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ABSTRACT

Conformal symmetries, i.e. coordinate transformations that preserve angles, play
a key role in many fields, including physics, mathematics, computer vision and
(geometric) machine learning. Here we build a neural network that is equivari-
ant under general conformal transformations. To achieve this, we lift data from
flat Euclidean space to Anti de Sitter (AdS) space. This allows us to exploit a
known correspondence between conformal transformations of flat space and iso-
metric transformations on the Anti de Sitter space. We then build upon the fact
that such isometric transformations have been extensively studied on general ge-
ometries in the geometric deep learning literature. In particular, we then employ
message-passing layers conditioned on the proper distance, yielding a computa-
tionally efficient framework. We validate our model on point cloud classification
(SuperPixel MNIST) and semantic segmentation (PascalVOC-SP).
Code available at: https://github.com/maxxxzdn/adsgnn

1 INTRODUCTION

The notion of symmetry is a key tool both in our understanding of nature and for the construction
of machine learning systems that perceive nature. The construction of equivariant neural network
architectures that encode specific symmetries has powerful advantages both conceptual and compu-
tational. In particular, much work has been dedicated to building networks that are equivariant under
symmetries such as rotations and translations.

In this work, we will study the symmetry group of conformal transformations i.e. the set of trans-
formations on Rd that preserve angles. This includes translations, rotations, reflections, scalings and
so called special conformal transformations. Importantly, this includes scale transformations – i.e.
rigid rescalings of the whole system – as a subgroup. Conformal and scale invariance play a central
role in many diverse fields. To give some examples: biological visual systems seem to exhibit insen-
sitivity to scale (Logothetis et al. (1995); Han et al. (2020), systems undergoing a second-order phase
transition generally exhibit conformal symmetries at the critical point (Cardy (1996))1, and diverse
applications exist in computational geometry and computer vision (see e.g. Sharon & Mumford
(2006); Lei et al. (2023))

∗Equal contribution.
1Indeed in physics most systems exhibiting scale invariance also exhibit conformal invariance “for free”

(Polchinski (1988), Nakayama (2015)).
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It is reasonable to believe that a neural network that is equivariant under conformal transformations
will be naturally insensitive to scale, instead focusing on robust properties of shape and form, lending
to many possible applications. In this work, we construct such a conformally equivariant network.
Our approach acts on point clouds and lifts the data into an auxiliary higher dimensional space called
Anti de Sitter (AdS) space. As outlined below, this approach is inspired by ideas in conformal field
theory in theoretical physics.

Previous work: Construction of equivariant neural networks under general symmetry groups started
with Cohen & Welling (2016) and is now a rich and well-studied field, see e.g. Weiler et al. (2023)
for a review and the treatment of the general case of isometric transformations on general Rieman-
nian manifolds. An extension to semi-Riemannian manifolds can be found in Zhdanov et al. (2024).
See Vadgama et al. (2025) for a study of the benefits of equivariance on point clouds. These existing
methods do not address the full conformal group which we study here. Some literature exists on
neural networks with scale equivariance, see. e.g Bekkers (2020); Sosnovik et al. (2019). Our usage
of AdS space may be thought of as a kind of scale space (see e.g. Witkin (1987); Worrall & Welling
(2019)). A difference in our case is that AdS has a somewhat more rigid structure in that it enforces
equivariance under the larger group of conformal transformations, and not only scale transforma-
tions. Recent work in the physics literature includes Halverson et al. (2024) which describes how to
use neural networks to obtain a conformal field theory.
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Figure 1: AdS-GNN lifts points from Euclidean
space to Anti de Sitter space and computes mes-
sage passing conditioned on the proper distance.

We briefly review conformal symmetry and the
geometry of AdS space before describing our
approach.

2.1 BRIEF DESCRIPTION OF CONFORMAL
SYMMETRY AND AdSd+1 ISOMETRIES

A global conformal transformation of the Eu-
clidean space Rd is an injective smooth map
φ : Rd\{xφ} → Rd, x 7→ φ(x), defined on Rd

except on a possible point xφ 2 such that angles
are always preserved, i.e. for all x ∈ Rd \ {xφ}
and v1, v2 ∈ Rd \ {0} we require:

