
Generative Skill Chaining: Long-Horizon Skill
Planning with Diffusion Models

Anonymous Author(s)
Affiliation
Address
email

Abstract: Long-horizon tasks, usually characterized by complex subtask depen-1

dencies, present a significant challenge in manipulation planning. Skill chaining2

is a practical approach to solving unseen tasks by combining learned skill pri-3

ors. However, such methods are myopic if sequenced greedily and face scalability4

issues with search-based planning strategy. To address these challenges, we in-5

troduce Generative Skill Chaining (GSC), a probabilistic framework that learns6

skill-centric diffusion models and composes their learned distributions to generate7

long-horizon plans during inference. GSC samples from all skill models in parallel8

to efficiently solve unseen tasks while enforcing geometric constraints. We evalu-9

ate the method on various long-horizon tasks and demonstrate its capability in rea-10

soning about action dependencies, constraint handling, and generalization, along11

with its ability to replan in the face of perturbations. We show results in simulation12

and on real robot to validate the efficiency and scalability of GSC, highlighting its13

potential for advancing long-horizon task planning. More details are available at:14

https://sites.google.com/view/generative-skill-chaining15

Keywords: Manipulation Planning, Diffusion Models, Task and Motion Planning16

1 Introduction17

Long-horizon reasoning is crucial in solving real-world manipulation tasks that involve complex18

inter-step dependencies. An illustrative example is shown in Figure 1(bottom), where a robot must19

reason about the long-term effect of each action choice, such as the placement pose of the object20

and how to grasp and use the tool, in order to devise a plan that will satisfy various environment21

constraints and the final task goal (place object under rack). However, finding a valid solution often22

requires searching in a prohibitively large planning space that expands exponentially with the task23

length. Task and Motion Planning (TAMP) methods address such problems by jointly searching for24

a sequence of primitive skills (e.g., pick, place, and push) and their low-level control parameters.25

While effective, these methods require knowing the underlying system state and the kinodynamic26

models of the environment, making them less practical in real-world applications. This work seeks27

to develop a learning-based skill planning approach to tackle long-horizon manipulation problems.28

Prior learning approaches that focus on long-horizon tasks often adopt the options framework [1, 2]29

and train meta-policies with primitive skill policies as their temporally-extended action space [3–8].30

However, the resulting meta policies are task-specific and have limited generalizability beyond the31

training tasks. A number of recent works turn to skill-level models that can be composed to solve32

new tasks via test-time optimization [9–15]. Key to their successes are skill-chaining functions that33

can determine whether each parameterized skill can lead to states that satisfy the preconditions of34

the next skills in a plan, and eventually the success of the overall task. However, these methods35

are discriminative, meaning that they can only estimate the feasibility of a given plan and requires36

an exhaustive search process to solve a task. This bottleneck poses a severe scalability issue when37

dealing with increasingly complex and long skill sequences.38

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://sites.google.com/view/generative-skill-chaining

Transition Feasibility Skill Affordability

Pick
Hook

Pull
Box Using Hook

Place
Hook

Pick
Box

Place
Box

Pick
Hook

Push
Box Using Hook

Initial
State

Figure 1: (Top) Generative Skill Chaining (GSC) aims to solve a long-horizon task for a given se-
quence of skills by using linear probabilistic chains to parallelly sample from a joint distribution of
multiple skill-specific transitions qπ(s, a, s′) learned using diffusion models. The framework implic-
itly considers transition feasibility and subsequent skill affordability while demonstrating flexible
constraint-handling abilities. (Bottom) An example of a long-horizon TAMP problem composed of
multiple skills. Such a task necessitates reasoning inter-dependencies between actions.

In this paper, we propose a generative and compositional framework that allows direct sampling of39

valid skill chains given a plan skeleton. Key to our method is skill-level probabilistic generative40

models that capture the joint distribution of precondition - skill parameter - effect of each skill.41

Sampling a valid skill chain boils down to, for each skill in a plan, conditionally generating skill42

parameters and post-condition states that satisfy the pre-condition of the next skill, constrained by43

the starting state and the final goal. The critical technical challenge is to ensure that the sequence44

of skill parameters is achievable from the initial state (forward flow) to satisfy the long-horizon45

goal (backward flow) and account for additional constraints.46

To this end, we introduce Generative Skill Chaining (GSC), a framework to train individual skill47

diffusion models and combine them according to given unseen task skeletons with arbitrary con-48

straints at test time. Each skill is trained as an unconditional diffusion model, and the learned distri-49

butions are linearly chained to solve for an unseen long-horizon goal during evaluation. Further, we50

employ classifier-based guidance to satisfy any specified constraints. GSC brings a paradigm shift51

in the approaches used to solve TAMP problems to date and uses probabilistic models to establish52

compositionality and reason for long-horizon dependencies without being trained on any such task.53

We demonstrate the efficiency of GSC on three challenging manipulation task domains, explore its54

constraint handling advantages, and deploy a closed-loop version on a physical robot hardware to55

show generalization capabilities and robustness.56

2 Related Work57

Task and Motion Planning. Understanding inter-dependencies between sequential actions is a fun-58

damental challenge in solving long-horizon problems. The key idea for solving them is to break59

the planning problem into a symbolically feasible sequence of smaller subtasks [1–3, 7, 8] and60

characterize their solutions with primitive actions or skills [4–6]. Such approaches rely on formu-61

lating fully-observable conditions and accurate system dynamics forecasting [16, 17] to realize the62

precondition of applying skill (affordability) and its effect respectively [18–24]. In this direction,63

logic-geometric programming [25, 26] and hierarchical [27] frameworks have solved for the sym-64

bolic feasibility [18, 28, 29] of a sequence of skills sufficient to reach a goal condition from the initial65

state. While such methods are exhaustive, their strong assumptions limit their practical applications66

and scalability. To overcome this, we opt for a learning-based framework [11, 30].67

2

Learning to solve long-horizon tasks. Skill-chaining methods model pre- and post-conditions of68

pre-defined skills to search for feasible goal-reaching plans, but most methods have focused on69

single-task settings [9–15]. Recent methods have investigated composable skill models to learn70

multi-task planner [11, 27, 30]. However, such methods are discriminative and require exhaustive71

searches. Moreover, their auto-regressive nature leads to cascading errors and large exploration72

spaces as the tasks become long. Recently, Agia et al. [11] proposed a CEM-based skill-chaining73

strategy that maximizes the success of individual actions in the sequence by training individual74

skills as RL agents. Their method is still limited to trained policy (deterministic) priors, lack finding75

multi-modal solutions, and cannot account for additional planning constraints.76

Generative models for planning. Generative models have been widely used for planning with77

