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ABSTRACT

Optimization in deep learning remains poorly understood, even in the simple
setting of deterministic (i.e. full-batch) training. A key difficulty is that much of
an optimizer’s behavior is implicitly determined by complex oscillatory dynamics,
referred to as the “edge of stability.” The main contribution of this paper is to show
that an optimizer’s implicit behavior can be explicitly captured by a central flow: a
differential equation which models the time-averaged optimization trajectory. We
show that these flows can empirically predict long-term optimization trajectories
of generic neural networks with an unprecedentedly high degree of numerical
accuracy. By interpreting these flows, we reveal for the first time 1) the precise
sense in which RMSProp adapts to the local loss landscape, and 2) an acceleration
via regularization mechanism, wherein adaptive optimizers implicitly navigate
towards low-curvature regions in which they can take larger steps. This mechanism
is key to the efficacy of these adaptive optimizers. Overall, we believe that central
flows constitute a promising tool for reasoning about optimization in deep learning.

1 INTRODUCTION

Optimization in deep learning remains poorly understood, even in the simple setting of deterministic
(i.e. full-batch) training. A key difficulty is that much of an optimizer’s behavior is determined implic-

irly by complex oscillatory dynamics (Xing et al. 2018}, Jastrzgbski et all,[2019; [2020; [Cohen et al.
[202T). As a result, an optimizer’s update rule often sheds little light on its actual behavior.

To resolve this difficulty, we show that an optimizer’s implicit behavior can be characterized explicitly
by a central flow: a differential equation that models the time-averaged optimization trajectory. The
central flow averages out the oscillations themselves, but retains their lasting effect on the trajectory.
This lasting effect manifests as an implicit reduction in the curvature of the loss function ™ Accordingly,
the central flow corresponding to each optimization algorithm takes the form of a curvature-penalized
gradient flow. We derive these central flows using informal mathematical reasoning, and empirically
show that they can successfully predict long-term optimization trajectories of neural networks
with a high degree of numerical accuracy. We are unaware of any other theoretical analyses of
optimization in generic deep learning settings with a similar degree of predictive power.
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Figure 1: The central flow models the time-averaged trajectory of the oscillatory optimizer. We
train a CNN on CIFAR-10 using full-batch RMSProp (blue). The optimizer oscillates in weight space
(right two plots), which causes the loss, and the network’s output on a test example, to oscillate (left
two plots). Our central flow (black) directly models the time-averaged, or smoothed, trajectory.
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Unlike an optimizer’s update rule, the central flow directly exposes the optimizer’s behavior, thereby
making it possible to reason about optimization. We derive central flows for gradient descent (Sec-
tion [3), a simple adaptive optimizer (Sectiond)), and RMSProp (Section [5), and we use these central
flows to understand the behavior of the corresponding algorithms. For example, our analysis reveals,
for the first time, the precise sense in which RMSProp ‘“adapts” its effective step sizes to the local
loss landscape. It also shows that the two adaptive optimizers implicitly regularize the curvature along
their trajectories, giving rise to a mechanism we call acceleration via regularization, whereby implic-
itly regularizing curvature drives the trajectory towards low-curvature regions where the optimizer
can take larger steps. This mechanism is key to the efficacy of these optimizers.

We are optimistic that our methodology holds promise as a framework for analyzing, and perhaps
even inventing, deep learning optimization algorithms beyond the ones studied here.

2 RELATED WORK

Edge of Stability The dynamics of optimization in deep learning remain poorly understood, even
in the seemingly simple setting of deterministic (i.e. full-batch) training. Indeed, recent research
showed that gradient descent on neural networks typically operates in a regime termed the “edge of
stability” (EOS) in which (1) the largest Hessian eigenvalue equillibrates around the critical threshold
2/n, and (2) the algorithm oscillates along high-curvature directions without diverging (Xing et al.,
2018 [Wu et al.| |2018; Jastrzebski et al., 2019} [2020; |Cohen et al.l 2021). These dynamics could not
be explained by existing optimization theory, which led |(Cohen et al.|(2021)) to observe that there was
no explanation for how or why gradient descent can function properly in deep learning.

Subsequently, several studies sought to theoretically explain EOS dynamics. Some works rigorously
analyzed EOS dynamics on specific objective functions (Agarwala et al., 2023; |Ahn et al.| 2024;
Chen & Brunal 2023} |[Even et al., 2024; |Kreisler et al., 2023} Song & Yun, 2023; [Li et al., [ 2022; Wu
et al.| 2024} Zhu et al.| 2023)), while other works (Arora et al.,[2022; [Lyu et al.| 2022} Damian et al.|
2023)), gave generic analyses based on a local third-order Taylor expansion of the loss, which is one
order higher than is normally used in the theoretical analysis of gradient descent. Similar arguments
were first used by |Blanc et al.|(2019) to study implicit regularization in SGD.

Our analysis is most directly inspired by [Damian et al.|(2023), which rigorously analyzed EOS in
the special case where gradient descent oscillates along a single direction. Whereas they analyze the
fine-grained oscillatory dynamics, we argue that analyzing the time-averaged dynamics is simpler,
and is sufficient for many purposes. We first reproduce their main result using a simple, albeit
non-rigorous, time-averaging argument. We then show that this time-averaging methodology easily
extends to the more realistic and challenging setting where gradient descent oscillates along multiple
directions simultaneously, as well as to the analysis of two adaptive optimizers.

Understanding Adaptive Optimizers ? observed that RMSProp and Adam oscillate, and |Cohen
et al.[(2022) showed that such dynamics can be viewed as an adaptive version of the edge of stability,
a finding which we will leverage. [Khaled et al.| (2023) and Mishkin et al.| (2024) observed that
on quadratic functions, certain adaptive optimizers implicitly adapt their effective step size to the
maximum stable step size; we show this holds more generally, beyond quadratics. Experiments in
Roulet et al.[(2024)) and Wang et al.|(2024d)) are explained by the phenomenon we call “acceleration
via regularization.” Many works have also conducted rigorous convergence analyses of adaptive
optimizers, generally focused on deriving rates of convergence to a global minimizer or stationary
point (Duchi et al} 2011} [Reddi et al., 2018 |Chen et al.| 2019a3bj; Zaheer et al.l 2018} |[Zou et al.|
2019; Défossez et al., [2022; [Li & Lin, [2024; (Chen et al., [2022; Wang et al., 2024a; |Yang et al., |2024;
Guo et al.| 20215 Shi et al., |2021; Zhang et al., 2022; |Crawshaw et al., 2022} |Li et al.| 2024} [Wang
et al.,2024b}; [Hong & Lin, 2024} [Zhang et al., [2024; Wang et al., 2024c; |Hiibler et al.| 2024)).

3 GRADIENT DESCENT

We introduce our framework by analyzing the simplest first-order optimizer: gradient descent with a
fixed step size 7. This analysis will set the stage for our analyses of more complex optimizers.

Wiy1 = W — T)VL(’LUt) (GD)

Why does gradient descent work? The classical explanation requires the learning rate 7 to be set
small relative to the curvature of the loss function, which is treated as an a priori property of the
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Figure 2: Central flow for gradient descent. A ViT is trained on CIFAR-10 using gradient descent
with 7 = 2/100 (blue). Gradient descent enters EOS at step 600 and after step 1450 multiple
eigenvalues are unstable (dotted red). The central flow (black) accurately models gradient descent
even at EOS, whereas gradient flow (gray) follows a different path. The distance between the central
flow and gradient descent (black) even remains smaller than the distance between consecutive iterates
of gradient descent (blue) throughout the trajectory.

optimization problem. However, recent works have demonstrated that this explanation does not apply
to deep learning. In deep learning, gradient descent converges not because the curvature is “already
small,” but rather because the optimizer automatically avoids high curvature regions of the loss
landscape (Cohen et al 2021} Damian et al.,|2023)). In this section, we will analyze these dynamics,
with the goal of rendering explicit the path that is implicitly taken by gradient descent.

3.1 THE MECHANICS OF GRADIENT DESCENT

The dynamics of gradient descent in deep learning revolve around the sharpness S(w) := A\ (H (w)),
defined as the largest eigenvalue of the Hessian H (w). There are three important properties of the
sharpness: (1) the sharpness tends to rise during training, (2) gradient descent oscillates whenever the
sharpness exceeds the critical threshold 2 /1), (3) such oscillations implicitly reduce the sharpness.
The interactions between these three processes give rise to rich dynamics, termed edge of stability,
which automatically keep the sharpness regulated around the critical threshold 2 /7.

1. Sharpness tends to rise A robust empirical observation of |Cohen et al|(2021)), dubbed progres-
sive sharpening, is that the sharpness tends to rise during the training of neural networks.

2. High sharpness triggers oscillations A local quadratic Taylor expansion reveals that gradient
descent oscillates whenever the sharpness exceeds the critical threshold 2/7. For example, consider
optimizing a one-dimensional quadratic objective L(z) = %Saﬂ, which has global sharpness S. The
gradient descent iterates {x;} evolve via ;11 = (1 — nS)ax;. If S > 2/n, then (1 — nS) < —1, so
the iterate x, flips signs and grows in magnitude at each step, i.e. gradient descent oscillates with
exponentially growing magnitude. More generally, for a quadratic objective in multiple dimensions,
gradient descent oscillates with exponentially growing magnitude along all Hessian eigenvectors
with eigenvalues exceeding 2/7. While deep learning objectives are not globally quadratic, a local
quadratic Taylor approximation suggests that in any region of weight space where the sharpness

exceeds 2 /7, gradient descent will oscillate along the highest-curvature direction(s).

3. Oscillations reduce sharpness When high sharpness triggers oscillations, a local cubic Taylor
approximation reveals that these oscillations in turn trigger a reduction in sharpness (Damian et al.,
2023), a form of negative feedback which can prevent divergence. Suppose that gradient descent is
oscillating around a reference point w, along the top Hessian eigenvector u, with current magnitude
x, so that w = W + zu. Then Taylor-expanding V L(w) around w gives (see Lemma|l)):

Viw)= |VL@)| + [eS@u] + [L?VS@)| + 0@ (1)

(1) gradient at reference point  (2) oscillation (3) sharpness reduction

The third term, which arises from the cubic term in the Taylor expansion of the loss, reveals that a
gradient step on the loss with step size n automatically includes a gradient step on the sharpness of
the loss with step size %nx? Thus, oscillations automatically trigger reduction of sharpness. This
fact, not accounted for by classical theory, is necessary for understanding the dynamics of
gradient descent in deep learning. A similar argument extends to the case where gradient descent
oscillates simultaneously along multiple top Hessian eigenvectors.
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The interactions between these three processes give rise to rich dynamics, termed edge of stability, in
which the algorithm oscillates along the highest-curvature direction(s) without diverging, and the
sharpness stays automatically regulated around the critical threshold 2/7 (Cohen et al., 2021). In the
special case where only the largest eigenvalue crosses 2/7 (e.g. steps 600 — 1450 in Figure , which
was rigorously analyzed in Damian et al.|(2023)), the dynamics consist of repeated cycles in which:
(a) progressive sharpening drives the sharpness above 2/7; (b) this triggers growing oscillations
along the top Hessian eigenvector; (c) such oscillations force the sharpness back below 2/7; (d) the
oscillations consequently shrink in magnitude. When multiple Hessian eigenvalues have reached
2/n (e.g. steps 1450 — 2000 in Figure , gradient descent oscillates simultaneously along all the
corresponding eigenvectors, and all such eigenvalues are dynamically regulated around 2/1).

