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Abstract

Retrieval-augmented language models have001
demonstrated performance comparable to002
much larger models while requiring fewer com-003
putational resources. The effectiveness of these004
models crucially depends on the overlap be-005
tween query and retrieved context, but the opti-006
mal degree of this overlap remains unexplored.007
In this paper, we systematically investigate008
how varying levels of query–context overlap009
affect model performance during both train-010
ing and inference. Our experiments reveal011
that increased overlap initially has minimal ef-012
fect, but substantially improves test-time per-013
plexity and accelerates model learning above a014
critical threshold. Building on these findings,015
we demonstrate that deliberately increasing016
overlap through synthetic context can enhance017
data efficiency and reduce training time by ap-018
proximately 40% without compromising per-019
formance. We specifically generate synthetic020
context through paraphrasing queries. We vali-021
date our perplexity-based findings on question-022
answering tasks, confirming that the benefits of023
retrieval-augmented language modeling extend024
to practical applications. Our results provide025
empirical evidence of significant optimization026
potential for retrieval mechanisms in language027
model pretraining.028

1 Introduction029

Language models that are pretrained with retrieval030

augmentation can match the performance of much031

larger models trained in the conventional way,032

while at the same time requiring significantly fewer033

computational resources (Borgeaud et al., 2022;034

Izacard et al., 2023). In retrieval-augmented pre-035

training, the model can query and incorporate in-036

formation from external sources, which makes it037

easier to update its knowledge base and allows in-038

formation to be added, removed, or modified in a039

transparent and flexible way (Izacard et al., 2023;040

Wang et al., 2023b; Shi et al., 2024b).041

While research on retrieval-augmented language 042

models has shown that accessing external sources 043

reduces reliance on model parameters and leads to 044

lower perplexity, questions remain about the un- 045

derlying mechanisms driving these improvements. 046

Recent work has explored this issue with a focus 047

on the role of the retrieved context (Borgeaud et al., 048

2022; Norlund et al., 2023; Doostmohammadi et al., 049

2023). Findings suggest that the primary reason 050

for reduced perplexity is surface-level overlap, i.e., 051

exact token matches, between the queries and the 052

retrieved context. Yet, the optimal degree of over- 053

lap is still unclear. Intuitively, while higher overlap 054

appears to provide a stronger signal for language 055

modeling, excessive similarity between queries and 056

retrieved context may lead to over-reliance on re- 057

trieval and reduce model generalization in down- 058

stream tasks. This raises a fundamental question: 059

what makes retrieved context effective during pre- 060

training? An answer to this question could open 061

the door to a well-founded methodology for de- 062

signing retrieval corpora to maximize their useful- 063

ness for practical applications and training retrieval- 064

augmented systems that rival the performance of 065

much larger conventional language models under 066

significantly tighter resource constraints—making 067

advanced capabilities more accessible, adaptable, 068

and sustainable. 069

In this paper, we take a significant step towards 070

a deeper understanding of the role of retrieved con- 071

text in augmented language modeling by systemati- 072

cally exploring how the degree of overlap between 073

queries and context affects model performance both 074

at training and at test time. To this end, we train 075

multiple models under controlled levels of over- 076

lap and evaluate them in terms of perplexity and 077

on downstream tasks. Building on our findings, 078

we further investigate to what extent we can de- 079

liberately accelerate learning and enhance model 080

performance in a low-resource scenario through 081

data synthesis. 082
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Contributions Our contributions are as follows:083