Gaussian processes [31] and adversarial networks [32, 33]. With recent advancements in diffusion78

model-based generative strategies for planning in robotics, such approaches have been adopted for79

imitation learning [34–38] and offline reinforcement learning [39, 40] settings. Most relevant to80

this work are Diffuser [39], Decision Diffuser [40] and Diffusion Policy [37]. While81

they can synthesize sequences of “states” (and/or “actions”) as plans and optionally account for82

constraints [40], such approaches still focus on capturing the distribution of training task solutions83

and cannot easily solve unseen new tasks. In this work, we introduce a compositional [41, 42]84

generative planning method that can flexibly combine skill-level generative model and generalize to85

new tasks and constraints introduced during inference time. The proposed framework is inspired by86

the recent work on generating high-quality extended image chains with parallel diffusion [43] and87

scalable diffusion models with transformers [44].88

3 Preliminaries89

Problem formulation. We formulate the skill chaining problem by considering a given symboli-90

cally feasible skeleton ΦK = {(π1, o1), (π2, o2), . . . , (πK , oK)} of skills from a pre-defined library91

π1:K ∈ Π and the set of objects o on which the skill operates. Each skill π ∈ Π is parameterized by92

a continuous set of feasible skill parameters a ∈ Aπ governing the desired motion while executing93

the skill from a state s in the state space S. The goal is to find optimal skill parameters such that94

the skeleton is geometrically feasible and the effect of each skill satisfies the precondition of the95

following skills while the goal condition is satisfied.96

Environment setup. We use expert policies to solve individual skills and collect state-action-state97

transitions between current (s ∈ S) and next state (s′ ∈ S) resulting from the execution of a skill π98

with parameters aπ ∈ Aπ by following the transition model Tπ : S × Aπ → S . Further, following99

previous work [11], we consider a selection of basic objects like a hook, a rack, and boxes of various100

dimensions to construct the environmental setup. The state of the environment consists of fully101

observable poses and sizes of each of the present objects.102

Diffusion models. The diffusion model is a parameterized model pθ(x0) that estimates an unknown103

distribution q(x0) using the samples x0 ∼ q0(x0). It consists of two diffusion processes: a forward104

noising and a reverse denoising process. The forward process progressively injects i.i.d. Gaussian105

noise to samples from q0(x0) and leads to a family of noised distributions qt(xt). The distribution106

of xt conditioned on the clean data x0 is also a Gaussian: q0t(xt|x0) = N (xt; x0, σ2
t I), where107

σt defines a fixed series of noise levels monotonically increasing w.r.t. forward diffusion t. The108

reverse denoising process recovers clean data by iteratively removing the added noise by a process109

represented as the following stochastic differential equation (SDE) [45–47]:110

dx = −2σ̇tσt∇x log qt(xt)dt+
√

2σ̇tσtdw (1)

where ∇x log qt(xt) is referred to as the score function of the noised distribution and wt is a standard111

Wiener process. We follow DDPM [48] sampling strategy in continuous settings [49]. The score112

function allows recovery of the minimum mean squared error estimator of x0 given xt [50, 51]:113

x̃0 := E[x0|xt] = xt + σ2
t∇xt log qt(xt), (2)

3

where we can treat x̃0 as a “denoised” version of xt at timestep t. In practice, the unknown score114

function is estimated using a neural network ϵθ(xt, t) by minimizing the denoising score match-115

ing [49] objective Et,x0 [λ(t)∥σt∇xt log q0t(xt|x0) − ϵθ(xt, t)∥2] where λ(t) is a time-dependent116

weight. Diffusion models are scalable, and the learned distributions represent all positive samples117

satisfying the distribution heuristic, thus multi-modal. Further, their simple probabilistic represen-118

tation allows a wide range of flexible sampling strategies [47, 48, 52, 53] combined with constraint-119

handling abilities [40, 54–56].120

4 Methodology121

Generative Skill Chaining (GSC) offers a new paradigm for approaching long-horizon planning122

with a given skeleton of skills. The primary objective of GSC is to determine the optimal skill123

parameters for an unseen task skeleton, such that executing the plan achieves a long-horizon goal124

while satisfying task-specific constraints. It introduces probabilistic chaining of distributions of125

short-horizon transitions to sample from a long-horizon trajectory distribution. GSC uses skill-level126

diffusion models to represent each skill’s joint distribution of precondition, control parameters, and127

effect. Further, the framework composes individual skills at inference time to form a sequence-128

level trajectory distribution, which can be sampled via parallel diffusion to generate feasible skill129

parameter sequences as planning solutions. This is different from the widely used auto-regressive130

heuristic-search-based approach [17, 57–59] used in prior works [11, 30].131

(a)

(b)

Figure 2: (a) A linear chain
graph for a long sequence of
transitions and (b) adding an
additional constraint node.

We consider a given skeleton Φ of skills (and relevant objects)132

which satisfies the symbolic feasibility of the sequence in the en-133

vironment. The primary goal is to generate the sequence of states134

and skill parameters (as shown in Figure 2(a)) such that the final135

state (here sf ≡ s(2)) satisfies a goal condition and leads to the136

successful execution of the last skill.137

Action primitives as diffusion models. We characterize the in-138

dividual skills by the nature of state-action-state transitions ob-139

served while executing it in the environment. The operation of140

each skill π can then be represented by an unconditional distribu-141

tion qπ(st, at, s′t). Such a representation simultaneously captures142

the skill policy Pπ and the transition dynamics distribution Tπ and143

ensures their consistency. For each skill π in the skill library, we144

train a diffusion model score function ϵπ(st, at, s′t, t) with trans-145

former backbone as shown in Figure 3 (right) using provided per-skill demonstration data. We146

represent the set of objects of interest by an order which denotes the relevance of the objects in the147

scene w.r.t. the skill1 [11]. We also denote the masked sampling score model for the states and148

action as ϵπ(st, t), ϵπ(s′t, t) and ϵπ(at, t) respectively.149

Sequencing skill diffusion models. To solve our objective of finding a sequence of suitable skill150

transitions which satisfies Φ, an auto-regressive approach primarily used in prior works follows:151

pΦ(s(0:2), a(0:1)|s(0)) ≡ Pπ1
(a(0)|s(0)) Tπ1

(s(1)|s(0), a(0)) Pπ2
(a(1)|s(1)) Tπ2

(s(2)|s(1), a(1))

