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Figure 1: We present Cue3D, the first comprehensive, model-agnostic framework for quantifying the
influence of individual image cues in single-image 3D generation. Left: Our unified evaluation of
single-image 3D generation methods. Right: Performance robustness to the perturbation of each cue,
lower values indicate higher importance. We show representative methods on Toys4K dataset for
clarity; additional figures are available in the Appendix.

Abstract

Humans and traditional computer vision methods rely on a diverse set of monoc-
ular cues to infer 3D structure from a single image, such as shading, texture,
silhouette, etc. While recent deep generative models have dramatically advanced
single-image 3D generation, it remains unclear which image cues these methods
actually exploit. We introduce Cue3D, the first comprehensive, model-agnostic
framework for quantifying the influence of individual image cues in single-image
3D generation. Our unified benchmark evaluates seven state-of-the-art methods,
spanning regression-based, multi-view, and native 3D generative paradigms. By
systematically perturbing cues such as shading, texture, silhouette, perspective,
edges, and local continuity, we measure their impact on 3D output quality. Our
analysis reveals that shape meaningfulness, not texture, dictates generalization.
Geometric cues, particularly shading, are crucial for 3D generation. We further
identify over-reliance on provided silhouettes and diverse sensitivities to cues such
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as perspective and local continuity across model families. By dissecting these
dependencies, Cue3D advances our understanding of how modern 3D networks
leverage classical vision cues, and offers directions for developing more transparent,
robust, and controllable single-image 3D generation models.

1 Introduction
Generating a 3D model from a single 2D image is a long-standing goal in computer vision, with
broad applications in content creation, AR/VR, and graphics. Humans effortlessly recover 3D shape
from a single view by exploiting a variety of monocular cues [3, 16, 33, 42]. Decades of research
in classical computer vision studied these explicit monocular cues for shape inference, including
shading patterns [21, 63], texture cues [40], silhouette contours [27], and many more. Recently,
a new generation of single-image-to-3D methods has dramatically advanced the state of the art,
fueled by large datasets [11] and advances in deep generative models [19]. These approaches can
be grouped into three prominent categories: (i) Regression-based models that directly predict a 3D
representation from the input image via a feed-forward network (e.g., LRM [20], SF3D [6]), (ii)
Multi-view methods that generates novel views consistent with the input image, then regress to a
3D model (e.g., CRM [55], LGM [49], InstantMesh [60]), and (iii) Native 3D generative models
that treat single-image-to-3D as a conditional generation problem in a learned 3D latent space (e.g.,
Trellis [56] and Hunyuan3D-2 [64]). These approaches have enabled fast generation of textured 3D
meshes from a single image, with impressive fidelity and generalization far beyond earlier methods.

Despite this rapid progress, the interpretability of single-image 3D networks remains largely under-
explored. Current models are learned end-to-end on 3D supervision, and they operate as complex
black boxes: we have little understanding of what information they rely on to infer 3D shape from
a single image. Do these networks internally exploit the same set of visual cues as classical meth-
ods [21, 27, 40, 63], or do they rely on other information such as high-level semantics? Improving
transparency in this process is important both scientifically, to connect with vision science and inform
future model design, and practically, to diagnose failure modes and biases of these 3D generators.

To address this gap, we present Cue3D, the first comprehensive, model-agnostic framework for quan-
tifying the influence of individual image cues in single-view 3D generation. We begin by establishing
a unified benchmark covering seven state-of-the-art methods spanning regression-based, multi-
view, and native 3D generative paradigms. We evaluate them on two standard datasets (GSO [12],
Toys4K [47]). For each predicted mesh, we assess (1) both 2D appearance and 3D geometric quality
for the entire shape, (2) 2D and 3D quality of the visible surface from the input viewpoint, and (3) the
agreement between output and ground-truth symmetry. As summarized in Figure 1 left, native 3D
generative models consistently outperform other approaches across all metrics.

We then systematically quantify the significance of each image cue. Building on meaningful pertur-
bations [14], we disable or modify specific cues, such as silhouette shape, shading, texture semantics,
perspective, and local continuity, and measure the resulting degradation in 3D output quality. Our
perturbation analysis uncovers how modern single-image 3D models leverage image cues, revealing
the following key insights. (1) Meaningfulness of shape, not texture, dictates generalization. For
models to generalize, the input image must indicate a meaningful shape that does not significantly
deviate from the training distribution. When we disrupt this cue by providing the models with
a stochastic combination of textured primitive shapes [57], every method collapses with distinct
failure modes. In contrast, the models perform surprisingly well on meaningless or random textures,
with the best-performing models showing near perfect generalization. (2) Semantics alone are not
enough; Geometric cues are crucial. Using a state-of-the-art style-transfer method [59], we convert
images into artistic styles that preserve high-level semantics but often disrupts geometric cues like
realistic shading and texture, as shown in Figure 2. We observe a significant drop on the performance
compared to the original images, underscoring the continued importance of geometric cues. (3)
Shading is more important than texture. To dissect the contribution of different geometric cues, we
dive deeper into the image formation process. Surprisingly, even when all recognizable textures are
replaced by procedural noise, natural patterns, or flat gray, for several methods, the quality of the 3D
outputs remain almost unchanged, as long as the shading is kept intact. However, removing shading
causes a noticeable performance decline. We further discover an interplay between shading and
texture cues: intact shading alone suffices to uphold performance regardless of texture content, but
when shading is removed, preserving the original texture yields better results than substituting with
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Figure 2: Overview of perturbations for analyzing individual image cues in single-image 3D genera-
tion. Starting from the original image, we systematically perturb specific visual cues. These targeted
perturbations reveal the extent to which each cue influences model performance.

procedural textures or uniform color. (4) Models are overly sensitive to silhouette and occlusion.
Dilating the object mask (without altering interior pixels) inflicts severe errors on regression-based
and multi-view methods, whereas one native 3D generator remains relatively robust. In contrast,
occlusion of both silhouette and image content dramatically degrades all approaches. (5) Other cues
have diverse impact. Perturbing perspective, edge, and local-continuity signals produce measurable
performance drops that vary across model categories, which we provide thorough analysis in the
experiments section.

Cue3D establishes the first unified, model-agnostic framework for dissecting how modern
single-image 3D generators exploit individual visual cues. Our perturbation study reveals that
shape, rather than texture, meaningfulness dictates generalization. Geometric cues, especially shad-
ing, contribute significantly the 3D generation process. These models may overly rely on the provided
silhouette. Meanwhile, edges, perspective, and local continuity each have distinct effects on different
model families. By quantifying these dependencies across state-of-the-art approaches, Cue3D deep-
ens our scientific understanding of image-based 3D generation, and provides potential guidance for
designing more transparent, robust, and controllable single-image 3D generation methods.

2 Related Work

Single-Image to 3D. Recent advances in single-image-to-3D generation have converged on three
principal paradigms. (1) Regression-based methods [6, 20, 22, 52, 54] employ neural networks to
directly predict a 3D representation, such as voxels, deformed meshes, or implicit fields, from encoded
image features in a single forward pass. For example, LRM [20] and its successors [6, 52] utilize
transformer backbones to learn triplane representations, which are then rendered volumetrically,
achieving both high fidelity and efficient inference. (2) Multi-view approaches [2, 38, 45, 49, 55, 60]
follow a two-stage pipeline: first synthesizing multi-view RGB images [38], depth or coordinate
maps [35, 55], normal maps [37, 39], or Gaussian splats [49], and then reconstructing 3D structure
from these intermediate multi-view representations. Decoupling view synthesis from geometry
enables the reuse of powerful 2D generative priors trained on billions of images [43], providing
an especially strong texture prior. (3) Native 3D generative models [25, 31, 32, 53, 56, 62, 64]
combine a VAE-based latent encoding of 3D data [26, 28] with a diffusion or flow model to generate
high-quality and diverse 3D samples. Methods differ in their latent structures, input formats, and
output representations: for instance, Hunyuan3D-2 [64] encodes point clouds to produce texture-free
signed distance fields, while Trellis [56] proposes a sparse structured latent combining geometric
and visual features, allowing flexible decoding into radiance fields, Gaussian splats, or meshes.
Despite the iterations of approaches, it remains unclear what image cues these models rely on when
producing the 3D output. In this paper, we systematically investigate how different single-image to
3D frameworks extract and transform visual signals from images cues into 3D representations.