• We investigate how varying degrees of overlap084

between queries and retrieved context affect test-085

time perplexity. Additionally, we analyze this086

variation over training steps, offering insights087

into how the impact of overlap depends on the088

amount of training data.089

• To validate our findings, we include downstream090

performance results on a question answering task091

(Kwiatkowski et al., 2019), ensuring that the ob-092

served trends translate to real-world utility.093

• We finally show how our findings can be used to094

train retrieval-augmented language models more095

data-efficiently than standard models. Specifi-096

cally, we explore a method where we deliberately097

increase query–context overlap using synthetic098

contexts obtained through paraphrasing and find099

that this leads to faster perplexity reduction with100

less data.101

2 Previous Work102

Retrieval augmentation has been widely used in103

open-domain question answering and has also been104

applied to the pretraining and finetuning of lan-105

guage models (Karpukhin et al., 2020; Yogatama106

et al., 2021a; Borgeaud et al., 2022; Izacard et al.,107

2023; Wang et al., 2023a; Shi et al., 2024a).108

Early work, such as that of Guu et al. (2020),109

explored retrieve-and-edit paradigms, while follow-110

up studies focused on selecting relevant evidence111

based on lexical overlap (Asai et al., 2020) or en-112

hancing inference-time generation with retrieval113

(Khandelwal et al., 2020; Yogatama et al., 2021b).114

One line of work, exemplified by kNN-LM (Khan-115

delwal et al., 2020), interpolates between model116

predictions and retrieved contexts at generation117

time. This approach was later extended in SPALM118

(Yogatama et al., 2021b), which introduced a119

learned gating mechanism that dynamically bal-120

ances between both contributions.121

Later efforts have shifted toward integrating re-122

trieval earlier in the training pipeline. Borgeaud123

et al. (2022) demonstrated that large-scale retrieval-124

augmented pretraining can substantially reduce per-125

plexity even with a frozen retriever. Izacard et al.126

(2023) further showed that jointly training the re-127

triever and language model can provide additional128

performance gains, especially when retrieval is129

over extremely large datasets (trillions of tokens).130

Xu et al. (2023) found that approximate nearest 131

neighbors have a positive effect on generalization, 132

acting as a form of regularization. 133

Recent work has found that retrieval-augmented 134

pretraining leads language models to acquire less 135

world knowledge but improved syntactic profi- 136

ciency (Samuel et al., 2024). This shows that 137

such training shifts the role of the language model 138

toward interpreting factual information from re- 139

trieved contexts, which, in practice, offloads knowl- 140

edge from the model parameters and allows the 141

use of smaller model sizes. Although the majority 142

of published retrieval-augmented systems rely on 143

relatively small language models, they still demon- 144

strate significant improvements in perplexity, factu- 145

ality, and downstream accuracy when pretraining is 146

retrieval-enhanced (Borgeaud et al., 2022; Izacard 147

et al., 2023). These findings suggest that retrieval- 148

augmented pretraining is a promising direction for 149

scaling language models more efficiently than ap- 150

proaches based on parameters alone. 151

3 Background: RETRO Architecture 152

In this paper, we experiment with retrieval- 153

augmented language models based on the RETRO 154

architecture (Borgeaud et al., 2022). This architec- 155

ture is similar to GPT but is set up to predict the 156

next token conditioned on an augmented context 157

that, in addition to the previously generated tokens, 158

includes additional tokens obtained via the retrieval 159

mechanism. Technically, this is implemented via 160

an additional cross-attention mechanism between 161

the internal representations of the generated tokens 162

and the encoded context. This design allows the 163

model to incorporate information from the retrieval 164

database without requiring it to be explicitly in- 165

cluded in the generated token sequence. 166

Chunks The retrieval of additional context and 167

its incorporation into next-token prediction is done 168

at the level of chunks. A chunk is defined as a con- 169

tiguous sequence of tokens with a fixed size, which 170

is set as a hyperparameter. In both the original 171

RETRO paper (Borgeaud et al., 2022) and our own 172

work, the chunk size is m = 64. 173

Neighbors When the model has generated a new 174

chunk Cu, that chunk is used as a query to retrieve 175

k similar chunks from the retrieval database. In 176

this context, the chunk Cu is conventionally called 177

the input chunk, and the retrieved chunks are called 178

the neighbors of Cu. Each neighbor N i
u is addition- 179
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ally concatenated with the chunk F i
u that follows180

