
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYBRID FINE-TUNING OF LLMS:
THEORETICAL INSIGHTS ON GENERALIZED SMOOTH-
NESS AND CONVERGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Applying either Parameter-Efficient Fine-Tuning (PEFT) or full fine-tuning to
Large Language Models (LLMs) often results in its inherent limitations. To over-
come this issue, we propose a novel “hybrid fine-tuning” approach that jointly
updates both LLMs and PEFT modules using a combination of zeroth-order and
first-order optimization methods. To analyze this approach, we develop a theo-
retical framework centered on the concept of “hybrid generalized smoothness”,
which accounts for the heterogeneous nature of the optimization landscape in
joint LLM and PEFT training. We provide a rigorous convergence analysis for
the convergence of SGD algorithm under multiple learning rates and demonstrate
its effectiveness through extensive empirical studies across various downstream
tasks and model architectures. Our work not only offers a solution to the practical
challenge of LLM fine-tuning but also contributes a broader theoretical foundation
for analyzing hybrid optimization problems in machine learning.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing (NLP), demon-
strating remarkable capabilities across a wide range of tasks. To adapt these models for specific
domains or to modify their core behaviors, researchers and practitioners commonly employ full
fine-tuning (Malladi et al., 2023; Zhang et al., 2024).

Full fine-tuning, which involves updating all parameters of an LLM, has been a classical approach
for downstream tasks (VM et al., 2024; Minaee et al., 2024). However, this method is extremely
computationally expensive, requiring the calculation of gradients for the entire model. To address
this limitation, two common approaches have emerged: (1) Zeroth-order full fine-tuning (Malladi
et al., 2023; Zhang et al., 2024): This method approximates gradients without directly computing
them, reducing computational overhead while still allowing updates to all model parameters. (2)
Parameter-Efficient Fine-Tuning (PEFT) methods (Lester et al., 2021; Hu et al., 2021; Li & Liang,
2021): These techniques aim to adapt LLMs by tuning only a small portion of parameters while
keeping the base model frozen. This approach significantly reduces computational requirements
and memory usage.

However, simply applying either of these methods has been shown to be insufficient: The PEFT
method (e.g. LoRA) doesn’t learn new knowledge (Gudibande et al., 2023; Ghosh et al., 2024),
while the zeroth-order full-parameter fine-tuning suffers from slow convergence due to the lack
of gradient information (Nesterov & Spokoiny, 2017). This limitation highlights a critical gap in
current approaches, leading to the following question:

Q: How can we achieve both benefits of full fine-tuning and PEFT methods
while maintaining the efficiency?

To address this challenge, we propose a novel approach, hybrid fine-tuning, which jointly updates
both the PEFT module and the LLM that adapts zeroth-order (ZO) optimization techniques to update
the base model. By leveraging ZO methods, we can perform fine-tuning without calculating the full
gradient of the base LLM, thereby reducing computational costs. Simultaneously, this approach

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

allows us to update PEFT modules using the first-order gradient information, boosting performance
beyond traditional zeroth-order full fine-tuning.

However, this new approach also presents new theoretical challenges in the convergence analysis. As
demonstrated in existing literature (Zhang et al., 2019; Carmon et al., 2020), the optimal learning rate
is closely tied to the local smoothness of the loss landscape (i.e. the local gradient Lipschitz constant
L which is further detailed in Section 2.1). The complex architecture of modern large language
models, combined with the heterogeneous nature of our hybrid fine-tuning approach, introduces two
key theoretical challenges:

(1) A dynamic changing gradient Lipschitz constant L: The local smoothness structure of lan-
guage models evolves dynamically during training. This phenomenon, first observed by Zhang
et al. (2019) for LSTM-based language models, extends to transformer-based architectures, un-
derscoring the complexity of LLM fine-tuning. Figure 1a illustrates this dynamic behavior in
OPT-125M (Zhang et al., 2022), a transformer-based language model.

(2) Heterogeneous smoothness across parameters: The base LLM and PEFT modules exhibit
distinct smoothness characteristics. Due to differences in architecture and scale, components in
our proposed hybrid fine-tuning approach naturally possess diverse smoothness properties. This
heterogeneity is demonstrated in Figure 1b, which compares the gradient Lipschitz constants of
different modules.

(a) Log-scale comparison of gradient norm to lo-
cal gradient Lipschitz constant L during OPT-
125M (Zhang et al., 2022) training on the SST2
dataset (Socher et al., 2013). The colorbar indi-
cates the number of gradient updates.

(b) Comparison of gradient Lipschitz constant L
for different modules (OPT-125M and LoRA (Hu
et al., 2021)). The base LLM exhibits a signif-
icantly larger L, necessitating a smaller learning
rate in the gradient updating.

Figure 1: Visualization of smoothness structures in hybrid fine-tuning a large language model. These
complex characteristics pose new challenges for the convergence analysis of traditional optimization
algorithms, motivating us to consider a relaxed smoothness condition, hybrid smoothness (Defini-
tion 2.1), for the hybrid fine-tuning method. More details are provided in Appendix D.

These challenges highlight a significant gap between existing theoretical frameworks and the practi-
cal implementation of hybrid fine-tuning methods: Traditional convergence analysis of optimization
algorithms cannot be applicable for such complicated loss surface, which also leads to the following
central question:

Q: How can we develop a unified theoretical framework that accurately
characterizes the convergence of SGD for hybrid fine-tuning while account-
ing for their distinct characteristics and behaviors?

To answer this question, we develop a novel theoretical framework centered around the concept of
“hybrid generalized smoothness”. This framework provides a more accurate characterization of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

optimization landscape in joint LLM and PEFT training, enabling rigorous analysis of convergence
properties and optimization dynamics.

1.1 CONTRIBUTIONS

We summarize our contributions as follows:

(1) We introduce the hybrid fine-tuning paradigm, a novel approach that addresses the limitations
of both full fine-tuning and traditional PEFT methods. By combining zeroth-order optimization
for LLMs with first-order methods for PEFT modules, we achieve a balance between adaptation
power and computational efficiency. This innovative strategy allows for more comprehensive
model updates without incurring the full computational cost of traditional fine-tuning.

(2) We develop a comprehensive theoretical framework for analyzing hybrid optimization prob-
lems in the context of hybrid fine-tuning. Our concept of hybrid generalized smoothness (Def-
inition 2.1) extends classical optimization theory to account for the heterogeneous nature of
joint LLM and PEFT training. We provide rigorous convergence analysis for our proposed
algorithm under this new relaxed smoothness condition, establishing a solid theoretical foun-
dation for hybrid fine-tuning approaches. Notably, we analyze SGD with random reshuffling,
a more common variant used in practice. Furthermore, we demonstrate the broad applicability
of our theoretical framework beyond hybrid fine-tuning, providing insights into various LLM
applications such as layer-wise fine-tuning (Zhang et al., 2024) or models with trainable exter-
nal modules (Raissi et al., 2019). This generalization enhances the impact and utility of our
theoretical contributions across diverse machine learning paradigms involving heterogeneous
parameter spaces.

(3) We present an extensive empirical study demonstrating the effectiveness of hybrid fine-tuning
across a diverse range of downstream tasks and model architectures. We observe consistent
gains over traditional PEFT techniques and zeroth-order full fine-tuning. Our results not only
validate the theoretical insights but also showcase significant improvements in adaptation qual-
ity, computational efficiency, and model performance compared to existing methods.

By addressing the fundamental challenges of joint LLM and PEFT training, our work opens new
avenues for research in efficient model adaptation in the context of large-scale language models.
The theoretical framework we propose has the potential to serve as a new foundation for analyzing
and optimizing hybrid systems across a broad range of applications and domains, extending its
impact beyond the specific context of language model fine-tuning.

1.2 RELATED WORK

Zeroth-order Optimization in Fine-tuning LLMs Recent work has explored zeroth-order op-
timization methods for fine-tuning LLMs, which aligns with our approach of using zeroth-order
methods for the LLM component in hybrid fine-tuning. Malladi et al. (2023) demonstrated the com-
patibility of zeroth-order methods with both full fine-tuning and PEFTs. This laid the groundwork
for our hybrid approach that combines zeroth-order LLM updates with first-order PEFT updates.
Zhang et al. (2024) provided a comprehensive benchmark for zeroth-order optimization in LLM
fine-tuning, offering valuable insights that informed our experimental design. Ling et al. (2024)
combines the zeroth-order fine-tuning of LLMs with the federated learning. Several studies have in-
corporated variance reduction techniques (Gautam et al., 2024) into zeroth-order methods or second-
order method (Zhao et al., 2024) to enhance stability and convergence in fine-tuning LLMs. While
we focus on a different aspect, these stability improvements could easily be integrated into our hy-
brid framework. Existing literature (Liu et al., 2024; Guo et al., 2024; Zhang et al., 2024) also
discusses the sparsity of pre-trained LLMs, which further enhances the performance of zeroth-order
optimization approach.

Generalized Smoothness of Large Machine Learning Models The concept of generalized
smoothness has emerged as a crucial theoretical framework for understanding the optimization land-
scape of large machine learning models, including LLMs. Recent studies have shown that traditional
smoothness assumptions often fail to capture the complex optimization landscape of deep neural net-
works (Zhang et al., 2019; Li et al., 2024). More explicitly, Zhang et al. (2019) demonstrated that the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

local smoothness constant in neural networks is often proportional to the gradient norm, challeng-
ing the conventional assumption of uniform smoothness. This insight aligns with our observations
in hybrid fine-tuning, where different components of the model (LLM and PEFT modules) exhibit
distinct smoothness properties. Li et al. (2024) introduced a generalized smoothness condition that
allows for non-uniform smoothness across the parameter space, which is more representative of the
behavior observed in practice for large models. This work provides a foundation for our hybrid gen-
eralized smoothness framework, which extends these ideas to account for the heterogeneous nature
of joint LLM and PEFT optimization.