Image Cues. Humans infer 3D structure from single images by integrating multiple monocular
cues. Studies in developmental psychology and psychophysics show that the human visual system
encodes properties like surface depth and orientation [10, 27, 46], and that internal object repre-
sentations adhere to 3D constraints [44]. In contrast to humans’ seamless cue integration, classical
computer vision approaches explicitly leverage specific visual cues for shape inference—such as
shape-from-shading [21, 23], texture gradients [24, 41], silhouettes [29, 34], contours and junctions
[9], perspective effects [17], and symmetry priors [4, 51]. Modern deep models instead learn these
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Figure 4: Qualitative comparison
on the Zeroverse dataset of shapes
without semantic meaning. We
show one methods representative
of each paradigms.

visual priors implicitly in an end-to-end manner, inspring us to explore the role of these cues in
state-of-the-art models.

Visual Cue Interpretability. Interpreting the decision-making process of black-box models, espe-
cially with respect to the visual cues they exploit, remains an open challenge. A common strategy
is input perturbation, where carefully crafted modifications are applied to input data to observe the
resulting changes in model output [14, 15, 50]. For example, Geirhos et al. [15] generate images in
which object shape and surface texture are semantically misaligned, revealing the relative importance
of each cue in image classification models. Other approaches include latent-space probing, which
trains auxiliary networks to investigate whether the internal representations of a pre-trained model
fit certain downstream tasks [5, 13], and metric-based benchmarking, where models are compared
across artificially curated datasets designed to emphasize specific visual attributes or cues [65]. Our
work is inspired by these cue-based analysis methods but differs in key ways. Rather than solely
focusing on classification or probing general features for diverse downstream tasks, we focus on
presenting an in-depth analysis within the scope of single-image 3D generation. We introduce a
model-agnostic framework that systematically applies controlled perturbations to distinct image cues
and quantifies their effect. By evaluating a range of recent 3D architectures and employing both
2D and 3D performance metrics, our approach provides a faithful and comprehensive view of how
state-of-the-art models leverage visual cues during singele-image 3D generation.

3 Cue3D

3.1 Evaluation Settings

Methods. We compare seven recent single-image-to-3D methods that collectively cover all three
prevailing paradigms. In particular, we select OpenLRM [18] and SF3D [6] from regression-based
networks, CRM [55], LGM [49] and InstantMesh [60] from multi-view reconstruction approaches,
and Trellis [56] and Hunyuan3D-2 [64] from native 3D generative methods. We use the official
implementation for all methods and evaluate mesh outputs in a unified way. We use 8 NVIDIA L40S
GPU for all our experiments.

Datasets. We select two standard evaluation datasets for all methods: GSO [12], a dataset of high-
quality scanned household items, and Toys4K[47], a collection of user-created 3D toy objects. We
manually remove geometrically trivial objects (e.g., boxes) and balancing over-represented categories
from these datasets. Our final evaluation sets contains 412 objects from the cleaned GSO dataset and
500 randomly sampled objects from the cleaned Toys4K dataset. Each object is rendered in Blender
from a random camera pose (azimuth/elevation sampled within fixed limits) under a random Poly
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Haven [1] HDRI lighting. More implementation details are in the appendix. To probe performance
on shapes without semantic meaning, we additionally use Zeroverse [57], a procedurally generated
dataset built from random assemblies of textured primitive. Zeroverse exhibits rich local geometric
detail, but the shapes themselves are not meaningful, as it significantly deviate from the training
distribution of single-image-to-3D methods.

Overall Quality. We evaluate both 2D appearance fidelity and 3D geometric quality of the 3D mesh
results. We align the output mesh to the groundtruth following [6]. For appearance fidelity, we report
PSNR, SSIM and LPIPS between rendered output meshes and groundtruth meshes. We render 16
views for each object with 8 uniform azimuth and 2 elevations. For geometry quality, we report the
Chamfer Distance (CD) and F-scores at different thresholds to quantify the overall shape quality.
The Chamfer distance between two point clouds P1 = {xi ∈ R3}ni=1 and P2 = {xj ∈ R3}mj=1. is
defined as:

chamfer(P1, P2) =
1

2n

n∑
i=1

|xi −NN(xi, P2)|+
1

2m

m∑
j=1

|xj −NN(xj , P1)| (1)

where NN(x, P ) = argminx′∈P ∥x− x′∥ denotes the nearest neighbor of source point x in point
cloud P .

Visible Surface Quality. Beyond assessing overall mesh quality, we specifically evaluate how
accurately the predicted mesh aligns with the ground truth at the input image’s viewpoint. We render
RGB images of the output meshes from this viewpoint, obtain the corresponding depth map, and
back-project the depth map into point clouds using the ground truth camera parameters. Subsequently,
we employ the previously described 2D and 3D metrics on these rendered images and point clouds to
quantitatively measure the quality of visible surfaces.

Symmetry. We further analyze the predicted object’s symmetry agreement with the ground truth.
Adopting the symmetry groundtruth generation procedure from [36], we apply a fixed threshold
to identify planes of reflection symmetry in both predicted and ground truth meshes. For each
method, we compute a binary symmetric-or-not F1 score across all predicted objects relative to their
groundtruth counterparts.

3.2 Perturbations

We assess the importance of individual image cues through targeted perturbations. By selectively
removing one cue while preserving others, significant performance degradation indicates the model’s
reliance on that cue. Conversely, minimal performance changes suggest the model’s invariance to that
cue. Additionally, preserving a single cue while removing most others can highlight its information
contribution in the model’s inference process. Below, we introduce the cues and their corresponding
perturbations examined in this paper, illustrated in Figure 2. Additional perturbation analyses are
detailed in the appendix.

Style. We perturb geometric cues while preserving semantic content through reference-based style
transfer [59]. We select six distinct styles: ink wash, line art, pointillism, flat design, oil painting, and
sculpture. We manually curate five exemplar images per style. Each object image undergoes style
transfer using a randomly selected style exemplar for each of the six styles. This approach preserves
core 3D structure perceptually while altering geometric cues like shading and texture, as shown in
Figure 2.

Shading & Texture. Given their prominence as geometric cues, we jointly analyze shading and
texture perturbations within the rendering pipeline. We perturb shading by rendering diffuse maps
in Blender. Specifically, since the groundtruth texture in the GSO dataset has baked-in lighting, we
employ an image delighting method [64] to remove baked-in lighting for the GSO dataset. Texture
perturbations involve swapping original textures with alternatives such as uniform checkerboards,
Perlin noise, random textures from Poly Haven [1], and uniform gray. Each texture variant is rendered
both with and without lighting (diffuse).