However, such formulations are myopic and can only be rolled out in the forward direction with-152

out feedback from the final task goal. This limits long-horizon reasoning, and prior methods have153

leveraged random [30] or CEM-based rollouts [11] to sample from such a distribution. To overcome154

the above limitations, we transform the unconditional skill diffusion models into a forward and a155

backward conditional distribution, as156

pΦ(s(0:2), a(0:1)|s(0)) ∝ qπ1
(s(0), a(0), s(1))qπ2

(a(1), s(2)|s(1)) = qπ1
(s(0), a(0), s(1))qπ2

(s(1), a(1), s(2))
qπ2(s(1))

1For example, if there is a hook (1), a box (2) and a rack (3) in the environment, then the object order
corresponding to tasks are: (a) pick the box: [2, 1, 3], (b) Place Box on Rack: [2, 3, 1].

4

Unconditional Skill Score Function

Time
Embedding

Positional
Embedding

Skill Object
Order

Pick
(Hook, Table)

Place
(Red Box, Rack)

Pull
(Hook, Blue Box)

Push
(Hook, Blue Box,

Rack)

Figure 3: Left The primitive skills and their executions are shown with the objects of interest.
Right Transformer-based skill diffusion model. We use the noisy state-action-state distribution
xt ∼ {st, at, s′t} at diffusion step t to obtain the corresponding ϵθ during sampling. The skill object
order depends on the objects of interest and is represented as a collection of one-hot vectors.

157

pΦ(s(0:2), a(0:1)|s(2)) ∝ qπ1(s
(0), a(0)|s(1))qπ2(s

(1), a(1), s(2)) =
qπ1(s(0), a(0), s(1))qπ2(s(1), a(1), s(2))

qπ1
(s(1))

In both equations above, the relations implicitly give rise to the notion of skill affordability and158

transition feasibility, i.e., the resulting state from the one skill must lie in the initial state distribution159

of the next skill and vice-versa. Now, if we transform the probabilities into their respective score160

functions (∇x log q(x)) for a particular reverse diffusion sampling step t, we obtain:161

ϵΦ(s
(0)
t , a(0)t , s(1)t , a(1)t , s(2)t , t) = ϵπ1

(s(0)t , a(0)t , s(1)t , t) + ϵπ2
(s(1)t , a(1)t , s(2)t , t)− ϵπ2

(s(1)t , t) (3)
162

ϵΦ(s
(0)
t , a(0)

t , s(1)t , a(1)t , s(2)t , t) = ϵπ1
(s(0)t , a(0)t , s(1)t , t) + ϵπ2

(s(1)t , a(1)t , s(2)t , t)− ϵπ1
(s(1)t , t) (4)

respectively. Finally, we linearly combine the score functions from the forward and backward dis-163

tributions weighted by a dependency factor γ:164

ϵΦ(s
(1)
t , t) = γπ1 ϵπ1(s

(1)
t , t) + (1− γπ1) ϵπ2(s

(1)
t , t), (5)

Here, γ ∈ [0, 1] is a decision variable that balances the influence of the state in the transition of the165

skill w.r.t. the subsequent skill and the goal condition. This is an important aspect that governs the166

behavior of the skills in the sequence and the choice of their respective parameters.167

Classifier-based guidance for constraint satisfaction. Besides the final task goal, constraints play168

an important role in governing the feasibility of actions in the environment and specifying task-169

specific conditions, such as maximizing/minimizing the distance between two objects in an interme-170

diate or final state. Our diffusion model-based formation allows GSC to easily incorporate additional171

constraints as implicit (in-painting) or explicit (classifier-based) guidance. Here we present a flex-172

ible sampling strategy in the presence of several planning constraints. In principle, the additional173

constraints Ψ can be appended as additional terms in the target sampling distribution:174

pΦ,Ψ(s(0:2)) ∝ pΦ(s(0:2)|s(0)) h({s, a}Ψ)

where h(·) is the likelihood of the constraint acting on a set of state-action nodes given by {s, a}Ψ.175

The corresponding diffusion score function with the added constraints becomes176

ϵΦ,Ψ(s
(0)
t , a(0)t , s(1)t , a(1)

t , s(2)t , t) = ϵΦ(s
(0)
t , a(0)t , s(1)t , a(1)

t , s(2)t , t) + ϵΨ({st, at}, t) (6)

where ϵΨ({st, at}, t) ∝ ∇{st,at} log h({st, at}Ψ). Consider the example shown in Figure 2(b) where177

the constraint depends on the nodes a(0), a(1) and s(2). Suppose the constraint is chosen to be a178

binary indicator (i.e. success = 1) of satisfaction and is defined for the denoised samples (a(0)
0 , a(1)0179

5

and s(2)0) at t = 0. In such a situation, the likelihood is defined as the exponential of the constraint180

satisfaction such that181

hΨ(a
(0)
0 , a(1)0 , s(2)0) = exp

[
− α

(
1−Ψ(a(0)

0 , a(1)
0 , s(2)0)

)]
(7)

It is worth noting that while the constraint is a function of the denoised samples, the gradients182

must be calculated w.r.t. the noised samples. We calculate this by first obtaining the denoised183

sample x̃ for the diffusion step t from Equation 2 and then modifying the corresponding nodes in184

ϵΦ(s
(0)
t , a(0)t , s(1)t , a(1)t , s(2)t , t) based on the weight factor α, as185

ϵ̃Φ(a
(0)
t , a(1)t , s(2)t , t) = ϵΦ(a

(0)
t , a(1)t , s(2)t , t)− α∇a(0)t ,a(1)t ,s(2)t

(
1−Ψ(ã(0)0 , ã(1)

0 , s̃(2)0)
)

(8)

Summary. To summarize, the proposed framework GSC is divided into three segments: (1) train186

individual skill diffusion models with the proposed architecture without any knowledge about other187

skills, (2) chain skill diffusion models according to an unseen task skeleton during inference using188

probabilistic linear chaining of the individually learned distributions with a dependency factor, and189

(3) incorporate classifier-based guidance for any unseen planning constraint added while inference.190

Following standard reverse denoising, we consider parallelly sampling from all individual models191

instead of one and hence our proposed approach is both task-skeleton and skeleton-length agnostic.192

