

000 SEMoBRIDGE: SEMANTIC MODALITY BRIDGE 001 FOR EFFICIENT FEW-SHOT ADAPTATION OF CLIP 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT

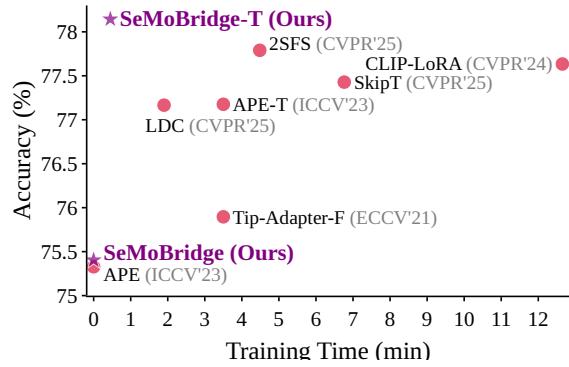
011 While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks
012 by aligning image and text embeddings, its performance in few-shot classification
013 is hindered by a critical limitation: *intra-modal misalignment*. This issue, caused
014 by a persistent *modality gap* and CLIP’s exclusively inter-modal training objec-
015 tive, leaves the embedding spaces uncalibrated, making direct image-to-image
016 comparisons unreliable. Existing methods attempt to address this by refining
017 similarity logits or by computationally expensive per-sample optimization. To
018 overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful
019 approach that directly addresses the misalignment. Our method maps images
020 into the text modality, while keeping their semantic content intact through
021 what we call a *Semantic Modality Bridge*. SeMoBridge is closed-form and can
022 optionally be trained through multi-modal supervision, combining image and
023 text-alignment losses to optimize the projection. Experiments show that the
024 trained version, SeMoBridge-T, requires only a fraction of the training time while
025 overall outperforming other methods, particularly in low-data scenarios (1, 2, and
026 4 shots).

027 1 INTRODUCTION

028 Contrastive Language-Image Pretraining
029 (CLIP) (Radford et al., 2021) consists of a vi-
030 sion encoder and a text encoder that are jointly
031 trained to map images and text into a shared
032 embedding space. By leveraging large-scale
033 image-text pairs and optimizing a contrastive
034 objective, CLIP achieves strong inter-modal
035 alignment and remarkable generalization
036 capability. Owing to these properties, CLIP
037 has been widely adopted for downstream tasks
038 such as zero-shot and few-shot classification.

039 In few-shot classification, a query image must
040 be matched against a small set of labeled exam-
041 ples, which requires accurate image-to-image
042 comparison. Since this is a comparison within
043 the same modality, it can be viewed as an *intra-*
044 *modal* comparison and thus relies on well-
045 calibrated intra-modal alignment.

046 However, CLIP embeddings inherently suffer
047 from a *modality gap* (Liang et al., 2022), i.e., a separation between image and text modalities. This
048 separation, present from initialization, is not resolved by CLIP’s training. Instead, the contrastive
049 objective’s focus on pulling paired samples together across the gap leaves the internal semantic
050 structure of each modality uncalibrated. As a consequence, as shown in Figure 2, a query image of
051 a dog can be mistakenly placed closer to the cat few-shot centroid than to its correct dog counter-
052 part ($d_{\text{cat}} < d_{\text{dog}}$), resulting in misclassification.



053 Figure 1: Comparison of average Accuracy
054 against Training Time of few-shot image classi-
055 fication methods on 11 datasets. Our proposed
056 trained SeMoBridge-T achieves better accuracy
057 using only a fraction of the time.

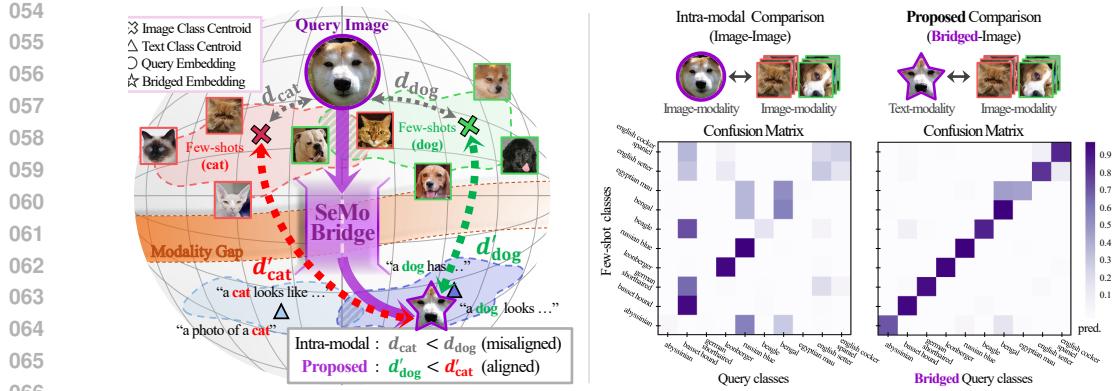


Figure 2: **Left:** Illustration of the modality gap, intra-modal misalignment, and our proposed *Semantic Modality Bridge* (SeMoBridge). Due to intra-modal misalignment, query images can be embedded closer to the wrong class. SeMoBridge addresses this by applying a single unified projection that maps image embeddings into the text modality, preserving their semantics and enabling more accurate comparison. **Right:** Confusion matrices on a subset of 10 classes from the Oxford-Pets dataset, comparing intra-modal and our bridged inter-modal approach. Each matrix shows how query images are classified with respect to the few-shot support classes. SeMoBridge substantially reduces class confusion by enabling more reliable comparisons.

Existing methods tackle this problem from two main directions. Some, such as Tip-X (Udandarao et al., 2023) and APE (Zhu et al., 2023) avoid direct image-to-image comparisons altogether, relying on indirect similarity measures via text prompts. While effective to some extent, this limits the ability to capture fine-grained visual details. In contrast, Cross the Gap (Mistretta et al., 2025) directly addresses this issue by mapping images to the text modality but requires computationally expensive, per-sample optimization.

This leads us to ask our work’s central question: *Can we design a method that overcomes intra-modal misalignment without the high computational cost of per-sample optimization?*

In this paper, we answer this by introducing SeMoBridge, a lightweight and efficient *Semantic Modality Bridge*. It utilizes the pre-trained semantic structure of CLIP to create a single unified projection that is applicable to all inputs and allows direct comparison of images. The advantage of our method is illustrated in Figure 2 (left): Applying SeMoBridge enables aligned inter-modal comparisons between the bridged query image and few-shots ($d'_{\text{dog}} < d'_{\text{cat}}$). Figure 2 (right): The confusion matrices confirm this effect. Intra-modal comparisons often misclassify query images, whereas SeMoBridge reduces such confusion through bridged inter-modal comparison.

Although SeMoBridge is designed to be training-free, it can be efficiently fine-tuned through multi-modal supervised training that improves semantic alignment. By updating only the lightweight bridge while keeping CLIP frozen, our method achieves a very low training cost, as shown in Figure 1. Extensive experiments across diverse benchmarks confirm that SeMoBridge achieves state-of-the-art few-shot performance, especially in low-data scenarios.

We summarize the contributions of our work as follows:

- SeMoBridge, a **lightweight, training-free Semantic Modality Bridge for efficient few-shot adaptation of CLIP** that minimizes compute by avoiding per-sample optimization.
- A **novel multi-modal supervision strategy** combining image and text-alignment losses ensuring bridged embeddings keep semantic knowledge from both modalities, while avoiding backpropagation through CLIP’s encoders.
- Extensive experiments that show **SeMoBridge outperforms existing methods in few-shot learning with significantly less training time**, achieving higher accuracy and better generalization, especially in very low-shot scenarios.

108

2 RELATED WORK

110 **Challenges in CLIP Few-shot Adaptation.** Vision-language models such as CLIP (Radford
 111 et al., 2021) have demonstrated strong performance in zero-shot and few-shot classification by em-
 112 bedding images and texts into a shared semantic space. To leverage this, numerous methods have
 113 been proposed to adapt CLIP to few-shot settings without modifying its pretrained backbone. How-
 114 ever, CLIP few-shot adaptation is challenged by intra-modal misalignment, which arises from the
 115 inherent modality gap in CLIP. This misalignment makes direct image-to-image comparisons unre-
 116 liable, motivating the need for more robust adaptation strategies that address this problem.

117 **Types of CLIP Few-shot Adaptation.** Several approaches operate only at the prediction logit
 118 level, based on Tip-Adapter (Zhang et al., 2021). Tip-X (Udandarao et al., 2023) addresses intra-
 119 modal misalignment by bypassing direct image-to-image comparisons. Instead, it maps both query
 120 and few-shot images into CLIP’s logit space by computing similarity distributions to a set of class
 121 text prompts. These distributions are then compared using KL-divergence, forming an indirect mea-
 122 sure of similarity between images. Adaptive Prior rEfinement (APE) (Zhu et al., 2023) refines CLIP
 123 embeddings through feature selection and computes trilateral affinities among query, few-shot, and
 124 text features, leading to more semantically accurate representations and robust predictions. Unlike
 125 methods that rely on indirect similarity comparisons between query and few-shot embeddings, Logit
 126 DeConfusion (LDC) (Li et al., 2025) introduces adapter modules that leverage the few-shot set to
 127 learn class-level confusion patterns in CLIP, and applies corrections to improve classification.

128 While effective, these approaches operate only at the output logit level, and thus cannot fully lever-
 129 age the inter-modal semantic priors in CLIP. *We argue that a better adaptation can be achieved by*
 130 *operating within the embedding space itself.*

132 **Optimization-based Modality Inversion.** Overcoming the limitations of previous approaches,
 133 recent work (Mistretta et al., 2025) introduces a direct embedding transformation method based
 134 on modality inversion. They propose Optimization-based Textual Inversion (OTI), which learns a
 135 pseudo-text token from a given image embedding, and Optimization-based Visual Inversion (OVI),
 136 which is the reverse. While this approach provides a solution for intra-modal misalignment, it
 137 requires iterative optimization at inference for every image or text sample, which increases compu-
 138 tational cost and limits flexibility.

139 **Closed-form Modality Inversion.** SD-IPC (Ding et al., 2023) proposes a closed-form projection
 140 method originally developed for converting image embeddings into the prompt embedding space
 141 of Stable Diffusion (Rombach et al., 2022). Unlike OTI/OVI, which employ iterative optimiza-
 142 tion, SD-IPC leverages the pre-trained alignment between CLIP’s image and text embeddings. It
 143 enables efficient closed-form inversion without iterative optimization per-sample. This provides a
 144 lightweight and general-purpose mechanism for modality inversion, although it is not designed for
 145 classification.

146 **Relations to Our Approach.** Unlike existing approaches, our proposed SeMoBridge is the first
 147 to address intra-modal misalignment by fully leveraging CLIP’s inter-modal semantic priors, while
 148 remaining efficient and closed-form. In contrast to methods which operate only with similarity
 149 logit refinement, SeMoBridge bridges the modality gap by mapping image embeddings into the text
 150 space, enabling more reliable inter-modal comparisons. Different from OTI/OVI, that require ex-
 151 pensive per-sample optimization at inference, our method eliminates this overhead through a single
 152 shared projection that generalizes across all samples.

154

3 METHODOLOGY

155

3.1 PRELIMINARIES.

158 **CLIP Review.** We utilize the pre-trained CLIP model (Radford et al., 2021), which maps images
 159 and texts into a shared d -dimensional embedding space. Given an image x and a corresponding
 160 caption t (e.g., “a shiba inu smiling into the camera”), their embeddings are computed as follows:

$$161 \mathbf{x}_{\text{enc}} = \text{Enc}_{\text{img}}(x) \in \mathbb{R}^{d_i}, \quad \mathbf{x}_{\text{img}} = \mathbf{W}_{\text{img}}(\mathbf{x}_{\text{enc}}) \in \mathbb{R}^d,$$

$$162 \quad \mathbf{t}_{\text{eos}} = \text{EOS}(\text{Enc}_{\text{txt}}(t)) \in \mathbb{R}^{d_t}, \quad \mathbf{t}_{\text{txt}} = \mathbf{W}_{\text{txt}}(\mathbf{t}_{\text{eos}}) \in \mathbb{R}^d,$$

163
 164 where Enc_{img} is the image encoder and Enc_{txt} the text encoder. $\text{EOS}(\cdot)$ extracts the end-of-
 165 sequence (EOS) token from the text encoder’s output, which contains the semantic summary of
 166 the text input. Finally, both images and texts are projected to \mathbf{x}_{img} and \mathbf{t}_{txt} through \mathbf{W}_{img} and
 167 \mathbf{W}_{txt} , respectively, and then aligned in the shared space through contrastive training.