N i
u in the retrieval dataset; that chunk is called181

the continuation of the neighbor. The rationale of182

the augmentation is that, since the neighbors are183

retrieved based on their similarity to Cu, their con-184

tinuations are likely to be similar to Cu+1, the next185

chunk to be generated by the model, and should186

therefore be able to inform the generation of that187

chunk. For convenience, we generally use the term188

neighbor to include both the neighbor proper and189

its continuation.190

Retrieval-augmented context In the follow-191

ing, we write RET(Cu) to denote the retrieval-192

augmented context that the model uses to generate193

the tokens in the chunk Cu+1. The generation of194

the first chunk C1 is not conditioned on any aug-195

mented context (only on the usual language mod-196

eling context), so RET(C0) = ∅. For u ≥ 1, the197

retrieval-augmented context is198

RET(Cu) ≜ ([N1
u , F

1
u ], . . . , [N

k
u , F

k
u ]) .199

Note that in RETRO, the retrieval happens off-200

line and does not involve any trainable parameters201

within the model, unlike some other approaches202

such as ATLAS (Izacard et al., 2023).203

4 Experimental Framework204

In this section, we describe the components of our205

experimental framework that are shared across all206

of our experiments.207

4.1 RETRO-fitting208

While we could train retrieval-augmented language209

models from scratch, here we instead opt to train210

models by continued pretraining of a GPT-style211

base model with RETRO-style augmented retrieval.212

We refer to this process as RETRO-fitting. With213

the rise of strong open-source foundation models,214

RETRO-fitting is more realistic for real-world ap-215

plications than full pretraining. It also enables us216

to conduct more experiments, as it significantly217

reduces training time. Moreover, Borgeaud et al.218

(2022) show that RETRO-fitted models can achieve219

a perplexity and downstream performance that is220

comparable to that achieved with full training.221

Technically, RETRO-fitting entails expanding the222

base model with two new types of layers:223

1. an encoder for the retrieved context chunks224

(neighbors and their continuations); and225

2. cross-attention between the retrieved context 226

and the standard language modeling context. 227

These layers are randomly initialized and trained 228

alongside the rest of the GPT-initialized weights. 229

4.2 Models 230

For all our experiments, we RETRO-fit a 345M pa- 231

rameter GPT model pretrained by Nvidia (Shoeybi 232

et al., 2019). This model has 24 transformer layers, 233

each with a hidden size of 1,024 and 16 attention 234

heads, similar to the GPT-2 medium model (Rad- 235

ford et al., 2019). We chose to go with a relatively 236

small base model because we want to specifically 237

explore the potential of offloading information to 238

the retrieval mechanism rather than storing it in 239

the model parameters, which is a core motivation 240

behind retrieval-augmented pretraining. Indeed, 241

previous work on downstream question answering 242

tasks has shown that RETRO sees the more benefit 243

from retrieval the fewer parameters it has to store 244

information in (Wang et al., 2024). Also, small 245

models allow us to do more experiments given 246

a fixed computational budget, and RETRO shows 247

similar perplexity curves regardless of model size 248

(Borgeaud et al., 2022). 249

4.3 Retrieval 250

For retrieval, we use the training set of the Pile 251

(Gao et al., 2020), which comprises about 800 GB 252

of text of different genres. We embed this data 253

using mean pooling over representations from 254

MiniLM-L6-H384-uncased (Wang et al., 2020). 255

This model is one of the top performers at sentence 256

embedding according to measurements on Sen- 257

tence Transformers (Reimers and Gurevych, 2019). 258

To perform indexing and approximate search, we 259

use FAISS (Johnson et al., 2019) with the index 260

configuration OPQ32_64, IVF65536_HNSW8, PQ32 261

to enable efficient and scalable approximate near- 262

est neighbor search. This configuration first ap- 263

plies Optimized Product Quantization (OPQ) to ro- 264

tate and transform embeddings for better quantiza- 265

tion, followed by an Inverted File Index (IVF) with 266

65,536 clusters, where the coarse quantizer is accel- 267

erated using a Hierarchical Navigable Small World 268

(HNSW) graph. Finally, Product Quantization (PQ) 269

with 32 subquantizers is used to compress vectors 270

for fast and memory-efficient similarity search. We 271

always feed our models the top k = 2 retrieved 272

neighbors, both during training and testing. 273
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Figure 1: Test perplexity (line) at training step 4,000
and average overlap in terms of number of tokens (bars)
for different overlap thresholds during training.