While the fine-grained EOS dynamics are complex, we will now show that a simple time-averaging
argument not only recovers the analysis of [Damian et al.| (2023) (albeit non-rigorously), but also
generalizes to the more realistic and challenging setting of multiple oscillating directions.

3.2 DERIVING THE GD CENTRAL FLOW

So long as the sharpness S(w;) remains below the critical threshold 2/7), gradient descent is said
to be stable. While gradient descent is stable, it does not exhibit sustained oscillations, and its
trajectory is empirically well—approximatedﬂ by that of gradient flowZd %” = —nVL(w); however,
once gradient descent enters the EOS regime, its trajectory rapidly departs from that of gradient flow
(Cohen et al.,[2021). We will now derive a more general ODE, which we call a central flow, which
models the time-averaged trajectory of gradient descent in both the stable and EOS regimes. While
our derivation is not rigorous, we will demonstrate that the central flow accurately predicts long-term

gradient descent trajectories in a variety of neural network settings.

Throughout this paper, we abuse notation and use E to denote “local time-averages” of determinis-
tic quantities — see Appendix [C.2|for additional discussion. The gradient descent central flow
is intended to model the time-averaged trajectory E[w;]. To simplify notation, we will also use
wy := E[w;] to denote the time-averaged trajectory.

3.2.1 THE SPECIAL CASE OF ONE UNSTABLE EIGENVALUE

We will introduce our time-averaging methodology by analyzing the special case when only the
largest Hessian eigenvalue has crossed the critical threshold 2/7. In this setting, gradient descent
oscillates along a single direction — the top Hessian eigenvector. We will therefore model the GD
trajectory by w; = w; + x.u; where w; is the true gradient descent iterate, w; is the time-averaged
iterate, uy is the top Hessian eigenvector at w;, and z; denotes the displacement between w; and wy
along the u direction. Note that by definition, E[x;] = 0, i.e. the time-averaged displacement is zero.
To track the evolution of w;, we time-average both sides of the gradient descent update and Taylor
expand the time-averaged gradientm using eq. :

W1 = Wy —nE[VL(w)] ~ W, —n[VL(W) + S Bfrilu; + 3 Elz7]VS(w)].

Note that the second term in the time-averaged gradient is 0 because E[x;] = 0. Therefore, we model
the time-averaged iterates w; by the sharpness-penalized gradient flow w(¢) defined by:

dw

== —n| VL(w) + o2 (OVS(w) |. 2)
| S

implicit sharpness penalty

Here, 02(t) is a still-unknown quantity intended to model E[z?], the instantaneous variance of the
oscillations at time ¢. This quantity also controls the strength of the implicit sharpness penalty. To
determine o2 (t), we argue that only one value is consistent with empirically observed dynamics. In
particular, so long as gradient descent is at the edge of stability, the sharpness stays dynamically
regulated around 2 /7. Therefore, we will enforce that the central flow keeps the sharpness fixed at

.. . dS(w
S(w(t)) = 2/n. This implies that along the central flow, d(t ) — 0.

The time derivative of the sharpness under eq. () can be easily computed using the chain rule:

B — (95, G ) = (TS (). VL) - 10| TS G

progressive sharpening  sharpness reduction from oscillations
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dsd(tw ) =0 yields the unique o%(t) that keeps the sharpness fixed in place:
(1) = 2V, ~VL@w)
IVS(w)]
Intuitively, this is the unique o2(t) for which the downward force of oscillation-induced sharpness

reduction “cancels out” the upwards force of progressive sharpening so the sharpness is locked at 2/7).
The central flow for a single unstable eigenvalue is given by substituting this 0% (¢) into eq. .

Solving for

“4)

3.2.2 THE GENERAL CASE (MULTIPLE UNSTABLE EIGENVALUES)

We now generalize this analysis to the setting where multiple eigenvalues have reached the critical
threshold 2/7, and gradient descent oscillates in the span of the corresponding eigenvectors. We
assume the displacement ¢; := w; — w; between the true process and the time-averaged process lies
in the span of these eigenvectors. For example, when only one eigenvalue has reached 2/7, taking
0y = xyuy recovers the analysis in Section@ The iterate w; can be decomposed as w; = Wy + J;
where, by definition, E[d;] = 0. As above, we Taylor-expand the gradient around w;:

VL(wi) ~ VL(w;) + H(W¢)5; + 3V, (H(W), 6] ). (5)

The third term in this Taylor expansion can be interpreted as the gradient of the curvature in the J,
direction® To track the evolution of the time-averaged iterate w,, we time-average both sides of the
gradient descent update and substitute in the Taylor-expansion in eq. (3)):

Wiy = W —nE[VL(w)] ~ @, —n|VL(W) + HEYER] + Ve, (H(w:), E007])]
As above, the second term in the time-averaged gradient is 0 because E[d;] = 0. Therefore we model

the time-averaged iterates w; by the curvature-penalized gradient flow w(t) defined by:

‘%’ = =y VL(w) + $9, (H(w), =) |. ©)

implicit curvature penalty

Here, %(t) is a still-unknown quantity intended to model E[§;57 ], the instantaneous covariance of
the oscillations at time ¢. As above, we will argue that only one value of ¥(¢) is consistent with the
empirically observed dynamics. In experiments, Hessian eigenvalues which have reached the critical
threshold 2/7 do not continue to rise further; rather, these eigenvalues either remain dynamically
regulated around 2/7), staying at the edge of stability; or they drop below 2/7), leaving the edge of
stability (Cohen et al., [2021). Thus, we impose the desideratum that the flow eq. @ should not
increase any Hessian eigenvalues beyond 2 /7. To this, we add the two natural desidirata that: (1) as a
covariance matrix, >(¢) should be PSD, and (2) gradient descent should not be modeled as oscillating
along Hessian eigenvectors with eigenvalues less than 2/7). These three desiderata turn out to imply a
unique value of X(¢). In particular, we detail in Appendix that these three desiderata imply that
3(t) is the solution to a type of convex program known as a cone complementarity problem (CCP).
The central flow for gradient descent is defined as eq. (€) with this value of X(¢).

Experimental validation Although this derivation employs informal mathematical reasoning,
our experiments demonstrate that this central flow can successfully predict long-term optimization
trajectories of neural networks with a high degree of numerical accuracy. For example, in Figure[2}
we run gradient descent side by side with the central flow, and monitor the distance between the two
trajectories in weight space. Observe that the weight space distance between these two trajectories
stays very close to zero (it is even less than the distance between successive gradient descent iterates).
By contrast, the distance between the gradient descent and gradient flow trajectories grows large.
Many of our experiments attain a similarly high level of numerical accuracy. Even in cases where
weight-space distance grows non-negligibly during training, the central flow’s predictions for derived
quantities such as the train loss, or individual network outputs, often still closely match those of
the real optimizer trajectory. We are unaware of any other theoretical framework for reasoning
about optimization in deep learning with a comparable level of predictive power.

Appendix [B]shows our full set of experiments, and discusses the factors that affect the quality of the
central flow approximation. A promising direction for future research is to rigorously identify condi-
tions under which the central flow accurately approximates the real optimization trajectory.

3.3 INTERPRETING GRADIENT DESCENT VIA ITS CENTRAL FLOW
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Being a smooth flow, the central flow is an simpler object to reason training loss
about than the oscillatory gradient descent trajectory. For example, the ' —
training loss L(w;) along the gradient descent trajectory behaves non- o7 == £l
monotonically, as shown in FigureE} This led |Cohen et al.| (2021)) to o6

observe that there was no explanation for why the loss still decreases

over longer tlmescales The central flow provides a simple explanation Jass = .
for this phenomenon 8 Because the central flow is a smooth curve, the ~ °* \

chain rule quantifies the rate of loss decrease: Ld(tw) (VL(w), 4 b S N
Using this, we prove in Propos1t1onthat d(t w) <), i.e. that the central 00 IR e T e
flow loss L(w(t)) is monotonically decreasing. Thus, the central flow

loss is a hidden progress metric for the optimization process. Figure 3: Train loss curve

As visible in Figure 3| the gradient descent train loss L(wy) is generally higher than the central flow
train loss L(w(t)), due to the oscillations. However, since the central flow also models the oscillation
covariance X(t), it can render predictions for the time-averaged train loss of the algorithm:

E[L(wy)] = L(w(t)) + 5 (H(w(t)), B(t)) = L(w(t)) + 3S(w(t)) tr(2(1)) . @)
central flow loss effect of oscillations

Thus, the central flow allows us to decompose the time-averaged training loss curve into the loss along
the central flow, which decreases monotonically, plus a contribution from the oscillations.

4 RMSPROP-NORM

We now study “RMSProp-Norm”, a simplification of RMSProp which uses one global adaptive step
size rather than separate adaptive step sizes for each coordinate:

vi = Bovi_1 4+ (1 = Bo)IVL(we)||?,  wir1 = ws — iVL(wt). (RMSProp-Norm)

The algorithm maintains an exponential moving average (EMA), v, of the squared gradient norm, and
takes gradient steps of size 7/+/v, which we call the effective step size! M The EMA hyperparameter
(2 is a knob that interpolates the algonthm between gradient descent when S5 = 1 and normalized
gradient descent (NGD) when 3 = 08 Because RMSProp-Norm adapts only the step size, it is a
simpler analogue of more complex adaptive optimizers which adapt the update direction as well. As
such, its analysis will be a stepping stone to that of more complex methods.

We will explicitly characterize how RMSProp-Norm adapts its effective step size to the local loss
landscape, revealing how oscillatory dynamics enable a gradient-based optimizer to adapt to the local
curvature. We also will show that oscillations implicitly regularize curvature, giving rise to a mecha-
nism we call acceleration via regularization (Section4.3.3)), whereby implicitly regularizing curvature
drives the trajectory towards low-curvature regions where the algorithm can take larger steps. This
mechanism is key to the efficacy of RMSProp-Norm and the function of its hyperparameters.

4.1 THE MECHANICS OF RMSPROP-NORM

The dynamics of RMSProp-Norm revolve around the effective sharpness, defined as S :=
S(w)/+/v. First, the effective sharpness controls the oscillations: when S > 2/n, RMSProp-
Norm oscillates with growing magnitude along high curvature direction(s). Second, such oscillations
in turn trigger a reduction of effective sharpness. This occurs via a combination of two distinct
mechanisms. One mechanism, shared with gradient descent, is that oscillations implicitly reduce
sharpness due to Equation (IJ), thereby decreasing the effective sharpness via its numerator. The
other mechanism, new to RMSProp-Norm, is that oscillations increase the gradient norm and hence
v, thereby decreasing effective sharpness via its denominator. These dynamics give rise to a negative
feedback loop that keeps the effective sharpness automatically regulated around 2/7), as depicted in
the bottom left plot in Figure ] The fine-grained dynamics are complex and challenging to analyze,
even in the case of a single oscillatory direction. Fortunately, we will see in the next section that
analyzing the time-averaged dynamics is much simpler.

4.2 DERIVING THE CENTRAL FLOW

Recall that while gradient descent trains stably, it is well-approximated by éﬁadient flow. One can
derive an analogous “stable flow” for RMSProp-Norm (Ma et al., 2022} cf.):

gw(t) = ~ oV Lw @), s = G2 IVLwE)]® - v(1)]. (®)
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Figure 4: Central flow for RMSProp-Norm. A ViT is trained on a subset of CIFAR-10 using
RMSProp-Norm with 7 = 2/100 and 82 = 0.995 (blue). It enters EOS around step 300, and around
step 1300 multiple eigenvalues go unstable (dotted red). The central flow (black) accurately models
the time-averaged trajectory of RMSProp-Norm even at the edge of stability, whereas the naive stable
flow (gray) follows a different path. The effective learning rate (ELR) plot shows that after reaching
EOS, the ELR equilibrates around the maximal locally stable learning rate 2/S.