2 THE HYBRID SMOOTHNESS CONDITION FOR HYBRID SYSTEMS

In this section, we further described the theoretical challenges in jointly training both PEFT modules
and the base LLM. We abstractizare the fine tuning of the LLM with multiple modules as a class
of optimization problems where the parameter space is partitioned into two distinct subsets, each
exhibiting different smoothness properties. It is formally described as follows:

min
(x,y)∈Rd

f(x, y) :=
1

n

n∑
i=1

f(x, y; i). (1)

Here, x ∈ Rdx and y ∈ Rdy are the parameters of the model, with d = dx + dy . The objective
function f : Rd → R is typically a loss function in the context of machine learning tasks. The index
i represents individual data points in a dataset of size n. Importantly, we consider the scenario where
the gradient of f with respect to x is not directly accessible due to the memory issue. This reflects
the practical constraints often encountered in fine-tuning large language models, which is commonly
solved using zeroth-order optimization approach to relax the memory constraints (Malladi et al.,
2023; Gautam et al., 2024; Ling et al., 2024; Guo et al., 2024; Liu et al., 2024; Zhang et al., 2024).

2.1 THE L-SMOOTHNESS CONDITION

In the traditional optimization problem, which is usually used to characterize the full fine-tuning of
LLM or the PEFT methods, the concept of L-smoothness is fundamental in the optimization theory
and plays a crucial role in characterizing the behavior of SGD algorithms.

Formally, a smooth function f : Rd → R is said to be L-smooth (also known as L-Lipschitz
continuous gradient) if there exists a constant L > 0 such that its Hessian matrix is uniformly
bounded by the constant L; that is,

LId ⪰ ∇2f(x),

where Id is the d × d identity matrix and “⪰” represents that LId − ∇2f(x) is positive semi-
definite (PSD). This condition can be equivalently expressed in terms of the function’s gradient:
∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥. The constant L is closely related to the learning rate choice in
the convergence analysis of gradient-based algorithm. As demonstrated in Carmon et al. (2020), the
optimal learning rate is linearly scaled with respect to 1

L .

While L-smoothness has been demonstrated to hold for all smooth functions over a compact domain
(Hewitt & Stromberg, 2012), it has limitations when applied to complicated landscapes encountered
in our hybrid training approach described in Eq. (1). We recap these limitations we have introduced:

(1) L is dynamically changing during training. The constant L usually fails to maintain uni-
formity over the entire parameter space. In many practical scenarios, different regions of the
parameter space may exhibit vastly different smoothness properties. For instance, Zhang et al.
(2019) has demonstrated that the local smoothness constant L is linear in the gradient norm. We
also have illustrated this non-uniformity for transformer-based language models in Figure 1a.

(2) L can be different for different parameters. Distinct types of modules or variables within the
system usually present highly diverse smoothness conditions. For example, small randomly-
initialized modules often have smaller L compared to large pre-trained neural networks. This
consideration becomes particularly crucial in hybrid systems where we deal with fundamentally
different types of parameters. We have illustrated this point in Figure 1b: The LoRA module
demonstrates a substantially lower L value compared to the base LLM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.2 HYBRID GENERALIZED SMOOTHNESS CONDITION

To address the limitations of traditional L-smoothness in our hybrid optimization framework given
in Eq. (1), we introduce the concept of hybrid generalized smoothness:

Definition 2.1 (Hybrid generalized smoothness). A function f : Rdx×Rdy → R has the hybrid gen-
eralized smoothness property if there exist two non-negative non-decreasing sub-quadratic function
ℓx : R→ R and ℓy : R→ R such that:[

ℓx(∥∇f(x, y)∥)Idx 0
0 ℓy(∥∇f(x, y)∥)Idy

]
⪰ ∇2f(x, y).

This definition extends the generalized smoothness in Li et al. (2024) and allows for different
smoothness properties in different parts of the parameter space, represented by x and y. The func-
tions ℓx and ℓy can capture varying degrees of smoothness for different types of parameters. This
definition more accurately characterizes the loss surface of our proposed hybrid fine-tuning method.
The following proposition demonstrates that the classical L-smoothness is indeed a stronger condi-
tion than hybrid generalized smoothness.

Proposition 2.2 (L-smoothness implies hybrid generalized smoothness). If a function f : Rdx ×
Rdy → R is L-smooth, then it satisfies the hybrid generalized smoothness condition with ℓx(t) =
ℓy(t) = L for all t ≥ 0.

Proof. For an L-smooth function, we have ∇2f(x, y) ⪯ LIdx+dy
for all (x, y). This implies:[

LIdx 0
0 LIdy

]
⪰ ∇2f(x, y).

By setting ℓx(t) = ℓy(t) = L for all t ≥ 0, we satisfy the condition in Definition 2.1, thus proving
that L-smoothness implies hybrid generalized smoothness.

It is also worth noting that most standard neural network structures have been empirically verified as
generalized smooth, but not L-smooth for any constant L (Zhang et al., 2019; Li et al., 2024). The
hybrid generalized smoothness condition allows for more flexibility in capturing the smoothness
properties of complex optimization landscapes, particularly those encountered in training hybrid
systems.

2.3 THE IMPACT OF HYBRID GENERALIZED SMOOTHNESS

The concept of hybrid generalized smoothness has significant implications for optimization strate-
gies, particularly motivating the use of two distinct learning rates. In this section, we will provide
an intuitive explanation on the necessity of applying two learning rates in optimizing Eq. (1) for
improving the efficiency when the hybrid generalized smoothness presents.

To illustrate the impact and utility of this approach, let’s consider two examples:

Example 2.3 (Quadratic Function). Consider a simple quadratic function f(x, y) = ax2 + by2,
where a and b are positive constants, and a ≫ b. The gradient is ∇f(x, y) = (2ax, 2by), and the
Hessian is:

∇2f(x, y) =

[
2a 0
0 2b

]
.

If we use a single learning rate η for both x and y, we would typically choose η based on the largest
eigenvalue of the Hessian to ensure stability: η = 1

2max(a,b) =
1
2a . The update rules would then be:[

xt+1

yt+1

]
=

[
1− 2aη 0

0 1− 2bη

] [
xt

yt

]
=

[
0 0
0 1− b

a

] [
xt

yt

]
.

This leads to an issue: The y component converges to the optimal value y∗ = 0 very slowly, as
b
a ≪ 1, resulting in minimal updates to y in each iteration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In the contrast, if we increase the learning rate η to 1
2b , we of course obtain a much faster convergence

at the component y. However, the update rule leads to[
xt+1

yt+1

]
=

[
1− 2aη 0

0 1− 2bη

] [
xt

yt

]
=

[
1− a

b 0
0 0

] [
xt

yt

]
.

The x component simply diverges to infinity because a
b ≫ 1.

When choosing different learning rates for x and y, we set ηx = 1
2a and ηy = 1

2b . Then the update
rules become:

xt+1 = xt − ηx · 2axt = xt − xt = 0,

yt+1 = yt − ηy · 2byt = yt − yt = 0.

With these tailored learning rates, both x and y converge at similar rates (in this case, in a single
step), despite the significant difference in their quadratic coefficients.

This simple example demonstrates our motivation of choosing different learning rates when facing
the hybrid generalized smoothness. The similar phenomenon is also observed in our proposed hybrid
LLM fine-tuning structure:
Example 2.4 (Fine-Tuning a LLM with PEFT Modules). Consider hybrid fine-tuning a base LLM
with a PEFT module. In this scenario, we have two sets of parameters:

• x: The original LLM parameters.

• y: The PEFT module parameters (e.g., LoRA or adapters).

In this example, we jointly train the LLM with a Prompt Encoder on the SST-2 dataset. Due to
the memory limitation, it is common to restrict the LLM update using the zeroth-order optimization
approach. We observe that the base LLM merely takes much smaller learning rate; if we choose the
learning rate to ensure the base LLM’s convergence, the training loss decreases in an unaccetably
slow rate (Figure 2a). However, if we choose the learning rate larger than the base LLM’s tolerance,
the training loss explodes and quickly diverges (Figure 2b). The best practice is choosing a smaller
learning rate for the base LLM and a larger learning rate for the PEFT module (Figure 2c).

(a) Under the small learning rate
η = 10−6, the full fine-tuning
decrease as expected. However,
prompt tuning converges slowly
and stagnates at a higher loss.

(b) With a large learning rate
η = 10−3, the prompt tuning
decreases as expected, while full
fine-tuning exhibits unstable be-
havior, resulting in loss explo-
sion.

(c) Hybrid fine-tuning with dis-
tinct learning rates (ηx = 10−6

for the base model, ηy = 10−3

for prompt tuning) provides both
stable and faster convergence.

Figure 2: Comparison of training loss curves under different learning rate configurations for full
fine-tuning and prompt tuning on the SST-2 dataset (Socher et al., 2013) with the base model OPT-
1.3b (Zhang et al., 2022). This example illustrates the necessaity of using different learning rates in
hybrid-tuning structure.