5 Impact of Overlap on Perplexity274

As already mentioned, recent work on retrieval-275

augmented language modeling shows the impor-276

tance of surface-level overlap between the in-277

put chunk and its neighbors in training RETRO278

(Borgeaud et al., 2022; Norlund et al., 2023; Doost-279

mohammadi et al., 2023). In our first set of ex-280

periments, we want to dive deeper and see how281

different degrees of overlap affect the training of a282

RETRO model. To this end, we artificially bound283

overlap at predefined thresholds.284

5.1 Overlap Thresholds285

By overlap, we mean the number of tokens that286

are shared between the input chunk and one of its287

neighbors (including continuations). We divide288

the full range of possible overlap values (0–64)289

into 10 equally-sized (up to rounding) intervals290

[mini,maxi] (1 ≤ i ≤ 10) and train separate mod-291

els Mi where we only use neighbors with up to292

maxi tokens of overlap (e.g., < 25).293

During training, for every query chunk, we ini-294

tially retrieve 20 neighbors and then filter based295

on the model-specific overlap threshold, prioritiz-296

ing neighbors with higher overlap. This approach297

ensures that we retain only naturally occurring298

neighbors—a subset of the 20 originally retrieved.299

If the number of neighbors with an overlap below300

the model-specific threshold is less than k (the num-301

ber of neighbors provided to the model), we substi-302

tute the missing neighbors with zero vectors. We303

also consider an extreme setting where we provide304

no neighbors at all, i.e., we replace all neighbors305

with zeros. We refer to this setting as RET[OFF].306

Note that this differs from a GPT model in that it307

still uses the additional RETRO parameters.308

Note that, during training, while the neighbors 309

are filtered by overlap, the input chunks are the 310

same across all experiments. At test time, we al- 311

ways use the naturally retrieved neighbors, without 312

any overlap thresholding; the input chunks will 313

vary based on the previously generated tokens. 314

5.2 Experimental Setup 315

We train each overlap-thresholded model by 316

RETRO-fitting the GPT model described in Sec- 317

tion 4.2 on the Pile (Gao et al., 2020). We use the 318

entire training set for retrieval, but only train on 319

a maximum of 10,000 steps with a batch size of 320

128, which corresponds to approximately 54% of 321

the full data. In our training setup, we follow Wang 322

et al. (2024) by using the Adam optimizer (Kingma 323

and Ba, 2014) with β1 = 0.9, β2 = 0.98 and a 324

cosine learning rate decay schedule, starting with 325

a maximum learning rate of 2.5e-4, a minimum of 326

2.5e-5, and a linear warmup phase spanning the 327

first 5,000 samples. 328

5.3 Results and Analysis 329

Figure 1 shows the test perplexity and average over- 330

lap for each overlap threshold at training step 4,000. 331

We choose this step here because Borgeaud et al. 332

(2022) report that it is where RETRO converges; 333

we show the results for other training steps later. 334

Looking at the plot, we see that, as the threshold in- 335

creases, the perplexity remains roughly constant up 336

to < 32. However, at the next threshold level, we 337

see a clear drop, and perplexity decreases rapidly 338

as the overlap increases further. Overall, our results 339

show a strong negative correlation between the test 340

perplexity and the maximal overlap during training. 341

In Figure 2, we look at perplexity over training 342

steps. We see that after the threshold < 32, all 343

models can reach more or less the same low per- 344

plexity given enough time, but the number of steps 345

required for this varies significantly. The model 346

for threshold < 38 takes noticeably longer to con- 347

verge to a similar perplexity than the models with 348

higher maximal overlap, but the difference among 349

thresholds from < 51 to ≤ 64 is relatively small. In 350

summary, we find that, while a minimum amount 351

of overlap is needed to “activate” a RETRO model, 352

as also discussed in Borgeaud et al. (2022), increas- 353

ing the overlap further leads to faster convergence. 354

The average overlap for the activated models in this 355

experiment is about 30 tokens. 356
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Figure 2: Test perplexity trends for models with different overlap thresholds over training steps. The colors, as well
as the line and dot styles, represent the threshold, with colors going from cold to warm as the threshold increases.
The legend shows the threshold value, followed by the average overlap for that experiment in parentheses.

