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Abstract001

Code retrieval is a crucial component in mod-002
ern software development, particularly in large-003
scale projects. However, existing approaches004
relying on sequence-based models often fail to005
fully exploit the structural dependencies inher-006
ent in code, leading to suboptimal retrieval per-007
formance, particularly with structurally com-008
plex code fragments. In this paper, we intro-009
duce GNN-Coder, a novel framework based on010
Graph Neural Network (GNN) to utilize Ab-011
stract Syntax Tree (AST). We make the first012
attempt to study how GNN-integrated Trans-013
former can promote the development of seman-014
tic retrieval tasks by capturing the structural and015
semantic features of code. We further propose016
an innovative graph pooling method tailored017
for AST, utilizing the number of child nodes as018
a key feature to highlight the intrinsic topolog-019
ical relationships within the AST. This design020
effectively integrates both sequential and hier-021
archical representations, enhancing the model’s022
ability to capture code structure and semantics.023
Additionally, we introduce the Mean Angular024
Margin (MAM), a novel metric for quantifying025
the uniformity of code embedding distributions,026
providing a standardized measure of feature027
separability. The proposed method achieves028
a lower MAM, indicating a more discrimina-029
tive feature representation. This underscores030
GNN-Coder’s superior ability to distinguish031
between code snippets, thereby enhancing re-032
trieval accuracy. Experimental results show033
that GNN-Coder significantly boosts retrieval034
performance, with a 1%-10% improvement in035
MRR on the CSN dataset, and a notable 20%036
gain in zero-shot performance on the CosQA037
dataset.038

1 Introduction039

Code retrieval, as a technology that takes natural040

language queries as input and outputs code snip-041

pets that match the query intent, plays a facilitating042

role in program reuse during the software devel-043

opment process (Li et al., 2022; Liu et al., 2024).044

Meanwhile, it also drives the latest research in the 045

field of retrieval-augmented generation (Zhou et al., 046

2022; Wang et al., 2024). The main challenge faced 047

by effective code retrieval lies in the semantic gap 048

between natural language descriptions and source 049

code. This is because natural language descriptions 050

and source code are heterogeneous resources that 051

share very few lexical tokens, synonyms, and lan- 052

guage structures (Gu et al., 2018; Zhu et al., 2022). 053

With the Transformer achieving success in the 054

field of NLP(Achiam et al., 2023; Grattafiori et al., 055

2024), CodeBERT treats code as a special form of 056

natural language. Specifically, it processes code 057

snippets and their corresponding texts as pairs of 058

natural language sentences in the BERT architec- 059

ture (Devlin, 2018). However, code has unique 060

syntax and structure different from natural lan- 061

guages, such as AST (Zhang et al., 2019; Tang 062

et al., 2021), which reflects the hierarchical organi- 063

zation of code. To improve the performance of the 064

model, researchers have made efforts (Guo et al., 065

2020; Wang et al., 2021b, 2023) to integrate AST 066

into the transformer training process. For example, 067

UniXcoder (Guo et al., 2022) introduces a one-to- 068

one mapping function to convert the AST into a 069

sequence. However, these methods directly flat- 070

ten the components of AST to be a linear sequence, 071

ignoring its inherent structural potential and impair- 072

ing performance in tasks that require deep syntactic 073

understanding. 074

In this paper, we propose a novel GNN-based 075

framework, investigating the first attempt to ex- 076

plore how GNN-integrated Transformer make full 077

use of the complete syntactic information of the 078

AST for the code retrieval task. The inherent spar- 079

sity of GNNs makes them particularly suitable for 080

handling tree-structured AST. Specifically, we be- 081

gin by encoding the content of AST nodes using a 082

frozen Transformer model, while representing their 083

types through one-hot encoding. Next, we employ 084

a GNN model to integrate information across all 085
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Figure 1: The average MAM for six PLs in CSN dataset.
A value close to 0 indicates thorough feature separation.