These examples illustrate the practical benefits of considering hybrid generalized smoothness and
the resulting use of multiple learning rates in training a complex hybrid system. By tailoring the
optimization process to the specific smoothness of different components, we can potentially achieve
faster convergence and better overall performance. However, to fully understand the implications
and guarantees of this approach, we need to delve deeper into its theoretical foundations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3 THEORETICAL ANALYSIS

In this section, we aim to bridge the gap between the practical benefits of generalized hybrid smooth-
ness and its underdeveloped theoretical foundations. We present a rigorous analysis of the Stochastic
Gradient Descent (SGD) algorithm with random reshuffling. The random reshuffling is widely used
in practice, particularly in NLP problems. The algorithm we consider is described in Algorithm 1.

Algorithm 1: SGD with Random Reshuffling for Hybrid Fine-Tuning
Input: Learning rate η = [ηx ηy] , number of epochs T , dataset D = {ξi}ni=1

1 Initialize the parameter at (x0, y0);
2 for t = 1 to T do
3 Shuffle the dataset D to obtain Dt;

4

[
xt,0

yt,0

]
←
[
xt−1

yt−1

]
;

5 for i = 1 to n do

6

[
xt,i

yt,i

]
←
[
xt,i−1

yt,i−1

]
−
[
ηx 0
0 ηy

] [
∇̂xf(xt,i, yt,i; ξt,i)
∇yf(xt,i, yt,i; ξt,i)

]
;

7 end
8 end
9 xt ← xt,n;

Output: Final parameters xT

In this algorithm, ηx and ηy are the learning rates for x and y parameters, respectively, T is the total
number of epochs, D = {ξi}ni=1 is the dataset with n samples, and xt,i and yt,i are the parameter
values after the i-th iteration of the t-th epoch. ∇̂xf and ∇yf are the stochastic gradients with
respect to x and y. Here, we use ∇̂xf to represent the gradient estimator of ∇xf . It is commonly
estimated using either one-side or two-side gradient estimator defined as follows:

∇̂xf(x, y) :=
f(x+ µv, y)− f(x, y)

µ
v, (2)

where v is a random vector sampled from the Gaussian distribution N(0, Id) and µ is the perturba-
tion stepsize.

We emphasize that while analysis of step-wise SGD (i.e., randomly sampling one data point from the
dataset) is more straightforward, epoch-wise updates are typically more common in machine learn-
ing practice. Moreover, existing literature (Ma & Zhou, 2020; Safran & Shamir, 2020; Mishchenko
et al., 2020; Gürbüzbalaban et al., 2021; Liu & Zhou, 2024) has demonstrated that random reshuf-
fling can improve the efficiency of the SGD algorithm under certain conditions. To increase the
practical relevance of our theory, we focus on this epoch-wise update rule with random reshuffling.

3.1 PROBLEM FORMULATION AND ASSUMPTIONS

Our objective is to solve the optimization problem presented in Eq. (1). As justified in the previous
section, we assume the objective function f : Rdx × Rdy → R satisfies the hybrid generalized
smoothness (Definition 2.1). To handle the generalized smooth structure, we introduce the following
definition:
Definition 3.1 (Coercive). A continuous function f : Rd → R is coercive if the sub-level set
{x ∈ Rd | f(x) ≤ a} is compact for all a ∈ R.

In the existing literature of generalized smoothness (Li et al., 2024), this assumption is usually
replaced with an equivalent statement: the objective function f(x, y) tends to positive infinity when
(x, y) approaches the boundary of its domain. In addition to the assumption, we make the following
standard assumptions to regularize the function class and subsequently provide the non-asymptotic
convergence analysis.
Assumption 3.2 (Regularity Conditions). The objective function f(x, y) := 1

n

∑n
i=1 f(x, y; i) de-

fined in Eq. (1) satisfies the following conditions:

(1) f(·) is coercive.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(2) f(·) is bounded below by f∗ := inf(x,y)∈Rd f(x, y) > −∞.

(3) f(·) and each individual loss function f(·; i) are twice continuously differentiable.

These regularity conditions are essential for several reasons: Coercivity prevents the optimization
process from diverging too far. The lower bound guarantees that the optimization problem is well-
posed. Twice continuous differentiability allows for the application of various optimization tech-
niques and facilitates theoretical analysis. All of them are standard and widely used in the optimiza-
tion literature (Li et al., 2024).
Assumption 3.3 (Bounded variance). There exists σ such that for all x ∈ Rd,

1

n

n∑
i=1

∥∇f(x, y; i)−∇f(x, y)∥2 ≤ σ2.

This bounded variance assumption is standard in the analysis of reshuffling-type SGD. We note that
this assumption could be further weakened to the expected smoothness (Mishchenko et al., 2020;
Khaled & Richtárik, 2020). We maintain the current version for the simplicity.

These assumptions collectively provide the necessary foundation for our subsequent analysis, allow-
ing us to derive meaningful convergence guarantees for the SGD algorithm in the context of hybrid
fine-tuning with generalized smoothness.

3.2 NON-ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we analyze the complexity of Algorithm 1 under under our hybrid generalized
smoothness condition. Our main theoretical result is summarized in the following theorem:
Theorem 3.4. Suppose that Assumption 3.2 and Assumption 3.3 hold for the objective function
f(x, y) := 1

n

∑n
i=1 f(x, y; i), with satisfying the hybrid generalized smoothness property (Defini-

tion 2.1). Let {(xt, yt)}Tt=1 be the SGD dynamic generated by Algorithm 1 for solving the optimiza-
tion problem Eq. (1). Let learning rates ηx, ηy be chosen as

ηx ≤ min

{
O(1

Lxndx
),O(1√

TnLx,max

)

}
,

ηy ≤ min

{
O(1

Lyn
),O(1√

TnLy,max

)

}
,

and the perturbation stepsize µ is specified as Eq. (3). Here, Lx, Ly, Lx,max, Ly,max are specified
in Appendix C, representing the smoothness characteristics of the x and y parameters, respectively.
Let δ ∈ (0, 1). If the maximum number of epoch T is chosen as T ≥ O(ϵ

−2

δ + ϵ−4

n), then with the
probability at least 1− δ,

1

T

∑
t<T

E ∥∇f (xt, yt)∥2 ≤ ϵ2.

Proof. The full version and the proof are deferred to Appendix C.

Given that each epoch processes n data points, the total gradient complexity is nT ≥ O(ϵ
−2n
δ +ϵ−4).

This result is optimal when ϵ is sufficiently small, aligning with the best-known upper bounds es-
tablished in previous convergence analyses for both generalized smooth non-convex objectives (Li
et al., 2024; Zhang et al., 2019) and L-smooth non-convex objectives (Mishchenko et al., 2020;
Khaled & Richtárik, 2020). Importantly, it also matches the known lower bound for the SGD algo-
rithm (Arjevani et al., 2023), further confirming its optimality. Our analysis yields several important
insights:

(1) Our analysis reveals the asymmetry between the learning rates ηx and ηy , which is closely
tied to the smoothness properties of each variable. This finding underscores the importance of
tailored learning rate configurations when modules exhibit diverse smoothness characteristics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Experiment results for various fine-tuning methods applied to three large language mod-
els (Llama-2-7b, Vicuna-7b-v1.5, and OPT-1.3b) across three NLP tasks (SST2, Copa, and Wino-
Grande). Highlighted cells indicate the best performance achieved by the hybrid-tuning approach
for each model-task combination.

SST2 Copa WinoGrande
ZO-FT 93.58 87 67.5

FO-Prompt 95.64 88 67.2
Hybrid-Prompt 95.9 88 68.9

FO-Prefix 91.05 83 66.2
Hybrid-Prefix 91.63 85 64.3

FO-Lora 94.61 84 68.5

Llama-2-7b

Hybrid-Lora 93.4 88 66.3
ZO-FT 91.40 87 64.7

FO-Prompt 94.38 84 65.8
Hybrid-Prompt 94.95 84 66.3

FO-Prefix 90.02 80 64.1
Hybrid-Prefix 90.71 83 74

FO-Lora 94.61 85 66.7

Vicuna-7b-v1.5

Hybrid-Lora 92.20 84 66.7
ZO-FT 91.51 78 57.9

FO-Prompt 91.28 74 57.8
Hybrid-Prompt 91.74 77 59.9

FO-Lora 92.2 78 59
Hybrid-Lora 92.3 78 58.3

FO-prefix 92.2 77 58.3

OPT-1.3b

Hybrid-Prefix 91.7 78 60

The gradient estimation process further accentuates the asymmetry in learning rate selection.
For the x parameter, which is updated using zeroth-order gradient estimation, the learning rate
incorporates an additional scaling factor of 1

dx
, where dx represents the dimensionality of the x

parameter space. This theoretical insight aligns with our empirical observations: in practice, we
find that the learning rate for updating the LLM is typically much smaller than the learning rate
used for PEFT modules. This correlation between theory and practice not only validates our
analytical framework but also provides valuable guidance for hyperparameter tuning in hybrid
LLM systems.

(2) Compared to Li et al. (2024), our derived sample complexity of nT ≥ O(nϵ
−2

δ + ϵ−4) rep-
resents an improvement in the dependence of δ over existing results in the literature O(ϵ

−4

δ).
This improvement is made by using a stronger version of concentration inequality, replacing the
Markov inequality used in its original proof. Notably, this technical improvement has poten-
tial applications beyond our specific setting, extending to other optimization algorithms under
generalized smoothness conditions.