⟨φ′(x)v1, φ
′(x)v2⟩

∥φ′(x)v1∥ · ∥φ′(x)v2∥
=: cos(∡(φ′(x)v1, φ

′(x)v2))
!
= cos(∡(v1, v2)) :=

⟨v1, v2⟩
∥v1∥ · ∥v2∥

, (1)

where ⟨., .⟩ and ∥.∥ denote the standard Euclidean scalar product and norm, resp., and φ′(x) the
Jacobian matrix of φ at x. Note, that, in contrast to isometric transformations, we do not require
that the distances/norms are preserved. The group of all global conformal transformations of Rd is
denoted by Confg(Rd). We define the (restricted) group of conformal transformations Conf(Rd)
here as the connected component of the identity of Confg(Rd).3 The conformal group Conf(Rd)
then acts through the group action of SO(d + 1, 1) (mod {±1}, resp.), whose viewpoint, in terms
of separated parameters, we will explain in the following.

2By allowing φ to not be defined on a certain point xφ ∈ Rd, we effectively allow φ to map xφ to the “points
at infinity” ∞ in the conformal compactification Sd of Rd. In fact, every global conformal transformation of
Rd uniquely extends to an angle-preserving diffeomorphism of Sd for d ≥ 2, see Schottenloher (2008) Thm.
2.9 and 2.11. This is why we introduce the definition with H in this way.

3It was shown in Schottenloher (2008) Thm. 2.9 and 2.11 that for d ≥ 2 the group of global conformal
transformations Confg(Rd) is isomorphic to O(d+ 1, 1)/{±1}, which is isomorphic to SO(d+ 1, 1) if d is
odd. Be aware of the unusual convention for SO(p, q) in that specific reference, which we do not follow here.
Also note that in Amir-Moéz (1967) it was shown that the group of all linear conformal transformations of Rd

is the group R⟩0 ×O(d), of scaled orthogonal transformations.
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A general element G of the group can be written in terms of parameters (λ, t, b,M) ∈ R>0 ×Rd ×
Rd × SO(d) and acts on a point x ∈ Rd through the composition of maps defined by:

x′ = x+ t x′ =Mx x′ = λx
x′

∥x′∥2
=

x

∥x∥2
− b, (2)

translations rotations scalings special conformal transformations

resulting in a transformed point x′ = Gx. These (d + 1)(d + 2)/2 parameters assemble into an
element of SO(d+ 1, 1), see e.g. Di Francesco et al. (1997) for a review.

Given a typical presentation of input data, it is not straightforward to express it in a fashion that trans-
forms simply under representations of the conformal group. To organize the data, we will instead lift
it from Rd to an auxiliary space with one higher dimension, i.e. Anti de Sitter space AdSd+1. The
conformal group Conf(Rd) of Rd acts naturally as the isometry group Isom(AdSd+1) on AdSd+1.
The fact that local operations in the interior of AdSd+1 results in conformally invariant operations
on Rd is very well known in the context of the AdS/CFT correspondence in quantum gravity Mal-
dacena (1999). Here we will use some of the well-studied kinematics of that correspondence as a
convenient tool to build convolutional kernels on AdSd+1. Indeed, a general framework for con-
structing convolutional layers that are equivariant under isometry groups of any pseudo-Riemannian
manifold was given in Weiler et al. (2023); Zhdanov et al. (2024), and our work can be viewed as
building on a special case of that.

More precisely, denoting a point in AdSd+1 as X = (X1, . . . , Xd+1) = (x1, . . . , xd, z) = (x, z)
with z the extra dimension, the Riemannian metric on AdSd+1 is given by:

ds2 =

d+1∑
µ,ν=1

gµν(X)dXµdXν =:
1

z2

(
d∑

a=1

(dxa)2 + dz2

)
(3)

In the Supplementary Material, we review how this geometry can be understood as a hyperboloid
embedded in Rd+1,1 with a natural action of SO(d+1, 1). Here we just note that the isometry group
acts as X ′ = GX:

(x′, z′) = (x+ t, z) (x′, z′) = (Mx, z) (x′, z′) = (λx, λz), (4)

and (
x′

∥x′∥2 + z′2
,

z′

∥x′∥2 + z′2

)
=

(
x

∥x∥2 + z2
+ b,

z

∥x∥2 + z2

)
(5)

Note that the manifold (3) has a d-dimensional boundary at z = 0. This boundary is mapped to
itself under the isometries. Furthermore, the isometry group acts on the boundary points (xa, z = 0)
precisely as in (2). Thus one should imagine that conformal data on Rd “lives on the boundary of
AdSd+1”. In what follows a key role will be played by the SO(d + 1, 1) invariant proper distance
between D(X,X ′) between two points in AdS, which is given by

coshD(X,X ′) =
z2 + z′2 +

∑d
a=1(x

a − x′a)2

2zz′
(6)

We will now describe a way to extend the data from the boundary into the bulk of AdSd+1.