6 Overlap and Downstream Tasks357

While we have seen that increased overlap reduces358

the data requirements for RETRO-fitting when per-359

formance is measured in terms of perplexity, a sep-360

arate question is whether this benefit carries over361

to downstream tasks. To validate this, we apply362

our overlap-thresholded models to a short-answer363

generative question answering task.364

6.1 Experimental Setup365

To improve our RETRO-fitted models’ abilities366

to follow instructions and generate coherent re-367

sponses, we first instruction-tune them on a blend368

of open-source datasets provided by Megatron369

(2023), including Dolly (Conover et al., 2023) and370

Unnatural Instructions (Honovich et al., 2023). We371

fine-tune the models for 1,000 steps with a batch372

size of 128. Following Wang et al. (2024), we373

compute the loss only on the answer portion of374

each question–answer pair and update the weights375

with a learning rate of 5e-6 and a weight decay of376

λ = 0.01. For optimization, we again use Adam377

with β1 = 0.9 and β2 = 0.98.378

While RETRO shares its training objective with379

GPT models, it requires retrieval of nearest neigh-380

bors, which many instruction tuning datasets lack.381

To avoid using noisy neighbors from the pretrain-382

ing corpus, we disable the RETRO context encoder383

using a manually set gate that skips the cross-384

attention when retrieval is unavailable. This freezes 385

the encoder parameters and updates only the de- 386

coder, simplifying tuning and enabling inference 387

both with and without retrieval. 388

Following the literature, we evaluate our mod- 389

els on the Natural Questions (Kwiatkowski et al., 390

2019) dataset. We report exact match scores, 391

which means that apart from punctuation marks 392

and whitespace, the model response should exactly 393

match one of the gold answers. Each question in 394

the dataset comes with multiple contexts, which we 395

provide to the model as neighbors with k = 2. For 396

generation, we use greedy decoding. 397

6.2 Results and Analysis 398

Figure 3 shows the exact match scores of selected 399

models over training steps. To reduce the number 400

of experiments, we exclude certain models that 401

were not activated in our previous experiments, as 402

all such models had a similar (low) performance. 403

In general, the results on the downstream task 404

follow a similar pattern to our earlier results on 405

perplexity: unactivated models consistently un- 406

derperform compared to activated models, which 407

we attribute to their failure to make optimal use 408

of the provided neighbors. In contrast, activated 409

models benefit from additional training, showing 410

slightly improved exact match scores up to around 411

step 7,000, after which their performance plateaus. 412

Model < 38 initially lags behind—mirroring its per- 413
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Figure 3: Exact match percentages on the Natural Questions dataset over various training steps and overlap
thresholds. The legend shows each threshold value, followed by its corresponding average overlap for that threshold,
shown in parentheses.