4 EXPERIMENTS

We conducted extensive experiments to evaluate the effectiveness of our proposed hybrid fine-tuning
approach across various tasks, model architectures, and PEFT methods.

Experiment Details Following the methodology of Malladi et al. (2023), we assessed our ap-
proach on several NLP tasks, including the sentiment classification task on the SST2 dataset (Socher
et al., 2013), the question answering task on the COPA dataset (Roemmele et al., 2011), and the com-
mon sense reasoning task on the WinoGrande dataset (Sakaguchi et al., 2021). For each dataset, we
randomly sample 1,000 examples for training, 1,000 examples for evaluation, and 100 examples
for development. The models we use in our experiments include OPT-1.3b (Zhang et al., 2022),
Vicuna-7b (Chiang et al., 2023), and LLaMA-7b (Zhang et al., 2023b). We compare the perfor-
mance of our approach against several methods: zeroth-order full model fine-tuning as described in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: A detailed breakdown of the optimal hyperparameters including learning rates, training
steps and µ specified in Eq. (2) and training specifics for each fine-tuning method applied to different
model architectures across various NLP tasks. Highlighted cells indicate efficient training processes,
showcasing the reduced steps required by hybrid approaches to achieve optimal performance.

SST2 Copa WinoGrande
learning rate
(PEFT/Base) steps µ

learning rate
(PEFT/Base) steps µ

learning rate(s)
(PEFT/Base) steps µ

ZO-FT 10−6 1.1 ∗ 104 10−5 10−6 1.6 ∗ 104 10−4 10−6 1.8 ∗ 104 10−5

FO-Prompt 10−3 6 ∗ 103 / 10−4 9 ∗ 103 / 10−3 9 ∗ 103 /
Hybrid 10−3/10−8 1.5 ∗ 103 10−5 10−4/10−8 5 ∗ 103 10−5 10−3/10−7 9 ∗ 103 10−5

FO-Prefix 10−3 2 ∗ 104 / 10−3 1.5 ∗ 104 / 10−2 3 ∗ 103 /
Hybrid-Prefix 10−3/10−3 9.5 ∗ 103 10−5 10−3/10−6 7.5 ∗ 103 10−5 10−3/10−6 9 ∗ 103 10−5

FO-Lora 10−4 2 ∗ 104 / 10−3 2.5 ∗ 103 / 10−2 2.5 ∗ 103 /

Llama-2-7b

Hybrid-Lora 10−4/10−7 1.6 ∗ 104 10−5 10−4/10−7 1.15 ∗ 104 10−5 10−3/10−6 4.5 ∗ 103 10−5

ZO-FT 10−6 104 10−5 10−6 7 ∗ 103 10−5 10−6 1.75 ∗ 104 10−5

FO-Prompt 10−3 2 ∗ 104 / 10−3 1.3 ∗ 104 / 10−3 2 ∗ 104 /
Hybrid 10−3/10−7 2 ∗ 103 10−5 10−4/10−8 1.5 ∗ 103 10−5 10−3/10−8 2 ∗ 104 10−6

FO-Prefix 10−3 2 ∗ 103 / 10−2 2 ∗ 104 / 10−3 2 ∗ 104 /
Hybrid-Prefix 10−3/10−6 2 ∗ 104 10−5 5 ∗ 10−4/5 ∗ 10−7 1.7 ∗ 104 10−5 10−3/10−3 4 ∗ 103 10−5

FO-Lora 10−3 2 ∗ 103 / 10−2 9 ∗ 103 / 10−3 3.5 ∗ 103 /

Vicuna-7b-v1.5

Hybrid-Lora 10−3/10−6 2 ∗ 104 10−5 10−4/10−7 2.5 ∗ 103 10−5 10−3/10−6 3 ∗ 103 10−5

ZO-FT 10−7 2 ∗ 104 10−5 10−6 8.5 ∗ 103 10−4 10−7 8 ∗ 103 10−5

FO-Prompt 10−3 2 ∗ 104 / 10−4 1.6 ∗ 104 / 10−3 9.5 ∗ 103 /
Hybrid-Prompt 10−3/10−7 2 ∗ 104 10−5 10−3/10−7 2 ∗ 104 10−5 10−3/10−7 1.4 ∗ 104 10−5

FO-Lora 10−3 3 ∗ 103 / 10−4 1.9 ∗ 104 / 5 ∗ 10−4 1.45 ∗ 104 /
Hybrid-Lora 10−4/7 ∗ 10−10 4 ∗ 103 10−5 10−5/10−11 1.9 ∗ 104 10−5 5 ∗ 10−4/5 ∗ 10−4 3 ∗ 103 5 ∗ 10−4

FO-prefix 10−2 2 ∗ 104 / 5 ∗ 10−3 2 ∗ 104 / 5 ∗ 10−2 9.5 ∗ 103 /

OPT-1.3b

Hybrid-Prefix 8 ∗ 10−3/8 ∗ 10−5 8.5 ∗ 103 10−5 2 ∗ 10−3/10−7 1.15 ∗ 104 10−5 5 ∗ 10−2/10−4 2 ∗ 104 10−5

Malladi et al. (2023), first-order prompt tuning (Lester et al., 2021), LoRA tuning (Hu et al., 2021),
and prefix tuning (Li & Liang, 2021). Detailed overviews of the tasks and PEFT methods are pro-
vided in Appendix D.1 and Appendix D.2, respectively. Performance was evaluated using accuracy
or F1 score, as appropriate for each task. For the zeroth-order approximation, we follow the same
approach outlined by Malladi et al. (2023). All experiments utilize SGD as the optimizer. In the case
of prompt tuning and prefix tuning, the prompts are initialized according to the predefined settings
in Table E.2 of Malladi et al. (2023), while for LoRA tuning, we initialize with zeros. We perform
hyperparameter tuning for all methods and report the best configurations. Learning rates for each
method are summarized in Table 2. For all methods, we set the maximum number of training steps
to 20,000, with early stopping applied when applicable.

Results Table 1 presents the outcomes of all experiments. The results show that, in most cases, the
hybrid method outperforms zeroth-order fine-tuning and its corresponding first-order PEFT. Addi-
tionally, as shown in Table 2, the number of steps required by the hybrid method to achieve optimal
performance is significantly lower than that of either zeroth-order fine-tuning or its corresponding
first-order PEFT. These findings suggest that hybrid tuning offers a more efficient and effective ap-
proach to fine-tuning large language models for downstream tasks. As a supplementary, we further
the efficiency of the hybrid-tuning approach in Appendix D.3.

5 CONCLUSION

In conclusion, this work introduces a novel hybrid fine-tuning approach for large language models
that combines zeroth-order optimization for the base model with first-order optimization for PEFT
modules. Motivated by the hybrid generalized smoothness of the hybrid system in Section 2.1, we
develop a theoretical framework centered on this theoretical challenge introduced by the hybrid fine-
tuning method. Our empirical examples and convergence analysis built in Theorem 3.4 demonstrate
the necessity of applying different learning rates for different PEFT modules. Our analysis achieves
the best-known sample complexity under much milder conditions in the existing literature. Exten-
sive empirical evaluations across multiple NLP tasks, model architectures, and PEFT techniques
validate the theoretical insights and show consistent performance gains over traditional fine-tuning
methods. By addressing fundamental challenges in joint LLM and PEFT training, our work opens
new avenues for efficient model adaptation and provides a solid foundation for future research on
optimizing hybrid systems in machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Eric L Buehler and Markus J Buehler. X-lora: Mixture of low-rank adapter experts, a flexible frame-
work for large language models with applications in protein mechanics and molecular design. APL
Machine Learning, 2(2), 2024.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov,
Aleksandr Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu. The power of first-order
smooth optimization for black-box non-smooth problems. arXiv preprint arXiv:2201.12289,
2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, S Ramaneswaran, Deepali Aneja, Zeyu
Jin, Ramani Duraiswami, and Dinesh Manocha. A closer look at the limitations of instruction
tuning. In Forty-first International Conference on Machine Learning, 2024.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 186:49–84, 2021.

Edwin Hewitt and Karl Stromberg. Real and abstract analysis: a modern treatment of the theory of
functions of a real variable. Springer Science & Business Media, 2012.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence
of zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1827–1838, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Liu Liu, Minhao Cheng, Cho-Jui Hsieh, and Dacheng Tao. Stochastic zeroth-order optimization via
variance reduction method. arXiv preprint arXiv:1805.11811, 2018.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Zijian Liu and Zhengyuan Zhou. On the last-iterate convergence of shuffling gradient methods.
arXiv preprint arXiv:2403.07723, 2024.