168 **Few-shot classification problem.** CLIP embeds transferable representations that enable both
 169 zero-shot and few-shot learning across diverse visual concepts. Our goal is to predict the class
 170 label $y_q \in \{1, \dots, C\}$ of a query image x_q by leveraging the given few-shot set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{C \times K}$,
 171 of K shots for each class, totaling $C \times K$ images. $\mathbf{L} \in \mathbb{R}^{CK \times C}$ denotes the one-hot encoded labels
 172 for the few-shot set.
 173

174 An intuitive approach is to embed both the query image $\mathbf{f}_{\text{img}} \in \mathbb{R}^d$ and few-shot images $\mathbf{F}_{\text{img}} \in$
 175 $\mathbb{R}^{C \times K \times d}$ with CLIP, and then compute class-wise similarities $\mathbf{f}_{\text{img}} \mathbf{F}_{\text{img}}^\top$ for classification. How-
 176 ever, due to intra-modal misalignment, image-image comparisons are often unreliable. As shown in
 177 Figure 2, they can be noisy and fail to reflect true semantic relationships, highlighting the need for a
 178 more robust solution.
 179

180 3.2 SEMANTIC MODALITY BRIDGE.

181 We address this challenge by converting intra-modal comparisons into robust inter-modal ones,
 182 leveraging the strong image-text alignment that CLIP was trained to learn. Our idea is to adapt
 183 this alignment for few-shot classification by producing a text-like bridged embedding from an im-
 184 age that allows more reliable comparisons within CLIP’s shared space.
 185

186 To achieve this, we build on SD-IPC (Ding et al., 2023), which introduced a method for deriving
 187 a “pseudo” End-of-Sequence (EOS) token from an image embedding that preserves its semantics.
 188 While originally proposed for generating prompts in text-to-image models such as Stable Diffu-
 189 sion (Rombach et al., 2022), we repurpose this mechanism for few-shot classification. Formally, we
 190 first derive a pseudo-EOS token $\hat{\mathbf{f}}_{\text{eos}}$ using SD-IPC’s approach. Then we map it through CLIP’s text
 191 projection layer \mathbf{W}_{txt} to obtain our final bridged embedding $\hat{\mathbf{f}}_{\text{txt}}$, which can be directly and reliably
 192 compared with image embeddings in CLIP’s shared space.
 193

194 This process is justified by CLIP’s training objective, which explicitly maximizes the cosine simi-
 195 larity between paired image and text embeddings. This forces their vector representations to *point*
 196 *in the same direction* within the shared space. Based on this, we can assume that the normalized
 197 vectors of an image embedding \mathbf{f}_{img} and its corresponding (but unknown) text embedding $\hat{\mathbf{f}}_{\text{txt}}$ are
 198 approximately equal:

$$199 \quad \frac{\mathbf{f}_{\text{img}}}{\|\mathbf{f}_{\text{img}}\|} \approx \frac{\hat{\mathbf{f}}_{\text{txt}}}{\|\hat{\mathbf{f}}_{\text{txt}}\|}, \quad \text{where } \hat{\mathbf{f}}_{\text{txt}} = \mathbf{W}_{\text{txt}} \hat{\mathbf{f}}_{\text{eos}}. \quad (1)$$

200 With this approximation, we can estimate the unknown pseudo-EOS token $\hat{\mathbf{f}}_{\text{eos}}$. The idea is to back-
 201 project the pseudo text embedding $\hat{\mathbf{f}}_{\text{txt}}$ through the text projection matrix using its Moore–Penrose
 202 pseudo-inverse $\mathbf{W}_{\text{txt}}^+$ (Penrose, 1955). Since Eq. 1 implies that \mathbf{f}_{img} ’s direction is aligned with $\hat{\mathbf{f}}_{\text{txt}}$,
 203 we can substitute \mathbf{f}_{img} in its place.
 204

$$205 \quad \hat{\mathbf{f}}_{\text{eos}} \approx \frac{\|\hat{\mathbf{f}}_{\text{eos}}\|}{\|\mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}\|} \mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}} \approx \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}\|} \mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}. \quad (2)$$

206 After the inverse projection, the magnitude (norm) may not match that of a real EOS token $\hat{\mathbf{f}}_{\text{eos}}$. To
 207 correct for this, we rescale $\|\mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}\|$ so that it matches genuine EOS tokens. However, the true
 208 norm $\|\hat{\mathbf{f}}_{\text{eos}}\|$ is unknown, we approximate it as the average EOS norm across all class descriptions.
 209 $\|\mathbf{T}_{\text{eos}}\|$, which is computed as $\frac{1}{CK} \sum_{c=1}^C \sum_{k=1}^K \|\mathbf{T}_{\text{eos}}^{c,k}\|$.
 210

211 Finally, we project it into the shared space to get the final bridged embedding:
 212

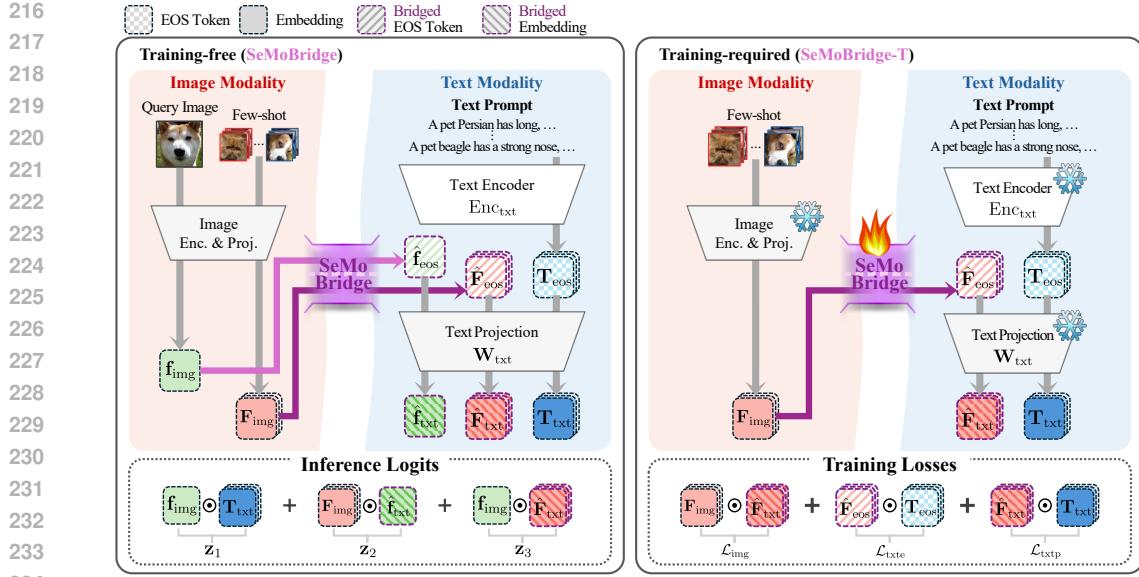


Figure 3: Overall architecture of our method. **Left:** At inference time, SeMoBridge maps both query and few-shot images into the text modality. The resulting pseudo-EOS tokens are passed through CLIP’s text projection layer, enabling robust inter-modal comparisons. Classification is performed by blending three logits: CLIP’s Zero-Shot Prior, Original Few-Shots vs. Bridged Query, and Original Query vs. Bridged Few-Shots. **Right:** SeMoBridge-T is supervised from both images and texts. Three primary loss terms are used: image alignment, encoded text alignment, and projected text alignment. Only the SeMoBridge parameters are updated, and all CLIP components remain frozen.

$$\hat{\mathbf{f}}_{\text{txt}} = \mathbf{W}_{\text{txt}} \hat{\mathbf{f}}_{\text{eos}} \approx \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}\|} \mathbf{f}_{\text{img}} \quad (3)$$

Here, by rearranging the scale factor to the front, we observe that the composition $\mathbf{W}_{\text{txt}} \mathbf{W}_{\text{txt}}^+$ approximately forms an identity matrix due to the properties of the pseudo-inverse. As a result, the transformation simplifies to a scaled version of the original image embedding, with its magnitude aligned to that of a text embedding. Through this process, we can now perform image-image comparisons inter-modally $\mathbf{f}_{\text{img}} \mathbf{F}_{\text{img}} \rightarrow \hat{\mathbf{f}}_{\text{txt}} \mathbf{F}_{\text{img}}$ (see Figure 2).

3.3 TRAINING-FREE SEMOBRIDGE INFERENCE.

SeMoBridge offers a powerful baseline that requires no training. It works by initializing the bridge with the pseudo-inverse of CLIP’s text projection matrix.

To make a final prediction, we combine CLIP’s zero-shot prior with two few-shot signals derived from our bridge. This is achieved by blending the logit scores (see Figure 3), each playing a specific role in refining the classification decision:

- **\mathbf{z}_1 Zero-Shot Prior.** Standard inter-modal CLIP zero-shot logit, calculated as the similarity between the original query image embedding (\mathbf{f}_{img}) and the class text prompts (\mathbf{T}_{txt}).
- **\mathbf{z}_2 Original Few-Shots (\mathbf{F}_{img}) vs. Bridged Query ($\hat{\mathbf{f}}_{\text{txt}}$).** This compares how well the bridged query image matches the class few-shot images through CLIP’s inter-modal space.
- **\mathbf{z}_3 Original Query (\mathbf{f}_{img}) vs. Bridged Few-Shots ($\hat{\mathbf{f}}_{\text{txt}}$).** This offers a complementary signal by doing the reverse: we now compare the original query image against the bridged versions of the few-shot images, increasing robustness.

The final prediction is a weighted sum of these three logits: $\mathbf{z}_q = \lambda_1 \mathbf{z}_1 + \lambda_2 \mathbf{z}_2 + \lambda_3 \mathbf{z}_3$.

Where λ_i are scalar blending weights that balance the contribution of each similarity signal. Additionally, we adapt the same logit sharpening strategy as APE (Zhu et al., 2023). All parameters

270 are tuned via optimization on a validation set. This strategy enables SeMoBridge to robustly blend
 271 signals while dynamically adapting to class confidence.
 272

273 **3.4 MULTI-MODAL SUPERVISED SEMOBRIDGE-T TRAINING.**

275 By using multi-modal supervision, SeMoBridge-T is trained to align the bridged embeddings with
 276 both their original images and class descriptions. This ensures robust semantic alignment with their
 277 respective class. To adapt the projection better for our task, we add a class-specific bias (CSB)
 278 term $\hat{\tau} \in \mathbb{R}^{C \times d_t}$ for each class after the transformation. This allows the bridge to capture nuanced
 279 semantic differences across a large number of classes (e.g. 1000 for ImageNet), overcoming the
 280 expressiveness bottleneck of a single projection.

281 Formally, during training, few-shot embeddings of a class c are bridged into the text modality fol-
 282 lowing the procedure described in Section 3.2, in addition to the CSB term:

$$283 \hat{\mathbf{F}}_{\text{eos}}^c \approx \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\hat{\mathbf{W}}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^c + \hat{\tau}^c\|} (\hat{\mathbf{W}}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^c + \hat{\tau}^c) \quad (4)$$

286 Here, $\hat{\mathbf{W}}_{\text{txt}}^+$ and $\hat{\tau}$ are learnable and our parameters to optimize. $\hat{\mathbf{F}}_{\text{eos}}^c$ is projected to $\hat{\mathbf{F}}_{\text{txt}}^c$ through
 287 CLIP’s text projection \mathbf{W}_{txt} . Notably, the CSB learned from the few-shot set during training is not
 288 applied to bridge the query image embedding \mathbf{f}_{img} , since its class is unknown.

289 We train SeMoBridge-T using the following multi-modal loss objective:

$$291 \mathcal{L} = \lambda_{\text{it}} \mathcal{L}_{\text{img}} + (1 - \lambda_{\text{it}}) \left(\frac{\mathcal{L}_{\text{txte}} + \mathcal{L}_{\text{txtp}}}{2} \right) + \lambda_{\text{c}} \mathcal{L}_{\text{cons}} + \lambda_{\text{b}} \mathcal{L}_{\text{bias}} \quad (5)$$

294 First, \mathcal{L}_{img} ensures that the bridged few-shots $\hat{\mathbf{F}}_{\text{txt}}$ retain semantic information of the few-shot
 295 embeddings \mathbf{F}_{img} , computed using the centroid of the K shots per class. Second, $\mathcal{L}_{\text{txte}}$ encourages
 296 alignment to the class description EOS tokens \mathbf{T}_{eos} . $\mathcal{L}_{\text{txtp}}$ is the same, but in projected CLIP space.
 297 Together, these primary losses guide the bridge to learn representations that retain both visual and
 298 textual semantic information. Image and text influence is balanced by a hyperparameter $\lambda_{\text{it}} = \frac{1}{2}$,
 299 which we keep fixed for all datasets.