Silhouette and Occlusion. Silhouette captures global shape information, and many models explicitly
takes object mask as input. We investigate its influence through mask dilation and occlusion. We
first dilate the silhouette (alpha mask) of each object by a fixed pixel width, leaving other cues intact.
Subsequently, we simulate occlusion by placing scaled masks of randomly selected objects from the
dataset onto the original mask boundaries, creating weak, medium, and strong occlusion conditions.
Though occlusion partially hides image content, humans typically can still mentally reconstruct the
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(a) GSO
Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.20 0.807 0.291 83.01 0.034 0.188 16.83 0.819 0.256 46.00 0.215
OpenLRM 17.09 0.820 0.245 80.89 0.033 0.391 17.48 0.824 0.218 33.00 0.297
CRM 17.68 0.833 0.232 68.07 0.043 0.285 18.49 0.845 0.193 31.10 0.298
SF3D 16.71 0.838 0.219 61.58 0.059 0.488 17.27 0.839 0.187 25.70 0.411
InstantMesh 19.01 0.849 0.192 54.54 0.072 0.715 19.21 0.853 0.168 24.00 0.424
Hunyuan3D-2 19.98 0.862 0.159 41.82 0.087 0.894 20.08 0.863 0.143 19.10 0.497
Trellis 19.85 0.864 0.157 39.64 0.092 0.867 19.95 0.867 0.141 19.80 0.472

(b) Toys4K
Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.76 0.833 0.272 77.01 0.051 0.270 17.42 0.843 0.243 41.50 0.259
OpenLRM 17.85 0.853 0.221 74.79 0.047 0.419 18.51 0.859 0.192 28.00 0.351
CRM 18.21 0.860 0.214 61.88 0.064 0.321 19.45 0.875 0.170 25.20 0.370
SF3D 18.01 0.875 0.186 52.78 0.094 0.600 18.69 0.876 0.162 21.00 0.512
InstantMesh 19.59 0.876 0.173 49.84 0.098 0.706 20.06 0.883 0.149 20.60 0.489
Hunyuan3D-2 20.79 0.893 0.138 38.65 0.126 0.913 21.08 0.897 0.124 14.90 0.590
Trellis 20.53 0.893 0.136 37.78 0.137 0.904 20.85 0.898 0.122 16.00 0.563

Table 1: Unified evaluation results on the GSO and Toys4K datasets. Native 3D generative models
achieve the highest overall performance across metrics.

Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.15 0.754 0.321 86.19 0.019 0.000 16.98 0.767 0.289 54.50 0.134
OpenLRM 16.86 0.761 0.283 96.59 0.019 0.200 17.34 0.761 0.252 45.20 0.193
CRM 17.17 0.771 0.280 81.45 0.021 0.000 18.65 0.791 0.223 40.40 0.200
SF3D 15.11 0.767 0.276 90.34 0.021 0.267 15.83 0.768 0.231 38.60 0.249
InstantMesh 16.89 0.752 0.304 89.47 0.021 0.467 17.68 0.769 0.263 46.80 0.185
Hunyuan3D-2 17.63 0.770 0.258 78.09 0.024 0.933 18.18 0.777 0.233 35.50 0.239
Trellis 17.29 0.773 0.264 78.14 0.024 0.467 17.75 0.781 0.248 43.20 0.181

Table 2: Evaluation results on the Zeroverse dataset of shapes without semantic meaning. Perfor-
mance significantly drops compared to GSO and Toys4K, underscoring the significance of shape
meaningfulness.

complete 3D shape by leveraging shape priors. These variants test the model’s capability to infer
complete 3D structures despite partial visibility. Additional perturbation scenarios to the silhouette
are presented in the appendix.

Edges. Edges are analyzed due to their role in separating surfaces and indicating curvature. We first
extract edge maps using the Canny algorithm from input images. Two perturbation strategies are used:
one replaces all internal object cues (except silhouette) with edge maps alone, evaluating if edges can
sufficiently provide information for shape inference. The other softens edges by applying Gaussian
blurring only in the local neighborhood of detected edges, merging adjacent surface regions visually.
Significant performance drops under these perturbations would highlight the model’s reliance on
precise edge information, while negligible drop would indicate invariance. Additional edge extraction
methods and results are included in the appendix.

Perspective. Perspective cue could indicate vanishing points and spatial relationships. This cue is
perturbed by switching the rendering camera to an orthographic projection. Eliminating perspective
effects enables evaluation of the model’s dependence on perspective cues.

Local Continuity. To assess sensitivity to local structural details, we perturb local continuity by
splitting image foreground into grids of n × n pixels and shuffling pixels within each grid cell
independently. This maintains global structure while disrupting local detail continuity. Greater
performance degradation under this perturbation reflects higher sensitivity to local information.

4 Results

4.1 Unified Evaluation

We begin by conducting a unified evaluation of all seven methods on the GSO and Toys4K datasets.
We present the summary of the results in Figure 1 (left), and the full evaluation details in Table 1.
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Figure 5: Quantitative analysis of image cue perturbations on single-image 3D generation. We
report Chamfer Distance (CD ×1000 for clarity; lower is better) for each model under different
perturbations. A larger increase in CD indicates greater performance degradation, revealing the
model’s reliance on the perturbed cue. A tabulated version of these results is available in Appendix.

Our results show that the native 3D generative methods, see Hunyuan3D-2 and Trellis in Table 1,
clearly outperform other methods across both datasets. Generally, these two methods are closely
followed by InstantMesh, the best-performing multi-view method, and SF3D, the leading regression-
based method, followed by the remaining methods.

Regarding 2D appearance quality, as shown in Table 1 Overall 2D and Visible Surface 2D columns,
native 3D generative methods have only marginal improvements in terms of PSNR and SSIM
compared to other methods. However, they substantially outperform the alternatives in terms of
LPIPS scores. This suggests that, although pixel-level statistics appear similar across methods, the
native 3D generative methods more accurately capture higher-level visual information encoded by
deep features.

The most substantial advantage of native 3D generative methods emerges in their 3D geometry quality,
see Table 1 Overall 3D and Visible Surface 3D columns. These methods exceed the next-best method
by over 10 points in overall geometry evaluation and by more than 4 points on visible surfaces under
our CD×1000 metric. The visible surface quality assessments closely align with the overall geometry
evaluations. Additionally, native 3D generative methods excel significantly in modeling symmetry,
see Table 1 Symmetry column. They closely match the ground-truth symmetry across both datasets.

Comparing the two top methods, Hunyuan3D-2 and Trellis achieve similar 2D quality despite
differences in their texture modeling approaches. Trellis demonstrates slightly better overall 3D
quality, whereas Hunyuan3D-2 slightly excels in symmetry and visible surface quality. These
insights provide valuable guidance for selecting the most appropriate method for practical, real-world
applications.

4.2 Image Cues Analysis

In this section, we quantitatively analyze the role of various image cues in single-image 3D generation.
An overview of our key findings is illustrated in Figure 1 (right). Detailed results are presented in
Figure 5. Performances in this table are measured by Chamfer Distance (CD, scaled ×1000 for
clarity), where lower values indicate better performance, thus a larger increase represents significantly
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Figure 6: Qualitative example of our image cue perturbation analysis. More qualitative results are
available on the project webpage and in the Appendix.

degraded performance. We show qualitative examples in Figure 6. More qualitative results are
available on the project webpage and in the Appendix.

Shape Meaningfulness. We probe the role of shape meaningfulness in two complementary ways: (i)
Zeroverse and (ii) CutMix on GSO. First, we use Zeroverse [57], a dataset comprising procedurally
generated combinations of textured primitive shapes. We show qualitative results of representative
methods in Figure 4, and the quantitative evaluations in Table 2. Figure 4 shows that the input image
does not correspond to a meaningful shape, and has a significant gap to the training distribution.
Performance notably declines across both 2D and 3D metrics compared to the more meaningful
GSO and Toys4K datasets, confirming that meaningful shape in the input images are critical for the
generalization of single-image 3D generation. Native 3D generative methods generally maintain the
highest overall quality, while CRM best recovers visible surfaces in 2D, and SF3D and Hunyuan3D-2
perform best in visible surface 3D quality.

We further examine how the absence of shape meaningfulness influences different failure modes
qualitatively in Figure 4 and quantitatively in the Appendix. Regression-based methods produce
smooth, averaged back surfaces. We quantify this phenomenon by measuring the difference between
each normal and the average normal in its local neighborhood, normalized against the ground
truth, and we see a substantial drop of this metric on Zeroverse. Multi-view methods fail due to
inconsistencies in synthesized views, as evidenced by decreased pairwise DINOv2 similarity scores,
contributing to degraded 3D performance. Native 3D generative methods, lacking meaningful shape
information, tend to hallucinate symmetrical completions, resulting in higher false-positive symmetry
detections. See appendix for the detailed results of these experiments. These diverse failure modes
underline the crucial role of meaningful shape cues, particularly for reconstructing occluded surfaces.