2.2 EMBEDDING POINTS IN AdS

Consider a point cloud of N points in Rd, {xi}, i ∈ {1, · · · , N}, We would like to lift this data into
the bulk of AdSd+1 in a manner that preserves the symmetries.

A first attempt from the correspondence of symmetries shown in (4) is to simply embed each of the
points directly into the boundary z = 0, i.e. with Xµ

i = (xai , z = 0). However the metric (3) has a
singularity at z = 0 – e.g. from (6) note that each point at z = 0 is at infinite proper AdS distance
from any points at z > 0 – and thus such an attempt will require us to pick a regulating value of
z. Using a fixed constant will explicitly break the symmetries. For each xi, we instead pick a zi
obtained from the distance to its neighbours in a manner that preserves scale symmetry, as outlined
in Algorithm 1 and explained further in the Supplementary Material.

3



Published as a workshop paper at ICLR 2025 MLMP

Table 1: Classification error on SuperPixel MNIST. We aug-
ment the test set with random rotations and scaling. ✗ indi-
cates random-guess performance.

Model Error rate, %
non-augmented rotated rotated+scaled

MONET 8.89 ✗ ✗
SplineCNN 4.78 ✗ ✗
GCGP 4.2 ✗ ✗
GAT 3.81 ✗ ✗
PNCNN 1.24± 0.12 ✗ ✗
PΘNITA 1.17± 0.11 1.17 ✗
EGNN 4.17± 0.45 4.17 ✗
AdS-GNN (Ours) 4.09± 0.27 4.09 4.09

Table 2: Classification error on PascalVOC-SP.
Model EGNN AdS-GNN

Test F1 ↑ 27.80± 0.74 28.07± 0.57

Figure 2: Test error on augmented
data, SuperPixel MNIST.

Algorithm 1 AdS Embedding
Require: X = {xi}Ni=1 ⊂ Rd, klift ∈ N, z0 ∈ R

1: for each point i ∈ {1, . . . , N} do
2: zi ← z0
3: neighborsi ← KNN(xi, X, klift)
4: (x̂i, ẑi)← ComputeAdSCoM(neighborsi)
5: end for
6: return {(xi, ẑi)}Ni=1 ⊂ AdSd+1

Intuitively, the z coordinate corresponds to
the length scale of the degrees of free-
dom we are considering4. Our choice
above amounts to saying that the appropri-
ate length scale for a point xi is related to
its (appropriately averaged) distance from its
neighbours. This exactly preserves scale in-
variance, but it gently breaks special con-
formal transformations. This is expected on
physical grounds, as generally any choice of
regulator necessarily breaks conformal invariance (Cardy (1996)). In our experiments, we thus check
generalization under special conformal transformations empirically in Fig. 2 for a special conformal
transformation as in (2) parametrized by b = (0, b2) and verify that the breaking is mild.

2.3 MESSAGE PASSING

Given this set of points {Xi} in AdS, we now operate on it using a graph neural network. To orient
ourselves, we recall first an earlier model, that of E(n) Equivariant Graph Neural Networks (EGNNs)
Satorras et al. (2021); Liu et al. (2024). These are graph neural networks that are equivariant to
rotations, translations, reflections and permutations. The input to the model is a graph G = (V, E)
which is embedded into the Euclidean space RD. We denote the latent d-dimensional feature vector
of vi as hi. The l-th layer of EGNN is defined as

mij = ψe(h
l
i,h

l
j , ||pi − pj ||2), EGNN message (7)

hl+1
i = ψh(h

l
i,mi), mi =

∑
j∈N (i)

mij , aggregate + update

where N (i) represents the set of neighbours of node vi, ψe, ψh are message and update MLPs.

We thus define AdS-GNN: we adopt the model to operate on AdS, where a graph G is embedded.
If edges E are not provided, we induce connectivity with kcon nearest neighbours using the proper
distance (6). In the message function (7), we also use the proper distance instead of the Euclidean:

mij = ψe(h
l
i,h

l
j , D(Xi, Xj)), AdS-GNN message (8)

which yields an efficient conformal group equivariant GNN without substantial computational over-
head compared to its Euclidean counterpart. Note that by conditioning on AdS proper distance, we
introduce a notion of locality both in ordinary space and in scale (as represented by the z coordi-
nate). Though the embedding of the point cloud mildly breaks special conformal transformations,
the graph neural network itself is exactly invariant under all of Isom(AdSd+1).