300 In addition, we include $\mathcal{L}_{\text{cons}}$ as a generalization that encourages all bridged few-shots $\hat{\mathbf{F}}_{\text{txt}} \in$
 301 $\mathbb{R}^{C \times K \times d}$ within the same class to be similar to each other. This promotes more robust representa-
 302 tions for each class. The final term $\mathcal{L}_{\text{bias}}$ stabilizes training by regularizing the norms of the CSB
 303 vectors $\hat{\tau} \in \mathbb{R}^{C \times d_t}$, ensuring that they remain balanced across classes. This is particularly impor-
 304 tant because these biases are not applied when bridging query images during inference, and high
 305 variation could lead to instability of the bridge. Their respective coefficients $\lambda_{\text{c}} = \frac{1}{10}$ and $\lambda_{\text{b}} = \frac{1}{10}$
 306 are both fixed as well.

307 **4 EXPERIMENTS**

310 We evaluate SeMoBridge and SeMoBridge-T
 311 across 11 datasets commonly used in few-shot
 312 image classification (details in Appendix A.1).
 313 All experiments are done using CLIP’s ViT-
 314 B/16 unless otherwise stated. Further imple-
 315 mentation details are in Appendix A.2.

316 **Performance against state-of-the-art.** Fig-
 317 ures 4 and 5 present accuracy across all
 318 datasets and shot counts for SeMoBridge and
 319 SeMoBridge-T, respectively. The training-
 320 free SeMoBridge outperforms APE on 7/11
 321 datasets, with great improvements on low shot
 322 counts (1, 2, and 4). Similarly, SeMoBridge-T
 323 overall outperforms all prior methods on low shot
 counts while requiring a fraction of the training time (see Figure 1). Results on RN-50 are reported
 in Appendices 11 and 12.

Table 1: Comparison of training metrics. We re-
 port average accuracy (%) of all shot settings. Pa-
 rameters are for 16-shot ImageNet on ViT-B/16.

Method	Param.	Avg. Time	Avg. Acc.
CoOp	0.01 M	10 h 0 min	63.90
CLIP-Adapter	0.52 M	32 min	69.45
Tip-Adapter-F	16.3 M	4 min	75.90
LDC	69 M	2 min	77.17
APE-T	0.51 M	3 min 30 s	77.18
PromptSRC	0.05 M	1 h 42 min	77.90
SeMoBridge-T w/o CSB	0.26 M	22 s	78.14
SeMoBridge-T	0.77 M	27 s	78.15

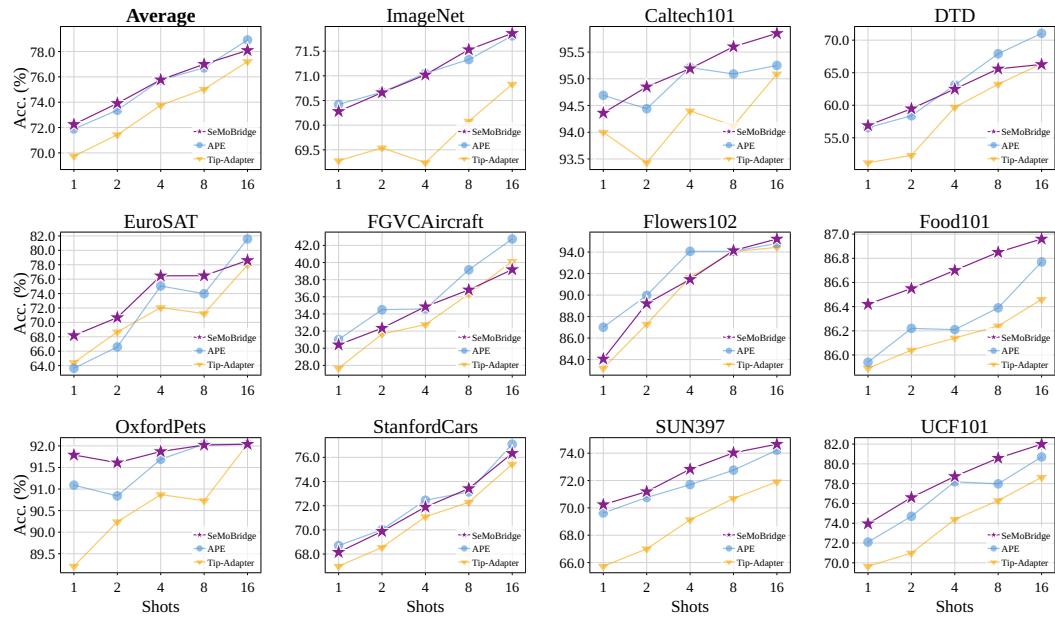


Figure 4: Few-shot accuracy of training-free SeMoBridge against other methods with ViT-B/16.

Efficiency Analysis. We report parameter count, training time, and accuracy in Table 1. SeMoBridge-T achieves superior accuracy to other methods, while requiring a fraction of the training time. This is the result of its lightweight architecture, backpropagating through only the text projection and small projection module. The minimal memory and compute footprint makes SeMoBridge highly practical for real-world applications.

Robustness to Distribution Shift. In Table 2, we evaluate robustness to distribution shift by using the 16-shot standard ImageNet few-shot set and testing on variants. Interestingly, SeMoBridge-T outperforms existing methods on both OOD sets by up to +0.71 % even though standard ImageNet accuracy is lower. This suggests that the bridged representations generalize well across domains and is robust.

5 ABLATION STUDY

The Role of Text Supervision. SeMoBridge-T excels in low-data settings (1, 2, and 4 shots) due to its effective use of text supervision, an advantage that grows as the number of shots decreases. Figure 6 (right) reveals that descriptive, LLM-generated prompts, such as CuPL (Pratt et al., 2023), provide a greater performance benefit over simpler templates when fewer images are available. These rich prompts offer class-specific semantic information, such as attributes and context, which the model can leverage when visual data is scarce. SeMoBridge-T is designed to take advantage of this: during training, bridged embeddings are aligned with both image and text modalities. This allows the model to rely on strong semantic priors from text prompts when image supervision is weak. Ablation studies (Table 3) confirm this, showing that adding textual alignment losses ($\mathcal{L}_{\text{txtc}}$ and $\mathcal{L}_{\text{txtcp}}$) provides the largest accuracy boost in 1-shot scenarios. The benefit of text supervision diminishes in

Table 2: Comparison of accuracy (%) under 16-shot ImageNet out-of-distribution setting.

Method	Source	Target	
		ImageNet	-V2 -Sketch
<i>Zero-Shot</i>			
CLIP	66.73	60.83	46.15
<i>Training-free</i>			
APE	71.81	64.81	49.95
SeMoBridge	71.86 \pm 0.05	64.90 \pm 0.08	49.55 \pm 0.02
<i>Training</i>			
CoOp	71.51	64.20	47.99
CoCoOp	71.02	64.07	48.75
MaPLe	70.72	64.07	49.15
LDC	73.88	66.10	48.85
APE-T	74.13	66.21	49.73
SeMoBridge-T	73.98 \pm 0.05	66.49 \pm 0.04	50.44 \pm 0.14
	-0.15	+0.28	+0.71

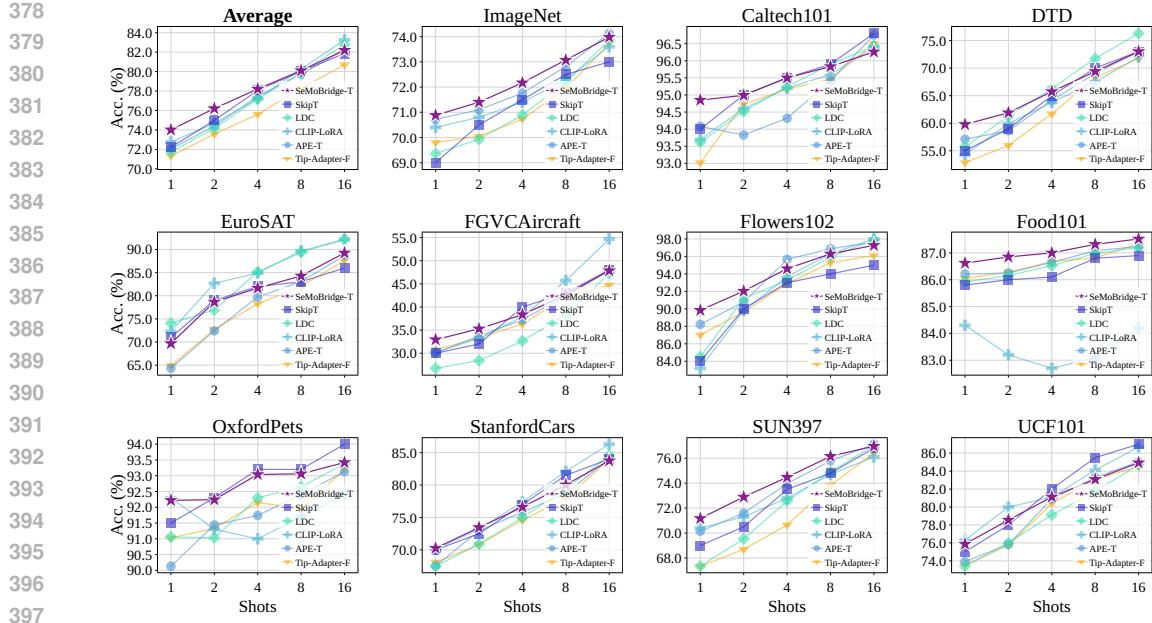
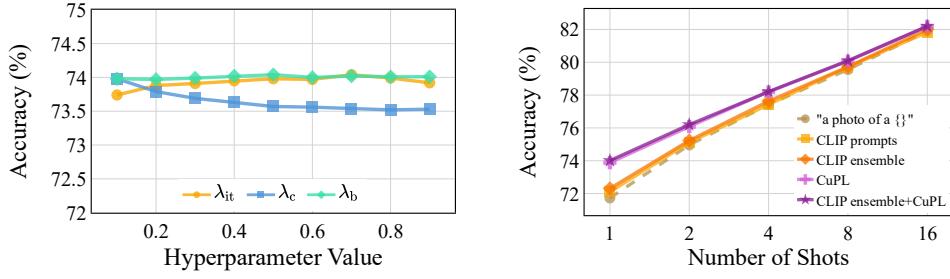


Figure 5: Few-shot accuracy of trained SeMoBridge-T against other methods with ViT-B/16.

Figure 6: **Left:** Sensitivity analysis of λ_{it} , λ_c , and λ_b on 16-shot ImageNet. Performance is stable across varying hyperparameters. **Right:** Analysis of different class text prompt templates on SeMoBridge-T’s average accuracy over 11 datasets for different numbers of shots.

higher-shot settings (8-16 shots) as the model can increasingly rely on the visual information from the larger set of few-shot images.

Cosine similarity distribution. An analysis of cosine similarity distributions (Figure 7) shows the effectiveness of SeMoBridge in addressing intra-modal misalignment. Direct image-to-image comparisons (2) suffer from poor calibration, demonstrated by a large overlap in similarity scores between images of the same class (paired) and those from different classes (unpaired).

SeMoBridge resolves this by transforming image embeddings into the text modality, which preserves semantic information and achieves a much clearer separation between paired and unpaired samples (3), similarly to CLIP’s pre-training (1).

The trained version, SeMoBridge-T, further enhances this effect, increasing the separation between the distributions (4) and confirming its ability to correct the misalignment and enable more reliable comparisons.

Impact of loss terms. Table 3 presents an ablation of the SeMoBridge-T training loss components. Image supervision (\mathcal{L}_{img}) is most critical when a large number of shots are available (16-shot). However, in very low-data settings (1-shot), the addition of text supervision (\mathcal{L}_{txt} , \mathcal{L}_{txtp}) becomes essential. It provides complementary semantic knowledge from LLMs, which improves performance when visual data is scarce. Combining both image and text supervision leads to consistent improvements across all settings.