Further, the dependency factor helps in making flexible design choices for satisfying the desired193

goal condition. While a constant value of γ = 0.5 is sufficient, it can be fine-tuned for every194

skill. In addition to the above, we also collect failure data to train a success probability prediction195

module Q(s, s′) : S ×S → [0, 1] for each skill which is a measure of the successful execution of the196

skill given the current and the transitioned state. Such a model is used to consider the best parameter197

sequence from the sampled candidate solutions. We illustrate the overall algorithm in Appendix A.198

5 Results199

(a)

(b)

(c)

(d)

(e)

GSC

domain

learned skill models

generated combination
(fixed initial state)

w/ constraints for left
segment (final state)

w/ fixed final state

Figure 4: Toy Domain: We model
four distributions of states and seg-
ment one of them into left and right
segments. The above figure illustrates
diffusion model composition using
GSC with fixed start state and unit ac-
tions followed by the addition of soft
and hard constraint guidance.

We conduct experiments to validate the efficacy of GSC200

in (1) long-horizon planning for unseen tasks of arbitrary201

lengths, (2) constraint handling and satisfaction, and (3)202

maximizing action-dependency horizon and finally (4) gen-203

eralization to perturbations. First, we show the composi-204

tional and constraint-handling performance of GSC in a toy205

domain. Second, we evaluate the performance of the chain-206

ing trained skill diffusion models on nine standard TAMP207

tasks introduced by previous work [11]. These tasks en-208

compass a wide range of skeleton lengths and challenge209

the method on various levels of long-horizon dependency.210

Finally, we discuss the response of GSC to perturbations,211

followed by the importance of dependency factor γ in the212

success of GSC.213

Baselines and metrics. In the context of skill chaining,214

we primarily consider search-based methods with CEM op-215

timization strategy. Our main baselines are CEM meth-216

ods with uniform priors (Random CEM) and learned pol-217

icy priors (STAP). Further, to show improvement in per-218

formance as compared to training on task sequences and219

expecting generalization to new ones, we add DAF’s [30]220

performance following Agia et al. [11]. Another potential221

baseline is using diffusion for states only and inverse dynamics model for actions based on Decision222

Diffuser [40]. However, due to considerable distribution shift and cascading error from state pre-223

dictions, such a method does not perform well (refer to Appendix B). The success rate of satisfying224

the goal condition in 100 random environment executions is used as the comparison metric2.225

2We consider the same results for baselines as demonstrated in previous work [11].

6

Toy domain. The 2D domain consists of states as the s ≜ (x, y) position of a point sample and226

the action, a = [u, v, a] ∈ R3, as the direction of the unit vector (u, v) and magnitude (a). A227

transition is defined by s′ = s+ [au, av]. To replicate the skill distributions, we create multiple state228

distributions Figure 4(a) and collect transition data between them to represent individual skills. We229

illustrate the performance of GSC in chaining trained skill models Figure 4(b) to sample transitions230

between sequence of distributions Figure 4(c) with fixed initial state and unit action. Finally, we231

validate the constraint satisfaction performance by first constraining final states to the left segment232

and second, keeping the goal state fixed Figure 4(d)(e), respectively. The success in the above tasks233

validates the framework’s ability to compose skills and handle arbitrary constraints directly while234

evaluation.235

Long-horizon manipulation. We consider TAMP problems in a PyBullet [60] environment and236

follow the tasks proposed by STAP [11], namely: (i) Hook Reach: The hook is used to pull a box237

followed by executing other skills on the box. (ii) Constrained Packing: Multiple boxes should be238

placed on the rack so that all of them can be accommodated without interference. (iii) Rearrange-239

ment Push: A sequence of placement and push using a hook is executed to bring a box below the240

rack. The proposed three skeletons for each category above are solved using our method and com-241

pared against the previous work and their baselines w.r.t. the success rate is shown in Table 1. These242

tasks are unseen while training, have varying skeleton lengths, and demand reasoning long-horizon243

action dependencies. The performance of GSC implies that it is better than (or as good as) search-244

based methods, along with other advantageous abilities. The details about the target skeletons and245

the desired transitions are further explained in Appendix D.246

Imposing additional constraints. In addition to the skeletons evaluated for the long-horizon prob-247

lems and extending the experiments conducted for the toy domain, we impose certain planning248

constraints on the final state, intermediate states, and actions. This is done by adding an objective249

of maximizing the distance between all the “place” skill action parameters in the skeleton (this ad-250

dition is still task agnostic) for the constrained packing task. The resulting sequence of states251

is shown in Figure 5. Further, we compare cumulative task completion and constraint satisfaction252

success rate with previous approaches in Table 2. This qualitatively and quantitatively demonstrates253

that the framework can handle such unseen constraints in test time.254

Table 1: The success rate of the proposed GSC algorithm is shown and compared with relevant
search-based baselines (CEM strategy). All results are calculated from 100 trials for each task.

Methods Hook Reach Rearrangement Push
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Random CEM 0.54 0.40 0.30 0.30 0.10 0.02
DAF (Generalization) 0.32 0.05 0.0 0.0 0.08 0.0
STAP (Policy CEM) 0.88 0.82 0.76 0.40 0.52 0.18
GSC (Ours) 0.84 0.84 0.76 0.68 0.60 0.18
Task Length 4 5 5 4 6 8

Figure 5: For a constrained packing task of picking-and-placing all the boxes on the rack:
Task agnostic secondary placement objectives help in realizing accurate and consistent state-action
sequences in Top Simulation and Bottom open loop hardware rollouts.

Generalizing to unseen sequences. We next highlight the generalization ability of GSC by evalu-255

ating it on more complex unseen task plans. First, we increase the maximum horizon dependency of256

7

Table 2: The success rate of GSC algorithm with and without task-agnostic constraint handling is
shown for Constrained Packing task and compared with relevant baselines.