4This is familiar from the physics of the AdS/CFT correspondence, where it is well-understood that the
infrared physics lives deeper in the bulk Susskind & Witten (1998).
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3 EXPERIMENTAL RESULTS

SuperPixel MNIST We benchmark AdS-GNN on the super-pixel MNIST dataset Monti et al.
(2017), which consists of 2D point clouds of MNIST digits segmented into 75 superpixels. Results
are given in Table 1. Even though AdS-GNN performs on par with its roto-equivariant counterpart,
it still falls behind PΘNITA as it is unable to handle orientation and relies on invariant descriptors.
We also study the response of a model to various augmentations (see Fig. 2). As expected, AdS-
GNN is precisely scale-invariant. For special conformal transformations, there is a small breaking
of symmetry arising from the uplift, which we relate to the tiny size of the domain (75 points).

PascalVOC-SP We also compare AdS-GNN to EGNN on the LRGB data Dwivedi et al. (2022),
see Table 2. The difference in performance is statistically insignificant, which indicates that confor-
mal equivariance does not constrain the model significantly and still allows for high expressivity.

4 CONCLUSION

In this paper, we introduced AdS-GNN - a neural network that is equivariant with respect to con-
formal transformations. In future work, we aim to implement a more expressive message function
inspired by PΘNITA Bekkers et al. (2024) and gauge-equivariant networks Basu et al. (2022). We
also anticipate applications to critical phenomena in conformal field theory as well as tasks in com-
puter vision that require robust characterization of shape and form.
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Message Passing Networks. International Conference on Learning Representations (ICLR), 2024.

Nikos K Logothetis, Jon Pauls, and Tomaso Poggio. Shape representation in the inferior temporal
cortex of monkeys. Current biology, 5(5):552–563, 1995.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Int.
J. Theor. Phys., 38:1113–1133, 1999. doi: 10.1023/A:1026654312961. [Adv. Theor. Math.
Phys.2,231(1998)].

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
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A AdSd+1 PRIMER

Here for completeness we review some facts about the geometry of Euclidean AdSd+1, i.e. hyper-
bolic space in d+ 1 dimensions.

A.1 EMBEDDING IN Rd+1,1

We first review a construction of AdSd+1 as a hyperboloid embedded in the larger-dimensional flat
space Rd+1,1. This material is standard, see e.g. Aharony et al. (2000) for a review. Consider
Rd+1,1 with coordinates Y A = (Y 0, Y a, Y d+1) where in our notation a, b indices run over Rd, µ, ν
run over AdSd+1, and A,B run over Rd+1,1. We write the flat metric on Rd+1,1 as:

ds2 =
∑
A,B

ηABdx
AdxB = −(dY 0)2 +

d+1∑
i=1

(dY i)2 . (9)

Consider also the submanifold H ⊂ Rd+1,1 defined as

(Y 0)2 −
d+1∑
i=1

(Y i)2 = 1 (10)

This submanifold has two connected components with positive and negative Y 0 respectively. Each
of these components is an isometric version of the Euclidean AdSd+1. We will stick to the one with
Y 0 > 0. To put coordinates Xµ = (xa, z) on it we can write:

Y 0 = +
z

2

(
1 +

1

z2
(1 + xaxa)

)
> 0 (11)

Y a =
1

z
xa (12)

Y d+1 =
z

2

(
1− 1

z2
(1− xaxa)

)
(13)

The action of [Λ] ∈ O(d+ 1, 1)/{±I} then works as follows:

[Λ].Y := sign((ΛY )0) · (ΛY ),

where ΛY is just vector matrix multiplication and where the scalar multiplication with sign((ΛY )0

corrects the sign of the 0-th entry (the component of (−1)-signature). Together we get:

(([Λ].Y )0)2 −
d+1∑
i=1

(([Λ].Y )i)2 = 1, ([Λ].Y )0 > 0, (14)

and thus: [Λ].Y ∈ AdSd+1. This gives us a well-defined group action of O(d + 1, 1)/{±I} on
AdSd+1, and, in particular, a well-defined group action of Conf(Rd) on AdSd+1.

We now compute the induced metric on the hyperboloid

gMN (X) =
∑
A,B

∂Y A

∂XM

∂Y B

∂XN
ηAB (15)
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which turns out to be

ds2 =
1

z2

(
dz2 +

d∑
a=1

(dxa)2

)
(16)

as expected from equation 3.