plexity trend—but eventually catches up with the414

other activated models. The unactivated models, on415

the other hand, show a relatively steady (low) per-416

formance over different training steps. In summary,417

these results validate our earlier perplexity-based418

findings, showing that perplexity can be used as a419

predictor of downstream task performance.420

7 A Low-Resource Scenario421

As shown in Figure 2, activating a RETRO model422

requires about 4,000 training steps at a batch size423

of 128, which equals about half a million training424

samples with highly overlapping neighbors. This425

level of data demand, which comes in addition to426

the data required to pretrain the base model, is often427

impractical in real-world scenarios—particularly428

for low-resource languages or specialized domains429

where such large datasets are unavailable.430

To address this limitation, in this section we ex-431

plore an approach to activating RETRO models by432

leveraging synthetic data. Building on our find-433

ings regarding the importance of overlap, we pro-434

pose a methodology that allows us to modulate the435

strength of the retrieval signal using paraphrased436

neighbors and thereby control the speed at which a437

RETRO model gets activated.438

7.1 Experimental Setup439

Our experiments use the same settings and hy-440

perparameters as described in Section 5.2 for441

RETRO-fitting and Section 6.1 for instruction tun-442

ing and evaluation, with one key difference: we ran- 443

domly replace one of four chunks in the retrieval- 444

augmented context (k = 2 neighbors and their con- 445

tinuations) with a paraphrase of the input chunk. 446

To get these paraphrases, we use the LLaMA 3 447

8B instruction-tuned model (AI@Meta, 2024) with 448

the prompt provided in Appendix A. The prompt 449

is designed to maintain enough surface-level simi- 450

larity between the input chunk and the paraphrase 451

to get a significant overlap, while at the same time 452

ensuring that the paraphrased chunks are not so 453

similar that the model becomes overly reliant on 454

the newly introduced artificial neighbors. We then 455

repeat the experiments from the previous sections 456

using the same thresholds as before, but now with 457

the synthesized neighbors added. 458

7.2 Results and Analysis 459

Impact on perplexity Figure 4 shows the test 460

perplexity of the overlap-thresholded models over 461

the training steps with paraphrased neighbors. Para- 462

phrasing, in practice, increases the average overlap 463

per threshold bin. For consistency, we still retain 464

the original threshold labels and report the new av- 465

erage overlaps as a sum of the old average threshold 466

and the increase introduced through paraphrasing. 467

Compared to the results before the interven- 468

tion (Figure 2), models that we previously clas- 469

sified as activated exhibit even faster activation 470

with synthetic neighbors added. Their convergence 471

curves are also steeper and approach their mini- 472

6



20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Training Steps

5

7

9

11

P
er

p
le

x
it

y

Ret[off]

< 12 (6 + 22)

< 19 (19 + 13)

< 25 (25 + 11)

< 32 (26 + 9)

< 38 (28 + 7)

< 44 (30 + 5)

< 51 (31 + 3)

< 57 (32 + 2)

≤ 64 (34 + 1)

Figure 4: Test perplexity trends of models with varying overlap thresholds over training steps. The legend indicates
the threshold value, followed by the average overlap for that threshold and the additional overlap introduced by
paraphrases in parentheses.

mum around step 3,000, compared to step 5,000473

in the previous setting. This improvement corre-474

sponds to roughly 40% less data to reach optimal475

performance. Model < 32, which was not previ-476

ously activated, eventually reaches the same levels477

of perplexity as the models with activated retrieval,478

although it takes approximately 5,500 steps for479

this to occur. The price we pay for the faster con-480

vergence is higher overall perplexity: the lowest481

perplexity achieved by the models is now 6.1, com-482

pared to 5.6 previously. A plausible explanation483

for this observation is that paraphrases introduce484

noise and decrease data variability. The detrimental485

effect on perplexity is more pronounced in models486

where retrieval is not activated; these do not reach a487

perplexity below 11, compared to 10 in the setting488

without synthetic neighbors.489

Looking at the average overlap statistics, we see490

that values increase substantially at lower thresh-491

olds, where the paraphrases add a lot of new over-492

lap, while the effect on the higher-threshold models493

is significantly smaller. At the same time, con-494

vergence happens more quickly for these models495

regardless, which suggests that factors beyond sim-496

ple overlap contribute to activating the model’s497

retrieval weights.498

Impact on downstream tasks Finally, we turn499

to the downstream results on the Natural Questions500

dataset, reported in Table 1. We observe a similar501

Thresholds Training Steps

4000 5000 6000 7000

< 25 5.5 5.4 4.9 5.3
< 32 6.1 9.8 10.8 11.1
< 38 11.3 10.1 11.2 11.4
< 44 10.3 11.3 11.5 11.0
≤ 64 9.8 11.4 10.5 10.7

Table 1: Exact match percentages for selected models
on the Natural Questions dataset over different training
steps. Threshold names and markers match those used
in previous plots for ease of comparison.

trend as in the setup without paraphrases (Figure 3). 502

To reduce the number of experiments, we focus on 503

the most relevant thresholds—those near the activa- 504

tion point and the extreme case of ≤ 64, to assess 505

whether the addition of paraphrases negatively im- 506

pacts the model under extreme conditions. The 507

performance approximately doubles once retrieval 508

is activated and remains relatively stable across 509

different training steps. Overall, while there are 510

some minor fluctuations, the models trained with 511

paraphrased neighbors perform on par with mod- 512

els trained without. This result demonstrates that, 513

while perplexity is affected negatively, modulating 514

the overlap signal through paraphrasing can lead to 515

faster activation of the augmented retrieval mecha- 516

nism without degrading downstream performance. 517
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8 Final Remarks and Discussions518