Methods Constrained Packing
Task 1 Task 2 Task 3

Random CEM 0.45 0.45 0.10
DAF (Generalization) 0.45 0.70 0.0
STAP (Policy CEM) 0.65 0.68 0.20
GSC (Ours w/o constraint guidance) 0.70 0.80 0.50
GSC (Ours w/ constraint guidance) 0.75 1.0 1.0

action by changing the goal to position not only the box but also the hook in such a fashion which257

complies with the success of the “push” skill in the rearrangement push domain. The resulting258

state sequence is shown in Figure 1 (bottom). Secondly, we execute our algorithm in a closed-loop259

fashion and use the skill success classifier to indicate sub-task completion. The sampled plan is260

executed and the resulting state is checked for subsequent skill feasibility. In case, the state satisfies261

the pre-condition for a future or previous skill, the plan is resampled from that skill to complete262

the task. We demonstrate this perturbation experiment on a Franka Panda arm (video attached to263

supplementary, hardware execution details in Appendix G).264

Importance of the forward and backward dependency. The dependency variable γ governs the265

flow of information from the initial state (forward) and the goal (backward) during the diffusion266

process. We provide a qualitative study of this feature in Figure 6. In the case where the forward flow267

information is weak (γ = 0), the model tends to hallucinate and predict states that are inconsistent268

with the initial state. When the backward flow is weak (γ = 1), the model becomes myopic and269

fails to solve the task.We empirically found that γ = 0.5 achieves a balanced performance.270

Figure 6: Example of rearrangement push task rollout with different dependency factor γ: Top:
Hallucination (γ = 0) With a weak forward signal, the framework fails to realize correct position
of objects at the final stage. Bottom: Myopic (γ = 1) A weak backward information behaves like
policy shooting and fails to understand long-horizon dependency.

6 Limitations271

The proposed framework considers planning with a given skeleton. While we do not solve the272

complete TAMP problem, our method is compatible with any skeleton-planning method and hence273

is a crucial segment of a unified framework for solving TAMP problems. Further, we only validated274

on a fully observable environment setup with no degree of partial observability and operates on low-275

dimensional state space of the system i.e. 6-DoF poses of the objects. We use a fixed set of primitive276

skills, and thus, the framework requires either expert data to train models or the pre-trained models to277

perform compositional planning. This can be extended by incorporating skill discovery frameworks.278

7 Conclusion279

We introduced GSC, a new paradigm to solve TAMP tasks with given skeletons using skill-centric280

diffusion models. GSC trains high-quality skill diffusion models using a transformer backbone and281

composes skeleton-specific distributions for unseen skeletons by chaining trained individual skill282

distribution. Such skeleton-specific distributions are then used to generate long-horizon param-283

terized skill plan sequences. The framework is scalable and flexible and shows better constraint-284

handling capacities, and generalizes well to new scenarios, including perturbations and replanning.285

8

References286

[1] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-287

poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.288

[2] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI289

conference on artificial intelligence, volume 31, 2017.290

[3] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev, S. Levine, and B. Ichter. Value function spaces:291

Skill-centric state abstractions for long-horizon reasoning. arXiv preprint arXiv:2111.03189,292

2021.293

[4] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives294

for diverse manipulation tasks. In 2022 International Conference on Robotics and Automation295

(ICRA), pages 7477–7484. IEEE, 2022.296

[5] N. Vuong, H. Pham, and Q.-C. Pham. Learning sequences of manipulation primitives for297

robotic assembly. In 2021 IEEE International Conference on Robotics and Automation (ICRA),298

pages 4086–4092. IEEE, 2021.299

[6] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned300

task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),301

pages 1149–1155. IEEE, 2020.302

[7] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.303

Advances in neural information processing systems, 31, 2018.304

[8] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions.305

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.306

[9] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot307

manipulation via terminal state regularization. In 5th Annual Conference on Robot Learning,308

2021. URL https://openreview.net/forum?id=K5-J-Espnaq.309

[10] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by310

learning transition policies. In International Conference on Learning Representations, 2019.311

[11] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Taps: Task-agnostic policy sequencing. arXiv312

preprint arXiv:2210.12250, 2022.313

[12] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by314

constructing skill trees. The International Journal of Robotics Research, 31(3):360–375, 2012.315

[13] A. Bagaria and G. Konidaris. Option discovery using deep skill chaining. In International316

Conference on Learning Representations, 2020.317

[14] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains using318

skill chaining. Advances in neural information processing systems, 22, 2009.319

[15] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk. Learning to dress: Synthesizing human320

dressing motion via deep reinforcement learning. ACM Transactions on Graphics (TOG), 37321

(6):1–10, 2018.322

[16] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE Inter-323

national Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017.324

[17] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful325

of trials using probabilistic dynamics models. Advances in neural information processing326

systems, 31, 2018.327

9

https://openreview.net/forum?id=K5-J-Espnaq

[18] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills.328

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 886–893.329

IEEE, 2017.330

[19] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. Search-based task331

planning with learned skill effect models for lifelong robotic manipulation. In 2022 Interna-332

tional Conference on Robotics and Automation (ICRA), pages 6351–6357. IEEE, 2022.333

[20] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Perez, L. P. Kaelbling, and J. Tenen-334

baum. Inventing relational state and action abstractions for effective and efficient bilevel plan-335

ning. arXiv preprint arXiv:2203.09634, 2022.336

[21] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic337

representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:338

215–289, 2018.339

[22] V. Xia, Z. Wang, and L. P. Kaelbling. Learning sparse relational transition models. arXiv340

preprint arXiv:1810.11177, 2018.341

[23] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning symbolic models of stochastic342

domains. Journal of Artificial Intelligence Research, 29:309–352, 2007.343

[24] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Active model learning and344

diverse action sampling for task and motion planning. In 2018 IEEE/RSJ International Con-345

ference on Intelligent Robots and Systems (IROS), pages 4107–4114. IEEE, 2018.346

[25] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined347

task and motion planning. In IJCAI, pages 1930–1936, 2015.348

[26] D. Driess, O. Oguz, and M. Toussaint. Hierarchical task and motion planning using logic-349

geometric programming (hlgp). In RSS Workshop on Robust Task and Motion Planning, 2019.350

[27] D. Driess, J.-S. Ha, and M. Toussaint. Learning to solve sequential physical reasoning prob-351

lems from a scene image. The International Journal of Robotics Research, 40(12-14):1435–352

1466, 2021.353

[28] B. Ames, A. Thackston, and G. Konidaris. Learning symbolic representations for planning354

with parameterized skills. In 2018 IEEE/RSJ International Conference on Intelligent Robots355

and Systems (IROS), pages 526–533. IEEE, 2018.356

[29] T. Migimatsu, W. Lian, J. Bohg, and S. Schaal. Symbolic state estimation with predicates for357

contact-rich manipulation tasks. In 2022 International Conference on Robotics and Automation358