Meanwhile, to test shape meaningfulness with minimal domain shift, we introduce shape CutMix
variants on GSO. We combine parts of different GSO meshes to perturb shape meaningfulness, while
keeping appearance statistics similar. We conducted several shape CutMix experiments of varying
difficulty, Given two meshes M and N :

1) Half-and-half : We mix half of mesh M with the other half of mesh N to construct a new mesh
from GSO meshes. This limits the distribution shift and preserves many local and global shape
cues (e.g., surface smoothness, local symmetry), and also preserves a significant amount of shape
meaningfulness to human perception. We show three variants: front-back, left-right, and top-bottom.

2) Default CutMix. We follow the CutMix [61] paper and randomly sample an axis-aligned 3D cube
within the bounding cube of the object. We replace the part of mesh M that falls into the cube with
the part from mesh N that falls into the same cube. When sampling the cube, we pin one of its corners
at the corner of the object bounding cube to avoid significant discontinuity in the output shape. The
length ratio (lengthsampled cube/lengthbounding cube) is uniformly sampled from [0.4, 0.6]. Most parts of
the object M are outside the chosen cube and remain intact. Meanwhile, the local shape cues are
mostly preserved.

3) CutMix by Octant. We center each mesh and split it into 8 octants by the coordinate planes (XY,
YZ, and XZ planes). Then we replace the part in each octant by the corresponding part from other
random meshes from the same dataset. This variant still preserves the local shape cues, and it has a
significantly smaller distribution gap than Zeroverse compared to our original evaluation data (GSO).
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Results in Figure 5(a) show that all variants substantially hurt performance. Notably, CutMix by
Octant causes a performance drop similar to Zeroverse despite a smaller domain gap. Standard
CutMix, which modifies only about 1/8 of the mesh volume, still results in large drops (e.g., 20 points
for Hunyuan3D-2). Even minimal half-and-half perturbations, where shape meaningfulness is mostly
preserved, typically cause performance drops of over 10 points, which is greater than for most other
cues. This confirms that shape meaningfulness is a dominant cue for generalization.

Geometric Cues (Style). To explore geometric cues broadly, we apply style transfer to preserve
semantics while altering geometric cues (Figure 2). Figure 5 summarizes the results on GSO and
Toys4K. Performance significantly deteriorates under style perturbations. Sculpture-style images
retain the most geometric information, thus yielding the smallest performance drops in general. Note
that lower-performing methods show less degradation not because of their robustness, but due to
metric saturation. Overall, semantics alone are insufficient; geometric cues are essential for reliable
3D inference.

Shading and Texture. We dissect geometric cues further by separately manipulating shading and
texture, which are historically established cues for shape inference. Figure 5 presents evaluations
across five texture conditions: original, checkerboard, Perlin noise, random Poly Haven texture [1],
and solid gray, each tested with lighting (w/ L) and without lighting (w/o L). Surprisingly, alter-
ing texture while preserving shading minimally impacts performance for leading methods (SF3D,
Hunyuan3D-2, Trellis). Multi-view approaches show slightly more sensitivity to texture changes but
remain relatively robust overall. However, removing shading consistently decreases performance
across methods, underscoring shading’s significant role. Interestingly, there is an interplay between
shading and texture cue: meaningful texture mitigates this drop due to removing lighting to some
degree, especially on Toys4K. These results highlight that texture meaningfulness is not a necessary
cue for generalizion. Meanwhile, shading is generally more influential than texture, with several
top-performing methods exhibiting near texture invariance provided shading cues remain accurate.

Silhouette and Occlusion. Dilating object masks severely reduces performance despite unchanged
interior pixels, indicating silhouette cues’ importance. Trellis remains comparatively stable, sug-
gesting a level of learned silhouette invariance. Occluding both silhouette and content dramatically
reduces performance universally. This shows the combined importance of silhouette and interior
visual cues.

Edges. We probe the role of edges cue in two ways, leaving only edges on silhouette and softening
edges with localized gaussian filter. Edge-only input significantly degrade performance for most
models except OpenLRM, suggesting edges alone may not provide sufficient shape information.
Softening edges yields minor performance reductions, confirming edges are supportive but not
primary cues.

Perspective. Switching from perspective to orthographic projection notably reduces performance,
particularly for regression-based methods (OpenLRM, SF3D), indicating their reliance on perspective
cues. CRM remains unaffected, since it uses orthographic images in training. Hunyuan3D-2 is more
sensitive than Trellis, potentially due to its latent representation capturing perspective.

Local Continuity. Local cue scrambling significantly impacts regression-based SF3D, while other
methods show varied but less severe sensitivity. Hunyuan3D-2 demonstrates the greatest robustness.
However, all methods degrade substantially under extensive local scrambling, emphasizing the
general importance of local continuity.

5 Discussions

Correlation of Different Cues. We choose our cues primarily based on their perceptual importance
and interpretability to humans, rather than strict orthogonality. As noted in Section 2, our selected
cues originate from psychological studies of human visual perception and have strong foundations in
prior vision research, as they represent factors that humans typically find meaningful. While some
cues naturally remain disentangled (e.g., shading versus texture), others inherently overlap to some
extent (e.g., style with texture).

We assess whether cues impact objects similarly by calculating per-object performance drops in CD
for each cue and then computing the Spearman rank correlation between pairs of cues. This produces
a correlation matrix showing how similarly each pair of cues affects the same set of objects. We show
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Texture Shading Silhouette Occlusion Edges Local continuity Style

Texture 1.00 0.66 0.31 0.29 0.36 0.39 0.50
Shading 0.66 1.00 0.34 0.35 0.35 0.51 0.60
Silhouette 0.31 0.34 1.00 0.27 0.24 0.28 0.34
Occlusion 0.29 0.35 0.27 1.00 0.19 0.30 0.31
Edges 0.36 0.35 0.24 0.19 1.00 0.27 0.31
Local cont. 0.39 0.51 0.28 0.30 0.27 1.00 0.47
Style 0.50 0.60 0.34 0.31 0.31 0.47 1.00

Table 3: Analysis on the correlation of different cues. We
present the Spearman rank correlations (ρ) between per-object
performance drops in CD for each cue pair. Lower off-diagonal
values indicate weaker similarity in object-wise effects; the
diagonal is 1 by definition.

Input Image InstantMesh SF3D Trellis

Original 54.5 61.6 39.6
Line-art 66.1 79.5 51.3
Line-art + FLUX 59.4 67.4 50.0

Table 4: Line-art-to-3D case
study (lower is better). Adding
explicit geometric cues to line-
art narrows the gap to original
images across three off-the-shelf
image-to-3D models.

this result in Table 3. Importantly, this is a similarity-of-effect analysis. It does not test statistical
independence nor guarantee disentanglement.

The result suggests that overall the correlation is low. Interestingly, texture and shading cues seem to
affect a set of objects in similar ways, though they are inherently disentangled. These results also
indicate that, while some appearance-related cues partially overlap, the cue effects are largely isolated
at the level of object-wise impact.

Practical Implications of Our Analysis. To illustrate how our insights could inspire new research
directions, we explore a line-art-to-3D problem: given a line-art image (in our case, extracted from
GSO images), we aim to recover the underlying 3D shape. Pure line-art lacks surface appearance,
and indeed leads to markedly worse 3D generation than original images. Inspired by our analysis, we
enrich line-art with geometric cues by prompting an image diffusion model (Flux ControlNet [30])
conditioned on line-art to synthesize 3D rendering–style shading and texture. We then feed these
cue-augmented images into off-the-shelf image-to-3D models (InstantMesh, SF3D, Trellis). As
shown in Table 4, injecting geometric cues substantially improves performance, validating that our
proposed insights could meaningfully contribute to future research in image-to-3D.