However, at the edge of stability, the trajectory of RMSProp-Norm deviates from eq. (8). We will
now derive a more general central flow that characterizes the time-averaged trajectory even at EOS.
In the main text, we will focus on the case where one eigenvalue is unstable.

In section|3.2.1} we derived an approximation for the time-averaged gradient, E[V L(w)]. Using the
first two terms of eq. (1), we can also derive a time-averaged approximation for E[||V L(w)]|*]:

E[|VL(w)|*] ~ | VL ()| +W+ S(w)* Elz”]

where we again used E[z] = 0 to ignore the middle term. Based on these time averages, we make the
ansatz that the joint dynamics of (wy, 1) follow a central flow (w(t), v(t)) of the form:

frut) = — 2= [ VL(w(1) + §o* (VS (w (1))
E[|VL(w:)]|?]  E[VL(w:)] 9
Hult) = F2 [IVL@®)I + S(w()2e* (1) —v(t)]

where 02(t) is a still-unknown quantity intended to model E[z?], the instantaneous variance of the
oscillations. As in our analysis of gradient descent, there is a unique value of o?(¢) that maintains
dser _ <as“f dw ) 28"  dv

S (w, v) = 2/n. To compute it, we expand ﬂ - using the chain rule:

dt dw ’ dt ov dt'
Plugging in 42, ‘fi‘t’ from eq. (EI) shows that 25 is linear in 2. Thus, there is a unique value of o2
that will ensure 95— = 0, which is given by
progressive sharpening effect of mean reversion on v
Bo (—VL(w), VS(w)) +(1—B2) [S(w)?/4 — | VL(w)]|]*/n?
(s ) — V) V@) +0-80) [Swp /4~ IVL@IP/]

Ba 3V S(w)|* +(1-B2) S(w)? /0’
———— ———
sharpness reduction effect of oscillation on v

The central flow for RMSProp-Norm with a single unstable eigenvalue is given by eq. (9) with this

value of o2. In Appendix we extend this flow to the case of multiple oscillating directions. In
Figure[d and Appendix [D] we validate this flow empirically.

4.3 INTERPRETING RMSPROP-NORM VIA ITS CENTRAL FLOW

We now interpret the RMSProp-Norm central flow to shed light on the behavior of the algorithm and
the function of its hyperparameters n and 2. Because the dynamics usually transition from stable to
EOS quite early in training, we focus on interpreting the central flow in the EOS regime.m:I
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4.3.1 IMPLICIT STEP SIZE SELECTION

The central flow renders explicit the step size strategy that is implicit
in the oscillatory dynamics of RMSProp-Norm. Recall that while
the central flow is at EOS, the effective sharpness S := S(w)/\/v o] /A along optimizen
is fixed at 2/7. This condition can be rearranged into a statement ]\, ---- Z/S(w'(,)) (ai,ngp flow)
about the effective learning rate: 7/\/v = 2/S(w). Notably, the
value 2/5(w) is the maximal locally stable step size for the current
location w in weight space. In other words, while the algorithm is
at EOS, the oscillatory dynamics continually adapt the effective step
size to the current maximal stable step size. This is the precise sense S0 00 IS0 w0 s
in which RMSProp-Norm “adapts” to the local loss landscape. .

Effective Step Size

0.025 4

0.020

0.015 4

4.3.2 IMPLICIT CURVATURE REDUCTION

Understanding the implicit step size strategy employed by RMSProp-Norm is not sufficient to
fully characterize the behavior of the algorithm. To do so, we need to return to the central flow,
which additionally accounts for the curvature regularization induced by oscillations. In general, the
RMSProp-Norm central flow is a joint flow over (w, v). However, at EOS, because /+/v = 2/S(w),

we can eliminate v from the expression for (il—’t”, and write the central flow in terms of w alone 2
dw 2
— =—-———-|VL L52(w:n, B2)VS 11
G = 5w (VHw) + 30w ) VS @) an
S~ implicit sharpness penalty

effective step size

where o2 (w; 7, 32) is given by eq. . In other words, the time-averaged trajectory of RMSProp-
Norm at EOS is essentially equivalent to that of the following simpler-to-understand algorithm: at
each iteration, compute the sharpness S(w), and take a gradient step of size 2/.S(w) on a sharpness-
regularized objective, where the strength of the sharpness regularizer is given by eq. (I0).

Notably, the hyperparameters 7, 32 are not used to determine the effective step size. Instead, their only
role is to modulate o2, which controls the strength of the implicit sharpness penalty. The effect of the
learning rate hyperparameter 1) is to monotonically increase o> — indeed, the numerator of eq. is
increasing in ) while the denominator is decreasing in 1, which implies the overall expression for o'
is increasing in n.[E] Meanwhile, the effect of the hyperparameter 35 is to monotonically interpolate o
between that of NGD when 3 = 0 and that of gradient descent when 32 = 1M The interpretations
of 7, B2 generalize to the setting of multiple oscillating directions, as detailed in Lemma 3]

4.3.3 ACCELERATION VIA REGULARIZATION

To fully grasp the modus operandi of RMSProp-Norm, it is necessary to consider the link between step
size adaptation and curvature regularization. By regularizing sharpness S(w), RMSProp-Norm is able
to steer itself towards regions where the maximal locally stable step size of 2/.S(w) is larger. In such
regions, RMSProp-Norm can and does take larger steps. Thus, by regularizing sharpness, RMSProp-
Norm enables larger steps later in training. We call this mechanism acceleration via regularization.
Our experiments suggest that this mechanism is a critical component of the algorithm’s effectiveness.

loss L(w(t)) sharpness S(w(t)) effective step size: n/\Vv(t) = 2/S(w(t))

0.17 §
400 -

0.16 4
0.015 ablation w/o
0.15 1 300 curvature reg
0.0101 n=0.02
0.13 7 first 10 steps ] 0.005

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
step step step

Figure 5: “Acceleration via regularization” for RMSProp-Norm. Starting from the same initial-
ization, we run the RMSProp-Norm central flow at two different learning rates (in blue and orange),
2

as well as an ablated flow 7 = —WVL(U}) (in black) with curvature regularization removed.

These three flows all use the same step size strategy but differ in the strength of implicit curvature
regularization. Initially (see inset), the flows with higher curvature regularization optimize slower;
however, over the longer run, they take larger steps and optimize faster (CNN / CIFAR-10 / MSE).
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In Figures [5|and[7} we compare the RMSProp-Norm central flow to an ablated version which adapts
the step size to 2/S(w) but does not regularize sharpness. Over the long term, this ablated flow
optimizes slower than the RMSProp-Norm central flow, because it traverses very sharp regions of
weight space in which it is forced to take small steps.

The mechanism of “acceleration via regularization” is also key for understanding the function of
the learning rate hyperparameter 77. We have seen that at EOS, the only direct effect of 7 on the
central flow is to modulate the strength of sharpness regularization, with higher 7, inducing stronger
sharpness regularization. Thus, counterintuitively, the instantaneous effect of a higher 7 is often to
slow down optimization. However, as we illustrate in Figures [5|and[7] over longer timescales, higher
7 steers the trajectory into lower-sharpness regions, in which RMSProp-Norm’s effective step size
will be larger, thereby tending to speed up optimization.

5 RMSPRroP

We now study RMSProp (Tieleman & Hinton, 2012), which maintains an EMA v of the elementwise
squared gradients V L(w)®?, and uses per-coordinate effective step sizes of //v

Vg = ﬁgut,1 —|— (1 — ﬁg)VL(wt)®27 wt+1 = W¢ — \/7]77 @ VL(’LUt), (RMSPTOp)

where © represents the entrywise product. It is useful to view RMSProp as preconditioned gradient
descent w1 = wy — P, 'V L(w;) with the dynamic preconditioner P, := diag(\/7;/n).

In this section, we will show that RMSProp’s preconditioner is implicitly determined by the al-
gorithm’s oscillatory dynamics, and we will make this preconditioner explicit for the first time.
Interpreting this preconditioner sheds light on its efficacy, while also revealing a potential direction
for future improvement. Finally, we will show that adaptive preconditioning is not the full story:
RMSProp also implicitly regularizes curvature, and this behavior is crucial for its success.

5.1 THE MECHANICS OF RMSPROP; DERIVING A CENTRAL FLOW

The dynamics of RMSProp revolve around the effective sharpness S (w; v), defined as the largest
eigenvalue of the preconditioned Hessian P~ H (w) where P = diag(/v/n) I When S > 2,
the iterates oscillate along the top right eigenvector of the preconditioned Hessian. In turn, such
oscillations reduce S°, via a combination of two mechanisms: (1) they implicitly reduce curvature,
and (2) they increase the gradient, growing v and therefore P. The net effect is that the effective
sharpness S° stays regulated around 2 throughout training (Cohen et al., [2022) I

In Appendix [C.5|we derive a central flow (w(t), v(t)), in the same way as above, which models the
time-averaged trajectory of RMSProp. We verify its accuracy in Figure [f|and Appendix

5.2 INTERPRETING RMSPROP VIA ITS CENTRAL FLOW

We now interpret the RMSProp central flow to understand the behavior of RMSProp. Because the
dynamics usually transition from stable to EOS early in training, we focus on the EOS regime.

5.2.1 THE STATIONARY PRECONDITIONER

The central flow for RMSProp is harder to interpret than that for RMSProp-Norm, because even at
EOS, v cannot be expressed as a closed-form function of w, and instead remains an independent

o Loss o Gradient Norm? Norm? of Oscillations R Effective Eigenvalues

—— RMSProp | RMSProp RMSProp ]
0.35 4 === Central Flow Prediction 8 :— RMSProp (Averaged) 0.0006 o e RMSProp (Averaged)

~ == Stble Flow |1 Central Fow Predicton —=- Central Flow Prediction 2 peneneneny
0.30 1 $od i 1=-- ?mble:Flow 0.0004 1 Lo ¢ :

41 14 SR RMSProp
0.25 1 PN 5] :I 0.0002 4 ——== Central Flow
H \ I ; > ' H ~== Stable Flow
0.20 1 i H L i 0 \ i P cadl i 0.0000 ’ { S i 0 i H e i
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
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Figure 6: Central Flow for RMSProp. A ViT is trained on a subset of CIFAR-10 using RMSProp
with n = 4x107° and 3, = 0.995 (blue). It enters EOS at step 230 and multiple eigenvalues become
unstable at step 360 (dotted red). The central flow (black) accurately models the time-averaged
trajectory of RMSProp even at EOS, whereas the naive stable flow (gray) follows a different path.
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variable T8 Nevertheless, it turns out that, in some circumstances, v implicitly converges under the
dynamics of RMSProp to a value that depends on the current w alone. In particular, imagine holding
the weights fixed at some value w, and letting v “catch up.” What value would v converge to? We
show in Proposition [3] that for any w, there is a unique v that satisfies the stationarity condition
% = 0. We call this unique v the stationary v for the weights w, denoted as 7(w). Empirically, we
observe that v/(t) usually converges to the stationary value (w(t)) during training (Figure |g).

In Proposition we show that the corresponding stationary preconditioner P(w) = diag(,/7(w) /1)
is, remarkably, the optimal solution to a convex optimization problem over preconditioners:
Pw) = arg min tr(P) + 77% HVL(w)Hi,,l such that H(w) < 2P. (12)
P diagonal, P>0 N———— ———
optimization speed local stability
That is, RMSProp implicitly solves the convex program eq. (I2) to compute its preconditioner.
This is the precise sense in which RMSProp “adapts” to the local loss landscape.