AST nodes and generate a unified code embedding.086

To align the code and text embeddings, we apply087

contrastive loss during the training of the GNN088

model. Considering the tree-structured nature of089

the AST and the encoding requirements, we pro-090

pose a hierarchical GNN model incorporating a091

graph pooling layer. Additionally, we introduce a092

novel graph pooling method, ASTGPool, designed093

specifically for AST, which emphasizes intrinsic094

topological relationships within the AST and ac-095

celerates information propagation to the root node,096

thereby improving retrieval accuracy.097

To further evaluate the discriminative power of098

learned code features, we introduce the Mean An-099

gular Margin (MAM) metric. MAM calculates100

the cosine similarity between a given text embed-101

ding and all code embeddings, offering a robust102

measure of feature differentiation—an aspect of-103

ten neglected in prior research, yet essential for104

effective code retrieval. The ideal scenario, as indi-105

cated by MAM, occurs when the cosine similarities106

between distinct code embeddings approach zero,107

reflecting thorough separation of code embeddings.108

As shown in Figure 1, GNN-Coder achieves a lower109

MAM value, demonstrating improved feature sepa-110

ration. Experimental results show that GNN-Coder111

significantly boosts retrieval performance, with a112

1%-10% improvement in MRR on the CSN dataset,113

and a notable 20% gain in zero-shot performance114

on the CosQA dataset.115

In summary, our contributions are as follows:116

• We propose a novel framework based on GNN117

for code retrieval, leveraging the structured118

sparse relationship captured by AST. To the119

best of our knowledge, this is the first attempt120

to explore the AST-guided GNN in Trans-121

former module for code retrieval task. 122

• We introduce a novel graph pooling method, 123

ASTGPool, tailed for AST. The design eval- 124

uates the importance score by utilizing the 125

number of child nodes, which characterize the 126

topological relationship. We show that the 127

proposed pooling method is superior to the 128

existing pooling techniques. 129

• Experiments validate the effectiveness of the 130

proposed framework. The introduced GNN 131

module enhances the performance of the 132

model which has leveraged part of the AST 133

as a linear sequence. Additionally, we present 134

a new metric, MAM, to assess code repre- 135

sentation distribution, demonstrating that the 136

learned features are effectively separated, ben- 137

efiting code retrieval. 138

2 Related Work 139

Code Retrieval. Software developers often rely on 140

the reuse of existing code resources to achieve effi- 141

cient code. Therefore, code retrieval has emerged 142

as a crucial research area, aiming to explore the im- 143

plicit connections between natural language queries 144

and code databases, enabling developers to obtain 145

the required code quickly and accurately. Early 146

research mainly represent code and queries as fea- 147

ture vectors and retrieve code based on similarity 148

to the query vectors. Boolean vectors (Salton et al., 149

1983) characterize the features by indicating the 150

presence or absence of specific features, such as 151

specific types of AST nodes (Luan et al., 2019). 152

Another commonly used method is to map a set of 153

tokens into a Term Frequency-Inverse Document 154

Frequency (TF-IDF) vector, which can not only 155

indicate whether a feature exists but also reflect the 156

importance of this feature (Diamantopoulos et al., 157

2018; Takuya and Masuhara, 2011). 158

With the rapid development of deep learning 159

technology, an increasing number of studies have 160

focused on the use of neural networks to achieve 161

efficient code retrieval. Most of the related work 162

adopts end-to-end neural learning methods. The 163

query and the code are embedded into a joint vector 164

space through the model, and the code search prob- 165

lem is then transformed into finding the nearest- 166

neighbor code for a given query in this space (Gu 167

et al., 2018; Sun et al., 2022). The core of code 168

retrieval lies in code encoding, which is reviewed 169

below. 170

2



Figure 2: Overall architecture of GNN-Coder. The code is transformed into an AST, which is initialized with a
Transformer model, processed by a GNN, and aligned with text embeddings through a contrastive loss function.