(ICRA), pages 1702–1709. IEEE, 2022.359

[30] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-360

dance foresight: Planning through what can be done in the future. In 2021 IEEE International361

Conference on Robotics and Automation (ICRA), pages 6206–6213. IEEE, 2021.362

[31] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models363

of robot skills for task and motion planning. The International Journal of Robotics Research,364

40(6-7):866–894, 2021.365

[32] T. Kurutach, A. Tamar, G. Yang, S. J. Russell, and P. Abbeel. Learning plannable representa-366

tions with causal infogan. Advances in Neural Information Processing Systems, 31, 2018.367

[33] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information368

processing systems, 29, 2016.369

10

[34] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,370

B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint371

arXiv:2302.11550, 2023.372

[35] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models373

to robotics. IEEE Robotics and Automation Letters, 2023.374

[36] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,375

I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv376

preprint arXiv:2301.10677, 2023.377

[37] C. Chi, S. Feng, Y. Du, Z. Xu, E. A. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:378

Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137, 2023.379

[38] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.380

Learning universal policies via text-guided video generation. ArXiv, abs/2302.00111, 2023.381

[39] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior382

synthesis. In International Conference on Machine Learning, 2022.383

[40] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative384

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.385

[41] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum. Compositional visual generation with386

composable diffusion models. In European Conference on Computer Vision, pages 423–439.387

Springer, 2022.388

[42] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,389

A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with390

energy-based diffusion models and mcmc. In International Conference on Machine Learning,391

pages 8489–8510. PMLR, 2023.392

[43] Q. Zhang, J. Song, X. Huang, Y. Chen, and M.-Y. Liu. Diffcollage: Parallel generation of large393

content with diffusion models. ArXiv, abs/2303.17076, 2023.394

[44] W. Peebles and S. Xie. Scalable diffusion models with transformers. arXiv preprint395

arXiv:2212.09748, 2022.396

[45] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based397

generative models. arXiv preprint arXiv:2206.00364, 2022.398

[46] S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10. Cambridge399

University Press, 2019.400

[47] Q. Zhang, M. Tao, and Y. Chen. gddim: Generalized denoising diffusion implicit models.401

arXiv preprint arXiv:2206.05564, 2022.402

[48] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural403

Information Processing Systems, 33:6840–6851, 2020.404

[49] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-405

erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,406

2020.407

[50] S. Saremi and A. Hyvarinen. Neural empirical bayes. arXiv preprint arXiv:1903.02334, 2019.408

[51] C. M. Stein. Estimation of the mean of a multivariate normal distribution. The annals of409

Statistics, pages 1135–1151, 1981.410

[52] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint411

arXiv:2010.02502, 2020.412

11

[53] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv413

preprint arXiv:2204.13902, 2022.414

[54] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,415

2022.416

[55] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in417

Neural Information Processing Systems, 34:8780–8794, 2021.418

[56] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: In-419

painting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF420

Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.421

[57] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.422

Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Inter-423

national Conference on Robotics and Automation (ICRA), pages 1714–1721, 2017. doi:424

10.1109/ICRA.2017.7989202.425

[58] Pourchot and Sigaud. CEM-RL: Combining evolutionary and gradient-based methods for pol-426

icy search. In International Conference on Learning Representations, 2019. URL https:427

//openreview.net/forum?id=BkeU5j0ctQ.428

[59] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based pol-429

icy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,430

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-431

ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/432

5faf461eff3099671ad63c6f3f094f7f-Paper.pdf.433

[60] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics434

and machine learning. http://pybullet.org, 2016–2021.435

[61] J. Wang and E. Olson. AprilTag 2: Efficient and robust fiducial detection. In Proceedings436

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October437

2016.438

12

http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
https://openreview.net/forum?id=BkeU5j0ctQ
https://openreview.net/forum?id=BkeU5j0ctQ
https://openreview.net/forum?id=BkeU5j0ctQ
https://proceedings.neurips.cc/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
http://pybullet.org

A Summary of the Algorithm439

Algorithm 1: Generative Skill Chaining (GSC) Algorithm
1 Hyperparameters:
2 Number of reverse diffusion steps T
3 Forward-backward dependency factor γ
4 Gradient score function weight α

5 Inputs:
6 Pre-defined skill library Π = {π1, π2, . . . , πM}
7 Individual skill diffusion score functions ϵπ
8 Task skeleton Φ = {π0, π1, . . . , πK} be a sequence of skills of length K

9 Initial state s(0)
10 Goal condition g

11 Constraints h({s, a}): suppose {s, a} = [s(1), a(2), s(K)] be the nodes affected by constraint

12 Initial skeleton solution xT = [s(0)T , a(0)T , s(1)T , a(1)T , . . . , s(K)
T] sampled from N (0, I)

13 Initialize t = T
14 while t ≥ 0 do

15 // Score of skeleton sequence
16 ϵΦ(s

(0)
t , a(0)t , s(1)t , a(1)

t , . . . , s(K)
t , t) = 0

17 for i = 1 : K do
18 // Update subvectors of ϵΦ
19 ϵΦ(s

(i−1)
t , a(i−1)

t , s(i)t , t) = ϵΦ(s
(i−1)
t , a(i−1)

t , s(i)t , t) + ϵπi
(s(i−1)

t , a(i−1)
t , s(i)t , t)

20 ϵΦ(s
(i)
t , t) = ϵΦ(s

(i)
t , t)−

(
γϵπi

(s(i)t , t) + (1− γ)ϵπi+1
(s(i)t , t)

)
21 end

22 // Constraint handling
23 for v ∈ [s(1), a(2), s(K)] do
24 // Update subvectors of ϵΦ
25 ϵΦ(vt, t) = ϵΦ(vt, t)− α∇vt log h(s̃

(1), ã(2), s̃(K))
26 end

27 // Obtain denoised samples
28 x̃0 = xt + σtϵΦ(s

(0)
t , a(0)t , s(1)t , a(1)t , . . . , s(K)

t , t)