We can now understand RMSProp’s preconditioning strategy by interpreting the optimization problem
eq. . The constraint H(w) =< 2P is equivalent to S < 2 and hence stipulates that the
preconditioner P should keep RMSProp locally stable. The first term of the objective, tr(P), is
the sum of the inverse effective step sizes. If this were the only term in the objective, RMSProp’s
preconditioning strategy could be simply summarized as maximizing the harmonic mean of the
effective step sizes while maintaining local stability — a sensible preconditioning strategy.

However, matters are complicated by the presence of the second term in the eq. objective. The
quantity ||V L(w) ||?3,1 is the instantaneous rate of loss decrease under preconditioned gradient flow
with preconditioner P. Minimizing this term actually slows down optimization (Figure[9). Therefore,
the presence of this term implies that RMSProp’s preconditioning strategy is not optimal.

5.2.2 IMPLICIT CURVATURE REDUCTION AND ACCELERATION VIA REGULARIZATION

Understanding the preconditioning strategy implicitly employed by RMSProp is not sufficient to fully
characterize the behavior of the algorithm. To do so, we need to return to the central flow, which
additionally accounts for the implicit curvature reduction induced by the oscillations. Substituting P
into the RMSProp central flow, we can obtain a stationary flow in terms of w alone, which assumes
that the preconditioner P is always fixed at its stationary value P (eq. :

d —
=2 =P(w)! | VL) + 1V, (5 Hw)) |. (13)
dt ~—— —_—

stationary implicit curvature penalty

preconditioner

where ¥ = 3(w;n; 2) is defined as the solution to a cone complementarity problem (eq. .
Figure [T0] shows that this stationary flow can accurately predict the instantaneous optimization speed
of the central flow, given only access to w(t) and not v/(t).

Empirically, we find that the implicit curvature reduction effect is crucial for the efficacy of the
optimizer. In Figure [T} we compare the stationary flow against an ablated flow which uses the same
preconditioning strategy, but leaves out the curvature penalty. We find that in the long run, this ablated
flow navigates into sharper regions in which it takes smaller steps, and optimizes slower.

6 CONCLUSION

In this paper, we have developed a methodology for analyzing deep learning optimizers. To analyze
an optimization algorithm, we derive a central flow which models the oscillatory optimizer’s time-
averaged trajectory, rendering implicit behaviors explicit. We have empirically demonstrated that
these central flows can accurately predict long-term optimization trajectories of neural networks, and
by interpreting these flows we have obtained new insights about optimizers’ behavior.

These advances are made possible by the fact that we adopt different goals from most works in
optimization. Rather than try to characterize global convergence rates, we set ourselves the more
modest goal of characterizing the local optimization dynamics throughout training. The local
dynamics are important, they are more interesting than may have been assumed (even vanilla gradient
descent gives rise to rich, complex dynamics), and they are empirically consistent across different deep
learning settings, which suggests that a general theory is feasible. We believe that similar analyses
can be fruitfully conducted for other optimizers, and we hope to inspire work in that direction.

10
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NOTES

. As is common in the optimization literature, we use curvature synonymously with the Hessian of the loss.

. |Barrett & Dherin|(2021)) argued that the accuracy of the gradient flow approximation can be improved by adding

a penalty on the squared gradient norm to account for discretization error. However, their modified flow does not
work (and is not intended to work) in the EOS regime, and in the stable regime, we found that the improvement
in accuracy it brings is small. Therefore, for simplicity, we leave out any such term from our flows.

. We fold 7 into the definition of gradient flow so that there is a correspondence between step ¢ of gradient descent

and time ¢ of gradient flow. This will especially be useful when analyzing adaptive optimizers where the effective
learning rate is changing.

. In taking the time-average of eq. , we assume that the eigenvector u changes slowly relative to the displacement

z so that E[ziue] ~ E[z]uy.

. Indeed, notice that { H (w;), 868 )= 87 H(w,)d:, the curvature in the ; direction.

. Our explanation generalizes the explanation in (Damian et al.,|2023)), which applied only to the special case

when only the top Hessian eigenvalue has reached 2/7.

. The terms “learning rate” and “step size” are usually interchangeable. In this paper, to avoid ambiguity, we will

use the phrase “learning rate” to denote the hyperparameter, and “step size” or “effective step size” to denote the
actual step sizes that are taken.

. Note that we have re-indexed v compared to the standard definition of RMSProp (i.e. v¢+1 — v+). This does

not affect the trajectory and just ensures the effective learning rate at step ¢ is determined by v, rather than v,
which simplifies the analysis.

. When 82 = 1, RMSProp-Norm reduces to gradient descent with learning rate 7//vo. Conversely, when

VL(w)

B2 = 0, it reduces to NGD with learning rate n: wi+1 = wy — 10 - oL@l

The 1 — B2 — 1;5 2 correction is necessary for small values of 82. For example, when 82 = 0 (i.e. NGD),
ve = ||[VL(w;)||* so in the continuous time ODE, v(t) needs to adapt “instantly” to ||V L(w(t))||’.
Lemma ] for additional justification for this correction term.

See
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11. In the stable regime (S°" < 2/1), the central flow is given by the stable flow eq. . Note that the value of ‘fi—f
for this flow is directly proportional to that of gradient flow, implying that this flow traverses the gradient flow
trajectory, just at a different speed (i.e. with a nonlinear time-rescaling).

12. Note that at EOS we can rearrange the EOS condition as v = n?S(w)? /4, which lets us write v as a function
of w and eliminate v everywhere in the central flow. This was already used to derive the expression for o in

eq. (T0).

13. The formula for o2 is somewhat (l(ﬁa)que for general 52. However, it is relatively simple in the special case of

. 2 . ~n
NGD (2 = 0). In this case, eq. reduces to o~ (w; n) ~ .

14. We note that which of these is larger is situation dependent, so o can be either monotonically increasing or
monotonically decreasing in 3. That said, because o (w; 7, 0) ~ 1*/4 and ¢ (w; n, 1) is independent of 7, a
general rule is that for small learning rates, o2 is monotonically increasing in 32, while for large learning rates,
o is monotonically decreasing in fa.

15. Our analysis can accommodate both bias correction and an e-dampening (dividing by /v + € rather than /1)
which are used by Adam (see Appendix [C.7). However, to simplify exposition, the main text focuses on this
simpler version of RMSProp.

16. Note that P~ H (w) is similar to P~'/2 H (w) P~/ which is symmetric and therefore diagonalizable with
real eigenvalues. Therefore P~' H (w) also has real eigenvalues.

17. Note that in this section we have absorbed the learning rate 7 into the definition of P so the critical threshold is
2 rather than 2 /7. This simplifies the analysis.

18. This reflects the fact that for any w, there are potentially many values for v that could stabilize optimization, and
the actual value used by RMSProp depends on the historical trajectory.
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Figure 7: “Acceleration via regularization” for RMSProp-Norm. Starting from the same initial-
ization, we run the RMSProp-Norm central flow at various learning rates, as well as an ablated flow

‘;—';’ = —%VL(UJ) with curvature regularization removed. These three flows all use the same step

size strategy but differ in the strength of implicit curvature regularization. Initially (see inset), the
flows with higher curvature regularization often optimize slower; however, over the longer run, they
are able to take larger steps and optimize faster.
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Figure 8: The EMA v reaches stationarity during training. While running the RMSProp central
flow, we monitor the cosine similarity between v(¢), the real EMA, and 7(w(t)), the stationary EMA.
This cosine similarity rises to high values during training, implying that v/(¢) reaches stationarity. Thus,
we can reason about the stationary v (and in particular, the corresponding stationary preconditioner
eq. ) in order to reason about RMSProp’s preconditioning strategy. Note that we compute 7(w)
using the Burer-Monteiro factorization, as described in appendix
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Figure 9: RMSProp’s implicit preconditioner is suboptimal. We compare RMSProp’s stationary
preconditioner, defined as the solution to the optimization problem eq. (I2)), to an alternative pre-
conditioner defined as the solution to an analogous optimization problem without the second term
in the objective. We assess the efficacy of each preconditioner P by computing ||V L(w(t))[|%_.,
the instantaneous rate of loss decrease under the preconditioned gradient flow with preconditioner
P. We observe that the rate of loss decrease for the alternative preconditioner (in green) is higher
than the rate of loss decrease for the RMSProp stationary preconditioner (in orange), indicating
that the alternative preconditioner would be better. Both preconditioners are computed using the
Burer-Monteiro factorization, as described in appendix
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Figure 10: Stationary flow predicts the rate of loss decrease. The stationary flow eq. , which
incorporates implicit curvature regularization, predicts (green) the rate of loss decrease (blue) more
accurately than a naive estimate (orange) which uses the stationary preconditioner but does not
incorporate curvature regularization. Note that all the estimates are off early in training, as the

preconditioner has not yet reached stationarity (see Figure @)
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Figure 11: “‘Acceleration via regularization” for RMSProp stationary flow. We compare the
RMSProp stationary flow (blue) to an ablated version (orange) which uses the same preconditioning
strategy but leaves out the implicit curvature regularization. Initially, the stationary flow optimizes
slower (left, initial), due to the presence of implicit curvature regularization. But over time, it
navigates to lower-curvature regions (right), where it takes larger steps (middle), and optimizes faster
(left). Each row is a different DL setting. The left column plots the train loss, the middle column

plots the harmonic mean of the effective learning rates, the right column plots the sharpness.
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B ADDITIONAL EXPERIMENTAL DETAILS

Architectures  Our CNN is comprised of 4 layers with GeLU activations and uses average pooling
before a linear readout layer. We use a modified ResNet without BatchNorm which has 20 layers
and uses GeLU activations. Our vision transformer (ViT, (Dosovitskiy et al.l [2021))) is based on
the default PyTorch (Paszke et al., 2017} vision transformer and uses the GeLU activation as well.
Our recurrent neural network (RNN) has a single layer and uses tanh activations. Our GPT2-style
(Radford et al.l 2019) transformer is based on the “nano” version of minGPT (github.com/
karpathy/minGPT). See the attached code for additional architectural details.

Discretizing the flows  We discretize each flow using Euler steps. We found that Euler steps of size
1/4 sufficed to approximate the central flows, we use Euler steps of size 1/10 to approximate the
stable flows. For each trajectory: the true trajectory, the central flow, and the stable flow, we recompute
the top eigenvectors of the Hessian from scratch every 5 steps. Eigenvalues and eigenvectors are
computed using a sparse eigenvalue solver and hessian-vector products. For the intermediate steps,
we reuse the eigenvectors and approximate the eigenvalues by the quadratic forms u” V2 L(w)u. We
compute the gradients of the eigenvalues by computing the contraction of the third derivative V3L (w)
with the eigenvectors, i.e. V3L(w)[u, u] which can be implemented in standard PyTorch.

Computational Resources In total, our 115 experiments required about 2000 GPU-hours on a
mix of A6000 and A100 GPUs.