Code Encoding With Transformer. Following171

the significant success of the transformer archi-172

tecture and pre-training in NLP, researchers have173

started to explore the potential of the Transformer174

model in code representation learning. Single175

encoder models mainly follow the BERT frame-176

work. CodeBERT (Feng et al., 2020) utilizes the177

masked language objective to pre-train on NL-178

PL pairs, and adds the substitute token detection179

task (Clark, 2020). GraphCodeBERT (Guo et al.,180

2020) enhances the pre-training process by incor-181

porating the data flow derived from the AST. Syn-182

CoBERT (Wang et al., 2021a) utilizes identifier183

prediction, AST edge prediction, and multimodal184

contrastive learning to make full use of AST. In185

addition, some works adopt the encoder-decoder186

architecture. CodeT5 (Wang et al., 2021b) extends187

the T5 (Raffel et al., 2020) model to the code do-188

main and additionally combines the information of189

the identifier nodes in the AST. TreeBERT (Jiang190

et al., 2021) utilizes the structural information of191

the AST by representing it as a set of paths from192

the root node to the terminal nodes.193

The aforementioned methods utilize Trans-194

former models for code encoding. While some195

integrate AST information, they still treat it as a196

linear sequence. This sequence-based representa-197

tion hampers the accurate capture of hierarchical198

and complex relationships inherent in code struc-199

tures. Consequently, these approaches fail to fully200

leverage the syntactic and semantic richness of pro- 201

gramming languages, which are defined by intri- 202

cate nested structures that cannot be effectively 203

represented in a flat sequential format. 204

Code Encoding With GNN. Allamanis et al. 205

(2017) first use GNN to represent code. To convert 206

the code into a graph, they design complex edges 207

based on the AST. Devign (Zhou et al., 2019) and 208

Reveal (Chakraborty et al., 2021) adopt the Code 209

Property Graph (CPG), which is composed of the 210

AST, the control flow graph (CFG) and the data 211

flow graph (DFG), and used the Gated Graph Neu- 212

ral Network (GGNN) to encode the graph. Graph- 213

searchnet (Liu et al., 2023) introduces Bidirectional 214

GGNN (BiGGNN) to create graphs for code and 215

text, capture local structural details, and uses a 216

multi-head attention module to enhance BiGGNN. 217

These methods mainly use GNN as a tool for 218

encoding code for vulnerability identification. In 219

our research work, we focus on the multimodal 220

retrieval task and integrate Transformer with GNN. 221

To ensure that our model is applicable to various 222

PLs, we use only the basic AST without adding 223

complex edges or nodes. 224

3 Methodology 225

3.1 Overall Architecture 226

The architecture of GNN-Coder is depicted in Fig- 227

ure 2. In the Code2Graph stage, we utilize tools 228

to convert the code into an AST, which is then ini- 229
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tialized using a Transformer model. The initialized230

graph is processed by a GNN model. Finally, a231

contrastive loss is applied to align the embedding232

representations of both code and text.233

3.2 Code2Graph234

Code2AST. We adopt the same method as in the235

code Transformer series of works and use Tree-236

sitter1 to convert various PLs into ASTs.237

Refine AST. The ASTs generated by Tree-sitter238

are usually more redundant. Therefore, we need239

to further simplify the AST. Specifically, we delete240

the "shadow nodes" with the same type and content.241

However, directly deleting these nodes may lead to242

the loss of code syntax information. To solve this243

problem, we merge these nodes into their parent244

nodes. The specific operation is as follows: we re-245

construct the content of the parent node by concate-246

nating the contents of all child nodes, except for the247

"block" node. The "block" node, as a container, has248

its content sourced from the contents of all child249

nodes. For example, the "function_definition" node250

in Figure 2 needs to be reconstructed because it has251

child nodes to be deleted (i.e., "def" and ":"). First,252

we replace the content of the "function_definition"253

node with the concatenation of the contents of all254

child nodes except the "block" node. Then, we255

delete the "def" and ":" nodes. Eventually, the con-256

tent of the "function_definition" node becomes "def257

mean (data):", which includes the information of258

the deleted nodes.259

AST2Graph. To meet the input requirements of260

GNN, we need to represent the types and contents261

of AST nodes as vectors. Previous methods (De-262

vlin, 2018; Chakraborty et al., 2021; Li et al., 2021)263

used one-hot encoding and a pre-trained word2vec264

model to encode the types and contents of AST265

nodes respectively, and then concatenated these en-266

codings to form the initial node embeddings. In267

this research work, we replace the word2vec model268

with a pre-trained Transformer model to fully uti-269

lize the powerful ability of the Transformer model270

in encoding context information. In addition, re-271

ferring to methods such as Devign, we reverse the272

direction of the edges in the original AST to en-273

sure that the information of the leaf nodes can be274

effectively propagated to the root node.275

1https://github.com/tree-sitter/tree-sitter

Figure 3: Illustrating importance score calculation for
different pooling methods. “deg” represents in-degree.