A.2 THE CENTER OF MASS OF A SET OF POINTS ON ADS

We will require an expression for the “center of mass” C({Xi}) of a set of points on AdS. This
problem was solved in Galperin (1993); the basic idea is to view the hyperboloid as a submanifold
of Rd+1,1 as above, use additivity properties there to find a vector, and then find the intersection of
the ray in the direction of that vector with the hyperboloid.

In practice, this is quite simple to implement. Denote the center of mass by Ȳ A, and the set of N
points for which we want the centroid by (xai , zi). We would like to find the analogous coordinates
for the centroid (x̄a, z̄).

We have that

Ȳ 0 ≡ z̄

2

(
1 +

1

z̄2
(1 +

∑
a

x̄ax̄a)

)
=

1

NN
∑
i

zi
2

(
1 +

1

z2i
(1 +

∑
a

xai x
a
i )

)
(17)

Ȳ a ≡ x̄a

z̄
=

1

NN
∑
i

xai
zi

(18)

Ȳ d+1 ≡ z̄

2

(
1− 1

z̄2
(1−

∑
a

x̄ax̄a)

)
=

1

NN
∑
i

zi
2

(
1− 1

z2i
(1−

∑
a

xai x
a
i )

)
(19)

The first equality is the definition of the embedding, the second is the definition of the centroid from
Galperin. Here N is a normalization constant which is picked to guarantee that

(Ȳ 0)2 −
∑
a

(Ȳ a)2 − (Ȳ d+1)2 = 1 (20)

So to find the centroid, the easiest thing to do is to compute the sums on the right hand side of the
second equality, which thus determines the vector Ȳ A up to an overall scale N ; then we enforce
the norm constraint above which lets us find N and thus fixes the vector Ȳ A completely. We then
express the answer in useful coordinates by solving for (z̄, x̄a) through

z̄ =
1

Ȳ 0 − Ȳ d+1
, x̄a =

Ȳ a

Ȳ 0 − Ȳ d+1
. (21)

To get some intuition for the procedure, we study it in the case of two points X1 = (xa1 , ϵ) and
X2 = (xa2 , ϵ) starting at the same value of the z coordinate. We find

C(X1, X2) =

(
1

2
(xa1 + xa2),

1

2

√
|x1 − x2|2 + 4ϵ2

)
(22)

i.e. we simply take the average of the spatial coordinates and move inwards in z by an amount which
depends on the separation between the two points in the spatial direction. In this case the center of
mass is actually the midpoint of the geodesic that connects the two points.

A.3 AdS EMBEDDING EXPLANATION

The center of mass function is used for the AdS embedding of the point cloud shown in Algorithm
1. We briefly elaborate on the algorithm here.

As explained in the bulk text, to perform the embedding of the point cloud, we need a way to pick
zi for each point xi in a manner that preserves the symmetries. We first embed each point into AdS
using

Xµ
i = (xai , z = z0) (23)

8
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with a small regulator z0. For each point, we then compute the AdS center of mass X̂ = (x̂i, ẑi) of
its klift nearest neighbours using the approach above.

The geometry of AdS implies that the center of mass will generally be deeper inside than the original
points; e.g. in this case it will have a finite z value which depends on the relative separation of the
points, as shown explicitly in a 2-point example in (22). We then perform a final embedding of the
point using this z value, i.e.

Xµ
i = (xai , ẑi) (24)

B IMPLEMENTATION DETAILS

In every experiment, we use the AdamW optimize Loshchilov & Hutter (2019) with a learning rate
10−3. Every model is trained on a single Nvidia RTX6000 GPU. Both EGNN and AdS-GNN are
implemented in JAX. All experiments are run 5 times with different seeds. kcon is set to 16, klift to 5.

In the SuperPixel-MNIST experiment, the task is to predict a digit given a point cloud representation.
We compare against MONET Monti et al. (2017), SplineCNN Fey et al. (2018), GCCP Walker &
Glocker (2019), GAT Velickovic et al. (2018), PNCNN Finzi et al. (2021) and PΘNITA Bekkers
et al. (2024). Every model is trained with batch size 128, baseline results are taken from Bekkers
et al. (2024).

In the Pascal-VOC experiment, the task is to predict a semantic segmentation label for each su-
perpixel node (total of 21 classes). Each graph is embedded in 2D Euclidean space, each node is
associated with 12 scalar features. We used the batch size of 96.
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