Computing the RMSProp Stationary Preconditioner To verify that the RMSProp preconditioner
indeed solves the convex program eq. (12), we explicitly solve this convex program throughout the
training trajectory and compare it with the true RMSProp preconditioner. To solve eq. (IZ)), we apply
a fixed point iteration based on the fixed point equations for X, P. To derive our fixed point iteration,
we factorize ¥ = DDT where D € R%*" (as in the Burer-Monteiro factorization (Burer & Monteirol
20035)) and r < d is intended to upper bound the number of unstable eigenvalues. Then the formula
for ¢ reduces to:

v =VL(w)®? + diag]HXH] = VL(w)®? + (HD)®?1.
In addition, we will use that the span of X lies in the critical subspace, so
diag[v"Y2HD = gD.
We begin with a random initial guess for D and iteratively update D, v by:
v+ VL(w)®? + (HD)®*1
D+« gdiag[u_l/Z]HD.
If this fixed point iteration converges, we have

2
v=VL(w)® + (HD)®?1 and diaglv™*JHD = ZHD
n

so that % = 0 and the span of ¥ = D DT is in the critical subspace.

To verify the results of this fixed point iteration, we compare the objective values of the primal and
dual programs. The dual program to eq. (I2)) is:

%1%<<E,H(w)> +2|VL(w)| - /1 —2diagX® suchthat diag> <1/2.

C FLOW DERIVATIONS

We will now derive the general central flows for gradient descent, RMSProp-Norm, and RMSProp.
We begin by defining the necessary tensor notation.

C.1 TENSOR NOTATION

For a k-tensor T" and a s-tensor A with s < k we define T'[A] to be the contraction of T" with A along
its last s indices, i.e.

(T[A])il:nwikfs: Z Tiyine st oo At (14)

J1y--ds
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We also define (T, T") for two k-tensors T, T of the same shape by:
(T.T) = Y T, (15)
D1 yeenslke
We will also use T'[ug, . .., u;] todenote T'[u; ® - - - ® uj;).

C.2 ON LocAL TIME AVERAGING

We intentionally do not specialize to a specific notion of “local time-average”. The only properties of
the local time-averaging operator [E that we use are:

1. linearity, i.e. E[f + g] = E[f] + E[g] and E[cf] = cE[f] for any constant c
2. the local time average of a constant ¢ is itself: E[c] = ¢

3. in the EOS regime when the sharpness oscillates around 2/7, the time-average is coarse
enough to smooth out these oscillations so that S(E[w;]) = 2/

When we empirically verify the accuracy of our central flows, we use Gaussian smoothing with a
standard deviation of 50 steps, i.e. we define

Zs fsct—s ]2
E[ft] = m where Cj 1= €exp 2% 502 )"

C.3 GRADIENT DESCENT

We begin by proving the Taylor expansion used in Section 3.1}

Lemma 1. Assume that W is such that the top eigenvalue of H(w) has multiplicity 1 and let w =
wW+axu where w is the top eigenvector of H(W). Furthermore, assume that sup,, c; | V*L(w')|| < oo
for some open neighborhood U of w. Then,

VL(w) = VL(W) + S(W)zu + L VS(w) + O(x?).
Proof. By Taylor’s theorem,
VIL(w) = VL(W) + H(w)zu + & V3L(w)[u, u] + O(z?).

Because u is an eigenvector of H (w) with eigenvalue S(w), the second term can be simplified to
S(w)xwu. Finally, by Danskin’s theorem (or equivalently the standard formula for the derivative of an
eigenvalue):

V&S (W) = Vw Llrillaxl uTH(w)u} =Vw [uTH(E)u} = V3L(W)[u, u]

where u is the argmax of the second expression, i.e. the top eigenvector of the Hessian at w. O

We now define some notation that will be necessary for the remainder of the section. First, let
U(w) := ker[nH (w) — 2] denote the critical subspace, i.e. the directions in weight space that are at
the edge of stability. Let Sym(U(w)) C R%*? denote the subspace of symmetric matrices whose
span is contained in U (w).

C.3.1 THE DIFFERENTIAL VARATIONAL INEQUALITY FORMULATION

As in the main text, we will assume that GD oscillates around the central flow w(t) with covariance
(t) € Sym(U(w)) so that it follows:

% = —n[VL(w) + V2 L(w)[S(t)]. (16)

To determine X, we impose three conditions for all times ¢:
* non-negativity: As a covariance matrix, X(t) is positive semidefinite, i.e. ¥(¢) = 0
« stability: The sharpness remains bounded by 2/7, i.e. H(w(t)) < (2/n)I

* complementarity: The span of X(¢) (i.e. the span of the oscillations) is contained within
the critical subspace U (w(t)). Equivalently, 3(¢) € Sym(U (w(t))).

22



Under review as a conference paper at ICLR 2025

We say that (w(t), X(t)) follow the GD central flow if they follow eq. along with these condi-
tions:

Definition 1 (GD Central Flow, DVI Formulation). We say that {w(¢), 3(¢) };+>¢ follow the GD
central flow if for almost all ¢ they satisfy eq. along with the conditions: X(t) > 0, H(w(t)) <
(2/m)I, and X(t) € Sym(U (w)).

Definition[T]is an example of a differential variational inequality (DVI). It provides conditions that
the central flow must satisfy but it is not a-priori clear that such a flow exists or is unique. To prove
this, and to turn Definition |l|into a form that we can simulate numerically, we will show that for
almost all times ¢, X(t) solves a low dimensional convex cone complementarity program (CCP) This
CCP will be guaranteed to have a unique solution, which can be easily computed numerically.

C.3.2 THE CONE COMPLEMENTARITY PROBLEM FORMULATION

We will start with the DVI formulation, Deﬁnition and prove two additional conditions on X(¢)
which will allow us to solve for 3(¢). For simplicity, we will look for a choice of ¥(t) is right-
continuous so that we can reason about the immediate future using the chain rule. First, we consider
the change in the Hessian along the central flow ansatz eq. (T6), restricted to the critical subspace.
We will denote this quantity by H (t) € Sym(U (w(t))). This generalizes the computation of fl—f in
Section To compute H, we define the linear operator 7, : Sym(U (w)) — R% by
TolS) o= Vo (Hw),S) VX € Sym(U(w)).

Intuitively, 7, will play a role analogous to that of V.S(w) in Section The operator T, :
Sym(U(w)) — R? takes as input a dxd matrix 3 € Sym(U(w)) and returns the gradient of
(H(w), ), the Y-weighted Hessian. Meanwhile, its transpose 7, : RY — Sym(U(w)) takes
as input a direction, and returns the directional derivativq of the Hessian, restricted to the critical
subspace. Therefore, 42 = —n[V L(w) + 37, [%]], and H is given by:

H(t)::% —7;1[62:

] T VL(w)] - ML),
%,—/ N—_——

U(w
(w) — —~ =

To simplify notation, we define a(w), 5(w) by:
a(w) =T [=VL(w)] € Sym(U(w)), (w) := 57, Tw € Sym(U(w)) ® Sym(U (w)),

so that H = a — B[X]. In order to maintain stability, i.e. H < (2/n)I, we need to ensure H < 0, i.e.
a =< B[X]. However, this condition only lower bounds ¥ and does not yet uniquely determine it. To
do so, we will need to differentiate the complementarity condition. Recall that H measures the change
in the Hessian, restricted to the critical subspace. The directions in the kernel of H will remain at
EOS. However, the curvature in the directions where H < 0 will drop below 2/7), so these directions
will leave the critical subspace. In other words, the critical subspace at time ¢ + € will be contained in
ker[H ], which is a subspace of the critical subspace. Because we assumed 3 is right-continuous, this

implies that 3(¢) must lie in this subspace, i.e. span[X] € ker[H]. Equivalently, because ¥ = 0 and
H =<0, we can rewrite this condition as (X, H) = 0. Together, these constraints:

N=0 H=<O0, <2,H>=o, H=a- B3]

define a cone complementarity problem for ¥ (Definition [8). We show in Lemma [3] that if 3 is
symmetric and has full rank, the solution to this CCP is unique, and we denote it by CCP(a, 3).
Otherwise it denotes the set of all solutions. We can now define the central flow in terms of this
CCP:

Definition 2 (GD Central Flow, CCP Formulation). We say {w(t)};>¢ follows the GD central flow
if for almost all £ > 0, w satisfies eq. with ¥ € CCP(a(w), f(w)).

Definition [J]is the simplest version of the central flow to simulate numerically. By picking a basis for

Sym(U (w)), which has dimension k(1) | we can materialize the linear operator 7, as a @ x d
dimensional matrix, compute o (w), ﬁfw), solve the low-dimensional CCP to compute 3, and take a
small Euler step on the flow using this 3.

In the next section, we will see that this CCP formulation can be reinterpreted as a projected gradient
flow, which will help to interpret the behavior of the gradient descent central flow.
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C.3.3 THE PROJECTION FORMULATION

LetS, := {w : S(w) < 2/n} denote the stable set. In this section we will show that the gradient
descent central flow can be reinterpreted as projected gradient flow constrained to this set.
Definition 3 (GD Central Flow, Projection Formulation). We say that {w(t) };>( follows the gradient
descent central flow if for almost all ¢,

% = Projr, (w) [-nVL(w)] where S, :={w : S(w) <2/n}, (17)

where projTS" (w) denotes the orthogonal projection onto the fangent cone of S, at iterate w, i.e.

the set of directions that, if followed, would not immediately increase the curvature in the critical
subspace: Ts, () = {v € Re: TT[v] < 0}.

The equivalence between Definition [3]and the CCP formulation Definition [2]ia a consequence of this
simple lemma:
Lemma 2. Let w € S,). Then

projTgn (v =v - 1Tw[X] where ¥ € CCP(T.I[v], %’7’57;,)

Proof. Note that the tangent space of S,, is given by the set: {v : 7.1 [v] < 0}. Therefore the
projection is given by solving the quadratic program:

n%in 6]/ suchthat 7, [v+ 8] <0.
The KKT conditions imply that there exists a 3 such that:
§=—3Tu[S], (S, TS w+6])=0 =0,
which implies that & € CCP(T.I[v], $T.E Tow). O

We now intuitively reconcile eq. with the CCP definition:

* When S(w) < 2/n, w is in the interior of S,, so U(w) = 0, the tangent cone is the entire
space, and the projection is the identity map. Therefore eq. reduces to gradient flow.

When there is a single eigenvalue at 2/, w is on the boundary of S, and the tangent cone
is given by the halfspace: Ts, (w) = {v : (VS(w),v) < 0}. If the negative gradient
lies outside this halfspace (i.e. if gradient flow threatens to increase the sharpness above
2/m), then the projection onto the halfspace is given by the projection onto the hyperplane:
—nﬂé S(w)VL(w). Otherwise, if the negative gradient already lies in the halfspace, the

projection is the identity map, so the central flow follows gradient flow and leaves EOS.

In general, computing the orthogonal projection onto T, () = {v : T.T [v] < 0} requires
solving a semidefinite quadratic program for which ¥ is the Lagrangian dual variable. The
KKT conditions of this quadratic program are equivalent to the CCP that defines X above.
C.3.4 THE RATE OF LOSS DECREASE
Proposition 1. Under the GD central flow (definition[3), for almost all t we have
dL(w) . 2
i PTOJT;  (w) [~V L(w)] H .

This implies “L < 0 (i.e. the loss monotonically decreases) and % > —nl|VL(w)||? (i.e. the loss
decreases at a slower rate than under the gradient flow).

Proof. By the chain rule we have

L) (orq,

= <VL(w),projTgn(w)[—nVL(w)D

= <—VL(w)7 prOjTSn (w) [—VL(w)]>

2
projr, ([~ VLwW)]|

24



Under review as a conference paper at ICLR 2025

where we used that for any orthogonal projection proj[cv] = proj[c] when ¢ > 0 to pull out the 7,

and that (v, proj[v]) = ||proj[v]||” to get the last equality. Finally, the comparison with gradient flow
follows from the inequality ||proj[v]|| < ||v|| for any orthogonal projection. O

C.4 RMSPROP-NORM

We follow a similar derivation to gradient descent. We define U (w, v) := ker[v~Y/2H (w) — (2/n)1],
and let Sym(U (w,v)) denote the subspace of symmetric matrices with span in U(w, v). We now
proceed with the time-averaging derivation.