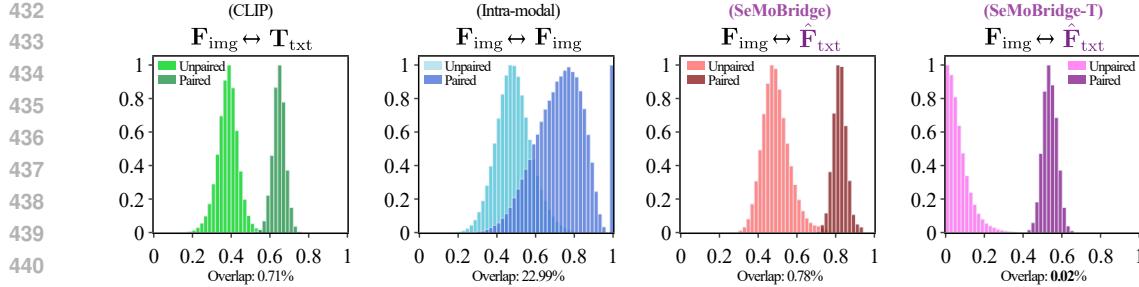


Figure 7: **Histogram of cosine similarity distributions on ImageNet’s few-shot set using different comparison methods.** Each method shows the similarity for unpaired (different class) and paired (same class).

While the consistency loss $\mathcal{L}_{\text{cons}}$ shows no benefit in the 1-shot regime, where there is no intra-class variation in the few-shot set, it becomes important as the number of shots increases. In the 16-shot setting, it improves generalization by encouraging the bridged embeddings of all shots within the same class to stay similar. Finally, the bias norm regularization $\mathcal{L}_{\text{bias}}$ provides additional stability with the best-performing configuration.

Ablation of Logits. Table 4 presents SeMoBridge’s accuracy when using only specific logit signals for prediction. The first row with only \mathbf{z}_1 refers to zero-shot CLIP. \mathbf{z}_2 and \mathbf{z}_3 are SeMoBridge-derived logits. Notably, SeMoBridge and SeMoBridge-T are both able to achieve excellent accuracy even without CLIP’s logit signal ($\mathbf{z}_2 + \mathbf{z}_3$). Although the 1-shot-scenario does not provide enough information for the training-free model in this case, SeMoBridge-T’s training strategy yields large improvements.

In the trained model, bridging the few-shot images to the text modality (\mathbf{z}_3) yields the best accuracy when using only a single logit signal. This is because SeMoBridge-T was trained to bridge the few-shot set into the text modality while preserving the semantic information. Bridging the unseen query image (\mathbf{z}_2) is also effective for the 16-shot scenario.

6 CONCLUSION

We propose SeMoBridge, a *Semantic Modality Bridge* that efficiently adapts CLIP for few-shot classification by resolving intra-modal misalignment. By bridging image embeddings into the text modality via a closed-form transformation, SeMoBridge enables more accurate few-shot learning by leveraging CLIP’s strong inter-modal alignment. Its lightweight trainable variant, SeMoBridge-T, uses multi-modal supervision to further enhance performance. Extensive experiments across 11 datasets confirm that our method achieves state-of-the-art results with minimal computational cost, outperforming existing baselines. Future work will extend SeMoBridge to other CLIP-based tasks like multi-modal retrieval and object detection.

Table 3: **Ablation study of SeMoBridge-T’s training loss terms and their impact on accuracy (%) over 11 datasets for 1 and 16 shot tasks.**

	Loss Terms					K-Shot-Accuracy (%)		
	\mathcal{L}_{img}	$\mathcal{L}_{\text{txtp}}$	$\mathcal{L}_{\text{txte}}$	$\mathcal{L}_{\text{cons}}$	$\mathcal{L}_{\text{bias}}$	1	16	avg.
<i>No supervision</i>								
						72.25	78.09	75.17
<i>Image</i>								
✓						72.74	81.79	77.27
✓			✓	✓		72.95	82.38	77.67
<i>Text</i>								
✓	✓					71.91	77.47	74.69
✓	✓	✓	✓	✓		72.17	77.15	74.66
<i>Image + Text</i>								
✓	✓	✓	✓			73.96	81.88	77.92
✓	✓	✓	✓	✓		73.99	82.18	78.09
✓	✓	✓	✓	✓	✓	74.01	82.20	78.11

Table 4: **Ablation of the impact of logit signals on accuracy over 11 datasets for 1 and 16 shot tasks.** Results are shown for both the training-free *SeMoBridge* and the trained *SeMoBridge-T*.

Logits	K-Shot-Accuracy (%)								
	SeMoBridge			SeMoBridge-T			1	16	avg.
\mathbf{z}_1	\mathbf{z}_2	\mathbf{z}_3	1	16	avg.	1	16	avg.	
✓			65.52	65.52	65.52	65.52	65.52	65.52	
	✓		40.92	70.78	55.85	42.26	77.12	59.69	
		✓	37.23	62.59	49.91	72.36	81.31	76.84	
	✓	✓	40.97	70.72	55.85	72.58	82.05	77.32	
✓	✓		72.25	78.06	75.16	73.65	81.62	77.64	
✓	✓	✓	72.25	78.09	75.17	74.02	82.35	78.11	

486 **Reproducibility Statement.** To ensure the reproducibility of our results and ensure a fair com-
 487 parison with prior work, all of our experiments are built upon the Dassl framework by the CoOp
 488 authors (Zhou et al., 2022). Given that few-shot accuracy is highly sensitive to the specific samples
 489 available, its use guarantees that we evaluate our approach on the exact same few-shot data splits
 490 as methods like CoOp and Tip Adapter (Zhang et al., 2021). Comprehensive details regarding the
 491 datasets, data augmentation strategies, hyperparameters, and other implementation specifics are doc-
 492 mented in the Appendices A.1 and A.2. Our full source code with running instructions is included
 493 in the supplementary material.

494 **REFERENCES**

- 497 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
 498 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
 499 2014.
- 500 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 501 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
 502 *pattern recognition*, pp. 3606–3613, 2014.
- 503 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 504 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 505 pp. 248–255. Ieee, 2009.
- 507 Yuxuan Ding, Chunna Tian, Haoxuan Ding, and Lingqiao Liu. The clip model is secretly an image-
 508 to-prompt converter. *Advances in Neural Information Processing Systems*, 36:56298–56309,
 509 2023.
- 510 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 511 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference*
 512 *on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.
- 514 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 515 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 516 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.
- 517 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 518 categorization. In *Proceedings of the IEEE international conference on computer vision work-
 519 shops*, pp. 554–561, 2013.
- 521 Shuo Li, Fang Liu, Zehua Hao, Xinyi Wang, Lingling Li, Xu Liu, Puhua Chen, and Wenping Ma.
 522 Logits deconfusion with clip for few-shot learning. In *Proceedings of the Computer Vision and*
 523 *Pattern Recognition Conference*, pp. 25411–25421, 2025.
- 524 Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
 525 gap: Understanding the modality gap in multi-modal contrastive representation learning. *Ad-
 526 vances in Neural Information Processing Systems*, 35:17612–17625, 2022.
- 527 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 528 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.
- 530 Marco Mistretta, Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Andrew D. Bag-
 531 danov. Cross the gap: Exposing the intra-modal misalignment in clip via modality inver-
 532 sion. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 533 <https://openreview.net/forum?id=VVVfuiCmKR>.
- 534 Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
 535 language-image pre-training. In *European conference on computer vision*, pp. 529–544. Springer,
 536 2022.
- 538 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 539 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 722–729. IEEE, 2008.

- 540 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 541 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.
 542
- 543 Roger Penrose. A generalized inverse for matrices. *Mathematical proceedings of the Cambridge*
 544 *philosophical society*, 51(3):406–413, 1955.
- 545 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
 546 ating customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF*
 547 *International Conference on Computer Vision*, pp. 15691–15701, 2023.
- 548 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 549 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 550 models from natural language supervision. In *International conference on machine learning*, pp.
 551 8748–8763. PMLR, 2021.
- 552 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 553 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 554 2019.
- 555 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 556 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 557 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 558
- 559 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 560 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
- 561
- 562 Vishaal Udandarao, Ankush Gupta, and Samuel Albanie. Sus-x: Training-free name-only transfer of
 563 vision-language models. In *Proceedings of the IEEE/CVF International Conference on Computer*
 564 *Vision*, pp. 2725–2736, 2023.
- 565
- 566 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 567 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 568 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.
- 569
- 570 Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
 571 sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. *arXiv*
 572 *preprint arXiv:2111.03930*, 2021.
- 573
- 574 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 575 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.
- 576
- 577 Xiangyang Zhu, Renrui Zhang, Bowei He, Aojun Zhou, Dong Wang, Bin Zhao, and Peng Gao. Not
 578 all features matter: Enhancing few-shot clip with adaptive prior refinement. In *Proceedings of the*
 579 *IEEE/CVF international conference on computer vision*, pp. 2605–2615, 2023.
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593

594 **A APPENDIX**595 **A.1 DATASET DETAILS**

598 We evaluate SeMoBridge and SeMoBridge-T across 11 datasets commonly used in few-shot im-
 599 age classification: OxfordPets (Parkhi et al., 2012), OxfordFlowers (Nilsback & Zisserman, 2008),
 600 FGVCAircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Stan-
 601 fordCars (Krause et al., 2013), Food101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010), Cal-
 602 tech101 (Fei-Fei et al., 2004), UCF101 (Soomro et al., 2012), and ImageNet (Deng et al., 2009). For
 603 robustness evaluation, we follow standard practice and test on out-of-distribution (OOD) splits -V2
 604 and -Sketch (Recht et al., 2019) derived from ImageNet. In all experiments, we follow the few-shot
 605 setup of CoOp (Zhou et al., 2022), using 1, 2, 4, 8, or 16 labeled image samples per class. For each
 606 dataset, shot count, and vision encoder, we run three experiments with seeds 1, 2, and 3. We report
 607 the standard deviation of the accuracy based on them.

608 In Table 5, we present dataset sizes, the calculated $\|\mathbf{T}^{\text{eos}}\|$ from Equation 4, and which data aug-
 609mentation is applied to the few-shot sets. Augmented shots are treated the same as "real" shots,
 610 essentially increasing the size of K by creating altered images.

611 Table 5: Dataset statistics including average CLIP text token length $\|\mathbf{T}^{\text{eos}}\|$ and data augmentation
 612 strategy.

Dataset	Classes	Train	Test	$\ \mathbf{T}^{\text{eos}}\ $		Few-shot Augmentation							
				ViT-B/16	RN-50	Aug.	Epochs	Hor. Flip	Rand. Res.	Crop	Rand.	Hor. Flip	Col. Jitter
ImageNet	1,000	1.28M	50,000	19.82	18.78	1		✓					
Caltech101	100	4,128	2,465	19.37	18.40	0							
DTD	47	2,820	1,692	20.10	18.89	10			✓		✓		✓
EuroSAT	10	1,600	8,100	20.26	19.08	1		✓					
FGVCAircraft	100	3,334	3,333	20.42	19.31	1		✓					
Flowers102	102	4,093	2,463	21.02	19.59	10			✓		✓		✓
Food101	101	50,500	30,300	19.89	18.87	0							
OxfordPets	37	2,944	3,669	20.79	19.53	0							
StanfordCars	196	6,509	8,041	20.67	19.55	1		✓					
SUN397	397	15,880	19,850	19.49	18.56	1		✓					
UCF101	101	7,639	3,783	19.99	18.86	1		✓					

623 **A.2 IMPLEMENTATION DETAILS**

624 For class text descriptions, we use a combination of CLIP's handmade templates and CuPL-
 625 generated LLM prompts (Pratt et al., 2023), following APE (Zhu et al., 2023). We apply horizontal
 626 flipping, random resized crop, and color jittering as data augmentation to the few-shot set. This is
 627 applied depending on the dataset characteristics.