Shaocong Ma and Yi Zhou. Understanding the impact of model incoherence on convergence of
incremental sgd with random reshuffle. In International Conference on Machine Learning, pp.
6565–6574. PMLR, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33:17309–17320,
2020.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for eval-
uating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In Conference on Learning
Theory, pp. 3250–3284. PMLR, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al. Fine tuning llm for enterprise: Practical
guidelines and recommendations. arXiv preprint arXiv:2404.10779, 2024.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In The
Twelfth International Conference on Learning Representations, 2023.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023a.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
init attention. arXiv preprint arXiv:2303.16199, 2023b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

A NOTATIONS

In this paper, the optimization problem is formulated as minimizing f(x, y), where x ∈ Rdx rep-
resents the parameters of the base language model and y ∈ Rdy represents the parameters of the
PEFT module. The function f is assumed to have hybrid generalized smoothness, characterized by
non-negative, non-decreasing sub-quadratic functions ℓx and ℓy (Definition 2.1). In the SGD, we
consider epoch-wise optimization algorithm described in Algorithm 1. This approach ensures us
to access each data point exactly once over an entire epoch, which is particularly common is the
data loader provided by existing modern machine learning frameworks such as PyTorch and Tensor-
Flow. Here, ηx and ηy denote the learning rates for x and y respectively, T is the number of epochs,
and n is the dataset size. We ∇̂xf to denote the zeroth-order gradient estimator for x, while ∇yf
represents the standard gradient for y. With these given, for each epoch t, we define the following
notations:

gt =

n∑
i=1

∇xf(xt,i, yt,i; ξt,i), ĝt =

n∑
i=1

∇̂xf(xt,i, yt,i; ξt,i),

ht =

n∑
i=1

∇yf(xt,i, yt,i; ξt,i).

Here, gt represents the true gradient with respect to x accumulated over an entire epoch. It captures
the overall direction of stochastic gradient descent for the x parameters across all samples in the
epoch. ĝt is an estimate of this gradient. In practice, we often don’t have access to the true gradient
and must rely on estimates. The difference between gt and ĝt quantifies the estimation error in our
gradient calculations. ht is the true gradient with respect to y accumulated over the epoch.

B SUPPORTING LEMMAS

In this section, we present several lemmas used to build our convergence analysis. Lemma B.1,
Lemma B.2, Lemma B.3, and Lemma B.4 are fundamental properties of generalized smoothness
provided by Li et al. (2024). We adapt them to the setting of hybrid system fine-tuning.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lemma B.1 (The generalized version of Lemma 3.3 from Li et al. (2024)). Let f : Rd = Rdx ×
Rdy → R be a twice continuously differentiable function satisfying the hybrid generalized smooth-
ness properties. Suppose that (x, y) ∈ Rd satisfies ∥∇f(x, y)∥ ≤ G. Then there exist non-negative
constant Lx = ℓx(G) and Ly = ℓy(G) such that for all (x1, y1), (x2, y2) ∈ B(x, G

Lx
)× B(y, G

Ly
):

1. ∥∇xf(x1, y
′)−∇xf(x2, y

′)∥ ≤ Lx∥x1 − x2∥, for all y′ ∈ Rdy .

2. ∥∇yf(x
′, y1)−∇yf(x

′, y2)∥ ≤ Ly∥y1 − y2∥, for all x′ ∈ Rdx .

3. Let Id represent the identity matrix with the size d× d.

f(x1, y1) ≤f(x2, y2) +

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

1

2
[x1 − x2 y1 − y2]

[
LxIdx

0
0 LyIdy

] [
x1 − x2

y1 − y2

]
.

Proof. Let (x, y) ∈ Rd = Rdx ×Rdy be arbitrary. By the assumption of twice continuous differen-
tiability and the mean value theorem, we have

∇xf(x2, y)−∇xf(x1, y) =

∫ 1

0

∇2
xxf(x1 + t(x2 − x1), y)(x2 − x1)dt.

Taking the norm of both sides and applying the generalized smoothness of f (Definition 2.1), we
obtain

∥∇2
xxf(x, y)∥ ≤ ℓx(∥∇f(x, y)∥) ≤ Lx,

where the last inequality is by the monotonicity of ℓx and the bounded gradient condition. We apply
this inequality to the integral yields the first inequality. The second inequality for the y-gradient is
obtained similarly. For the third inequality, we still consider the mean value theorem:

f(x1, y1)− f(x2, y2) =

∫ 1

0

〈
∇f(z(t),

[
x1 − x2

y1 − y2

]〉
dt

=

∫ 1

0

[〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

〈
∇f(z(t))−∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉]
dt

=

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

∫ 1

0

〈
∇f(z(t))−∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
dt

≤
〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+ Ly∥y1 − y2∥2

∫
tdt+ Lx∥x1 − x2∥2

∫
tdt,

where z(t) := (1 − t)

[
x2

y2

]
+ t

[
x1

y1

]
for 0 ≤ t ≤ 1. Then the proof is completed by re-arranging

this inequality.

Lemma B.2 (The generalized version of Lemma 3.5 from Li et al. (2024)). Let f : Rdx ×Rdy → R
be a twice continuously differentiable function satisfying the hybrid generalized smoothness prop-
erties. Let f∗ = infx,y f(x, y) be the global minimum of f . Then, for all (x, y) ∈ Rdx × Rdy , the
following inequalities hold:

1. ∥∇xf(x, y)∥2 ≤ 2ℓx(2∥∇f(x, y)∥) · (f(x, y)− f∗)

2. ∥∇yf(x, y)∥2 ≤ 2ℓy(2∥∇f(x, y)∥) · (f(x, y)− f∗)

3. 1
2 [∇f(x, y)]

⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y) ≤ f(x, y)− f∗.

Proof. The first and the second inequalities are directly implied by Lemma 3.5 from Li et al. (2024)
by projecting the objective function f to a subspace of the domain. Here, we provide the proof

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

for the third inequality. By Lemma B.1 where we choose G = ∥∇f(x, y)∥, we have that for any
(x1, y1), (x2, y2) ∈ B(x, G

Lx
)× B(y, G

Ly
),

f(x1, y1) ≤ f(x2, y2)+

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+
1

2
[x1 − x2 y1 − y2]

[
LxIdx

0
0 LyIdy

] [
x1 − x2

y1 − y2

]
.

Choosing (x2, y2) = (x, y), x1 = x− ∇xf(x,y)
ℓx(2∥∇f(x,y)∥) , and y1 = y − ∇yf(x,y)

ℓy(2∥∇f(x,y)∥) , we obtain

f∗ ≤ f(x− ∇xf(x, y)

ℓx(2∥∇f(x, y)∥)
, y − ∇yf(x, y)

ℓy(2∥∇f(x, y)∥)
)

≤ f(x, y)− 1

2
[∇f(x, y)]⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y).

Then the proof is completed.

Lemma B.3 (The generalized version of Corollary 3.6 from Li et al. (2024)). Let f : Rdx×Rdy → R
be a twice continuously differentiable function satisfying the hybrid generalized smoothness proper-
ties. Suppose that f(x, y)− f∗ ≤ F for some (x, y) ∈ Rd and F ≥ 0. Denoting G := sup{u ≥ 0 |
u2 ≤ 2max(ℓx, ℓy)(u) · F}, then ∥∇f(x, y)∥ ≤ G <∞.

Proof. Let max(ℓx, ℓy)(u) := max{ℓx(u), ℓy(u)}. Since both ℓx and ℓy are sub-quadratic, it con-
cludes G is finite (by Corollary 3.6 from Li et al. (2024)). From Lemma B.2, we have

1

2
[∇f(x, y)]⊤

[
Idx

max(ℓx,ℓy)(2∥∇f(x,y)∥) 0

0
Idy

max(ℓx,ℓy)(2∥∇f(x,y)∥)

]
∇f(x, y)

≤1

2
[∇f(x, y)]⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y)

≤f(x, y)− f∗.

Therefore, we obtain
∥∇f(x, y)∥2 ≤ 2max(ℓx, ℓy)(2∇f(x, y)) · F.

It concludes that if the function value is bounded, then the gradient is also bounded.

Here, we summarize the previous results in the following lemma. The constant G (determined by
the function value upper bound F) is defined in Lemma B.3 and the constant Lx and Ly (determined
by the gradient norm upper bound G) is defined in Lemma B.1.

Lemma B.4. Suppose that Assumption 3.2 holds for the objective function f(x, y) :=
1
n

∑n
i=1 f(x, y; i), with all individual loss functions f(·; i) are twice continuously differentiable and

satisfy the hybrid generalized smoothness properties. Let GF := {(x, y) ∈ Rd | f(x, y)−f∗ ≤ F}.
Then the following statements hold:

1. The objective function f(·) has G-bounded gradient over GF ; that is, ∥∇f(x, y)∥ ≤ G for
all (x, y) ∈ GF .

2. The objective function f(·) has (Lx, Ly)-Lipschitz gradient over GF ; that is, ∥∇xf(x, y)−
∇xf(x

′, y)∥ ≤ Lx∥x − x′∥ and ∥∇yf(x, y) − ∇yf(x, y
′)∥ ≤ Ly∥y − y′∥ for all

(x, y), (x′, y′) ∈ GF .

3. The individual loss function f(·; i) has (Gx,max, Gy,max)-bounded gradient over GF ; that
is, ∥∇xf(x, y; ξ)∥ ≤ Gx,max and ∥∇yf(x, y; ξ)∥ ≤ Gy,max for all (x, y) ∈ GF and all
ξ ∈ {1, 2, . . . , n}.

4. The individual loss function f(·; i) has (Lx,max, Ly,max)-Lipschitz gradient over GF ;
that is, ∥∇xf(x, y; ξ) − ∇xf(x

′, y; ξ)∥ ≤ Lx,max∥x − x′∥ and ∥∇yf(x, y; ξ) −
∇yf(x, y

′; ξ)∥ ≤ Ly,max∥y − y′∥ for all (x, y) ∈ GF and all ξ ∈ {1, 2, . . . , n}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. By Assumption 3.2, GF is a compact set. By the twice continuous differentiability of the ob-
jective function f(·) (and all individual loss functions f(·; i)), all statements holds by its continuity.
More precise evaluation is given in Lemma B.1 for Lx and Ly , and in Lemma B.3 for G.

