statistical Testing

We used a generalized estimating equations (GEE) model
to assess if there were significant differences in the perfor-
mance of TDA, DTFMD, and DTFMS. We chose to use this
nonparametric model as the Kendall’s Tau distributions were
nonnormal and the dataset contained repeated measures (beats)
for each pig. After running the GEE model, we ran post-
hoc pairwise comparisons with a Bonferroni correction (for
3 comparisons) to assess which pairs of models performed
significantly differently. α was set to 0.05.

III. RESULTS

Figure 3 illustrates the separability of the three models in
the unshifted and 100 ms shift cases. Figure 4 illustrates the
distribution of Kendall’s Tau values for all models across each
time-delay experiment, reflecting model ranking performance.
The mean, µ, and standard deviation, σ of these distributions
across models are additionally quantified in Table I and the
Cohen’s d effect size is given for each model pair in Table II.

In the case where SCG was not time delayed and segmented
according to R-peak locations, all three models report mean



TABLE I
KENDALL’S TAU DISTRIBUTION STATISTICS PER MODEL AND SHIFT

TDA DTFMD DTFMS

µ σ µ σ µ σ
No Shift 0.993 0.036 0.998 0.036 0.998 0.036

100 ms Shift 0.981 0.088 -0.456 0.529 0.402 0.528
200 ms Shift 0.967 0.147 -0.570 0.478 0.199 0.576
300 ms Shift 0.942 0.194 -0.360 0.598 0.076 0.579

TABLE II
COHEN’S D EFFECT SIZE BETWEEN MODELS PER SHIFT

No Shift 100 ms 200 ms 300 ms
TDA vs DTFMD -0.139 3.79 4.35 2.93
TDA vs DTFMS -0.139 1.53 1.82 2.01

DTFMD vs DTFMS 0 -1.62 -1.45 -0.741

Kendall’s Tau values above 0.99, with DTFM slightly outper-
forming TDA by 0.005. However, for the unshifted case, we
found a significance level of p=0.075, indicating that this dif-
ference was not significant. For all shifted cases (100, 200, and
300 ms), p<0.001 and post-hoc analyses showed significant
differences between all pairs of models. For the 100 and 200
ms shifts, p<0.001 for all pairwise comparisons and for the
300 ms shift, p<0.001 between TDA and DTFMD and TDA
and DTFMS and p=0.008 between DTFMD and DTFMS. For
all shifted cases, the performance of TDA remains above 0.94
while DTFMD and DTFMS performance sharply diminishes.
DTFMS performance decreases to approximately 0-0.4, while
DTFMD performance becomes negative (µ<0).

IV. DISCUSSION AND CONCLUSION

When an ECG can be concurrently collected with the SCG
signal, SCG beats can be segmented according to the ECG R-
peaks such that the resultant beats are roughly aligned in terms
of cardiac cycle. From the results from the experiment with 0
ms (unshifted) time-delay, we demonstrate that TDA can rank
beats according to SNR level at a comparable quality to state-
of-the-art DTFM. In the case where beats are offset in time
from the cardiac cycle by 100, 200 or 300 ms, TDA remains
robust in its capability to discriminate between SCG beats of
different SNR levels while DTFM performance drops. DTFMS
performance stays positive but diminishes from the unshifted
case likely due incorrect mappings to extra spurious candidate
points introduced by noise. DTFMD ranks inversely to SNR
(negative µ), likely due to the inability of the model to find any
candidate points to match to in clean shifted signals when the
corresponding feature is out of range, but the ability to find
a match, though incorrect, when spurious peaks and valleys
are introduced by noise. This discrepancy demonstrates the
dependency of the DTFM model performance on intelligently
chosen hyperparameters. TDA does not require fine-tuning
thus decreasing the burden on the user.

The study contains limitations. The ranking of beats by
SNR levels was performed with a perfect template, the ground
truth unshifted clean versions of those same beats, to assess
differences in model performance solely based on time-shift.
Future work should assess model performances with global

templates and assess the causes behind failure points. Ad-
ditionally, the models were assessed in data from porcine
subjects but should be evaluated with data from larger datasets
with human subjects as well. Future work should also assess
model performance in different environmental scenarios with
motion artifacts and physiological rather than Gaussian noise.

In this work, we demonstrated the robustness of topological
data analysis using persistence diagrams to time-delays in beat
segmentation when performing SCG signal quality analysis.
Through this validation, the study takes a stride towards
understanding the limitations of current state-of-the-art signal
quality assessment techniques and towards the development of
robust ECG-free SCG signal quality analysis methodologies.
Such an advancement may enable the monitoring of cardiac
mechanical function in out-of-clinic or critical care settings
where noise is prevalent and wearable sensing hardware must
be optimized for lightweight, longitudinal monitoring.
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