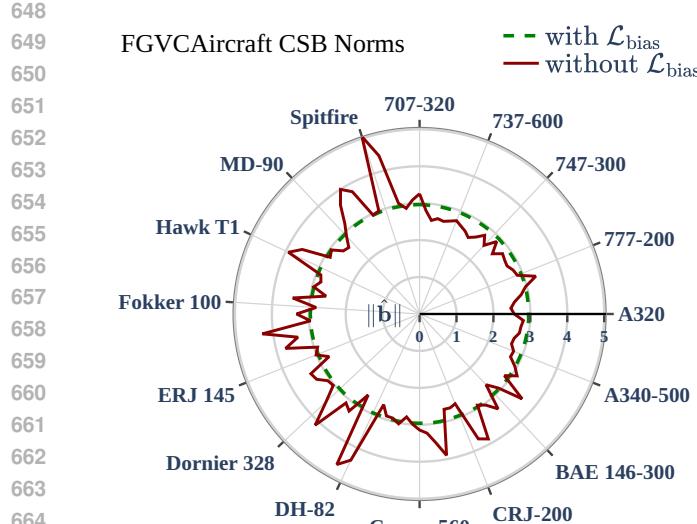
628 All input images are resized such that the longer side is 224 pixels, followed by center-crop to $224 \times$
 629 224, and normalization following CLIP preprocessing. SeMoBridge-T is trained using AdamW for
 630 5000 epochs, with a fixed learning rate of $0.15e-4$ and linear warmup for the first 500 epochs. We
 631 preload all few-shot samples into GPU memory, eliminating the need for batching. After training,
 632 we first select the best model epoch based on the accuracy on the held-out validation set, and then
 633 optimize the logit blending parameters on it.

634 We run the experiments using an RTX 4090 (24GB) and a Ryzen 5 5600X with 32GB RAM on
 635 Ubuntu 22.04 LTS. GPU memory used during training is 10GB. Main packages are Python 3.12.8
 636 and PyTorch version 2.7.0 on CUDA 12.8.

637 **A.3 THE ROLE OF CLASS-SPECIFIC BIAS AND $\mathcal{L}_{\text{bias}}$**

638 To better understand the behaviour of the class-specific bias (CSB) vectors used in SeMoBridge-T,
 639 we analyze their ℓ_2 -norms across the classes of the FGVCAircraft dataset. We compare 16-shot
 640 models trained with and without the regularization term $\mathcal{L}_{\text{bias}}$.

641 As shown in Figure 8, the regularized biases (green) have no variance. The class-specific vectors
 642 are uniformly scaled, which helps the bridge to stay balanced across classes. In contrast, the unreg-
 643 ularized norms (red) vary much more, indicating that some classes dominate the bridge more than
 644 others.



668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Figure 8: Class-specific bias norm $\|\hat{r}\| \in \mathbb{R}^C$ comparison with and without $\mathcal{L}_{\text{bias}}$ on FGVCAircraft’s 100 classes.

This is a problem during inference. Since the class of the query image is unknown, we cannot apply the class-specific bias to it. The bridge must operate in a way that is semantically centered across all classes. If the learned biases are highly unbalanced, the bridged query embedding may be pulled towards a subset of the classes, hindering generalization.

Interestingly, the bias norm is smaller for “regular looking” or common aircraft such as the 707-320, CRJ-200, and MD-90. For more visually distinct aircraft like the Hawk T1 and Spitfire, the bias norm is much larger. This suggests that the unregularized bridge is centered around the more typical aircraft, which makes the bridging less effective for unusual classes. A Spitfire query, for example, may be poorly aligned if the bridge has shifted away from that region of the space.

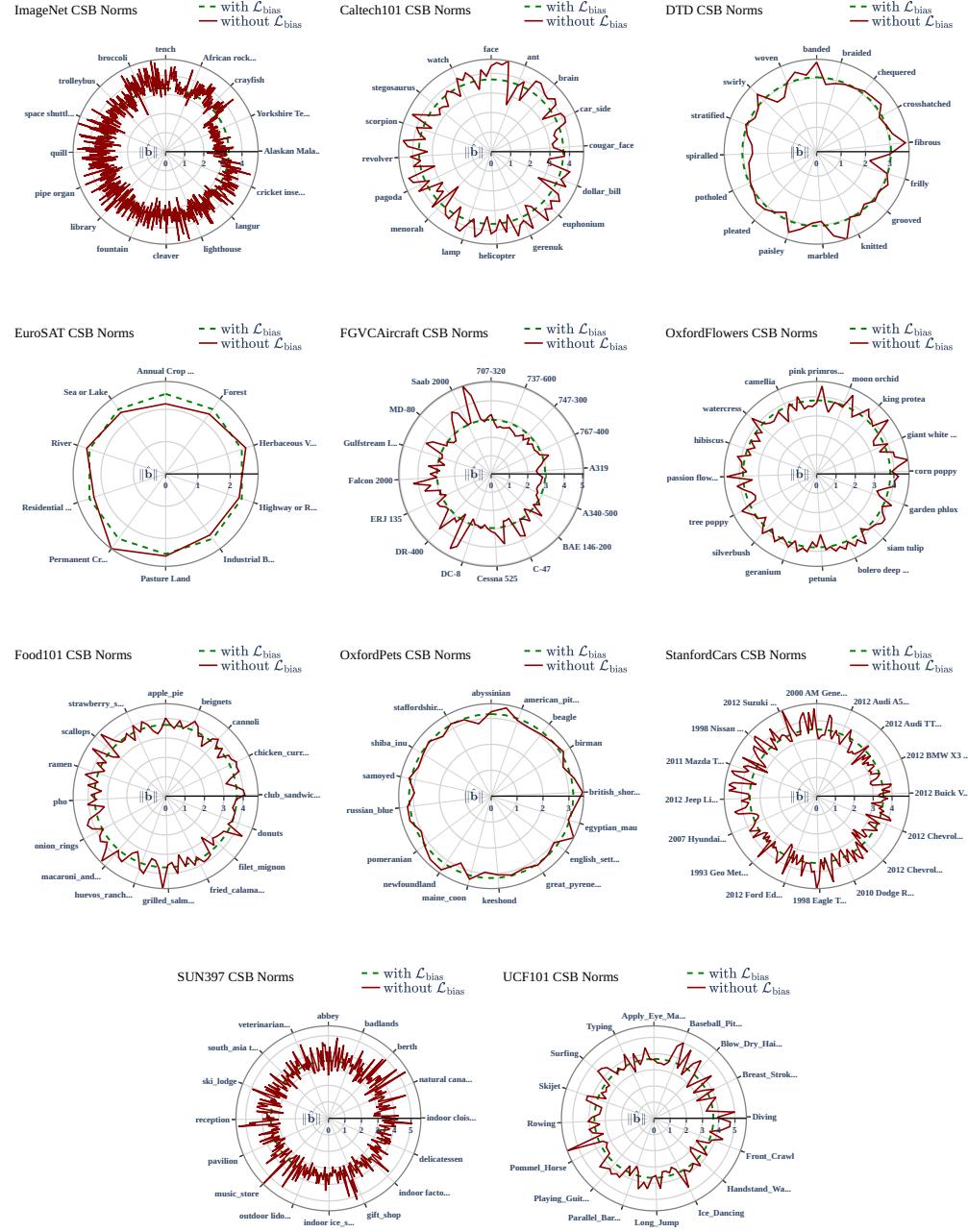
Regularizing the bias norms encourages the model to keep all classes equally represented in the bridging space. This helps maintain alignment even for visually unique classes, improving generalization at inference time.

We report class-specific bias norms for all 11 datasets in Figure 10.

Table 6: Impact of CSB across all datasets.

Method	Shots	Pets	Flowers	Aircraft	DTD	EuroSAT	Cars	Food101	SUN397	Caltech	UCF101	ImageNet	Avg
CLIP zero-shot	0	89.10 \pm 0.00	70.73 \pm 0.00	24.69 \pm 0.00	44.09 \pm 0.00	48.31 \pm 0.00	65.61 \pm 0.00	85.87 \pm 0.00	62.59 \pm 0.00	93.35 \pm 0.00	67.62 \pm 0.00	68.73 \pm 0.00	65.52
SeMoBridge-T w/o CSB	1	92.30 \pm 0.13	89.61 \pm 0.81	32.81 \pm 0.74	59.91 \pm 0.45	69.78 \pm 5.48	69.78 \pm 0.34	86.67 \pm 0.02	71.01 \pm 0.14	94.70 \pm 0.25	76.04 \pm 0.84	70.67 \pm 0.03	73.93
SeMoBridge-T	1	92.22 \pm 0.19	89.84 \pm 0.85	32.94 \pm 0.43	59.79 \pm 0.64	69.69 \pm 5.48	70.27 \pm 0.44	86.62 \pm 0.04	71.17 \pm 0.21	94.85 \pm 0.20	75.87 \pm 0.56	70.88 \pm 0.09	74.01
SeMoBridge-T w/o CSB	2	92.22 \pm 0.22	92.18 \pm 0.74	35.42 \pm 0.48	61.82 \pm 1.47	78.69 \pm 2.85	73.66 \pm 0.23	86.85 \pm 0.06	72.36 \pm 0.12	94.74 \pm 0.43	78.25 \pm 0.91	71.28 \pm 0.12	76.13
SeMoBridge-T	2	92.24 \pm 0.22	92.03 \pm 0.65	35.28 \pm 0.71	61.90 \pm 1.09	78.65 \pm 2.96	73.46 \pm 0.75	86.85 \pm 0.09	72.89 \pm 0.20	94.99 \pm 0.42	78.55 \pm 0.77	71.40 \pm 0.04	76.20
SeMoBridge-T w/o CSB	4	92.57 \pm 0.16	94.70 \pm 0.28	38.80 \pm 0.29	65.70 \pm 0.95	81.80 \pm 1.34	77.02 \pm 0.52	87.00 \pm 0.04	74.27 \pm 0.28	95.42 \pm 0.09	81.10 \pm 0.42	72.04 \pm 0.04	78.22
SeMoBridge-T	4	93.04 \pm 0.26	94.60 \pm 0.25	38.35 \pm 0.46	65.74 \pm 0.97	81.66 \pm 1.00	76.61 \pm 0.32	87.00 \pm 0.07	74.47 \pm 0.23	95.50 \pm 0.17	81.12 \pm 0.31	72.17 \pm 0.07	78.21
SeMoBridge-T w/o CSB	8	92.92 \pm 0.30	96.25 \pm 0.38	43.62 \pm 0.80	69.27 \pm 0.17	84.35 \pm 1.07	80.31 \pm 0.67	87.39 \pm 0.16	75.87 \pm 0.07	95.71 \pm 0.04	83.36 \pm 0.52	73.11 \pm 0.10	80.20
SeMoBridge-T	8	93.06 \pm 0.33	96.29 \pm 0.24	42.60 \pm 0.59	69.40 \pm 0.18	84.29 \pm 1.16	80.03 \pm 0.59	87.32 \pm 0.18	76.15 \pm 0.18	95.83 \pm 0.29	83.08 \pm 0.70	73.07 \pm 0.08	80.10
SeMoBridge-T w/o CSB	16	93.58 \pm 0.16	96.94 \pm 0.14	48.61 \pm 0.54	72.78 \pm 0.56	89.57 \pm 0.36	83.85 \pm 0.45	87.58 \pm 0.07	77.14 \pm 0.06	96.31 \pm 0.09	85.07 \pm 0.13	73.96 \pm 0.22	82.20
SeMoBridge-T	16	93.42 \pm 0.44	97.27 \pm 0.45	47.84 \pm 0.63	73.01 \pm 0.15	89.25 \pm 0.25	83.75 \pm 0.33	87.52 \pm 0.08	76.96 \pm 0.12	96.26 \pm 0.09	84.93 \pm 0.35	73.98 \pm 0.05	82.20

Figure 9: Examples from FGVCAircraft.
Top: 707-320 (visually regular).
Bottom: Spitfire (visually distinct).