In this paper, we used a pretrained model, which519

likely contributed to more stable and robust results520

and enabled us to conduct more extensive experi-521

ments. Moreover, RETRO-fitting presents a prac-522

tical and accessible method for users to integrate523

retrieval mechanisms into language models, given524

that these models are already pretrained and train-525

ing from scratch is costly and resource-intensive.526

However, it remains unclear whether these results527

would extend to pretraining a RETRO model from528

random initialization.529

Our experiments were conducted using a single530

model size. While RETRO tends to show greater531

benefits on smaller models, since they are more con-532

strained in their capacity and must rely more heav-533

ily on retrieved neighbors, studying how model534

size interacts with retrieval-based methods could535

provide a more comprehensive understanding of536

their scalability and efficiency.537

In our experiments, we only use paraphrasing of538

the input. However, in low-resource settings, this539

approach may be limited, as high-quality paraphras-540

ing models might not be available, or off-the-shelf541

LLMs may struggle to produce fluent paraphrases542

in the target language. Therefore, other methods,543

such as back-translation (Sugiyama and Yoshinaga,544

2019) or synonym substitution (Jungiewicz and545

Smywiński-Pohl, 2019), remain to be explored to546

determine whether they can similarly reduce per-547

plexity without breaking the model.548

Although we significantly increased the overlap549

between neighbors and the input, we were unable550

to break the model, suggesting that it has a sur-551

prisingly high tolerance for redundancy or depen-552

dence on neighboring context. However, it is plau-553

sible that beyond a certain point, excessive overlap554

could lead the model to become overly reliant on555

its neighbors. This dependence may, in turn, cause556

performance to degrade when such neighbors are557

absent or differ at test time.558

Our results indicate that unigram overlap be-559

tween the input and its neighbors serves as a use-560

ful heuristic and a simple proxy for understanding561

what drives the model to attend to the neighbors.562

However, as shown in the results in Section 7, it563

is clearly not the full story. Other factors, such as564

the stronger signal provided by synthetic data com-565

pared to natural language (Edunov et al., 2018),566

or variations in word order (Norlund et al., 2023),567

may also influence the model’s behavior.568

9 Conclusions and Future Work 569

Retrieval-augmented language models have been 570

shown to significantly reduce test-time perplexity, 571

despite their much smaller size compared to stan- 572

dard language models. Prior work has identified the 573

primary driver of this improvement to be the over- 574

lap between the input text and its retrieved neigh- 575

bors during both training and testing (Borgeaud 576

et al., 2022). Initially, this has no effect, but be- 577

yond a certain point, the overlap becomes strong 578

enough to tip the model towards using the retrieved 579

neighbors. 580

We extend this analysis to different time steps, 581

revealing that more overlap accelerates the model’s 582

learning and makes it more likely to attend to re- 583

trieval. This suggests that a strong overlap signal 584

between the neighbors and the input chunk is cru- 585

cial for efficient learning. Additionally, we run 586

experiments on a downstream question-answering 587

task to show that these effects extend beyond just 588

perplexity. 589

We further extend this by replacing one neighbor 590

with a paraphrase of the input chunk to ensure the 591

model always has a relevant, highly overlapping 592

neighbor. This approach significantly enhances the 593

model’s data efficiency, reducing training time by 594

approximately 40%. We then evaluate the models 595

on a question-answering task to demonstrate that 596

this type of training does not negatively impact 597

model performance. While it is conceivable that 598

further increasing overlap could eventually harm 599

downstream performance or perplexity, we have 600

not observed this in our experiments. 601

Future research could investigate pretraining a 602

RETRO model from scratch to better understand 603

the challenges and the role of overlap without the 604

stabilizing effects of prior training. Extending the 605

analysis to larger model sizes would also be valu- 606

able, as it could reveal how retrieval-based methods 607

scale and whether their benefits persist across ca- 608

pacities. 609

Alternative augmentation methods such as back- 610

translation or synonym substitution should be ex- 611

plored, especially in low-resource settings where 612

paraphrasing is less viable. Additionally, determin- 613

ing the threshold at which increased input-neighbor 614

overlap causes model failure remains an open ques- 615

tion. Finally, further analysis is needed to un- 616

cover other factors beyond overlap that influence a 617

model’s attention to its retrieved neighbors. 618
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Limitations619