Limitations. While Cue3D provides a systematic and comprehensive analysis of cue importance
across seven state-of-the-art methods and two widely used datasets, there remain several limitations.
First, our study, though broad, is not exhaustive; evaluating a wider range of models and datasets
would further strengthen our conclusions. Nevertheless, because our framework is both method and
dataset-agnostic, it can be readily extended to additional settings. Second, our experiments focus on
clean, object-centric datasets to minimize confounding factors, but extending the analysis to more
diverse and nuanced real-world data could reveal additional insights. Third, although we primarily
probe individual cues in isolation, understanding the interplay and correlation between multiple cues,
beyond the initial shading-texture analysis presented here, remains an important direction for future
work.

6 Conclusion

We introduce Cue3D, a model-agnostic framework for quantifying the influence of individual image
cues in single-image 3D generation. We benchmark seven state-of-the-art methods across three
major paradigms and two datasets in a unified approach. Then we apply targeted perturbations to
individual cues like shading, texture, silhouette, occlusion, perspective, edges, and local continuity.
We reveal that shape meaningfulness is crucial to the generalization of single-image 3D generation,
while texture meaningfulness is not a necessary condition. Geometric cues are crucial, especially
shading. Our analysis further shows that the models might be overly relying on silhouette cues,
while perspective, edge, and local continuity cues affect reconstruction to varying degrees. We hope
Cue3D and the insights presented here will deepen our understanding of how deep 3D networks
leverage classical vision cues, and inspire future work on cue-aware architectures, robust training,
and diagnostic perturbation tests for more transparent and controllable single-image 3D generation.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details in Section 3 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We provide variants for different random seeds in the appendix. Our conclusion
drawn from our experiments are statistically significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the GPU resources needed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not introduce any potential deviation from the NeurIPS Code of Ethics
in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include this discussion in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite every resource (such as models and benchmarks) used in this work.
Please refer to Section 3. We also follow the the license and terms of use of corresponding
models and data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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This appendix is structured as follows: in Section 7.1, we present additional Cue3D results, including
full quantitative tables for all perturbations and additional perturbation results including silhouette,
edges, lighting, and specularity. In Section 7.2, we provide comprehensive qualitative galleries across
perturbations and datasets. In Section 8, we detail implementation and evaluation. We analyze
paradigm-specific failure modes on Zeroverse, report variance from viewpoint-sampling seeds, and
discuss implementation details of our evaluation protocol (alignment, metrics) and perturbation
construction, along with an additional performance analysis for GSO. In Section 9, we further discuss
our broader impact.

7 Additional Results on Cue3D

7.1 Quantitative Results

In Section 4.2 of the main paper, we discussed the results of our perturbation experiments. We present
the quantitative results in Figure 5. We show the tabular version of this figure in Table 5.

Silhouette and Edges. In addition, we report additional perturbation results on silhouette and edges
in Table 6.

For the silhouette cue, we introduce an additional perturbation called Manhattan dilation. Unlike
standard uniform dilation, Manhattan dilation expands the mask boundaries to exclusively produce
blocky, axis-aligned edges with each boundary line segment at least N pixels in length (where N
is set to 5, 20, and 40 for our weak, medium, and strong variants, respectively). This approach
further disrupts the shape information contained in the silhouette. Notably, we find that Manhattan
dilation leads to a greater performance drop in regression-based and multi-view methods compared
to simple dilation, whereas native 3D generative models exhibit increased robustness. This suggests
that native 3D generative methods rely more heavily on extracting 3D shape cues from the overall
image content, while regression-based and multi-view approaches are more overly dependent on the
shape information in the silhouettes.

For the edges cue, we evaluate a range of edge extraction algorithms, including Canny [7], HED [58],
Lineart [8], and PIDI [48]. While the degree of performance degradation varies across models and
extraction methods, our core finding remains consistent: edge information—whether alone (combined
with silhouette) is insufficient for current models to generate high-quality 3D shapes.

Lighting and material cues. Beyond the cues analyzed in the main text, illumination and material
properties (e.g., specularity/roughness) are additional, impactful factors. We conduct a targeted study
on GSO to quantify how lighting type (environment map vs. directional) and specularity level (default
vs. large) affect single-image 3D reconstruction. We report Chamfer Distance (CD×1000, lower
is better) across six models and show deltas relative to the environment-map/default-specularity
baseline. Two trends emerge: (i) directional lighting degrades performance for most models (the
effect is weakest for Hunyuan3D-2), and (ii) large specularity slightly improved performance in
several cases, though not always, with the exception of OpenLRM and Hunyuan3D-2. We speculate
that this might be related to the different lighting setup used in each model’s training.

7.2 Qualitative Results

We present an example of qualitative results in Figure 6 of the main paper. Comprehensive qualitative
results for all perturbations are provided in Figures 9–17 at the end of the appendix. The observations
from these results are consistent with our quantitative findings: native 3D generative methods
generally achieve the highest quality and exhibit the greatest robustness to perturbations. Additionally,
these detailed qualitative examples offer more fine-grained insights into how each perturbation affects
3D reconstruction quality for each method. Please visit our project webpage for video results.

7.3 Failure Modes on Zeroverse

In Table 8, 9 and Figure 8, we show different failure modes of the three model paradigms on
Zeroverse, where the shapes are not meaningful. Regression-based model produces smooth back
surfaces, quantified by the difference between each normal and the average normal in its local
neighborhood, normalized against the groundtruth. The multi-view models cannot generate consistent
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(a) GSO
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 83.01 80.89 68.07 61.58 54.54 41.82 39.64

Ink Wash 89.75 (↑6.74) 83.21 (↑2.32) 73.66 (↑5.59) 82.72 (↑21.14) 73.80 (↑19.26) 57.34 (↑15.52) 53.31 (↑13.67)
Flat Design 86.66 (↑3.65) 83.25 (↑2.36) 73.46 (↑5.39) 74.09 (↑12.51) 60.68 (↑6.14) 53.30 (↑11.48) 48.87 (↑9.23)
Line Art 88.21 (↑5.20) 83.46 (↑2.57) 77.49 (↑9.42) 81.94 (↑20.36) 80.90 (↑26.36) 55.27 (↑13.45) 51.79 (↑12.15)
Oil Painting 89.66 (↑6.65) 83.88 (↑2.99) 73.19 (↑5.12) 82.28 (↑20.70) 60.77 (↑6.23) 58.01 (↑16.19) 56.49 (↑16.85)
Pointillism 89.00 (↑5.99) 81.26 (↑0.37) 73.35 (↑5.28) 84.14 (↑22.56) 62.44 (↑7.90) 56.26 (↑14.44) 54.08 (↑14.44)

Geometric
Cues (Style)

Sculpture 85.70 (↑2.69) 83.76 (↑2.87) 69.99 (↑1.92) 74.54 (↑12.96) 58.27 (↑3.73) 53.35 (↑11.53) 48.99 (↑9.35)