702
703
704
705
706750
751
Figure 10: Class-specific bias norm $\|\hat{f}\| \in \mathbb{R}^C$ comparison with and without $\mathcal{L}_{\text{bias}}$ on all 16-shot
752
753
754
755

756 A.4 GPT-3 PROMPTS USED IN CuPL
757758 In Table 7, we show all prompts used for GPT-3 to generate the class descriptions for each dataset.
759760 Table 7: GPT-3 Commands Used in CuPL.
761

Dataset	GPT-3 Commands
ImageNet	“Describe what a {} looks like” “How can you identify {}?” “What does {} look like?” “Describe an image from the internet of a {}” “A caption of an image of {}:”
Caltech101	“Describe what a {} looks like” “What does a {} look like?” “Describe a photo of a {}”
DTD	“What does a {} material look like?” “What does a {} surface look like?” “What does a {} texture look like?” “What does a {} object look like?” “What does a {} thing look like?” “What does a {} pattern look like?”
EuroSAT	“Describe an aerial satellite view of {}” “How does a satellite photo of a {} look like” “Visually describe a satellite view of a {}”
FGVCAircraft	“Describe a {} aircraft”
Flowers102	“What does a {} flower look like” “Describe the appearance of a {}” “A caption of an image of {}” “Visually describe a {}, a type of flower”
Food101	“Describe what a {} looks like” “Visually describe a {}” “How can you tell the food in the photo is a {}?”
OxfordPets	“Describe what a {} pet looks like” “Visually describe a {}, a type of pet”
StanfordCars	“How can you identify a {}” “Description of a {}, a type of car” “A caption of a photo of a {}:” “What are the primary characteristics of a {}?” “Description of the exterior of a {}” “What are the characteristics of a {}, a car?” “Describe an image from the internet of a {}” “What does a {} look like?” “Describe what a {}, a type of car, looks like”
SUN397	“Describe what a {} looks like” “How can you identify a {}?” “Describe a photo of a {}”
UCF101	“What does a person doing {} look like” “Describe the process of {}” “How does a person {}”
ImageNet-V2	“Describe what a {} looks like” “How can you identify {}?” “What does {} look like?” “Describe an image from the internet of a {}” “A caption of an image of {}:”
ImageNet-Sketch	“Describe what a {} looks like” “How can you identify {}?” “What does {} look like?” “Describe an image from the internet of a {}” “A caption of an image of {}:”

810 A.5 FULL ALGORITHMS FOR INFERENCE AND TRAINING.
811812 In Algorithms 1 and 2, we describe our inference and training processes in detail.
813814 **Algorithm 1** Training-free SeMoBridge Inference
815

1: **Definition.**
816 Pretrained CLIP encoders: Enc_{img} , Enc_{txt} ,
817 Pretrained projection matrices: \mathbf{W}_{img} , \mathbf{W}_{txt} ,
818 Pseudo-inverse projection: $\mathbf{W}_{\text{txt}}^+ \leftarrow \text{pinv}(\mathbf{W}_{\text{txt}})$,
819 Sharpening function: $\phi(\mathbf{z}, \lambda) = \exp(-\lambda(1 - \mathbf{z}))$,

2: **Input:**
820 Query image x_q ,
821 Few-shot set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{C \times K}$,
822 Text prompts $\{t_c\}_{c=1}^C$,
823 Class-wise one-hot labels $\mathbf{L} \in \mathbb{R}^{C \times C}$

3: **Output:** Prediction logits $\mathbf{z}_q \in \mathbb{R}^C$

4: Encode and project the query&few-shot set:
827 $\mathbf{f}_{\text{img}}^q \in \mathbb{R}^d \leftarrow \mathbf{W}_{\text{img}}(\text{Enc}_{\text{img}}(x_q))$
828 $\mathbf{F}_{\text{img}} \in \mathbb{R}^{C \times K \times d} \leftarrow \{\mathbf{W}_{\text{img}}(\text{Enc}_{\text{img}}(x_i))\}_{i=1}^{C \times K}$

5: Encode and project the text prompts:
830 $\mathbf{T}_{\text{eos}} \in \mathbb{R}^{C \times d_t} \leftarrow \{\text{EOS}(\text{Enc}_{\text{txt}}(t_c))\}_{c=1}^C$
831 $\mathbf{T}_{\text{txt}} \in \mathbb{R}^{C \times d} \leftarrow \{\mathbf{W}_{\text{txt}}(\mathbf{T}_{\text{eos}})\}_{c=1}^C$

6: Compute text token norm estimate:
832 $\|\mathbf{T}_{\text{eos}}\| \leftarrow \frac{1}{C} \sum_{i=1}^C \|\mathbf{T}_{\text{eos}}^i\|$

7: Compute bridged query image:
834 $\hat{\mathbf{f}}_{\text{eos}}^q \in \mathbb{R}^{d_t} \leftarrow \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}^q\|} \cdot \mathbf{W}_{\text{txt}}^+ \mathbf{f}_{\text{img}}^q$
836 $\hat{\mathbf{f}}_{\text{txt}}^q \in \mathbb{R}^d \leftarrow \mathbf{W}_{\text{txt}}(\hat{\mathbf{f}}_{\text{eos}}^q)$

8: **for** all few-shot embeddings $\mathbf{F}_{\text{img}}^i \in \mathbf{F}_{\text{txt}}$ **do**
838 9: $\hat{\mathbf{F}}_{\text{eos}}^i \in \mathbb{R}^{d_t} \leftarrow \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\mathbf{W}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^i\|} \cdot \mathbf{W}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^i$
840 10: $\hat{\mathbf{F}}_{\text{txt}}^i \in \mathbb{R}^d \leftarrow \mathbf{W}_{\text{txt}}(\hat{\mathbf{F}}_{\text{eos}}^i)$
841 11: **end for**

12: Compute class-wise mean of few-shot embeds:
843 $\mathbf{F}'_{\text{img}} \in \mathbb{R}^{C \times d} \leftarrow \text{Classwisemean}(\mathbf{F}_{\text{img}})$
844 $\hat{\mathbf{F}}'_{\text{txt}} \in \mathbb{R}^{C \times d} \leftarrow \text{Classwisemean}(\hat{\mathbf{F}}_{\text{txt}})$

13: Normalize:
846 $\mathbf{F}'_{\text{img}} \leftarrow \text{Normalize}(\cdot)$
847 $\hat{\mathbf{F}}'_{\text{txt}} \leftarrow \text{Normalize}(\cdot)$
848 $\mathbf{T}_{\text{txt}} \leftarrow \text{Normalize}(\cdot)$

14: Optimize logit blending parameters on validation set:
849 $\alpha, \beta, \gamma, \delta, \lambda_1, \lambda_2, \lambda_3, \lambda_4$

15: Compute soft label matrix:
851 $\tilde{\mathbf{L}} \in \mathbb{R}^{C \times C} = \exp(\theta \cdot D_{\text{KL}}(\mathbf{F}'_{\text{img}} \mathbf{T}_{\text{txt}}^\top \|\mathbf{L}))$

16: Compute logits:
853 $\mathbf{z}_1 \leftarrow \phi(\mathbf{f}_{\text{img}}^q \mathbf{T}_{\text{txt}}^\top, \alpha)$
854 $\mathbf{z}_2 \leftarrow \phi(\hat{\mathbf{f}}_{\text{txt}}^q \mathbf{F}'_{\text{img}}^\top, \gamma) \cdot \tilde{\mathbf{L}}$
855 $\mathbf{z}_3 \leftarrow \phi(\mathbf{f}_{\text{img}}^q \hat{\mathbf{F}}'_{\text{txt}}^\top, \beta) \cdot \tilde{\mathbf{L}}$

17: Compute final logits:
858 $\mathbf{z}_q \leftarrow \lambda_1 \mathbf{z}_1 + \lambda_2 \mathbf{z}_2 + \lambda_3 \mathbf{z}_3$

18: **return** \mathbf{z}_q

860
861
862
863

864

865

866

Algorithm 2 Training Procedure for SeMoBridge-T1: **Definition.**

867 Pretrained CLIP encoders: $\text{Enc}_{\text{img}}, \text{Enc}_{\text{txt}},$
 868 Projection matrices: $\mathbf{W}_{\text{img}}, \mathbf{W}_{\text{txt}} \in \mathbb{R}^{d_t \times d},$
 869 Pseudo-inverse projection: $\mathbf{W}_{\text{txt}}^+ \leftarrow \text{pinv}(\mathbf{W}_{\text{txt}}),$
 870 Trainable inverse projection: $\hat{\mathbf{W}}_{\text{txt}}^+ \leftarrow \mathbf{W}_{\text{txt}}^+,$

2: **Input:**

871 Few-shot set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{C \times K},$
 872 Text prompts $\{t_c\}_{c=1}^C,$
 873 Class-wise one-hot labels $\mathbf{L} \in \mathbb{R}^{C \times C}$
 874 Consistency loss target $\mathbf{L}_{\text{cons}} \in \mathbb{R}^{CK \times C}$

3: **Output:**

875 Trained inverse projection $\hat{\mathbf{W}}_{\text{txt}}^+ \in \mathbb{R}^{d \times d_t}$
 876 Trained class-specific bias $\hat{\mathbf{f}}_c \in \mathbb{R}^{C \times d_t}$

4: Encode and project the few-shot set:

877 $\mathbf{F}_{\text{img}} \in \mathbb{R}^{C \times K \times d} \leftarrow \{\mathbf{W}_{\text{img}}(\text{Enc}_{\text{img}}(x_i))\}_{i=1}^{C \times K}$

5: Encode and project the text prompts:

878 $\mathbf{T}_{\text{eos}} \in \mathbb{R}^{C \times d_t} \leftarrow \{\text{EOS}(\text{Enc}_{\text{txt}}(t_c))\}_{c=1}^C$
 879 $\mathbf{T}_{\text{txt}} \in \mathbb{R}^{C \times d} \leftarrow \{\mathbf{W}_{\text{txt}}(\mathbf{T}_{\text{eos}}^c)\}_{c=1}^C$

6: Compute norm estimate: $\|\mathbf{T}_{\text{eos}}\| \leftarrow \frac{1}{C} \sum_{i=1}^C \|\mathbf{T}_{\text{eos}}^i\|$ 7: **for** each training epoch **do**

8: Compute bridged few-shot embeddings:

$$\hat{\mathbf{F}}_{\text{eos}}^{c,k} \leftarrow \frac{\|\mathbf{T}_{\text{eos}}\|}{\|\hat{\mathbf{W}}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^{c,k}\|} \cdot \hat{\mathbf{W}}_{\text{txt}}^+ \mathbf{F}_{\text{img}}^{c,k} + \hat{\mathbf{f}}_c$$

$$\hat{\mathbf{F}}_{\text{txt}}^{c,k} \leftarrow \mathbf{W}_{\text{txt}}(\hat{\mathbf{F}}_{\text{eos}}^{c,k})$$

9: Compute class-wise mean embeddings:

$$\mathbf{F}'_{\text{img}} \in \mathbb{R}^{C \times d} \leftarrow \text{Classwisemean}(\mathbf{F}_{\text{img}})$$

$$\hat{\mathbf{F}}'_{\text{txt}} \in \mathbb{R}^{C \times d} \leftarrow \text{Classwisemean}(\hat{\mathbf{F}}_{\text{txt}})$$

$$\hat{\mathbf{F}}'_{\text{eos}} \in \mathbb{R}^{C \times d_t} \leftarrow \text{Classwisemean}(\hat{\mathbf{F}}_{\text{eos}})$$

10: Normalize:

$$\mathbf{F}'_{\text{img}} \leftarrow \text{Normalize}(\cdot)$$

$$\hat{\mathbf{F}}'_{\text{txt}}, \hat{\mathbf{F}}'_{\text{eos}} \leftarrow \text{Normalize}(\cdot)$$

$$\mathbf{T}'_{\text{txt}}, \mathbf{T}'_{\text{eos}} \leftarrow \text{Normalize}(\cdot)$$

11: Compute loss terms:

Image loss:

$$\mathcal{L}_{\text{img}} \leftarrow \text{CE} \left(\mathbf{F}'_{\text{img}}^c \cdot \hat{\mathbf{F}}'^{\text{c}\top}_{\text{txt}}, \mathbf{L}_c \right)$$

Encoded text loss:

$$\mathcal{L}_{\text{txte}} \leftarrow \text{CE} \left(\hat{\mathbf{B}}'_{\text{eos}}^c \cdot \mathbf{T}'_{\text{eos}}^{\text{c}\top}, \mathbf{L}_c \right)$$

Projected text loss:

$$\mathcal{L}_{\text{txtp}} \leftarrow \text{CE} \left(\hat{\mathbf{F}}'^{\text{c}}_{\text{txt}} \cdot \mathbf{T}'^{\text{c}\top}_{\text{txt}}, \mathbf{L}_c \right)$$

Consistency loss:

$$\mathcal{L}_{\text{cons}} \leftarrow \text{CE} \left(\hat{\mathbf{f}}_c^c \cdot \mathbf{F}'^{\text{c}\top}_{\text{img}}, \mathbf{L}_{\text{cons}} \right)$$

Bias regularization:

$$\text{Compute mean norm: } \bar{\tau} \leftarrow \frac{1}{C} \sum_{c=1}^C \|\hat{\tau}_c\|$$