If w = W + § with E[§] = 0, we have that
E|VL@)|® ~ E|VL@)|* + E |V2L@)|* = [VL@) + (VL@ 5)  (8)

where . = E[667]. Because we assume that . € Sei, VZL(W)Y = S(w)Y, so this expression is
equal to

E|VL()|I* = | VL@)|* + S(®)* tx(L).
This suggests the central flow ansatz:

dw on

= VL IVAL(w)[S(t
dt ﬁ[ (w) + 2 (w)[%( )]] (19)
dl/ —Bs 2
= =12 [|IVLW)I + Sw)*u(E®) - v).
We can now give the differential variational inequality definition for the RMSProp-Norm central
flow:
Definition 4 (RMSNorm Central Flow, Differential Variational Inequality Formulation). We say that
{(w(t), v(t), £(t)) }+>0 satisfy the RMSProp-Norm central flow if they satisfy eq. along with
the conditions: X(¢) = 0, v(t) "2 H (w(t)) = 2/n, and X(t) € Serit(w(t), v(t)) for almost all ¢.
As for gradient descent, this definition is fairly opaque and does not give a way of actually computing
3. To do so, we will again derive a cone-complementarity problem formulation of the RMSProp-Norm
central flow. The first step in this derivation is to differentiate the stability constraint: v~ /2 H (w) <

2/n. We will fix a time ¢ and use U to denote U (w, v) to simplify notation. We will also define the
linear operator 7 : Sym(U (w,v)) — R? by

TIX] =V (H(w),X) for 3 e Sym(U(w,nu)).

Let H := %V’l/ 2H(w) | .; be the time-derivative of the preconditioned Hessian restricted to the
critical subspace. In order to avoid violating the stability condition, we need to enforce H < 0. We
can compute H using the chain rule.

12 ()
dt "

() (4

dw 1 dv2yv
_ 71/2 = o= AV TT
v ﬂ[dt] 232 dt

H =

U

- gﬂ[fvuw) _ a7y 4 L ni

B2 MU [V — [VL()||* = S(w)* tx(S) | 1.

2 2
We can now assume that (w, v/) are at EOS so that v = %. Otherwise, complementarity forces
3} = 0. Substituting this gives:

. 4 )
H= sl [FVLw) —5T(2]
1— P9 4 7725(10)2_ P St
8PS [ 1 IVL(w)|" = S(w)?t (E)}I.
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We will now group the constant terms and the terms linear in X. Define:

1— 755 4 n2S(w)?

4 YL

a(w) = T VW] + 252 [T o)
2 T 327

) = stap T T+ e

Then H = o — B[X]. As in the derivation for GD, if His strictly negative definite in some direction,

these directions will drop from the critical subspace so right continuity forces 3 € ker[H |. This gives
us the cone complementarity definition of the RMSProp-Norm central flow:

Definition 5 (RMSProp-Norm Central Flow, CCP Formulation). We say that {(w(t), v(t) }+>o follow
the RMSProp-Norm central flow if they satisfy eq. where ¥ € CCP(a(w), f(w)).

We can now use this formulation to prove eq. when U (w, v) is one dimensional. In the one
dimensional case, «, § are both scalars and assuming that a(w) > 0 the solution to the CCP is
simply ¥ = a(w)/S(w). In addition, in this one dimensional case we simply have 7 = VS (w).
Therefore,

, st (= VL), VS () + 1525 gt 4 — VL))

o = (20)
2 IVS@) [+ Sk
B (~VL(w), VS(w)) + (1 - ) [ £ — LPLGI’ ]

- : 1)
B3IV S(w)[|* + (1 = B2)S (w)? /52

C.4.1 THE EFFECT OF THE HYPERPARAMETERS 7}, (32

Lemma 3. Fix an iterate w = w(t) and define v = v(w;n) := Si w50 that S (w,v) = 2/n.
Let U be the top eigenspace of H(w). Then if ¥(t) > 0 under the RMSProp-Norm central flow
(Definitiond)), we have that
0 dH
on dt |,
and where Iy denotes the identity matrix on the subspace U. In other words, larger learning rates
1 more aggressively decrease the curvature and they do so uniformly across all eigenvalues in the
critical subspace U. In addition,

= —cly where C >0

0 dH
— | =01
9Bs dt |, v
where C > 0 when trX ‘52:1 < tr¥ |52:0 and C < 0 otherwise. Therefore By can either

monotonically increase or decrease the curvature regularization depending on whether gradient
descent (B2 = 1) or normalized gradient descent (B2 = 0) would have a larger oscillation variance.

Proof. The condition ¥(t) > 0 implies that H(t) = 0 and ¥ = S~ 'a. We will rescale a, 3 by

nS(w)?/4:
. 1- By | Sw)?  |VL(w)|?
& =TT-VL(w)] + 52 [ FR— 11
52 n?

We will also use &, Bw to refer to just the first terms in &, B:
A o1
Ay = ﬂ[—VL(w)] and f, = 57_TT

Then X = B ~l&. Differentiating this with respect to 1, B gives:

0 Jé; ,
o 2773; 1[IV L)+ S(w)? rS)

0 1y Sw? |IVLw)|®  S(w)?
0B __?ﬂ [I]l 1 2 T trE]
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Then:
0 dH

on dt

s [2y] oam
N v 877 ’ 652 dt

A 0
= {852 E}

U U

Therefore it suffices to compute Buwft [I]. To compute this, we use the Sherman—Morrison formula.
Letc =1 /362 S Thep,

Pub ™M1 I[l 1?%1;7[;,]11} I{HCﬁil[LIJ'

Finally, note that [ > 0, which immediately implies the result for 7. For 32, we have

]
L+cBy [1,1]

shown that
0 dH
— | =-C1
9By dt |, v
where C' > 0 if and only if
2
n° VL (w)|” )||
try < - —
TS T S

To rewrite this in a form that is independent of X, note that
trY = tr [B*ld]
= (B~'11),)
A 1
-1
— (o) [ —
< bl [1 +c5;1[1,f]]

tr[ Bt | + B 1, 1] [ — SR
1+ cBut[I, 1] :

V L(w)?
S(w)?

V L(w)?

2
so tr[X] < - — 5(w)?

Therefore tr X is a weighted average between tr [B; 164“]} and % —

if and only if tr {B;ldw} < % — %ﬁf. This first expression is just tr |62:1 and the second is
justtr|, . O

The condition ¥(¢) > 0 is equivalent to requiring that we are not currently at a “breakpoint,” i.e. a
time ¢ at which an eigenvalue drops from EOS. The set of such ¢ constitute a measure zero set, so the
above lemma holds for almost all ¢.

C.4.2 THE SMALL 35 CORRECTION

The following lemma shows that the 55 — % correction for the RMSProp-Norm and RMSProp
central flows allows the continuous EMA to match the discrete EMA for linear targets f(¢):
Lemma 4. Let f : R — R be a continuous time process with | f?) (t)| < A for all t. Then if

vy = Pary_1 + (1 — B2) f(2)

/ _1_ﬁ2 _y
Vi) = —5 =) —v(#)]

we have that for all integers t > O((1 — B2)~1),

(t) — | < o<(152§2)2>.
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Proof. First define

Suim = f(0) - T2 (1)
5(t) = v(t) = S(0) ~ 72110,
Then we have that:
5 = Baiea + (1= Ba) ()~ £0) =~ 210
= Pavi1 — Baf(t) — 1 fQBz f'@)
6 5
= Bafir = AalF () = St = 1)) = T2 1 )+ T2 (= 1)

= Pade—1 = Ba[f(t) = f'(t) = f(t = 1)] +O< & )

1—p
= P20t1 +O( 28 )

1— B
Therefore,
B B2 A
O = 6550 + O((l — ﬂ2)2>'
Similarly,
/ _ 1- 52 N gl o 52 "
§'(t) = 5 @) =v@] = (1) = =% 621’ (t)
_ 1P B2 A
i +0(1 _ﬁ2>
SO

5(t) = e 7 t8(0) + 0((1@32)2).

Therefore subtracting the bounds on ¢é; and §(t) gives:

BaA
(1= B2)?

as desired. O

e —v(t)] S

C.5 RMSPror

We first motivate the stability condition A4, (P’lH ) < 2 on a quadratic. First, note that P 1His
similar to P~'/2H P~'/2 which is symmetric so P~ H has real eigenvalues and real eigenvectors.
Next, consider gradient descent on the quadratic %wTH w with preconditioner P. The update
is:

w4+ w— P Hw= (I - P 'H)w.

Therefore, wy = (I — P~ H)*wy. If the eigenvalues of P~ H are in the range (0, 2), then w — 0.
Otherwise, it diverges along the corresponding right eigenvectors of P~ H. We can reinterpret this
stability condition using the equivalent condition H < 2P. Note that the top right eigenvectors of
P~'H correspond to the top eigenvectors for the generalized eigenvalue problem Hv = \Pv.

We again follow a similar derivation to gradient descent. We define the critical subspace by
U(w,v) := ker[H — 2P] where P = diag(y/v/n), and use Sym(U(w, v)) to denote the set of
symmetric matrices on this subspace. We can now proceed with the time-averaging argument.
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As before, we assume w = W + ¢ with E[§] = 0. Rather than expanding the squared gradient norm,
we expand the element wise squared gradient:

E[VL(w)®? ~ VL(w)®? + E[(H (w)5)?] (22)
= VL(w)®? + diag [H (W)~ H (0)] (23)

where ¥ := E[667]. This can be further simplified using the fact that ¥ is in the top eigenspace, so
H(w)X = 2PX. Therefore,

diag [H (0)SH(w)] = AP diag[S] P = % © diag[S)].

This suggests the central flow ansatz:

% _ _% © [VL(w) + 1V L(w)[2(t)]]
dv  1-p dv Y
i 2 | VL(w)®? + el diag[¥(t)] — v|.

As for gradient descent and RMSProp-Norm, this immediately implies a differential variational
inequality definition:

Definition 6 (RMSProp Central Flow, Differential Variational Inequality Formulation). We say
that {(w(t), v(t) }+>0 follow the RMSProp central flow if for almost all ¢ > 0, they satisfy eq.
along with the conditions: 3(t) = 0, H(w(t)) < 2P(t), and (H (w(t)) — 2P(t), X(t)) = 0 where

P(t) = /v(t)/n.