29 // Get the updated noisy samples
30 q0(t−1)(xt−1|x̃0) = N (xt−1; x̃0, σ2

t−1I)
31 t = t− 1
32 end
33 Return x0

Hyperparameters and Computation The number of reverse diffusion timesteps is an important440

parameters which plays a key role in deciding the time required to complete the sampling while441

keeping up with the quality of the generated samples. While a lower number of steps reduces the442

time taken for sampling, higher number of steps leads to finely denoised high-quality samples. We443

try with numerous values (256, 128, 64, and 50) and converge to using 128 diffusion steps for444

most of the tasks. The dependency factor γ is set to be 0.5 following the explanations described in445

section 4 and section 5 (Figure 6). A value of γ = 1 makes GSC the same as a trivial policy rollout446

approach. Finally, in case of gradients, we finetune the weights to balance the effect of constraints in447

the reverse diffusion process. While it is difficult to drastically change the sampling trajectory due to448

the intricacies of the reverse process, we use α = 1 for all our tasks with given planning constraints.449

13

Individual Diffusion Model Score Function Hyperparameters450

We follow the score-network architecture of DiT [44] and adopt to their open-source implementa-451

tion: github.com/facebookresearch/DiT. We use the following hyperparameters for building452

our score-network:453

Table 3: Hyperparameters for Score-Network with Transformer Backbone

Hyper-parameter Value
Hidden Dimension 128
Number of Blocks 4
Number of Heads 4

MLP Ratio 4
Dropout Probability 0.1

Number of Input Channels 17
Number of Output Channels 17

B Additional Discussion454

Implementation details. The performance of the proposed skill sequencing framework depends455

on the diversity of the expert dataset, the maximum horizon dependency of action in the unseen456

skeleton, and the quality of the trained skill diffusion models. Furthermore, only the true distribu-457

tions are estimated and used to sample candidate solutions. To ensure high-success probability for458

all our tasks, we consider sampling multiple candidate sequence solutions (two of them are shown459

in Figure 7) and consider the best probable solution based on the product of individual skill success460

probability metric.

Pick Box Place Box s.t. Pushable Pick Box Place Box s.t. Pushable

Figure 7: For a “pick-place” task of picking-and-placing the cyan box such that it can be pushed
inside the rack: Left A correctly sampled state sequence while Right is incorrect. Hence, filtering
candidate solutions is necessary.461

Decision diffuser approach: state diffusion model with inverse dynamics actions. Diffusion462

models have been used for planning in robotics. One such framework is that of the decision dif-463

fuser [40], which samples a desired state trajectory and uses an inverse dynamics model to find the464

best action sequence. Our framework can achieve this by removing the action from the samples.465

However, this results in the distribution generated by diffusion models to be disjoint from the ac-466

tions given by the inverse dynamics models. This distribution shift is sensitive to the quality of the467

sampled states and hence results in cascading errors. Considering a joint distribution of state-action-468

state transitions is advantageous as it is less sensitive to such state perturbations.469

14

github.com/facebookresearch/DiT

C Skill Descriptions and Parametrization470

We have a fixed library of skills consisting of: pick, place, push and pull. Each of the skills is471

parameterized with respect to the objects of interest according to the following setup:472

pick: Parameterized by (x, y, z, θ) as the pick location and the gripper’s orientation around the z-473

axis. The parameters are calculated with respect to the object of interest’s (to be picked) origin. For474

example, pick block is w.r.t. the origin of the block, which is the centroid. Similarly, for pick475

hook, the origin is the center of the rectangle, of which the hook is one L-segment.476

place: Parameterized by (x, y, z, θ) as the place location and the gripper’s orientation around the477

z-axis. The parameters are calculated with respect to the object of interest’s (on which the picked478

object will be placed) origin.479

push: Parameterized by (x, y, θ, r) as the location and orientation of the placement of the tool (hook)480

on the table (z = 0) and r denotes the length by which the hook will be displaced away from the481

arm base. The parameters x, y, θ are w.r.t. the object of interest’s (to be pushed) origin. The push482

distance r is the position displacement of the tool in direction θ.483

pull: Parameterized by (x, y, θ, r) as the location and orientation of the placement of the tool (hook)484

on the table (z = 0) and r denotes the length by which the hook will be displaced towards the arm485

base. The parameters x, y, θ are w.r.t. the object of interest’s (to be pulled) origin. The pull distance486

r is the position displacement of the tool in direction θ.487

An example of the pre-condition and effect of the above skills are shown in Figure 3 (left).488

15

D Task Descriptions489

As described in section 5, we evaluate our framework on three task domains (hook reach,490

constrained packing, and rearrangement push) with three tasks each. In addition, we val-491

idate the algorithm on a more complex skill with longer-horizon action dependency and describe492

it as the fourth task under the domain of rearrangement push. Each of the considered suites493

focuses on understanding long-horizon success of one particular skill. For example, hook reach494

is about the long-term effect of executing hook, while constrained packing focusses on place495

and rearrangement push focuses on push. Each task’s challenge is directly proportional to the496

long-horizon action dependency required to complete it. For example, pull affects immediately497

if the next skill is pick. But place affects the next skill after executing one intermediate skill498

(like pick). Similarly, action dependency is after two skills for rearrangement push take 4. We499

describe all of such considered tasks below.500

Hook Reach Task 1 sub-sequence of Figure 8501

• Scene: Box is out of workspace, Hook is inside workspace502

• Goal: Pick the Box503

• Skeleton: Pick Hook, Pull Box, Place Hook, Pick Box504

Hook Reach Task 2 easy version of Figure 8505

• Scene: Yellow Box is out of workspace, Blue Box inside the workspace, Hook is inside506

workspace, Rack is inside workspace, Rack is empty507

• Goal: Yellow Box on Rack508

• Skeleton: Pick Hook, Pull Yellow Box, Place Hook, Pick Yellow Box, Place Yellow Box509

on Rack510

Hook Reach Task 3 shown in Figure 8511

• Scene: Red Box is out of workspace, Hook is inside workspace, Rack is inside workspace,512

Rack already has two blocks (Yellow and Blue)513

• Goal: Red Box on Rack (without collision)514

• Skeleton: Pick Hook, Pull Red Box, Place Hook, Pick Red Box, Place Red Box on Rack515

Pick
Hook

Pull
Red Box Using Hook

Place
Hook

Pick
Red Box

Place
Red Box on Rack

Initial
State

Figure 8: Hook Reach Task 3

Constrained Packing Task 1 shown in Figure 9516

• Scene: Three boxes in the workspace, Rack is in workspace, Blue block on Rack517