Original (w/o L) 86.97 (↑3.96) 84.38 (↑3.49) 73.08 (↑5.01) 79.64 (↑18.06) 58.02 (↑3.48) 47.22 (↑5.40) 48.51 (↑8.87)
Checkerboard (w/o L) 95.17 (↑12.16) 90.71 (↑9.82) 85.71 (↑17.64) 68.20 (↑6.62) 62.55 (↑8.01) 47.00 (↑5.18) 49.33 (↑9.69)
Checkerboard (w/ L) 93.21 (↑10.20) 88.15 (↑7.26) 79.84 (↑11.77) 61.19 (↓0.39) 61.16 (↑6.62) 42.06 (↑0.24) 40.78 (↑1.14)
Perlin Noise (w/o L) 96.86 (↑13.85) 84.86 (↑3.97) 79.01 (↑10.94) 72.97 (↑11.39) 60.57 (↑6.03) 46.70 (↑4.88) 46.06 (↑6.42)
Perlin Noise (w/ L) 91.86 (↑8.85) 82.72 (↑1.83) 70.40 (↑2.33) 61.62 (↑0.04) 56.16 (↑1.62) 43.06 (↑1.24) 39.91 (↑0.27)
Haven (w/o L) 93.76 (↑10.75) 83.65 (↑2.76) 82.96 (↑14.89) 95.15 (↑33.57) 67.09 (↑12.55) 53.73 (↑11.91) 57.51 (↑17.87)
Haven (w/ L) 86.01 (↑3.00) 80.94 (↑0.05) 69.02 (↑0.95) 63.11 (↑1.53) 57.57 (↑3.03) 43.62 (↑1.80) 40.97 (↑1.33)
Gray (w/o L) 109.70 (↑26.69) 104.22 (↑23.33) 96.26 (↑28.19) 99.38 (↑37.80) 70.63 (↑16.09) 72.12 (↑30.30) 72.04 (↑32.40)

Shading
& Texture

Gray (w/ L) 92.16 (↑9.15) 84.67 (↑3.78) 73.46 (↑5.39) 61.13 (↓0.45) 54.52 (↓0.02) 42.05 (↑0.23) 41.11 (↑1.47)

Dilated (Weak) 90.84 (↑7.83) 85.94 (↑5.05) 71.36 (↑3.29) 72.34 (↑10.76) 60.35 (↑5.81) 43.67 (↑1.85) 42.58 (↑2.94)
Dilated (Medium) 95.90 (↑12.89) 96.42 (↑15.53) 77.47 (↑9.40) 80.51 (↑18.93) 69.92 (↑15.38) 44.92 (↑3.10) 43.43 (↑3.79)Silhouette
Dilated (Strong) 104.84 (↑21.83) 116.11 (↑35.22) 82.63 (↑14.56) 92.20 (↑30.62) 78.31 (↑23.77) 49.92 (↑8.10) 42.48 (↑2.84)

Occluded (Weak) 87.13 (↑4.12) 79.54 (↓1.35) 69.25 (↑1.18) 62.23 (↑0.65) 59.22 (↑4.68) 43.51 (↑1.69) 47.67 (↑8.03)
Occluded (Medium) 93.97 (↑10.96) 83.83 (↑2.94) 77.53 (↑9.46) 73.70 (↑12.12) 73.57 (↑19.03) 50.23 (↑8.41) 57.09 (↑17.45)Occlusion
Occluded (Strong) 104.10 (↑21.09) 94.30 (↑13.41) 90.01 (↑21.94) 86.95 (↑25.37) 87.13 (↑32.59) 57.86 (↑16.04) 63.13 (↑23.49)

Edges Only 92.70 (↑9.69) 82.36 (↑1.47) 84.74 (↑16.67) 88.48 (↑26.90) 67.47 (↑12.93) 51.56 (↑9.74) 56.64 (↑17.00)Edges Soften Edges 86.58 (↑3.57) 81.84 (↑0.95) 69.47 (↑1.40) 64.63 (↑3.05) 56.54 (↑2.00) 42.76 (↑0.94) 42.87 (↑3.23)

Perspective Orthographic 88.12 (↑5.11) 87.70 (↑6.81) 66.25 (↓1.82) 69.83 (↑8.25) 59.30 (↑4.76) 48.24 (↑6.42) 43.26 (↑3.62)

Pixel Shuffle (2) 85.50 (↑2.49) 80.97 (↑0.08) 68.21 (↑0.14) 64.62 (↑3.04) 55.27 (↑0.73) 41.12 (↓0.70) 42.87 (↑3.23)
Pixel Shuffle (4) 84.43 (↑1.42) 80.34 (↓0.55) 69.98 (↑1.91) 72.90 (↑11.32) 57.85 (↑3.31) 42.94 (↑1.12) 47.47 (↑7.83)
Pixel Shuffle (10) 91.25 (↑8.24) 84.42 (↑3.53) 80.53 (↑12.46) 99.10 (↑37.52) 67.17 (↑12.63) 51.54 (↑9.72) 61.13 (↑21.49)

Local
continuity

Pixel Shuffle (20) 98.63 (↑15.62) 87.71 (↑6.82) 94.53 (↑26.46) 107.32 (↑45.74) 78.88 (↑24.34) 72.68 (↑30.86) 89.44 (↑49.80)

(b) Toys4K
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 77.01 74.79 61.88 52.78 49.84 38.65 37.78

Ink Wash 79.02 (↑2.01) 77.36 (↑2.57) 68.30 (↑6.42) 83.03 (↑30.25) 80.04 (↑30.20) 56.95 (↑18.30) 50.20 (↑12.42)
Flat Design 78.25 (↑1.24) 74.64 (↓0.15) 66.66 (↑4.78) 69.30 (↑16.52) 55.19 (↑5.35) 52.18 (↑13.53) 43.76 (↑5.98)
Line Art 81.51 (↑4.50) 77.25 (↑2.46) 70.26 (↑8.38) 74.96 (↑22.18) 87.29 (↑37.45) 53.07 (↑14.42) 48.04 (↑10.26)
Oil Painting 80.49 (↑3.48) 77.26 (↑2.47) 68.98 (↑7.10) 74.31 (↑21.53) 60.59 (↑10.75) 55.13 (↑16.48) 52.60 (↑14.82)
Pointillism 78.65 (↑1.64) 75.09 (↑0.30) 67.73 (↑5.85) 76.72 (↑23.94) 60.01 (↑10.17) 54.67 (↑16.02) 51.05 (↑13.27)

Geometric
Cues (Style)

Sculpture 77.90 (↑0.89) 75.58 (↑0.79) 65.87 (↑3.99) 69.98 (↑17.20) 56.06 (↑6.22) 52.82 (↑14.17) 47.70 (↑9.92)

Original (w/o L) 82.86 (↑5.85) 77.98 (↑3.19) 71.80 (↑9.92) 67.89 (↑15.11) 54.44 (↑4.60) 44.81 (↑6.16) 46.94 (↑9.16)
Checkerboard (w/o L) 89.95 (↑12.94) 82.18 (↑7.39) 78.85 (↑16.97) 76.94 (↑24.16) 58.60 (↑8.76) 48.26 (↑9.61) 49.89 (↑12.11)
Checkerboard (w/ L) 78.98 (↑1.97) 77.30 (↑2.51) 65.68 (↑3.80) 53.46 (↑0.68) 52.03 (↑2.19) 39.06 (↑0.41) 39.19 (↑1.41)
Perlin Noise (w/o L) 86.04 (↑9.03) 78.61 (↑3.82) 76.49 (↑14.61) 71.67 (↑18.89) 56.61 (↑6.77) 46.85 (↑8.20) 46.48 (↑8.70)
Perlin Noise (w/ L) 78.14 (↑1.13) 74.94 (↑0.15) 61.19 (↓0.69) 52.43 (↓0.35) 49.16 (↓0.68) 38.79 (↑0.14) 37.11 (↓0.67)
Haven (w/o L) 83.03 (↑6.02) 79.42 (↑4.63) 78.24 (↑16.36) 90.11 (↑37.33) 57.35 (↑7.51) 48.10 (↑9.45) 49.80 (↑12.02)
Haven (w/ L) 77.90 (↑0.89) 74.67 (↓0.12) 61.76 (↓0.12) 53.56 (↑0.78) 50.77 (↑0.93) 39.09 (↑0.44) 37.81 (↑0.03)
Gray (w/o L) 96.32 (↑19.31) 88.22 (↑13.43) 83.56 (↑21.68) 87.37 (↑34.59) 59.73 (↑9.89) 58.12 (↑19.47) 58.62 (↑20.84)

Shading
& Texture

Gray (w/ L) 81.35 (↑4.34) 76.62 (↑1.83) 62.96 (↑1.08) 53.55 (↑0.77) 47.54 (↓2.30) 38.28 (↓0.37) 38.56 (↑0.78)