3.3 GNN Training 276

3.3.1 GNN Architecture 277

Since the root node in the tree structure contains 278

much richer information, conventional GNN mod- 279

els struggle to handle it effectively. In view of this, 280

we meticulously design a hierarchical GNN model 281

that incorporates a novel graph pooling layer, adapt- 282

ing to the AST and its coding requirements. 283

Conv Layer. The GNN model we construct em- 284

ploys the FAConv layer (Bo et al., 2021) as the 285

convolutional layer. The FAConv layer can adap- 286

tively adjust the coefficients of low-frequency and 287

high-frequency signals without prior knowledge 288

of the network type. This remarkable flexibility 289

makes it suitable for processing graphs initialized 290

in different ways. 291

Graph Pooling. We propose a hierarchical archi- 292

tecture that incorporates a graph pooling layer into 293

the original FAGCN model. This design enables 294

the capture of information at multiple granularity 295

levels. The graph pooling layer plays a key role 296

by accelerating information aggregation from leaf 297

nodes to the root node and effectively filtering noise 298

in the leaf nodes. 299

To explore the most suitable graph pooling 300

method for AST, we experimentally study Top- 301

KPool (Gao and Ji, 2019; Cangea et al., 2018) and 302

SAGPool (Lee et al., 2019; Knyazev et al., 2019). 303

However, our findings indicate that these meth- 304

ods are not fully appropriate for AST. Specifically, 305

while SAGPool computes importance scores based 306

on the features of neighboring nodes, its perfor- 307

mance is sometimes inferior to TopKPool, which 308

relies solely on node features. This discrepancy 309

arises because the inversion of edges repositions 310

child nodes as neighbors, introducing noise into 311

the parent node’s importance calculation. Based on 312

the above situation, we propose a novel graph pool- 313

ing method specifically designed for AST, called 314

ASTGPool. It evaluates the importance of nodes 315

based on node features and the number of adja- 316
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Figure 4: Illustrating the GNN model, which is a hierarchical architecture incorporated with ASTGPool layer. Here
we show a hierarchical depth of 3 and F1, F2, F3 represent the features extracted at each corresponding depth.

cent nodes, which emphasizes intrinsic topological317

relationships. The formula for calculating the im-318

portance score is as follows:319

score = β1Xp+ β2deg(A), (1)320

where X denotes the node feature matrix, A is the321

adjacency matrix, and β1, β2 are learnable param-322

eters that balance the contribution of each factor.323

Figure 3 illustrates the importance score calculation324

for different pooling methods.325

Overall Architecture. The overall architecture326

consists of stacking the FAConv and ASTGPool327

layers L times, with a global maximum pooling328

layer added after each FAConv layer to capture em-329

beddings at different granularities. To effectively330

fuse these multi-level embeddings, we concatenate331

them and then generate the final code embeddings332

through a Gated Recurrent Unit (GRU) (Cho et al.,333

2014). The root node contains the source code in334

text format. To preserve the Transformer model’s335

context encoding capabilities and expedite training,336

we incorporate a residual connection between the337

root node’s code embeddings and the final code338

embeddings, following the design principles of the339

CLIP-Adapter (Gao et al., 2024). The GNN model340

architecture is detailed in Figure 4.341

3.3.2 Training objective 342

We draw on the contrastive representation learning 343

method employed in CLIP (Radford et al., 2021) to 344

align the code embeddings generated by the GNN 345

model with the text embeddings generated by the 346

Transformer model. This method is concise and 347

efficient, enabling the learning of aligned embed- 348

dings across different modalities. The formula for 349

the loss function used to align the code embeddings 350

and the text embeddings is as follows: 351

LCode = − 1

N

N∑
i=1

log
exp (sim(ci, ti)/τ)∑N
j=1 exp (sim(ci, tj)/τ)

, 352

LText = − 1

N

N∑
i=1

log
exp (sim(ci, ti)/τ)∑N
j=1 exp (sim(cj , ti)/τ)

, 353

L =
1

2
(LCode + LText) . (2) 354

Here, ci and ti represent the i-th pair of code em- 355

bedding and text embedding, respectively. The 356

function sim(·, ·) represents the cosine similarity 357

between two vectors. The parameter τ is a learn- 358

able temperature parameter. 359

4 Experiments 360

4.1 Settings 361

Datasets. In code retrieval task, we use the CSN 362

and CosQA datasets to evaluate the performance of 363
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Model Ruby JavaScript Go Python Java PHP MRR_Avg
MRR R@1 MRR R@1 MRR R@1 MRR R@1 MRR R@1 MRR R@1