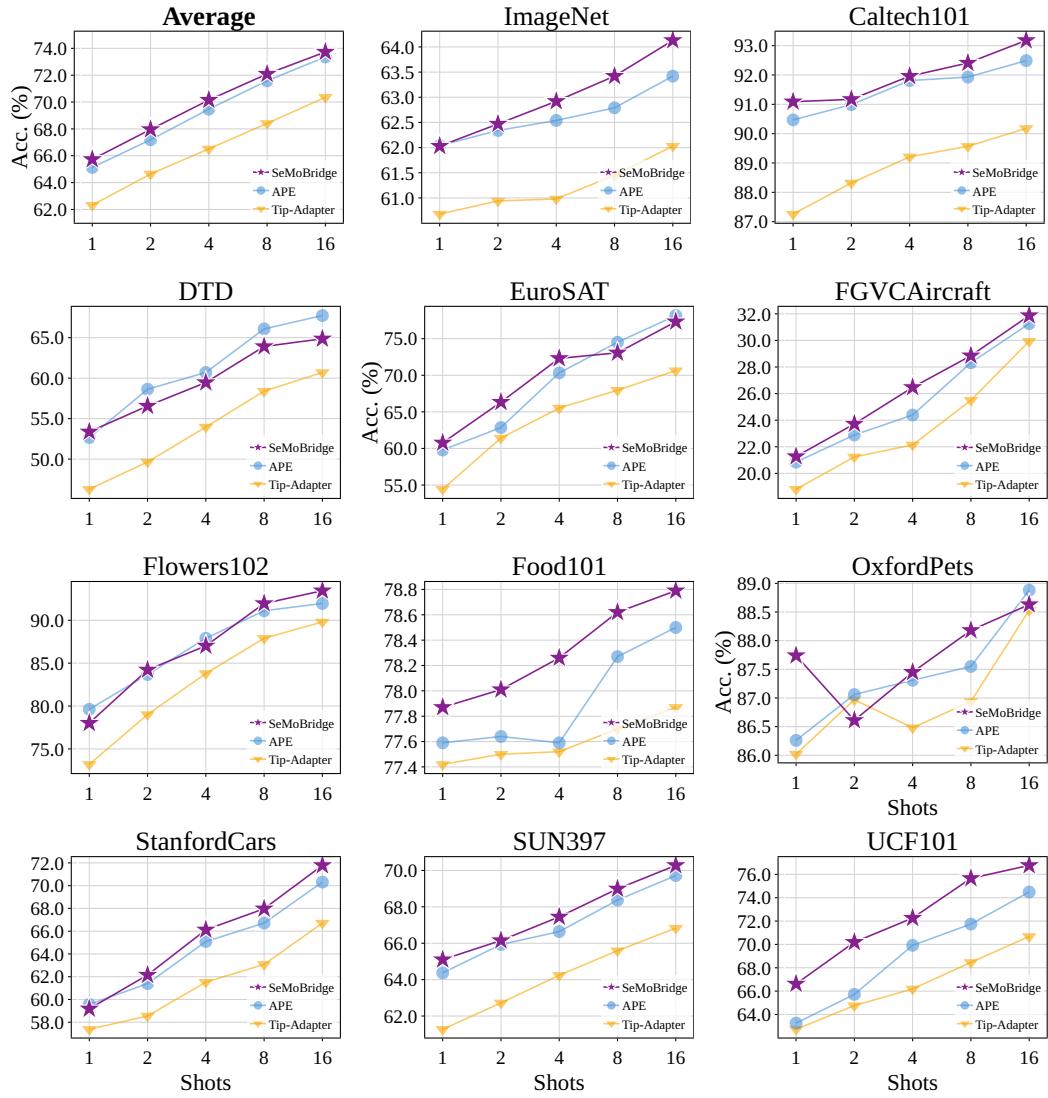
$$\mathcal{L}_{\text{bias}} \leftarrow \frac{1}{C} \sum_{c=1}^C (\|\hat{\tau}_c\| - \bar{\tau})^2$$

12: Compute total loss:

$$\mathcal{L} \leftarrow \lambda_{\text{it}} \mathcal{L}_{\text{img}} + (1 - \lambda_{\text{it}}) \cdot \frac{\mathcal{L}_{\text{txte}} + \mathcal{L}_{\text{txtp}}}{2}$$

$$+ \lambda_c \cdot \mathcal{L}_{\text{cons}} + \lambda_b \cdot \mathcal{L}_{\text{bias}}$$

13: Update $\hat{\mathbf{W}}_{\text{txt}}^+, \hat{\tau}_c$ via gradient descent14: **end for**15: **return** $\hat{\mathbf{W}}_{\text{txt}}^+, \hat{\tau}_c$

918 A.6 FEW-SHOT RESULTS USING RESNET-50.
919920 In Figures 11 and 12, we plot RN-50 results for all datasets in comparison with other few-shot
921 methods.
922950 Figure 11: Few-shot accuracy of SeMoBridge against other training-free methods with RN-50.
951
952
953
954
955
956
957

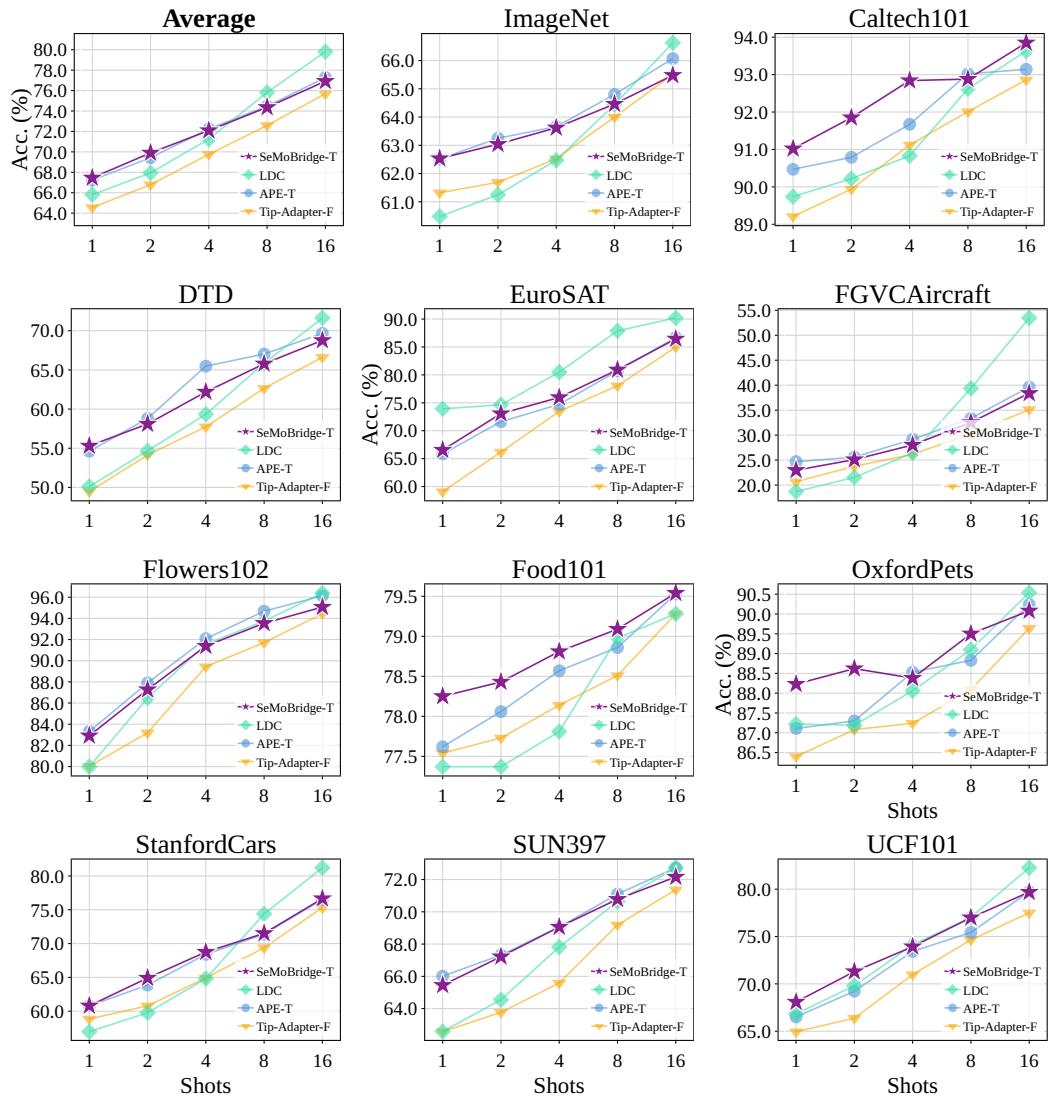


Figure 12: Few-shot accuracy of SeMoBridge-T against other trained methods with RN-50.

1026
1027

A.7 RETRIEVAL EXPERIMENTS

1028
1029
1030
1031

To validate the versatility of SeMoBridge, we conduct additional experiments on Retrieval (both Image-Image and Text-Text), following the standard evaluation setting used in Cross the Gap (Mistretta et al., 2025). The objective for these tasks is to retrieve the top- k items from a gallery that are most semantically similar to a given query.

1032
1033

A.7.1 IMAGE-RETRIEVAL

1034
1035
1036

In this setting, we aim to retrieve relevant images from a gallery given an image query. Standard CLIP-based retrieval typically relies on intra-modal comparison (Image-Image), which suffers from the misalignment issues discussed in the main text.

1037
1038
1039
1040

We apply SeMoBridge to project the query image into the text modality. This transforms the task into an inter-modal comparison between the bridged query (now in text space) and the gallery images (in image space).

1041
1042
1043
1044

Table 8 reports the retrieval performance across various datasets. SeMoBridge consistently outperforms the standard CLIP intra-modal baseline. Significant improvements are observed in fine-grained datasets such as OxfordPets, Flowers102, and DTD. This confirms that our method preserves and effectively utilizes fine-grained visual details during the modality translation.

1045

Table 8: Image-to-Image Retrieval performance.

1046
1047
1048
1049

Method	OxfordPets	Flowers102	FGVCAircraft	DTD	EuroSAT	StanfordCars	SUN397	Caltech101	UCF101	Avg.
CLIP intra-modal	36.27	70.81	19.04	30.69	51.22	31.00	35.88	80.83	49.83	45.06
SeMoBridge-T (Fast Update)	36.96	74.30	19.54	34.48	51.21	34.35	37.70	82.78	52.54	47.10

1050

A.8 TEXT-TEXT RETRIEVAL EXPERIMENTS

1051
1052
1053
1054
1055

To test the bidirectional capability of our approach, we evaluate a Text-to-Image variant of SeMoBridge on text-text retrieval tasks. In this scenario, the goal is to retrieve relevant text documents given a text query.

1056
1057
1058

Standard approaches compare text embeddings directly (Intra-modal Text-Text). Instead, we train a reverse SeMoBridge to map the text query into the image modality. This enables an inter-modal comparison between the bridged query (now in image space) and the gallery texts (in text space).

1059
1060
1061
1062
1063

Table 9 presents the results across standard NLP retrieval benchmarks. SeMoBridge demonstrates superior performance compared to both the CLIP intra-modal baseline and the optimization-based method Cross The Gap (OVI) (Mistretta et al., 2025). This indicates that the modality gap affects both modalities symmetrically and that SeMoBridge effectively resolves this misalignment in both directions.

1064
1065

Table 9: Text-to-Text Retrieval Performance.

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Method	IMDB	20News	Climate	DBPedia	FEVER	NFCorpus	NQ	SciDocs	SciFact	Avg.
CLIP intra-modal	52.22	19.24	11.19	30.32	58.44	8.90	23.31	13.54	26.25	27.05
Cross The Gap (OVI)	52.30	33.10	15.30	39.10	70.50	12.20	33.60	16.80	33.20	34.01
SeMoBridge Text2Img	52.81	41.99	23.38	43.82	75.78	13.19	37.95	18.09	37.99	38.33
SeMoBridge-T (Fast Update) Text2Img	57.42	47.99	21.11	43.58	76.56	14.02	41.05	19.33	40.98	40.23

1080
1081

A.9 TRANSFERABILITY EXPERIMENTS

1082
1083
1084
1085

To assess whether SeMoBridge learns a domain-general semantic alignment rather than dataset-specific statistics, we performed a cross-dataset transfer experiment. We fine-tune the bridge parameters on ImageNet’s few-shot splits (1–16 shots) and evaluate the resulting model directly on the other 10 downstream datasets without any further training.

1086
1087
1088

Crucially, we disable the CSB term during this process. This ensures the bridge does not learn ImageNet-specific classification boundaries. Instead, it is forced to learn a global geometric projection that aligns the image modality with the text modality.