We will now show that 3 can be computed as the solution to a cone complementarity problem.
Fix some time ¢, let U = U(w, ), and define the linear operator 7 : Sym(U) — R¢ by T[X] =
V. (H(w), X). We can differentiate the stability condition in the critical subspace as:

d
= —(H(w) - 2P
) =2p)|
dw OP dv
-7 %] -5 F
=TTP[~VL(w) - T[]
1- 62 . 1 o2 Ay .
+ /82 dlag [7]1/1/2 ®© I:V - VL(’U}) — 7)72 ® dlag[Z] .
We again group the constant terms and the terms linear in . Define:
_ i 2
a(w, P) = TT |- P~V L(w)] + 1252 p=1 [p2 _ dlag[vg(w)]}
2 7 U
1 -1 1-54
Bw,P)[X] == 3T P 'T[E] + 3 n—QPdlag[E}
2 U

Note that we chose to define 3 through its action on X to avoid unnecessarily complicated tensor

notation. Then H = o — B[%]. As in the derivations of gradient descent and RMSProp-Norm, we
require that ¥ solves the CCP:

S=0, H=<0, <2,H>:0. (25)

Together these define the CCP formulation, which can be efficiently simulated:
Definition 7 (RMSProp Central Flow, CCP Formulation). We say that {(w(t),v(t)};>0 fol-
low the RMSProp central flow if for almost all ¢ > 0, they satisfy eq. (24) with X(¢) €

CCP(a(w(t), P(t)), B(w(t), P(t)) where P(t) = diag[\/v(t)/n].
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C.6 SOLVING FOR THE STATIONARY v IN RMSPROP
. d . . .
Setting 7 = 0 in eq. l| gives:

v =VLw)% + (4/n*)v © diag[%]. (26)
In addition, by complementarity we know that
E(H(w) — 2diag[ﬁ/n]) =0. (27)

Proposition 2. If w, v satisfy egs. and , then P := diag(y/v/n) minimizes the convex

program eq.

Proof. Let p = /v/n. The convex program eq. can be written as:
VL(w)?
min » " p; + VLWL uch that H(w) < 2diag(p). (28)
L Y23

If 3 is the dual variable for the semidefinite constraint, the KKT conditions for this program are:
VL(w)? x .
1-— # —2%;,;, =0 Vi, X(H(w)-2diag(p)) =0. (29)
D;
We will prove that (p,3) = (%, W%E) solve the KKT conditions eq. . Note that the comple-
mentary slackness KKT condition is equivalent to the complementarity condition on . In addition,
dividing the stationarity condition for v (eq. (26)) by v gives

VL ©2
|- VRO s =0 v (30)
Vi
which is equivalent to the first condition in eq. lb after substituting S = %E(t). O

Proposition 3. For any g, H, the solution to eq. (12) is unique.

Proof. Assume there are two minimizers P, P’ and let p := diag(P), § := diag(P’ — P). Then by
convexity, diag[p + €d] also minimizes eq. for any € < 1. Therefore, differentiating the objective

function in this direction gives:
1 g2
a1 k] =0
3 - p;

Taking another derivative implies that:

Z?zé? =0.

This implies that 6; = 0 in any direction where g; # 0. Let I be the set of indices for which g; # 0,
and for any vector p, let p denote the vector p restricted to the indices in /. Define the linear map g by

[U ] v i1el

g\vrli ‘= i i ¢ I .

In other words, g takes a reduced vector v; and fills in the missing entries with p. Next, define the
operator A by

AT [vg] = diag[glvr]) & diaglor].
Then both pr, p/; minimize the following reduced SDP:
miani such that %H(w) @ 071x1 2 AT(p).
pr “
iel
Now we apply (de Carli Silva & Tungel, 2018, Proposition 1) with (A, 1 ;). First, note that
Allgy1)] = 217 which satisfies the first condition. Next, for any y # 0, we can take z = [y| to

satisfy the second condition, as in the proof of (de Carli Silva & Tuncel| [2018} Corollary 2) Therefore
pr = p’, and as we have already shown equality on I¢, we must have p = p'. [
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C.7 ARBITRARY PRECONDITIONED METHODS

In this section, we derive a central flow for an abstract preconditioned method. This general central
flow will reduce to our central flows for gradient descent, RMSProp-Norm, and RMSProp. However,
we emphasize that this paper does not claim that the central flow derived in this section will be correct
for any preconditioned method. We include this section both because it allows us to easily generalize
our central flows to minor variants of the same algorithms (e.g. gradient descent with a learning rate
schedule, RMSProp with bias correction), and because we hope it can be a starting point for others to
derive central flows for other optimizers.

We will let v be the “state” of the preconditioner, and let P be a function that maps the state v to a
symmetric, positive definite matrix. Specifically, we consider the discrete update:

v = v+ f(u-1,wy), W = wy — P(y) T VL(wy).
This formulation is very general and includes a wide variety of updates including:

* GD with a learning rate schedule n(t): Set f(v,w) = 1 so that v(t) = t, and P(t) =

n(t) 1
s Vanilla RMSProp: Set f(v,w) = (1 — B2)[VL(w)®? — v] and P(v) = diag[v/v/7]
* RMSProp with ¢, bias correction, and learning rate schedule n(t): Set v = [v,t],

f([v,t],w) = [(1 — B2)[VL(w)®? — v], 1] and define

P([v,1]) = diag [n(lt) 3 /I_Lﬂ% +e}.

Note that this trick of embedding ¢ into the state variable v allows us to automatically derive central
flows for any smooth hyperparameter schedules (e.g. 7(t), S2(¢), €(t)) as a simple corollary.

As for RMSProp, the stability of this algorithm requires Ay, (P~1H) < 2 or equivalently H < 2P.
To derive the central flow, we assume that w = w + ¢ with E[§] = 0 and E[667] = X. Taylor
expanding and time-averaging the update for v gives:

E[f(v,w)] = E[f (v, VL(W + 6))] =~ f(v, VL(W)) + 5V f (v, w)[%]
These motivate the central flow ansatz:

d

= = _P)  [VEI(w) + 1V L(w)[3]

dt 31)
dv (
We say that {w(t&/(t), 3 () }e>0 satisfy the DVI formulation of the central flow if for almost all ¢ > 0

they satisfy eq. (31, X(¢) = 0, H(w(t)) = 2P(v(t)), and (X(t), H(w(t)) — 2P(v(t))).

To derive the CCP formulation which is efficiently computable, we differentiate the stability condition.

Fix an iterate ¢, let U := ker[H — 2P(v(t))] be the critical subspace at time ¢, and define H := ai U

under eq. . Then for the stability condition to remain true, we need H =< 0. To compute it, define
T :Sym(U) — Ré by T[X] := V,, (H(w), ). Then,

.
dt |,
%] -mrwlg]),

=T P(v) " [-VL(w) = 5T[Z]] = 2V, P(v) [f(v,w) + V3, f (v, w) [Z]
U
Splitting up the constant terms and the terms linear in 3., we define:

a(w,v) := TT[-P(v)"'VL(w)] — 2V, P(v)|v f(v,w) € Sym(U)
Bw,v) = YT P@) T + 9, P00V () € Sym(U) © Sym(D).

Then H = o — 3 [3], so by the same arguments as for gradient descent, RMSProp-Norm,RMSProp, &
needs to solve CC'P(a(w, v), B(w, v)), and plugging this ¥ into eq. gives the CCP formulation
for the central flow for this preconditioned method.
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C.8 CONE COMPLEMENTARITY PROBLEMS

In this section we will let k£ > 1 be a positive integer, and we will use Sym,, (R) to denote the set of
k x k symmetric matrices.

Definition 8 (Cone Complementarity Problem). Let o € Sym,,(R), and let 5 € Sym;, (R)®Sym,, (R)
be a linear operator on symmetric matrices. We say that the matrix X € Sym,(R) solves the cone
complementarity problem CCP(«, ) if:

X =0, a-pX]=0, (X,a-p[X])=0.
Lemma 5. Let § € Sym,(R) ® Symy,(R) be a symmetric linear operator on symmetric matrices.
1. If B = 0 as an operator on Symy (R), then CCP(«, 8) has a solution for all c.

2. If B = 0, this solution is unique. Otherwise, all solutions X, X' differ by a matrix in the
kernel of B.

Proof. Consider the quadratic program

min 1B[X,X] - (X,a) suchthat X = 0.
Because 3 > 0, this program is convex. The KKT conditions for this program are 3[X] — a > 0 and
the complementary slackness condition X (3[X] — «) = 0. Therefore any KKT point to the original
quadratic program, including its global optimum, solve the conic complementarity problem which

proves (1). To prove (2), let X, X’ be solutions to the conic complementarity program. Then taking
the trace of the complementarity relations we have:

(0, X) = BIX, X] =0, (a,X)=pBX' X']=0.
In addition, because both 5[ X] — « and X’ are PSD and vice-versa, we must have
(X', B X]—a) <0, (X,B[X']-a)<0.
Adding these four conditions gives:
BIX, X]+ B[X", X' - B[X, X' -B[X',X]<0 — BX-X' X-X']<0.

However, since § = 0 this implies that 3[X — X', X — X’] = 0. When 3 > 0 this implies that
X = X', and when 8 = 0 this implies that X — X" is in the kernel of 3. O
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D FULL EXPERIMENTS

Our full set of experiments span a variety of neural network architectures: a CNN, a ResNet (He
et al., 2016)), a vision transformer (ViT) (Dosovitskiy et al., [2021), a GPT-2 (Radford et al.,[2019)
style transformer, and a recurrent neural network (RNN). We evaluate the CNN, ResNet, and ViT
on an image classification task, and we evaluate the GPT-style transformer and RNN on a sequence
prediction task, using both mean-squared-error (MSE) and cross entropy losses. Since discretizing
the flows is computationally expensive, we are restricted to small scale datasets: our image dataset is
a subset of CIFAR-10 with 1,000 examples and either 4 or 10 classes, while our sequence dataset is a
sorting task with 1,000 sequences of length 8 and alphabet size 4. Even at these modest scales, our
full set of 115 experiments required 2000 GPU-hours. We further describe the architectural details,
and the procedure for discretizing the flows in Appendix [B]

Empirically, the quality of the central flow approximation is usually better for smaller learning rates
than large ones, and for MSE loss rather than cross-entropy loss. We believe that some important
underlying factors are: (1) the magnitude of the oscillations in sharpness around 2/n; and (2)
whether higher-order terms cause the sharpness equilibrium point to differ slightly from 2/n. A
promising direction for future research is to rigorously identify conditions under which the central
flow accurately approximates the real optimization trajectory.

D.1 GRADIENT DESCENT

33



Under review as a conference paper at ICLR 2025
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Figure 12: gradient descent on a CNN on a 1000 example subset of CIFAR10 with MSE loss
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Figure 13: gradient descent on a ResNet on a 1000 example subset of CIFAR10 with MSE loss
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Figure 14: gradient descent on a ViT on a 1000 example subset of CIFAR10 with MSE loss
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Figure 15: gradient descent on a CNN on a 1000 example, 4 class subset of CIFAR10 with MSE loss