UniXcoder 110M 45.02 34.26 34.28 25.34 54.64 43.61 33.31 24.42 36.28 26.71 24.94 17.51 38.08
+ GNN-Coder 50.40 40.05 40.22 30.42 67.76 58.04 44.56 34.37 46.42 35.60 35.86 26.46 47.54
CodeT5+ 110M 73.55 64.55 65.83 56.24 89.51 84.55 69.75 60.12 69.42 59.74 64.44 54.06 72.08
+ GNN-Coder 73.85 64.71 67.20 57.70 90.71 86.17 70.37 60.77 70.80 61.46 65.93 55.47 73.14
LLM-Embedder 63.07 53.29 49.33 39.65 80.94 73.02 55.86 45.52 53.60 42.94 44.70 34.56 57.92
+ GNN-Coder 65.00 55.19 52.35 42.27 87.10 81.30 61.71 51.47 60.38 49.72 54.96 44.19 63.58

Table 1: Results comparison in terms of MRR and R@1 on various Transformer architectures on the CSN dataset,
showing GNN-Coder consistently enhances the performance of all Transformer-based models.

GNN-Coder. The CSN is derived from the Code-364

SearchNet dataset (Husain et al., 2019), and it365

filters out low-quality queries through manually366

crafted rules (Guo et al., 2020). CosQA (Huang367

et al., 2021), on the other hand, uses queries from368

the logs of the Microsoft Bing search engine and369

the corresponding code snippets. The experimental370

results of the CSN dataset can demonstrate the ba-371

sic performance of GNN-Coder in code retrieval,372

while the results of the CosQA dataset can verify its373

generalization ability, as the queries in the CosQA374

dataset are not included in the training set.375

Baselines. Our GNN architecture is applicable to376

various Transformer models. It is crucial to eval-377

uate its compatibility and adaptability with vari-378

ous state-of-the-art Transformer models. Hence,379

to comprehensively evaluate the performance of380

GNN-Coder, we select a variety of Transformer381

models, including UniXcoder, CodeT5+, and LLM-382

Embedder. UniXcoder and CodeT5+ represent383

state-of-the-art advancements in code retrieval,384

while LLM-Embedder is tailored to address the385

unique retrieval enhancement needs of LLMs.386

Evaluation Metrics. We adopt Mean Recipro-387

cal Rank (MRR) and Recall@K (Liu et al., 2021;388

Di Grazia and Pradel, 2023) as the retrieval metrics.389

In addition, we utilize the proposed MAM to eval-390

uate the distribution of code embeddings. MAM391

are calculated through the average cosine similarity392

between text embeddings and all code embeddings.393

The specific formula is as follows:394

MAMj =
1

N

N∑
i=1

sim(ci, tj). (3)395

By analyzing the distribution of all MAM, we can396

evaluate the uniformity of the code embedding dis-397

tributions. Theoretically, if the code embeddings398

are uniformly distributed, both their mean and stan-399

dard deviation (SD) should be close to zero.400

4.2 Implementation Details 401

For UniXcoder and CodeT5+, we use the configu- 402

rations provided by the authors to encode code and 403

text. For LLM-Embedder, without additional in- 404

structions, we use the embedding of the first token 405

in the last hidden layer as the encoded embeddings. 406

Regarding the configuration of the GNN model, 407

we set it to three layers. The size of the hidden layer 408

of the GNN model is dynamically adjusted accord- 409

ing to the output dimension of the Transformer 410

model and the number of AST node types. Mean- 411

while, the output dimension of the GNN model 412

is kept consistent with that of the corresponding 413

Transformer model. More details related to the 414

training process can be found in Appendix A. 415

4.3 Results 416

Results on CSN. Considering that UniXcoder is 417

pre-trained on the CSN dataset, whereas CodeT5+ 418

incorporates a larger volume of code data, we first 419

assess the effectiveness of GNN-Coder in improv- 420

ing Transformer model performance on the ob- 421

served datasets. 422

The experimental results, presented in Table 1, 423

provide compelling evidence of the effectiveness 424

of the GNN-Coder in the text-to-code retrieval task. 425

Specifically, GNN-Coder consistently enhances 426

the performance of all Transformer-based models, 427

with the most significant improvements observed 428

in models that exhibit lower initial capabilities in 429

code generation. Notably, despite UniXcoder’s par- 430