1089
1090
1091

As shown in Table 10, the ImageNet-trained variant consistently improves accuracy across target datasets compared to the training-free baseline, despite never having seen the target domains. This indicates that the intra-modal misalignment in CLIP is relatively consistent across different visual domains. SeMoBridge effectively captures this structural relationship, functioning as a robust plug-and-play module.

1095
1096

Table 10: Dataset-transfer evaluation with ViT-B/16. SeMoBridge-T[†] denotes the variant where the bridge is fine-tuned on ImageNet few-shot and then transferred to other datasets.

1097

Method	Shots	ImageNet	OxfordPets	Flowers102	FGVCAircraft	DTD	EuroSAT	StanfordCars	Food101	SUN397	Caltech101	UCF101	Avg.
SeMoBridge	1	70.28 \pm 0.05	91.79 \pm 0.19	84.06 \pm 0.64	30.40 \pm 0.92	56.89 \pm 0.69	68.18 \pm 4.30	68.15 \pm 0.66	86.42 \pm 0.03	70.24 \pm 0.34	94.36 \pm 0.28	73.95 \pm 1.24	72.25
SeMoBridge-T [†]	1	70.67 \pm 0.03	92.12 \pm 0.10	85.09 \pm 0.70	29.60 \pm 0.47	55.52 \pm 0.64	66.78 \pm 0.92	68.15 \pm 0.62	86.47 \pm 0.06	70.56 \pm 0.37	94.55 \pm 0.20	72.39 \pm 0.37	71.99
SeMoBridge-T	1	70.88 \pm 0.09	92.22 \pm 0.18	89.84 \pm 0.85	32.94 \pm 0.43	59.79 \pm 0.64	69.69 \pm 5.48	70.27 \pm 0.44	86.62 \pm 0.04	71.17 \pm 0.21	94.85 \pm 0.20	75.87 \pm 0.56	74.01
SeMoBridge	2 [†]	70.66 \pm 0.11	91.61 \pm 0.49	89.21 \pm 0.50	32.34 \pm 0.26	59.47 \pm 1.10	70.67 \pm 0.89	69.88 \pm 0.15	86.55 \pm 0.01	71.19 \pm 0.08	94.85 \pm 0.20	76.60 \pm 1.40	73.91
SeMoBridge-T [†]	2	71.28 \pm 0.12	92.22 \pm 0.18	90.58 \pm 0.75	32.42 \pm 0.22	59.14 \pm 0.62	68.99 \pm 2.00	71.78 \pm 0.97	86.57 \pm 0.03	71.59 \pm 0.25	94.86 \pm 0.27	76.91 \pm 0.67	74.21
SeMoBridge-T	2	71.40 \pm 0.04	92.24 \pm 0.26	92.03 \pm 0.65	35.28 \pm 0.71	61.90 \pm 1.09	78.65 \pm 2.96	73.46 \pm 0.75	86.85 \pm 0.09	72.89 \pm 0.20	94.99 \pm 0.42	78.55 \pm 0.77	76.20
SeMoBridge	4 [†]	71.02 \pm 0.05	91.87 \pm 0.10	91.46 \pm 0.67	34.85 \pm 0.57	62.49 \pm 0.67	76.46 \pm 2.90	71.89 \pm 0.61	86.70 \pm 0.10	72.83 \pm 0.18	95.19 \pm 0.24	78.73 \pm 0.35	75.77
SeMoBridge-T [†]	4	72.60 \pm 0.04	92.60 \pm 0.44	93.91 \pm 0.23	35.67 \pm 0.59	64.60 \pm 0.78	77.94 \pm 1.53	75.39 \pm 0.43	86.67 \pm 0.08	72.87 \pm 0.16	95.20 \pm 0.28	80.78 \pm 0.30	77.06
SeMoBridge-T	4	72.17 \pm 0.07	93.04 \pm 0.28	94.60 \pm 0.25	38.35 \pm 0.48	65.74 \pm 0.97	81.66 \pm 1.00	76.61 \pm 0.32	87.00 \pm 0.07	74.47 \pm 0.23	95.50 \pm 0.17	81.12 \pm 0.31	78.21
SeMoBridge	8 [†]	71.53 \pm 0.05	92.02 \pm 0.09	94.14 \pm 0.64	36.81 \pm 0.55	65.59 \pm 0.31	76.48 \pm 0.81	73.42 \pm 0.14	86.85 \pm 0.11	74.03 \pm 0.15	95.60 \pm 0.42	80.58 \pm 0.38	77.00
SeMoBridge-T [†]	8	73.11 \pm 0.10	93.21 \pm 0.43	96.02 \pm 0.50	39.24 \pm 0.52	66.65 \pm 1.00	76.88 \pm 1.98	77.03 \pm 0.88	87.06 \pm 0.04	74.58 \pm 0.35	95.86 \pm 0.12	82.48 \pm 0.80	78.37
SeMoBridge-T	8	73.07 \pm 0.08	93.06 \pm 0.33	96.29 \pm 0.24	42.60 \pm 0.59	69.40 \pm 0.18	84.29 \pm 1.16	80.03 \pm 0.59	87.32 \pm 0.18	76.15 \pm 0.18	95.83 \pm 0.29	83.08 \pm 0.70	80.10
SeMoBridge	16 [†]	71.86 \pm 0.09	92.04 \pm 0.19	95.22 \pm 0.14	39.18 \pm 0.47	66.27 \pm 0.94	78.60 \pm 0.45	76.33 \pm 0.13	86.96 \pm 0.07	74.66 \pm 0.17	95.85 \pm 0.08	81.99 \pm 0.35	78.09
SeMoBridge-T [†]	16	73.96 \pm 0.22	92.75 \pm 0.49	95.74 \pm 0.37	40.33 \pm 0.38	68.74 \pm 1.47	79.56 \pm 1.34	79.61 \pm 0.46	87.05 \pm 0.08	75.28 \pm 0.34	96.02 \pm 0.20	83.15 \pm 0.29	79.29
SeMoBridge-T	16	73.98 \pm 0.05	93.42 \pm 0.44	97.27 \pm 0.45	47.84 \pm 0.63	73.01 \pm 0.15	89.25 \pm 0.25	83.75 \pm 0.33	87.52 \pm 0.08	76.96 \pm 0.12	96.26 \pm 0.09	84.93 \pm 0.35	82.20

1107

1108
1109

A.10 SEMOBRIDGE ON SLIP

1110
1111
1112
1113
1114

To verify that our proposed method is not tied to standard CLIP models, we evaluate SeMoBridge on the SLIP (Self-supervision meets Language-Image Pre-training) (Mu et al., 2022) framework. SLIP adds to CLIP’s objective by adding a self-supervised contrastive loss (SimCLR) to the image branch.

1115
1116
1117

Table 11 presents the performance of SeMoBridge and SeMoBridge-T on SLIP across all 11 datasets. Despite the differences in training, SeMoBridge-T consistently outperforms the training-free baseline across all shot settings.

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 11: SeMoBridge on SLIP ViT-B/16.

Method	Shots	Pets	Flowers	Aircraft	DTD	EuroSAT	Cars	Food101	SUN397	Caltech	UCF101	ImageNet	Avg.
SeMoBridge	1	45.13 \pm 0.86	80.97 \pm 1.13	14.61 \pm 0.32	48.35 \pm 1.52	61.64 \pm 3.73	12.78 \pm 0.16	66.78 \pm 0.09	61.76 \pm 0.11	86.61 \pm 0.58	54.89 \pm 0.86	50.44 \pm 0.08	53.09
SeMoBridge-T [†]	1	47.64 \pm 0.36	83.78 \pm 0.53	16.43 \pm 0.49	49.41 \pm 1.10	66.10 \pm 6.45	15.25 \pm 0.14	67.81 \pm 0.28	63.13 \pm 0.44	87.75 \pm 0.46	58.45 \pm 0.84	51.67 \pm 0.05	55.22
SeMoBridge	2	49.43 \pm 0.05	87.86 \pm 0.67	17.26 \pm 0.97	53.66 \pm 1.06	63.86 \pm 3.73	15.06 \pm 0.32	67.45 \pm 0.13	63.77 \pm 0.25	88.26 \pm 0.74	61.93 \pm 0.64	51.48 \pm 0.26	56.37
SeMoBridge-T [†]	2	53.04 \pm 1.57	89.48 \pm 0.68	19.99 \pm 0.73	53.70 \pm 1.38	73.07 \pm 1.89	19.47 \pm 0.08	68.51 \pm 0.10	65.87 \pm 0.28	89.21 \pm 0.32	64.15 \pm 0.40	53.30 \pm 0.18	59.07
SeMoBridge	4	53.26 \pm 0.56	92.89 \pm 0.63	18.01 \pm 0.48	37.72 \pm 0.88	76.16 \pm 1.00	18.09 \pm 0.16	68.16 \pm 0.10	66.90 \pm 0.02	89.06 \pm 0.20	67.01 \pm 0.56	53.14 \pm 0.01	60.04
SeMoBridge-T	4	56.72 \pm 1.09	93.11 \pm 0.15	22.05 \pm 1.25	59.56 \pm 0.96	79.49 \pm 1.63	24.44 \pm 0.37	69.80 \pm 0.03	69.13 \pm 0.24	90.33 \pm 0.14	69.59 \pm 0.80	55.23 \pm 0.03	62.68
SeMoBridge	8	57.44 \pm 0.52	95.16 \pm 0.19	21.81 \pm 1.0	62.69 \pm 0.18	79.50 \pm 1.37	22.15 \pm 0.33	69.73 \pm 0.17	69.50 \pm 0.07	90.40 \pm 0.14	71.42 \pm 0.74	54.89 \pm 0.28	63.15
SeMoBridge-T	8	62.02 \pm 0.56	95.46 \pm 0.08	26.96 \pm 0.30	63.00 \pm 0.12	82.94 \pm 1.00	30.98 \pm 0.19	71.88 \pm 0.26	71.55 \pm 0.46	91.46 \pm 0.31	73.61 \pm 0.98	57.63 \pm 0.20	66.14
SeMoBridge	16	61.20 \pm 0.94	95.81 \pm 0.42	25.15 \pm 0.84	65.62 \pm 0.85	81.53 \pm 0.72	25.65 \pm 0.19	70.65 \pm 0.12	71.33 \pm 0.08	91.20 \pm 0.26	74.69 \pm 0.74	56.94 \pm 0.09	65.43
SeMoBridge-T	16	65.02 \pm 0.40	96.57 \pm 0.27	34.30 \pm 0.20	67.81 \pm 0.77	88.86 \pm 0.31	37.74 \pm 0.36	73.41 \pm 0.20	73.64 \pm 0.17	92.71 \pm 0.17	78.20 \pm 0.48	60.37 \pm 0.13	69.88

1134 **B RANK CONSTRAINTS ON $\mathbf{W}_{\text{txt}}^+$**
1135

1136 To investigate the geometric complexity of the modality gap, we analyze the performance of Se-
 1137 MoBridge when the rank of the projection matrix $\mathbf{W}_{\text{txt}}^+$ is constrained. If the relationship between
 1138 the image and text modalities is highly complex, a high-rank transformation would be necessary
 1139 to capture it. Conversely, if the gap is a simple geometric shift, a low-rank transformation should
 1140 suffice.

1141 We apply Singular Value Decomposition (SVD) to the learned bridge matrix and truncate the sin-
 1142 gular values to retain only the top k components (e.g., rank 256 and 128 for a 512-dimensional
 1143 space).

1144 As shown in Table 12, constraining the rank of the bridge does not lead to a drop in performance.
 1145 Even when the rank is reduced to 128 (25% of full rank), the average accuracy remains comparable
 1146 to the full-rank baseline.

1147 Table 12: Effect of Rank Constraints on SeMoBridge’s $\mathbf{W}_{\text{txt}}^+$.

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187								
		Constraint	1	2	4	8	16	Avg.		
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	Full Rank (512)	72.25	73.91	75.77	77.00	78.09	75.40		
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	Rank ½ (256)	72.33	73.90	75.79	76.98	78.07	75.41		
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187	Rank ¼ (128)	72.23	74.09	75.76	76.95	78.30	75.47		

1158 **C LLM USAGE FOR WRITING OF THIS PAPER**
1159

1160 LLMs were used as a writing aid throughout the preparation of this manuscript. We employed LLMs
 1161 to assist with sentence formulation, improve clarity, and for general grammatical polishing to refine
 1162 the overall readability of the text.