The following lemma characterizes the accuracy of zeroth-order gradient estimation. We note that
the choice of zeroth-order gradient estimator is not the crucial part in our analysis; the following
gradient estimation method can be replaced with any common zeroth-order optimization techniques,
including the mini-batch zeroth-order gradient estimation (Nesterov & Spokoiny, 2017), the uniform
smoothing (Gasnikov et al., 2022), and the variance reduction (Liu et al., 2018).
Lemma B.5. Let f : Rd → R be a function with twice continuous differentiability. Define the
two-point zeroth-order gradient estimator of∇f(x) as

∇̂f(x) := 1

µ
[f(x+ µv)− f(x)] v,

where µ > 0 is the perturbation stepsize, v ∈ Rd is a Gaussian vector with the covariance matrix
Id. Suppose that f has G-bounded gradient and L-Lipschitz gradient at x. Then

1. E⟨g, ∇̂f(x)−∇f(x)⟩ ≤ µ
2L(d+ 3)3/2∥g∥, for any g ∈ Rd.

2. E∥∇̂f(x)−∇f(x)∥2 ≤ 32d∥∇f(x)∥2 + 108µ2L2d4.

Proof. Throughout this proof, we follow the random gradient-free oracles given by Nesterov &
Spokoiny (2017). That is, define

fµ(x) = Ev∼N(0,Id)f(x+ µv);

then the gradient estimator ∇̂f(x) is an unbiased estimator of ∇fµ(x). For the first inequality, we
have

E⟨g, ∇̂f(x)−∇f(x)⟩ (i)= E⟨g,∇fµ(x)−∇f(x)⟩
(ii)
=

µ

2
L(d+ 3)3/2∥g∥.

where (i) applies the unbiasedness of Gaussian smoothing and (ii) applies Lemma 3 from Nesterov
& Spokoiny (2017). For the second inequality, we have

E∥∇̂f(x)−∇f(x)∥2 ≤ 2E∥∇̂f(x)∥2 + 2∥∇f(x)∥2

(i)

≤ 8(d+ 4)∥∇fµ(x)∥2 + 6µ2L2(d+ 4)3 + 2∥∇f(x)∥2

(ii)

≤ 32d∥∇f(x)∥2 + 108µ2L2d4.

where (i) applies Lemma 5 from Nesterov & Spokoiny (2017) and (ii) again applies Lemma 3 from
Nesterov & Spokoiny (2017).

Lemma B.6. Suppose that Assumption 3.2 and Assumption 3.3 hold for the objective function
f(x, y) := 1

n

∑n
i=1 f(x, y; i), with all individual loss functions f(·; i) are twice continuously differ-

entiable and satisfy the hybrid generalized smoothness properties. Let

ϵt =
1

n

n∑
i=1

∇̂f(xt,i, yt,i; ξt,i)−
1

n

n∑
i=1

∇f(xt,i, yt,i; ξt,i) +
1

n

n∑
i=1

∇f(xt,i, yt,i; ξt,i)−∇f(xt, yt),

be the gradient approximation error over the t-th epoch. Given any F,H > 0, define the stopping
time as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and τ2 := mint{t |
∥ϵt∥ > H} ∧ T . Let the learning rates satisfy ηx ≤ min{ 1

2Lx,maxn
, 1
384Lxndx

} and ηy ≤ 1
2Ly,maxn

and the perturbation stepsize µ ≤ G
Lx

6

d
3/2
x

. Then

f(xτ , yτ)− f∗ +
∑
t<τ

[∇f(xt, yt)]
⊤
[
n
4 ηxIdx

0
0 n

3 ηyIdy

]
∇f(xt, yt)

≤f0 − f∗ +

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T,

where o(µ) ≤ 3ηxµnLxdxG is a small error term when µ is chosen small.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. For arbitrary stopping time τ , we start from the smoothness given by Lemma B.1:

f(xt+1, yt+1)− f(xt, yt)

≤
〈
∇f(xt, yt),

[
xt+1 − xt

yt+1 − yt

]〉
+

1

2
[xt+1 − xt yt+1 − yt]

[
LxIdx 0

0 LyIdy

] [
xt+1 − xt

yt+1 − yt

]
= ⟨∇xf(xt, yt), xt+1 − xt⟩+ ⟨∇yf(xt, yt), xt+1 − xt⟩+

Lx

2
∥xt+1 − xt∥2 +

Ly

2
∥yt+1 − yt∥2

(i)
= −ηxn⟨∇xf(xt, yt),

ĝt
n
− gt

n
⟩ − ηxn⟨∇xf(xt, yt),

gt
n
⟩+ η2xLxn

2∥ ĝt
n
− gt

n
∥2 + η2xLxn

2∥gt
n
∥2

− ηyn⟨∇yf(xt, yt),
ht

n
⟩+ η2yLyn

2∥ht

n
∥2,

where (i) we applies the derivation of Eq.(38) from Mishchenko et al. (2020) with setting ηx ≤ 1
2Lx

and ηy ≤ 1
2Ly

. We note that the y parameter update doesn’t involve the gradient estimation; so, we

keep the original stochastic gradient ht for this step. Let E1 = −ηxn⟨∇xf(xt, yt),
ĝt
n −

gt
n ⟩ and

E2 = η2xLxn
2∥ ĝtn −

gt
n ∥

2, representing the errors caused by the zeroth-order gradient estimation.
Then we obtain

f(xt+1, yt+1)− f(xt, yt) ≤ −ηxn⟨∇xf(xt, yt),
gt
n
⟩+ η2Lxn

2∥gt
n
∥2 + E1 + E2

− ηyn⟨∇xf(xt, yt),
ht

n
⟩+ η2Lyn

2∥ht

n
∥2.

Then we set ηx ≤ 1
2Lxn

and ηy ≤ 1
2Lyn

. By Eq.(39) from Mishchenko et al. (2020),

f(xt+1, yt+1)− f(xt, yt) +
ηxn

2
∥∇xf(xt, yt)∥2 +

ηyn

2
∥∇yf(xt, yt)∥2

≤ηxn

2

∥∥∥gt
n
−∇xf(xt, yt)

∥∥∥2 + ηyn

2

∥∥∥∥ht

n
−∇yf(xt, yt)

∥∥∥∥2 + E1 + E2.
Then we take expectation on both sides and decompose

∥∥∇xf(xt, yt)− gt
n

∥∥2 using Lemma B.1
with the Lipschitz constant Lx,max and

∥∥∇yf(xt, yt)− gt
n

∥∥2 with the Lipschitz constant Ly,max;
more explicitly, we have∥∥∥∇xf(xt, yt)−

gt
n

∥∥∥2 =

∥∥∥∥∥ 1n
n∑

i=1

∇xf(xt,0, yt,0; ξt,i)−
1

n

n∑
i=1

∇xf(xt,i, yt,i; ξt,i)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∇xf(xt,0, yt,0; ξt,i)−∇xf(xt,i, yt,i; ξt,i)∥2

≤
L2
x,max

n

n∑
i=1

∥xt,0 − xt,i∥2 .

Applying Assumption 3.3 and Lemma 5 from Mishchenko et al. (2020) to bound
L2

x,max

n

∑n
i=1 E ∥xt,0 − xt,i∥2, we obtain

f(xt+1, yt+1)− f(xt, yt) +
ηxn

2
∥∇xf(xt, yt)∥2 +

ηyn

2
∥∇yf(xt, yt)∥2

≤ηxn

2

L2
x,max

n
[η2xn

3∥∇xf(xt, yt)∥2 + η2xn
2σ2] +

ηyn

2

L2
y,max

n
[η2yn

3∥∇f(xt, yt)∥2 + η2yn
2σ2] +EE1 +EE2.

We re-write this inequality into the matrix form.

f(xt+1, yt+1)− f(xt, yt) + [∇f(xt, yt)]
⊤
[ηxn

2 0
0

ηyn
2

]
∇f(xt, yt)

≤σ2

2
n2
[
η3xL

2
x,max + η3yL

2
y,max

]
+EE1 +EE2 + [∇f(xt, yt)]

⊤

[
η3
xn

3L2
x,max

2 Idx 0

0
η3
yn

3L2
y,max

2 Idy

]
∇f(xt, yt).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When choosing ηx ≤ 1
2Lx,maxn

and ηy ≤ 1
2Ly,maxn

, it ensures that

n

3

[
ηxIdx

0
0 ηyIdx

]
⪯
[ηxn

2 Idx
0

0
ηyn
2 Idy

]
−

[
η3
xn

3L2
x,max

2 Idx
0

0
η3
yn

3L2
y,max

2 Idy

]
.

Therefore, we let Λ2 = n
3

[
ηxIdx 0
0 ηyIdy

]
be a PSD matrix. Then we obtain

f(xt+1, yt+1)− f(xt, yt) + ∥Λ∇f(xt, yt)∥2 ≤
σ2

2
n2
[
η3xL

2
x,max + η3yL

2
y,max

]
+EE1 +EE2.

Then we apply Lemma B.5 to bound EE1 and EE2, respectively. By the stopping time construction,
we have ∥∇xf(xt, yt)∥ ≤ ∥∇f(xt, yt)∥ ≤ G. Therefore, we have

EE1 = −ηxnE⟨∇xf(xt, yt),
ĝt
n
− gt

n
⟩

≤ ηx
µn

2
Lx(dx + 3)3/2G.

Similarly, we have

EE2 = η2xLxn
2E∥ ĝt

n
− gt

n
∥2

≤ η2xLxn
2
[
32dx∥∇xf(xt, yt)∥2 + 108µ2L2d4

]
.