Dilated (Weak) 81.26 (↑4.25) 80.48 (↑5.69) 67.82 (↑5.94) 65.25 (↑12.47) 54.41 (↑4.57) 41.94 (↑3.29) 38.89 (↑1.11)
Dilated (Medium) 95.79 (↑18.78) 94.80 (↑20.01) 82.32 (↑20.44) 75.15 (↑22.37) 66.09 (↑16.25) 44.17 (↑5.52) 38.87 (↑1.09)Silhouette
Dilated (Strong) 111.42 (↑34.41) 123.99 (↑49.20) 89.36 (↑27.48) 90.88 (↑38.10) 75.48 (↑25.64) 50.30 (↑11.65) 39.88 (↑2.10)

Occluded (Weak) 80.63 (↑3.62) 73.98 (↓0.81) 64.87 (↑2.99) 58.46 (↑5.68) 57.06 (↑7.22) 41.74 (↑3.09) 45.31 (↑7.53)
Occluded (Medium) 91.94 (↑14.93) 78.18 (↑3.39) 72.69 (↑10.81) 68.14 (↑15.36) 68.08 (↑18.24) 48.09 (↑9.44) 52.54 (↑14.76)Occlusion
Occluded (Strong) 100.64 (↑23.63) 90.62 (↑15.83) 82.41 (↑20.53) 84.17 (↑31.39) 80.83 (↑30.99) 52.84 (↑14.19) 59.51 (↑21.73)

Edges Only 85.50 (↑8.49) 75.63 (↑0.84) 75.83 (↑13.95) 78.51 (↑25.73) 62.68 (↑12.84) 44.74 (↑6.09) 50.31 (↑12.53)Edges Soften Edges 80.98 (↑3.97) 74.33 (↓0.46) 63.37 (↑1.49) 57.10 (↑4.32) 49.70 (↓0.14) 38.77 (↑0.12) 38.86 (↑1.08)

Perspective Orthographic 78.91 (↑1.90) 79.56 (↑4.77) 60.31 (↓1.57) 60.83 (↑8.05) 52.06 (↑2.22) 44.24 (↑5.59) 39.84 (↑2.06)

Pixel Shuffle (2) 76.69 (↓0.32) 74.45 (↓0.34) 61.44 (↓0.44) 54.67 (↑1.89) 50.58 (↑0.74) 37.59 (↓1.06) 40.04 (↑2.26)
Pixel Shuffle (4) 77.77 (↑0.76) 73.28 (↓1.51) 61.60 (↓0.28) 63.64 (↑10.86) 52.86 (↑3.02) 37.96 (↓0.69) 41.99 (↑4.21)
Pixel Shuffle (10) 84.86 (↑7.85) 74.58 (↓0.21) 70.24 (↑8.36) 86.01 (↑33.23) 61.05 (↑11.21) 44.90 (↑6.25) 51.69 (↑13.91)

Local
continuity

Pixel Shuffle (20) 87.33 (↑10.32) 79.15 (↑4.36) 84.66 (↑22.78) 96.24 (↑43.46) 67.80 (↑17.96) 57.11 (↑18.46) 67.18 (↑29.40)

Table 5: Quantitative analysis of image cue perturbations on single-image 3D generation. We report
Chamfer Distance (CD ×1000 for clarity; lower is better) for each model under different perturbations.
A larger increase in CD indicates greater performance degradation, revealing the model’s reliance on
the perturbed cue.

views, shown by the dropping DINOv2 similarity across views. Native 3D generative models
hallucinate non-existent symmetries, shown by a large number of false positives on Zeroverse.

7.4 Variance of Different Seeds in Viewpoint Sampling

We observe minor performance differences when evaluating the models using the same input im-
age using different random seeds. However, when we vary the random seeds to sample different
viewpoints of the same object, thus generating different rendered input images, some performance
variation emerges, as reported in Table 10. Importantly, these variations do not affect the core findings
or conclusions of our study. A more comprehensive investigation into viewpoint sensitivity remains
an interesting direction for future work.
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(a) GSO
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 83.01 80.89 68.07 61.58 54.54 41.82 39.64

Manhattan Dilated (Weak) 89.80 (↑6.79) 82.69 (↑1.80) 69.97 (↑1.90) 73.01 (↑11.43) 57.58 (↑3.04) 40.94 (↓0.88) 41.91 (↑2.27)
Manhattan Dilated (Mid) 103.99 (↑20.98) 96.19 (↑15.30) 79.50 (↑11.43) 89.98 (↑28.40) 70.07 (↑15.53) 42.70 (↑0.88) 41.16 (↑1.52)Silhouette
Manhattan Dilated (Strong) 109.75 (↑26.74) 107.11 (↑26.22) 84.28 (↑16.21) 97.01 (↑35.43) 82.75 (↑28.21) 45.28 (↑3.46) 41.11 (↑1.47)

Canny Edges 92.70 (↑9.69) 82.36 (↑1.47) 84.74 (↑16.67) 88.48 (↑26.90) 67.47 (↑12.93) 51.56 (↑9.74) 56.64 (↑17.00)
HED Edges 95.63 (↑12.62) 84.31 (↑3.42) 83.27 (↑15.20) 96.18 (↑34.60) 70.25 (↑15.71) 48.85 (↑7.03) 55.53 (↑15.89)
Lineart Edges 90.23 (↑7.22) 85.61 (↑4.72) 79.39 (↑11.32) 79.53 (↑17.95) 66.11 (↑11.57) 50.37 (↑8.55) 51.30 (↑11.66)Edges

PIDI Edges 94.25 (↑11.24) 84.45 (↑3.56) 84.13 (↑16.06) 102.63 (↑41.05) 73.17 (↑18.63) 49.06 (↑7.24) 69.06 (↑29.42)

(b) Toys4K
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 77.01 74.79 61.88 52.78 49.84 38.65 37.78

Manhattan Dilated (Weak) 85.71 (↑8.70) 77.97 (↑3.18) 65.13 (↑3.25) 64.46 (↑11.68) 53.66 (↑3.82) 39.13 (↑0.48) 39.59 (↑1.81)
Manhattan Dilated (Mid) 104.77 (↑27.76) 93.12 (↑18.33) 76.56 (↑14.68) 83.10 (↑30.32) 68.84 (↑19.00) 38.61 (↓0.04) 38.40 (↑0.62)Silhouette
Manhattan Dilated (Strong) 117.13 (↑40.12) 108.18 (↑33.39) 90.44 (↑28.56) 91.02 (↑38.24) 82.37 (↑32.53) 42.09 (↑3.44) 38.75 (↑0.97)

Canny Edges 85.50 (↑8.49) 75.63 (↑0.84) 75.83 (↑13.95) 78.51 (↑25.73) 62.68 (↑12.84) 44.74 (↑6.09) 50.31 (↑12.53)
HED Edges 88.10 (↑11.09) 75.42 (↑0.63) 76.21 (↑14.33) 88.75 (↑35.97) 66.70 (↑16.86) 43.63 (↑4.98) 51.29 (↑13.51)
Lineart Edges 82.90 (↑5.89) 76.06 (↑1.27) 72.83 (↑10.95) 72.33 (↑19.55) 62.76 (↑12.92) 48.79 (↑10.14) 46.61 (↑8.83)Edges

PIDI Edges 89.81 (↑12.80) 76.35 (↑1.56) 76.10 (↑14.22) 93.51 (↑40.73) 69.67 (↑19.83) 43.57 (↑4.92) 64.70 (↑26.92)

Table 6: Additional Quantitative analysis of image cue perturbations on single-image 3D generation.
We report Chamfer Distance (CD ×1000; lower is better) for each model under different perturbations.
A larger increase in CD indicates greater performance degradation, revealing the model’s reliance on
the perturbed cue.