• Goal: All Boxes on Rack (without collision)518

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place519

Box on Rack520

Constrained Packing Task 2 sub-sequence of Figure 10521

16

Initial
State

Pick
Yellow Box

Place
Yellow Box

Pick
Red Box

Place
Red Box

Pick
Cyan Box

Place
Cyan Box

Figure 9: Constrained Packing Task 1

• Scene: Three boxes in the workspace, Rack is in workspace, Rack is empty522

• Goal: Three Boxes on Rack (without collision)523

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place524

Box on Rack525

Constrained Packing Task 3 shown in Figure 10526

• Scene: Four boxes in the workspace, Rack is in workspace, Rack is empty527

• Goal: Four Boxes on Rack (without collision)528

• Skeleton: Pick Box, Place Box on Rack, Pick Box, Place Box on Rack, Pick Box, Place529

Box on Rack, Pick Box, Place Box on Rack530

Initial
State

Pick
Red Box

Place
Red Box

Pick
Yellow Box

Place
Yellow Box

Pick
Cyan Box

Place
Cyan Box

Pick
Blue Box

Place
Blue Box

Figure 10: Constrained Packing Task 3

Rearrangement Push Task 1 shown in Figure 11531

• Scene: Box in workspace, Hook in workspace, Rack outside workspace532

• Goal: Box under Rack533

• Skeleton: Pick Box, Place Box, Pick Hook, Push Box using Hook534

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Push
Cyan Box using Hook

Initial
State

Figure 11: Rearrangement Push Task 1

Rearrangement Push Task 2 shown in Figure 12535

• Scene: Three Boxes in workspace, Hook in workspace, Rack outside workspace536

• Goal: Yellow Box under Rack537

• Skeleton: Pick Hook, Place Hook, Pick Cyan Box, Place Cyan Box, Pick Hook, Push538

Yellow Box using Hook539

17

Initial
State

Pick
Hook

Place
Hook

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Push
Yellow Box using Hook

Figure 12: Rearrangement Push Task 2

Rearrangement Push Task 3 shown in Figure 13540

• Scene: Four Boxes in workspace, Hook in workspace, Rack outside workspace541

• Goal: Blue Box under Rack542

• Skeleton: Pick Red Box, Place Red Box, Pick Yellow Box, Place Yellow Box, Pick Cyan543

Box, Place Cyan Box, Pick Hook, Push Blue Box using Hook544

Pick
Red Box

Place
Red Box

Push
Blue Box using Hook

Initial
State

Pick
Yellow Box

Place
Yellow Box

Pick
Cyan Box

Place
Cyan Box

Pick
Hook

Figure 13: Rearrangement Push Task 3

Rearrangement Push Task 4 shown in Figure 14545

• Scene: Box outside workspace, Hook in workspace, Rack outside workspace546

• Goal: Box under Rack547

• Skeleton: Pick Hook, Pull Box using Hook, Place Hook, Pick Box, Place Box, Pick548

Hook, Push Box using Hook549

Pick
Hook

Pull
Box Using Hook

Place
Hook

Pick
Box

Place
Box

Pick
Hook

Push
Box Using Hook

Initial
State

Figure 14: Rearrangement Push Task 4

18

E Additional Results550

One of the attractive aspects of diffusion models is to visualize convergence to a valid solution551

starting from Gaussian noise. We visualize such results and show one of them below.552

Figure 15: Reverse Diffusion visualization of Rearrangement Push Task 3 for 50 timesteps.

19

F Hardware Experiment Setup553

Figure 16: Hardware Experiment Setup

The experimental setup, illustrated in Fig. 16, encompasses a Franka Panda robot arm and an Intel554

RealSense camera, several blocks, a rack, and a hock. The camera is positioned overhead, facing555

downward to fully observe the poses of all the objects. AprilTag [61] is employed for SE(3) pose556

detection of the objects. During planning, the Frankx controller is utilized to generate smooth linear557

motion toward the desired gripper pose.558

G Data Collection and Real-World Experiment Details559

We collect transition data in simulation from a random agent. For every selected skill (“pick”,560

“place”, “push” and “pull”), we start with a suitable state satisfying its pre-condition and collect561

successful skill parameters (from random samples) and effect (resulting next state). This is done562

for scenes containing a varied number of objects. We collect around 5000 successful transitions563

from the simulator. The data is used to train the diffusion model. The success probability prediction564

module Q(s′, s) is also trained on the same data, but we add the failure transitions as well.565

For real-world experiments, we use pose detection using AprilTag [61] followed by a real-to-sim566

scene reconstruction. All the experiments are performed with pre-trained diffusion models (trained567

on simulated data). The closed-loop planning in the real world is performed in the reconstructed568

scene in the simulator, and planned skill parameters are executed directly in the real world. The569

scene is updated before each replanning phase.570

20

H Toy Domain: Explained571

(A) Consider a toy domain with four different state (2D points) distributions and skills represented572

by unit vectors.573

(B) We train two diffusion models:574

1. One with transitions from red square to two circles. This is analogous to training a “pick575

hook” skill which is a pre-condition for both “pull” and “push”.576

2. Other with the transition from bottom circle to green square. This is analogous to training577

only “push” (or “pull”)578

Now we merge both of these transitions to sample candidate solutions for the skeleton (pick hook,579

push block). When sampled parallely, the first diffusion model (pick skill) will sample post-580

conditions from both the circles (push and pull) whereas the second diffusion model (push) will581

sample pre-conditions only from the bottom circle. So, eventual outcome will be from red square to582

bottom circle to green square (state sequence where hook is picked such that block can be pushed).583

(C) We then impose conditions of “fixed initial state” and sample the chain.584

(D) We then limit the goal states by imposing conditions that goal state variables must lie on the left585

half of the green square distribution.586

(E) We then fix both initial and goal states. This samples a single solution. (as the states, 2D points,587

are connected via unit vectors with direction as the skill parameter)

(a)

(b)

(c)

(d)

(e)

GSC

domain

learned skill models

generated combination
(fixed initial state)

w/ constraints for left
segment (final state)

w/ fixed final state

Figure 17: Toy Domain: We model four distributions of states and segment one of them into left
and right segments. The above figure illustrates diffusion model composition using GSC with fixed
start state and unit actions followed by the addition of soft and hard constraint guidance.

588

21

	Introduction
	Related Work
	Preliminaries
	Methodology
	Results
	Limitations
	Conclusion
	Summary of the Algorithm
	Additional Discussion
	Skill Descriptions and Parametrization
	Task Descriptions
	Additional Results
	Hardware Experiment Setup
	Data Collection and Real-World Experiment Details
	Toy Domain: Explained