We further simply the inequality by letting ηx ≤ 1
384Lxnd

. Then we have

f(xt+1, yt+1)− f(xt, yt) + [∇f(xt, yt)]
⊤
[
n
4 ηxIdx

0
0 n

3 ηyIdy

]
∇f(xt, yt)

≤ σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ),

where o(µ) represents a small error term when µ tends to 0. Lastly, we sum over t < τ and obtain

f(xτ , yτ)− f∗ +
∑
t<τ

[∇f(xt, yt)]
⊤
[
n
4 ηxIdx 0

0 n
3 ηyIdy

]
∇f(xt, yt)

≤f0 − f∗ +

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T,

which completes the proof. Here, o(µ) ≤ 3ηxµnLxdG by letting µ ≤ G
Lx

6

d
3/2
x

.

C PROOF OF THEOREM 3.4

Here, we re-state our main theorem with full details.

Theorem C.1. Suppose that Assumption 3.2 and Assumption 3.3 hold for the objective function
f(x, y) := 1

n

∑n
i=1 f(x, y; i) and satisfy the hybrid generalized smoothness properties. Let δ ∈

(0, 1) and {(xt, yt)}Tt=1 be the SGD with Random Shuffling dynamic generated by Algorithm 1 for
solving the optimization problem Eq. (1). Given F as

F =
8

δ
[f0 − f∗ + σ′],

where f0 := f(x0, y0) is the initial function value and σ′ is a constant-level value given by Eq. (4)
and H as

H = 2

√
[200G2 dx

n +G2 + σ2

n]T

δ
,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

define the stopping time as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and
τ2 := mint{t | ∥ϵt∥ > H} ∧ T , where ϵt is defined in Lemma B.6. If learning rates ηx, ηy , and the
perturbation stepsize µ are chosen such that

ηx ≤ min

{
1

2Lx,maxn
,

1

384Lxnd
,

√
2

T

1

σnLx,max

}
,

ηy ≤ min

{
1

2Ly,maxn
,

√
2

T

1

σnLy,max

}
, (3)

µ ≤ min

{
G

Lx

6

d3/2
,

1

3LxTndG

}
.

where all constant G,Lx,max, Ly,max, Lx, Ly are defined relying on F with presented in Lemma B.4,
and the maximum number of epoch T is chosen as

T ≥ ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−4

[
f0 − f∗ + 3

n

]
,

then with the probability at least 1− δ,
1

T

∑
t<T

E ∥∇f (xt, yt)∥2 ≤ ϵ2.

Proof. Let A :=
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 ≤ ϵ2

}
and B := {τ ≥ T } be two events. We consider

the following lower bound of the probability of event A by conditioning it on the event B:
P(A) ≥ P(A ∩B) = P(A|B)P(B)

≥ [1− P(Ac|B)][1− P(Bc)].

Our goal is to show that the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

(the event Ac|B)
and {τ < T} (the event Bc) are both small. We bound each term separately.

• First, we bound the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

. By
Lemma B.6, we let

σ′ =

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T. (4)

If the event is conditioned on τ ≥ T , we always have ∥∇f (xt)∥ ≤ G for t = 1, 2, . . . , T−
1, where G is determined by Lemma B.3. Then we obtain

P

(∑
t<T

∥∇f (xt, yt)∥2 > c
∣∣∣τ ≥ T

)
(i)

≤ P
(
e
∑

t<T ∥∇f(xt,yt)∥2

> ec
∣∣∣τ ≥ T

)
(ii)

≤ E
[
e
∑

t<T ∥∇f(xt,yt)∥2
∣∣∣τ ≥ T

]
/ec

(iii)

≤ exp

(∑
t<T

E ∥∇f (xt)∥2 +
G2

8

)
/ec

(iv)

≤ exp

(
1

ηminn
[f0 − f∗ + σ′] +

G2

8
− c

)
.

where (i) takes exponential on both sides, (ii) applies the Markov inequality, (iii) applies
the Hoeffding’s lemma, (iv) applies Lemma B.6 with setting ηmin = min{ηx

4 ,
ηy

3 } and
f0 := f(x0, y0).

Before we evaluate the necessary T , we need to choose hyper-parameters to make σ′ less
than some constant independent of d, n, or other crucial constants. To do so, we set

ηx ≤
√

2

T

1

σnLx,max
, ηy ≤

√
2

T

1

σnLy,max
, µ ≤ 1

3LxTndxG
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then we obtain σ′ ≤ 2ηx+ηy. Let c = Tϵ2 and e
1

ηminn [f0−f∗+2ηx+ηy]+
G2

8 e−c ≤ δ
2 . Then

it solves

ϵ2T ≥ ln(
2

δ
) +

G2

8
+

1

ηminn
[f0 − f∗ + 2ηx + ηy]

T ≥ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−2

[
f0 − f∗ + 2ηx + ηy

ηminn

]
.

• Then we bound the probability P(Bc) = P(τ < T). Recap that we consider the stopping
time defined as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and
τ2 := mint{t | ∥ϵt∥ > H} ∧ T . Here, ϵt is defined as

ϵt =
1

n

n∑
i=1

∇̂f(xt,i; ξt,i)−
1

n

n∑
i=1

∇f(xt,i; ξt,i)︸ ︷︷ ︸
est. err.

+
1

n

n∑
i=1

∇f(xt,i; ξt,i)−∇f(xt)︸ ︷︷ ︸
stoc. err.

. (5)

We note that for the last dy entries, the estimation error term is 0 since we do not apply
gradient estimation for this part. Both F and H in the definition of stopping times will be
determined later. Then we notice that

P(Bc) = P(τ < T) = P({τ1 < T} ∪ {τ2 < T})
= P(τ2 < T) + P(τ1 < T, τ2 ≥ T).

We bound each term separately as follows:

◦ Choose H such that P(τ2 < T) ≤ δ
4 : We have

P(τ2 < T) = P

(⋃
t<T

{∥ϵt∥ > H}

)
≤
∑
t<T

P (∥ϵt∥ > H)

(i)

≤
∑
t<T

3
n2E∥gt − ĝt∥2 + 3E∥ gtn −∇xf(xt, yt)∥2 + 3E∥ht

n −∇yf(xt, yt)∥2

H2

(ii)

≤

[
3

n

[
64d∥∇xf(xt, yt)∥2 + 216µ2L2

x,maxd
4
x

]
/H2

+
(
3L2

x,maxη
2
x + 3L2

y,maxη
2
y

) [
n2G2 + nσ2

]
/H2

]
T

(iii)

≤

[
200G2 dx

n + 2G2 + σ2

n

]
T

H2

where (i) applies the Markov inequality, (ii) applies Lemma B.5 and Lemma 5 from
Mishchenko et al. (2020), and (iii) we choose a sufficiently small µ ≤ 8G

Lx,maxd
3/2
x

and

learning rates ηx ≤ 1√
3Lx,maxn

and ηy ≤ 1√
3Ly,maxn

to simplify the upper bound.

Then we choose

[
200G2 dx

n +2G2+σ2

n

]
T

H2 = δ
4 . It solves

H = 2

√
[200G2 dx

n +G2 + σ2

n]T

δ
. (6)

◦ Choose F such that P(τ1 < T, τ2 ≥ T) ≤ δ
4 . Because {τ1 < T, τ2 ≥ T} ⊂

{f(xτ , yτ)− f∗ > F
2 },

P(τ1 < T, τ2 ≥ T) ≤ P(f(xτ , yτ)− f∗ >
F

2
)

(i)

≤ 2E[f(xτ , yτ)− f∗]/F

≤ 2[f0 − f∗ + σ′]/F.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where (i) applies the Markov inequality. Let δ
4 = 2[f(x0)− f∗ + σ′]/F . It solves

F =
8

δ
[f(x0)− f∗ + σ′]. (7)

Combining both upper bounds with choosing H and F defined by Eq. (6) and Eq. (7),
respectively, we have

P(Bc) = P(τ < T) ≤ δ

2
.

Then we obtain the lower bound of P(A ∩B) as follows:
P(A ∩B) = P(A|B)P(B) ≥ [1− P(Ac|B)][1− P(Bc)]

≥ [1− δ

2
][1− δ

2
] = 1− δ +

δ2

4
≥ 1− δ.

Lastly, we discuss the hyper-parameter choices and the epoch complexity. To make Lemma B.6
hold, we have set ηx ≤ min{ 1

2Lx,maxn
, 1
384Lxndx

} and ηy ≤ 1
2Ly,maxn

and the perturbation stepsize

µ ≤ G
Lx

6

d
3/2
x

. When bounding the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

and the

probability of P(τ < T), we additionally require

ηx ≤ min{
√

2

T

1

σnLx,max
,

1√
3Lx,maxn

},

ηy ≤ min{
√

2

T

1

σnLy,max
,

1√
3Ly,maxn

},

µ ≤ min{ 1

3LxTndxG
,

8G

Lx,maxd
3/2
x

}.

Therefore, in summary, we have

ηx ≤ min

{
1

2Lx,maxn
,

1

384Lxndx
,

√
2

T

1

σnLx,max

}
,

ηy ≤ min

{
1

2Ly,maxn
,

√
2

T

1

σnLy,max

}
,

µ ≤ min

{
G

Lx

6

d
3/2
x

,
1

3LxTndxG

}
.