Lighting & Material Variants OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Env map, default specularity (orig.) 80.89 68.07 61.58 54.54 41.82 39.64
Env map, large specularity 81.70 (+0.81) 68.40 (+0.33) 61.84 (+0.26) 54.43 (−0.11) 42.32 (+0.50) 38.94 (−0.70)

Directional, default specularity 84.19 (+3.30) 72.00 (+3.93) 67.26 (+5.68) 60.60 (+6.06) 42.77 (+0.95) 43.97 (+4.33)

Directional, large specularity 84.47 (+3.58) 70.68 (+2.61) 65.99 (+4.41) 57.94 (+3.40) 42.76 (+0.94) 42.54 (+2.90)

Table 7: GSO ablation on lighting and specularity (CD×1000, lower is better). Values in parentheses
are deltas vs. the environment-map/default-specularity baseline. Directional lighting generally hurts,
while increased specularity can mitigate or improve performance depending on model and lighting.

8 Implementation Details

8.1 Evaluation

We first leverage ambient occlusion to remove the internal surface of the output meshes. For each
predicted mesh, we load and recenter both the prediction and its corresponding ground-truth mesh,
normalizing each to a unit bounding sphere. Following [6], we uniformly search a dense grid of
rotations (24 azimuth × 24 elevation × 12 roll samples), applies each to the predicted cloud, and
perform a brute-force search over these rotations to identify the best coarse alignment. Finally, we
refine this alignment with Iterative Closest Point (ICP). After the alignment, we compute Chamfer
Distance (CD) and F-score at CD thresholds to evaluate the predicted meshes.

8.2 Perturbations

Our input images are 512 × 512 pixels in resolution. For silhouette dilation, we apply a dilation
kernel of 10 pixels for the weak variant, 30 pixels for the medium variant, and 60 pixels for the strong
variant. For occlusion, we randomly position an occluder mask along the edge of the object and scale
it by a factor of 0.1, 0.4, or 0.8 for the weak, medium, and strong variants, respectively. For pixel
shuffle, we randomly shuffle all pixels within each non-overlapping N × N grid inside the object
mask, with N set to 2, 4, 10, or 20 to represent different perturbation strength.

8.3 Teaser Figure

In Figure 1 of the main paper, we provide an overview of our key findings, including performance
comparisons and robustness to perturbations, on the Toys4K dataset. Here, we present analogous
figures for the GSO dataset, where the results closely mirror those observed on Toys4K.

The radar plot on the right illustrates robustness to different image cues. Each axis shows the
increase in Chamfer Distance (CD) of using a perturbed image relative to using the original image,
with values normalized from 0 to 1 according to the largest drop across all models and cues. For
the texture axis, we report the average performance drop over all texture-swap perturbations with
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LGM OpenLRM CRM SF3D InstantMesh Trellis Hunyuan3D-2

Figure 7: Teaser figure result on the GSO dataset. We observe the same trend as in Toys4K. Left:
Our unified evaluation of single-image 3D generation methods. Right: Performance robustness to the
perturbation of each cue, lower values indicate higher importance.

Method GSO Toys4K Zeroverse

OpenLRM 1.5819 1.3361 0.7892
SF3D 1.0198 0.9155 0.3997

Table 8: Failure mode of regression-based mod-
els on meaningless shapes: back view becomes
smooth, measured by a normal roughness index,
lower means smoother.

Method GSO Toys4K Zeroverse

CRM 0.5214 0.5583 0.4786
InstantMesh 0.6628 0.7462 0.5348

Table 9: Failure mode of multi-view models on
meaningless shapes: view inconsistency, mea-
sured by DINOv2 similarity.
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Figure 8: Failure mode of native 3D generative
models on meaningless shapes: hallucination of
symmetry, shown by the increase of false posi-
tives on Zeroverse.

shading intact; for shading, we average over all shading-related perturbations without lighting. For
silhouette and occlusion, we use the strong perturbation variant. For edges, we use the softened edges
perturbation; for local continuity, we use the strength of 10; for style, we average across all styles;
and for shape meaningfulness, we report the drop compared to Zeroverse performance. We display
only the best-performing methods because, for weaker models, the original CD scores are poor, our
ICP alignment can lead to CD scores saturating, making CD score drop no longer able to faithfully
represent performance degradation, or no longer comparable with other better-performing models.

9 Broader Impact

On the positive side, Cue3D addresses a fundamental gap in the interpretability and robustness of
single-image 3D generation models. By systematically dissecting which visual cues, such as shading,
texture, silhouette, and perspective, that are actually used by state-of-the-art 3D generative networks,
this work lays the foundation for developing more transparent, robust, and controllable AI systems.
Such advances have broad societal benefits. For example, in content creation and digital entertainment,
better understanding of 3D model generation can drive higher quality, more reliable virtual assets
for animation, games, AR/VR, and industrial design. In scientific and educational settings, robust

24



Method SF3D InstantMesh Trellis

Seed 1 61.58 54.54 39.64
Seed 2 58.00 56.45 39.70
Seed 3 58.20 53.88 40.52

Average 59.26 54.96 39.95
Standard Deviation 1.64 1.09 0.40

Table 10: Performance variation when using different seeds to sample inference images viewpoint,
measured by Chamfer Distance (CD ×1000; lower is better).

3D inference from images can facilitate improved visualization and analysis of objects and scenes,
democratizing access to powerful graphics tools. More broadly, the push for interpretability aligns
with growing public and regulatory demand for transparency and trustworthiness in AI, reducing
the risk of unpredictable failures and biases in downstream applications. The open, extensible
benchmarking methodology promoted by Cue3D could become a community standard, encouraging
more responsible, reproducible, and diagnosable progress in AI-generated 3D content.

However, there are also potential negative societal impacts. As single-image 3D generation methods
become more powerful and transparent, the same advances that benefit creative and scientific commu-
nities could be leveraged for malicious purposes. Improved 3D reconstruction from ordinary images
can facilitate unauthorized cloning of real-world objects, cultural artifacts, or even biometric data
(such as faces or bodies), raising concerns about privacy, copyright infringement, and the propagation
of deepfakes. The increased robustness of these models to stylization or occlusion, as discussed
in the paper, could make it easier to reconstruct 3D models even from intentionally obfuscated or
partially hidden images, weakening existing privacy protections. Moreover, because the findings
highlight the over-reliance on certain cues (e.g., silhouette), there is a risk that future systems, if not
carefully designed, could propagate existing biases or vulnerabilities into real-world deployments,
for example, failing more frequently on out-of-distribution or less-represented shapes, which may
disproportionately impact marginalized communities or less commonly encountered objects. The
computational demands of benchmarking and training these systems also carry environmental costs,
which, while not unique to this work, are worth considering given the scale of modern AI experiments.

In summary, while Cue3D represents an important step toward more interpretable, robust, and
community-driven single-image 3D generation, care must be taken to address privacy, bias, and
misuse risks, ensuring that these technological advances are ultimately used for societal benefit rather
than harm.
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LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 TrellisInput
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Figure 9: Quantitative results of all perturbations, page 1 / 9.
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Figure 10: Quantitative results of all perturbations, page 2 / 9.
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Checkerboard

Texture (w/o L)

Checkerboard

Texture (w/ L)

Perlin Noise 

Texture (w/o L)

Perlin Noise 

Texture (w/ L)

Figure 11: Quantitative results of all perturbations, page 3 / 9.
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Figure 12: Quantitative results of all perturbations, page 4 / 9.
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Figure 13: Quantitative results of all perturbations, page 5 / 9.
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Figure 14: Quantitative results of all perturbations, page 6 / 9.
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Figure 15: Quantitative results of all perturbations, page 7 / 9.
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LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 TrellisInput

PIDI 

Edges

Soften

Edges

Orthographic

Pixel 

Shuffle (2)

Figure 16: Quantitative results of all perturbations, page 8 / 9.
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Figure 17: Quantitative results of all perturbations, page 9 / 9.
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