37



Under review as a conference paper at ICLR 2025

Loss Squared Gradient Norm o Eigenvalues of Hessian
20 GD GD w— GD
—— GD (Time Averaged) | 40{ —— GD (Time Aversged) —=- Cental Flow 08
s Trajectory Prediction Trajectory Prediction 6001 —— Stable Flow
—— Stable Flow 30{ = Stable Flow 2 / 06
100
10 20 04
~
o 200 "
0s
0
0 s w0 1s0 200 250 0 S0 w0 10 200 2500 G s a0 10 200 250 00 02 04 06 o5 10
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
107 == Central Flow 0109 Distance between consecuive @D — @
08 008 iterates of GL 0.00025 ~— GD (Time Averaged) 067 |cmn Central Flow
Distance between GD cetory Prediction 2 el Fow
Distance between . Trajectory Predic Stabl Fl
3 Distance between GD 03
0o 006 — i Stabi Flow oo00ts
o 004 0.00010 '/- 04
02 002 0.00005
03
00 - a 0.00000
0 S0 w0 10 00 20 0 S0 w0 1s0 200 20 T w0 o e 200 2w 0 s w1 20w w0
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
00 150
—
> 05 Central Flow 1 1.25
B 05 — subleFow | 100 100
1o 075 0.75
10
15 050 050
— G 5
o 20 023 === Central Flow
o B o — SubleFlow | 000
0 S0 w0 10 200 250 0 S0 w0 10 200 250 G S0 w1 200 20 0 S0 w0 10 200 250
(a) n = 0.005
Loss Squared Gradient Norm Eigenvalues of Hessian
20 1
il o GD . GD
— D (Time Averaged) — D (Time Averaged) —= Contal Flow 08
15 Trajectory Prediction 60 Trajectory Prediction 3001 —— Stable Flow
— Stable Flow — Stable Flow 2 o6
0 40 200 1
04
05
2 100 s
00
0 S0 w0 200 2w T o w0 10 200 2500 0 S0 100 10 200 20 00 02 04 0 s 10
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
00020
307 === Contal Fow ] 1509 Distance between consecutive
b5 ' ieraes of GD 06
! 1259 Distance between GD. 0.0015
0 _ . and Centra Flow
h ) 100 Distance between G (,—1_” a» 0s
H i T and Stable Flow — eras 3
13 i H 075 0.0010 GD (Time Averaged)
H H === Trajectory Prediction
10 P Al
i 050 - il 04 — o
05 i 02 « —=- Central Flow
o i J . — Stable Flow
0 S0 0w 10 200 250 G so o0 1s0 200 2500 0 S0 10w 100 200 250 0 S0 1000 150 200 2500
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
2
5] — ap — ap 1—
=== Central Flow o o1 - Central Flow 44 = Central Flow
4] — Stable Flow . o] — sublerow — Stble Flow
3 -4 5 o
) 6 o
— GD o
! Central Flow s "
, <104 — Stable Flow »
0 S0 oo 150 2w 2500 T sw oo 10 2w 20 D S0 0w 10 20 20 0 S0 o 10 200 2500
Loss Squared Gradient Norm Eigenvalues of Hessian )
GD 50 GD . GD
s —— GD (Time Averaged) — 6D (Time Averaged) - Conmal Flow | g
Trajectory Prediction | 40 === Trajectory Prediction 50 —— Stable Flow
— Stble Flow — Stable Flow o o6
10 100d
04
03 50
02
00
0 S0 oo 10 2w 2500 T sw 0w 10 2w 20 0 sw w0 150 20 250 00 0 o4 s os 10
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
30 Ty === commtrion | (| Divae pecen comesine 0003 065
1 3 iterates of GD'
25 i me Averaged) | 0,60
isance between 0004
20 L 204 === micamton ) ——— - sty rsicion |
Distance between GD
15 154 T and Stable Flow 0003 050
1.0 1.0 o002 045
— o
0s o , [ ooon 00 22 Conat Fow
- N, ~ Stable Flow
00 - ool . 035
0 S0 w0 200 2w T so w00 10 200 200 T S0 o0 10 200 300 0 S0 00 10 20w 20
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
6 @b : — ap 6 — G 6 — @
o | === comntFiow o === Central Flow === Central Flow - Central Flow
— Stble Flow — Stble Flow N — Stble Flow — Stable Flow
B 2
3 4 ~— 2
B 6 T 0
1 -8 2
0 10
0 S0 1w 0 200 2w G so o0 1m0 200 2500 G so o0 10 200 200 0 S0 w0 200 25w

(c)m =0.02

Figure 16: gradient descent on a CNN on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 17: gradient descent on a ResNet on a 1000 example, 4 class subset of CIFAR10 with MSE
loss
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Figure 18: gradient descent on a ResNet on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 19: gradient descent on a ViT on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 20: gradient descent on a ViT on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 21: gradient descent on a GPT-style transformer on a synthetic sorting task with MSE loss
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D.2 RMSPROP-NORM
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Figure 22: RMSProp-Norm on a CNN on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 23: RMSProp-Norm on a CNN on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 24: RMSProp-Norm on a ResNet on a 1000 example, 4 class subset of CIFAR10 with MSE
loss
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Figure 25: RMSProp-Norm on a ResNet on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 26: RMSProp-Norm on a ViT on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 27: RMSProp-Norm on a ViT on a 1000 example, 4 class subset of CIFAR10 with cross
entropy loss
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Figure 28: RMSProp on a CNN on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 29: RMSProp on a CNN on a 1000 example, 4 class subset of CIFAR10 with cross entropy
loss
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Figure 30: RMSProp on a ResNet on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 31: RMSProp on a ResNet on a 1000 example, 4 class subset of CIFAR10 with cross entropy
loss
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Figure 32: RMSProp on a ViT on a 1000 example, 4 class subset of CIFAR10 with MSE loss
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Figure 33: RMSProp on a ViT on a 1000 example, 4 class subset of CIFAR10 with cross entropy loss
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Figure 34: RMSProp on an RNN on a synthetic sorting task with MSE loss
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Figure 35: RMSProp on a GPT-style transformer on a synthetic sorting task with MSE loss
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D.3.3 THE EFFECT OF (3

Loss Squared Gradient Norm Eigenvalues of Precond. Hessian
4 1
RMisProp N RMSProp - RMsPop
04 —— RMSProp (Time Averaged) —— RMSProp (Time Averaged) === Cenal Flow | g
=== Trajectory Prediction === Trajectory Prediction 3 Stable Flow
03 —— Stable Flow 37— stable Flow 2 06
02 2 : 04
01 1 ! 02
00
S0 10 100 2000 250 0 5w 1w w0 200 250 0 S0 10 10 200 20 00 02 04 o6 o8 10
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
om0
P 10 . Distance between RMSProp. | 0.000150 RMSProp
and Central Flow RMSProp (Time Averaged) 0.65
20 1 and Stable Flow 0.60
i v 0000100
i
B 0000075 0
0y 04 050
i 0000050 — RMSPop
05 : 02 0.000025 045 Central Flow
; - Contnl Flow — Stable Flow
00{ -4 040
0 5w 0w 150 200 250 0 5w 1w w0 200 250 G s 1000 150 200 250 0 50 100 150 200 250
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
03 010 05 —— RMSProp
005 06 Contral Flow
04 04 ~— Stable Flow
000
03 s 04 03
02 010 02
— RuisProp o15] — RMsPop 02 — Ruisprop
o1 === Central Flow TP === central Flow === Cenual Flow |
—— Stable Flow 020 — Stbie Flow — Stable Flow
00 00
0 S0 0w 10 00 2500 0 S0 0w 10 200 250 O s 100 150 200 250 0 S0 0w 10 00 250
=2x107°% B2 =0.95,¢ =10"", bi i
@n=2x ,B2=0.95¢e= , bias correction
Loss Squared Gradient Norm ,Eigenvalues of Precond. Hessian "
RMSProp : RMSProp BN RMSProp
04 —— RMSProp (Time Averaged) N RMSProp (Time Averaged) === Central Flow 08
=== Trajectory Prediction === Trajectory Prediction 3 Stable Flow
03 — Stble Flow | Stable Flow 2 6
02 2 : 04
01 ! / | 02
00 00
S0 00 15w 0 230 0 so 0w 150 200 250 0 S0 1w 150 200 2w 00 o2 04 o5 o8 1o
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
070
30 [ 08 —__ Distance between RMSProp RMSProp
25 H e o ooy | 000013 RMSProp (Time Averaged) | 0.65
Wl v —— Disance btwee d == Trjectory Prediction o
2 i
sl o010 03
' 0.4
o] 4 050
H - | 00000 — RMSPop
0s{ I 02 0.5 Central Flow
H === Central Flow ~— Stable Flow
001 ==' 3 0.40
0 s w0 150 200 250 G S0 w10 w0 230 G S0 w0 10 w0 250 G s w1 200 20
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
010
0 o RMSProp 03 RMSProp
- CemlFlow | g - Cental Flow
o 0o —— Stable Flow 04 Stable Flow
03 000 o s
02 ~00s 02
— RMSProp 02 RMSProp
o1 === Central Flow -0 === Centrl Flow | ¢,
— Stable Flow Stabl Flow
00 015 00
0 s 00 150 200 2500 G S0 w0 10 00 250 G S0 w0 10 200 250 0 S0 w0 10 2000 250
b)n=2x 107", B> = 0.99, ¢ = 107", bi i
b)yn=2x , B2 =0.99, ¢ = , bias correction
Loss Squared Gradient Norm ‘Eigenvalues of Precond. Hessian o
RMSProp s RMSProp - RMSPop
04 —— RMSProp (Time Averaged) RMSProp (Time Averaged) - Cenml Flow | g
=== Trajectory Prediction 44 === Trajectory Prediction 3 Stable Flow
03 — Stble Flow Stable Flow 2 06
3 2
02 -
2 04
ot 02
00 0.0
o wo 200 w0 400 0 00 200 30 4000 0 W0 200 3000 400 00 o2 o4 o6 08 10
# Unstable Eigenvalues Distances Squared Magnitude of Oscillations Test Accuracy
070
30 H 10 - Distance between RMSProp. | 0-00020 RMSProp
25 ! oo RMSProp (Time Averaged) | 065
2] A o8 — b Fon T | 000015 === Tajectory Prdicton o
- '
i 06
5 1 0.00010 0%
] 2 04 0.50
I N oooos — RuisPop
05y 1 02 04s Central Flow
ol - == Central Flow L. o — Stable Flow
o W0 200 w0 a0 0 W0 200 w0 a0 0 W0 200 0 a0 1 W0 200 a0 a0
Output on Test Example 1 Output on Test Example 2 Output on Test Example 3 Output on Test Example 4
05
—— RMSProp o010 RMSProp 03 —— RMSProp
0e - Cenval Flow | 05 —-- ComiFlow | o o4 Central Flow
— Stable Flow Stabl Fow — Stable Flow
03 000 03
) 04
02 e 02
-0.10 02 —— RMSProp
0.1 - Central Flow ol
015 —— Stable Flow
00 00 00
o w0 200 000 a0 ] w0 0 w0 w00 0 w0 0 w0 a0 0 00 00 w000

(©)n=2x10"%, B2 = 0.995, e = 107, bias correction

Figure 36: RMSProp on a CNN on a 1000 example, 4 class subset of CIFAR10 with MSE loss and
various [35
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E EXTRA FIGURES
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Figure 37: Central flow approximation is less accurate at larger learning rates. We run both
gradient descent and its central flow at three learning rates (colors). The larger the learning rate, the
faster the growth in the accumulated approximation error (right). E|[ndeed, at larger learning rates, the
network’s output on an arbitrary test example can be visually seen to be slightly different between
the central flow and gradient descent (middle). Nevertheless, the central flow approximation is still
accurate enough here to accurately capture the train loss curves (left).

(b) weight-space distance

(a) B-GelLU activation function between w(t) and w
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Figure 38: Accuracy of central flow degrades as activation function becomes less smooth. We
consider networks with the 5-GeLU activation function from Dauphin et al.| (2024)), defined as
x — x®(fx) where ® is the standard Gaussian CDF. This activation interpolates between GeLU
when 5 = 1 and ReL.U when 3 = oco. Subfigure (a) plots this activation function with varying /3.
Subfigure (b) shows that when [ is larger (i.e. when the activation is less smooth), the approximation
error between the central flow w(t) and the optimizer trajectory w; grows faster. Subfigure (c) plots
the loss curve, and the network’s output on a test example, for both the optimizer trajectory and the
central flow. Fortunately, even when 8 = 20, at which point S-GeLU is a very close approximation
to ReLU, the central flow accurately predicts the overall training loss curve.

'While the rate of error accumulation in this figure can be partially explained by the fact that larger learning
rates travel farther through weight space over a fixed number of steps t, this effect persists even after rescaling
time and plotting 77 X ¢, rather than ¢, on the z axis.
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