Under these hyper-parameter choices, we also need to require

T ≥ ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−2

[
f0 − f∗ + 2ηx + ηy

ηminn

]
,

where ηmin = min{ηx

4 ,
ηy

3 }, to ensure that the probability of{
1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

is small (less than δ
2). We observe that by simply

setting ηmin ≤ ϵ2 (we can always make it by choosing T ≥ Θ(ϵ
−4

n2)), the above condition on T

degenerates to T ≥ Θ(ϵ
−4

n). Therefore, it concludes that if T = Θ(ϵ−4/n), with the probability at
least 1− δ,

1

T

∑
t<T

∥∇f (xt)∥2 ≤ ϵ2.

Then the proof is completed.

Here, we discuss how we determine the optimal value ηmin = Θ(ϵ2). In general, we can set ηmin =
Θ(ϵα), which leads to the condition on T : T ≥ Θ(ϵ−2−α). A smaller α is always better. However,

we need to ensure the learning rate condition is satisfied; that is, ηmin ≤ Θ(
√

1
T). It solves T ≤

Θ(ϵ−2α). We let ϵ−2α ≥ ϵ−2−α, which solves α ≥ 2. Therefore, when ηmin = Θ(ϵ2), the
complexity is optimal and attainable.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D EXPERIMENTS DETAILS

In this paper, we evaluate our proposed hybrid-tuning method across a diverse spectrum of scenarios
including three distinct tasks, two transformer-based language models, and three PEFT methods.
This extensive exploration not only demonstrates the broad applicability of our approach but also
provides robust evidence for its effectiveness and versatility in enhancing model performance across
various domains and architectures. In this section, we will briefly review these components and
delve into more details of our experiment settings.

D.1 OVERVIEW OF TASKS

In this section, we briefly discuss the task we consider in our paper. All of tasks are ready to use
in the ZO-Bench code base (Zhang et al., 2024) and we follow the default setting and the same
train/test/validation split of their original implementations.

Text Binary Classification In this paper, we consider the Stanford Sentiment Treebank v2 (SST2)
dataset (Socher et al., 2013) and the Word-In-Context (WIC) dataset (Pilehvar & Camacho-Collados,
2018), which presents the simplest binary text classification problem. The SST2 dataset is suffi-
ciently simple and convenience to use to verify our motivating examples (as demonstrated in Fig-
ure 1a and Figure 1b). The WIC dataset provides a more challenging task that requires understanding
word meanings in different contexts. Both datasets serve as excellent benchmarks for evaluating the
performance of our proposed methods in binary text classification tasks.

Question Answering The Choice Of Plausible Alternatives (COPA) dataset (Roemmele et al.,
2011) is a common benchmark for evaluating the commonsense causal reasoning ability of a lan-
guage model. It contains one thousand English-language questions answer pairs. We choose this
task to evaluate our approaches in improving the question-answering capabilities of models, partic-
ularly in scenarios requiring causal inference and commonsense reasoning.

Common Sense Reasoning Task We consider the WinoGrande dataset (Sakaguchi et al., 2021),
which presents a challenging common sense reasoning task. The WinoGrande dataset is designed to
be a more difficult and larger-scale version of the original Winograd Schema Challenge, requiring
models to demonstrate human-like reasoning capabilities. By including WinoGrande in our exper-
iments, we aim to assess how well our approaches can enhance a model’s ability to reason about
complex scenarios and make appropriate inferences based on contextual information.

D.2 OVERVIEW OF PEFT MODULES

In this paper, we mainly consider three types of PEFT modules. In our proposed hybrid-tuning
approach, we jointly train one of these PEFT modules with the base LLM to improve the con-
vergence and overall performance. The following paragraphs provide a detailed overview of the
three main PEFT modules considered in this study: Prompt Tuning, Prefix Tuning, and Low-Rank
Adaptation (LoRA). In our experiments, we follow the default configuration of Zo-Bench code base
(Zhang et al., 2024) without making additional modifications. It is worth noting that our hybrid-
tuning methods are also applicable to other recently developed PEFT techniques including (1) other
LoRA variants such as X-LoRA (Buehler & Buehler, 2024), Llama-Adapter (Zhang et al., 2023b),
AdaLoRA (Zhang et al., 2023a), LoHa (Hyeon-Woo et al., 2021), and LoKr (Yeh et al., 2023); (2)
other soft prompts techniques such as P-tuning (Liu et al., 2021; 2023); and (3) Infused Adapter by
Inhibiting and Amplifying Inner Activation (IA3) methods (Liu et al., 2022).

Prompt Tuning Prompt tuning (Lester et al., 2021) is a lightweight fine-tuning method that
prepends trainable continuous prompt tokens to the input. These prompt tokens are optimized during
training while keeping the pre-trained language model parameters frozen. This approach allows for
task-specific adaptation with a small number of parameters. Prompt tuning is particularly effective
for large language models and can be seen as a form of soft prompting that learns optimal input
representations for specific tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Training curves for OPT-1.3B model with the prompt tuning on the SST2 dataset with using the optimal
hyper-parameter indicated in Table 2. The hybrid-tuning achieves the significant better performance. Notably,
this phenomenon is also observed in other tasks and for other model architectures.

(b) Training curves for Vicuna-7b-v1.5 model with the prompt tuning on the WinoGrande dataset.

Figure 3: Comparison of training curves for different models and datasets. These results demonstrate
that the similar outperformance of hybrid-tuning is observed across various model architectures and
NLP tasks.

Prefix Tuning Prefix tuning (Li & Liang, 2021) extends the concept of prompt tuning by adding
trainable prefix tokens not only to the input but to each layer of the transformer model. This method
prepends a trainable continuous prefix to the keys and values of the self-attention layers in each
transformer block. By doing so, prefix tuning allows for more flexible and expressive task-specific
adaptations compared to prompt tuning, while still maintaining a relatively small number of trainable
parameters.

LoRA Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a parameter-efficient fine-tuning method
that adds low-rank decomposition matrices to the weights of the pre-trained model. Instead of di-
rectly updating the model’s weight matrices, LoRA introduces pairs of rank decomposition matrices
for each weight matrix being tuned. These low-rank matrices are initialized randomly and trained
to adapt the model to specific tasks. LoRA significantly reduces the number of trainable param-
eters while maintaining competitive performance compared to full fine-tuning. It offers several
advantages, including faster training, lower memory requirements, and the ability to switch between
multiple fine-tuned tasks efficiently by changing only the LoRA parameters.

D.3 CONVERGENCE OF HYBRID FINE-TUNING

In this subsection, we present the training curves (including the training loss, validation accuracy,
and the test accuracy) for OPT-1.3B (Zhang et al., 2022) model on SST-2 (Socher et al., 2013) dataset
in Figure 3a. We observe that a significant efficiency gain in terms of training steps. The hybrid
method consistently achieves optimal performance regarding the training loss. This trend is observed
across different tasks, PEFT methods, and model architectures, suggesting that the efficiency of
hybrid tuning scales well (e.g. for Vicuna-7b-v1.5 model on the WinoGrande dataset in Figure 3b).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.4 ESTIMATING SMOOTHNESS

In Figure 1a and Figure 1b, the smoothness of the loss landscape of the OPT-125M (and the LoRA
module) is estimated by approximating the norm of Hessian matrix at the stochastic data point using
the zeroth-order gradient estimation to the Hessian-vector products (HVPs):

Hessian(x)⊤v ≈
∑

ξ∈Batch

∇f(x+ hv; ξ)−∇f(x; ξ)
h

,

where∇f(x; ξ) is the stochastic gradient at x for the data point ξ in the given data batch, h is a small
perturbation size, and v is a random unit vector. We estimate the Frobenius norm ∥Hessian(x)∥F ≈√
Ev⊤H2v of the Hessian by sampling multiple random vectors and computing these HVPs.

For Figure 1a, we initialize the parameter of pre-trained binary classification OPT-125M model and
train it over the SST2 dataset for 5000 steps with setting the learning rate η = 5 × 10−5 and the
batch size 8. We sample 100 independent vectors from the unit sphere to estimate the HVP with the
perturbation h = 10−5 and obtain the Hessian norm as the approximation of the local smoothness
constant L.

For Figure 1b, we initialize the parameter of pre-trained binary classification OPT-125M model as
the base model and randomly initialize the LoRA module with the rank 16 and the LoRA Alpha 32
(the detailed configuration can be found in the source code) and jointly train both components over
the SST2 dataset for 5000 steps with setting the learning rate η = 5× 10−5 and the batch size 8.We
collect all parameters along the SGD trajectories. We perturb the parameter of the base LLM and the
LoRA module, respectively, with 100 independent vectors from the unit sphere and the perturbation
h = 10−5 to estimate the smoothness.

24

	Introduction
	Contributions
	Related Work

	The Hybrid Smoothness Condition for Hybrid Systems
	The L-Smoothness Condition
	Hybrid Generalized Smoothness Condition
	The Impact of Hybrid Generalized Smoothness

	Theoretical Analysis
	Problem Formulation and Assumptions
	Non-Asymptotic Convergence Analysis

	Experiments
	Conclusion
	Notations
	Supporting Lemmas
	Proof of thm:main
	Experiments Details
	Overview of Tasks
	Overview of PEFT Modules
	Convergence of Hybrid Fine-Tuning
	Estimating Smoothness