While our findings offer valuable insights into620

the role of input-neighbor overlap in retrieval-621

augmented language models, several limitations622

remain. First, our experiments rely on a pretrained623

language model, leaving open the question of how624

overlap affects models trained from scratch, where625

learning dynamics may differ. Second, we only626

evaluated a single model size; larger models may627

exhibit different behaviors with respect to retrieval628

dependence and overlap sensitivity. Third, al-629

though we increased overlap extensively without630

observing model degradation, we did not determine631

the point at which excessive overlap may begin to632

harm performance. Finally, while overlap is a con-633

venient and intuitive metric, it likely does not cap-634

ture the full complexity of retrieval utility—factors635

such as word order or semantic similarity in non-636

overlapping tokens warrant further investigation.637

References638

AI@Meta. 2024. Llama 3 model card.639

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,640
Richard Socher, and Caiming Xiong. 2020. Learning641
to retrieve reasoning paths over wikipedia graph for642
question answering. In International Conference on643
Learning Representations.644

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-645
mann, Trevor Cai, Eliza Rutherford, Katie Milli-646
can, George Bm Van Den Driessche, Jean-Baptiste647
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.648
Improving language models by retrieving from tril-649
lions of tokens. In International conference on ma-650
chine learning, pages 2206–2240. PMLR.651

M. Conover, M. Hayes, A. Mathur, J. Xie, J. Wan,652
S. Shah, A. Ghodsi, P. Wendell, M. Zaharia, and653
R. Xin. 2023. Free dolly: Introducing the world’s654
first truly open instruction-tuned llm. Technical re-655
port, Databricks.656

Ehsan Doostmohammadi, Tobias Norlund, Marco657
Kuhlmann, and Richard Johansson. 2023. Surface-658
based retrieval reduces perplexity of retrieval-659
augmented language models. In Proceedings of the660
61st Annual Meeting of the Association for Compu-661
tational Linguistics (Volume 2: Short Papers), pages662
521–529, Toronto, Canada. Association for Compu-663
tational Linguistics.664

Sergey Edunov, Myle Ott, Michael Auli, and David665
Grangier. 2018. Understanding back-translation at666
scale. In Proceedings of the 2018 Conference on667
Empirical Methods in Natural Language Processing,668
pages 489–500, Brussels, Belgium. Association for669
Computational Linguistics.670

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 671
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 672
race He, Anish Thite, Noa Nabeshima, et al. 2020. 673
The pile: An 800gb dataset of diverse text for lan- 674
guage modeling. arXiv preprint arXiv:2101.00027. 675

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 676
pat, and Ming-Wei Chang. 2020. Realm: retrieval- 677
augmented language model pre-training. In Proceed- 678
ings of the 37th International Conference on Machine 679
Learning, ICML’20. JMLR.org. 680

Or Honovich, Thomas Scialom, Omer Levy, and Timo 681
Schick. 2023. Unnatural instructions: Tuning lan- 682
guage models with (almost) no human labor. In 683
Proceedings of the 61st Annual Meeting of the As- 684
sociation for Computational Linguistics (Volume 1: 685
Long Papers), pages 14409–14428, Toronto, Canada. 686
Association for Computational Linguistics. 687

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 688
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 689
Yu, Armand Joulin, Sebastian Riedel, and Edouard 690
Grave. 2023. Atlas: Few-shot learning with retrieval 691
augmented language models. Journal of Machine 692
Learning Research, 24(251):1–43. 693

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 694
Billion-scale similarity search with GPUs. IEEE 695
Transactions on Big Data, 7(3):535–547. 696

Michał Jungiewicz and Aleksander Smywiński-Pohl. 697
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