tial incorporation of AST information, GNN-Coder 431

still outperforms it. This result can be attributed 432

to the superior ability of GNN-Coder to exploit 433

structured AST information, thereby yielding bet- 434

ter performance in the retrieval task. 435

Furthermore, we report the MAM score in Ta- 436

ble 2, which provides insight into the uniformity 437

of code embedding distributions. All Transformer 438

models exhibit varying degrees of non-uniformity 439

across datasets. Notably, UniXcoder demonstrates 440
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Model Ruby JavaScript Go Python Java PHP
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

UniXcoder 110M 0.09 0.02 0.09 0.02 0.07 0.02 0.08 0.02 0.08 0.02 0.08 0.02
+ GNN-Coder 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.02
CodeT5+ 110M 0.16 0.05 0.17 0.05 0.15 0.03 0.13 0.03 0.14 0.04 0.15 0.04
+ GNN-Coder 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LLM-Embedder 0.76 0.01 0.77 0.01 0.69 0.02 0.76 0.01 0.76 0.01 0.74 0.01
+ GNN-Coder 0.02 0.01 0.01 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

Table 2: MAM score comparison for different methods on the CSN dataset, providing insight into the uniformity of
code embedding distribution. Lower value indicates better distribution.

Model MRR R@1 Mean SD
UniXcoder 110M 27.96 17.8 0.10 0.02
+ GNN-Coder 48.22 36.2 0.01 0.02
CodeT5+ 110M 45.44 31.2 0.24 0.03
+ GNN-Coder 66.50 53.8 0.05 0.01
LLM-Embedder 46.10 33.4 0.77 0.01
+ GNN-Coder 67.96 56.4 0.02 0.00

Table 3: Results comparison in terms of MRR, R@1
and MAM on various Transformer architectures on the
CosQA dataset.

the least non-uniformity, while CodeT5+ shows a441

higher degree. This discrepancy stems from the442

fact that CodeT5+ is trained on a broader and more443

diverse set of code data. while improving perfor-444

mance, it introduces greater complexity and irregu-445

larities in embedding distributions. In contrast, the446

general model LLM-Embedder, with limited capac-447

ity to process code-specific features, exhibits a sig-448

nificantly higher level of non-uniformity, highlight-449

ing the challenges faced by non-specialized models450

in handling code data effectively. The introduction451

of the GNN model significantly improves embed-452

ding uniformity. Despite initial non-uniformity in453

the output distribution of the Transformer model,454

the GNN model effectively minimizes these biases,455

with the average MAM scores of all embeddings456

approaching zero. This improvement is attributed457

to the learnable parameter λ within the GNN frame-458

work, which dynamically adjusts the balance be-459

tween the Transformer and GNN models. Addition-460

ally, the reduction in the variance of most MAM461

scores indicates more symmetric and reliable em-462

beddings, demonstrating that the GNN model not463

only enhances uniformity but also improves the464

stability and consistency of the results.465

Zero-shot Performance on CosQA. To evaluate466

the generalization ability of GNN-Coder, we use467

CosQA dataset, which is not part of the training468

set for the code Transformer model, and evaluate 469

the performance improvement of GNN-Coder. The 470

results, presented in Table 3, show that the gen- 471

eral model, LLM-Embedder, outperforms the code 472

model. This suggests that the code model has lim- 473

ited generalization capability, likely due to the sig- 474

nificant differences between the CosQA dataset and 475

the training data of the code Transformer model. 476

Notably, after incorporating the GNN model, all 477

models exhibit substantial performance improve- 478

ments. Furthermore, the reported MAM score indi- 479

cates that these improvements may be attributed to 480

a more uniform distribution of code. 481

4.4 Ablation Study 482

The Effect of Pooling Layer. We first perform an 483

ablation study on the pooling layers in the GNN 484

model, comparing the performance of TopKPool, 485

SAGPool, and ASTGPool. The results are summa- 486

rized in Table 4. As described in Section 3.3.1, ex- 487

isting pooling methods struggle with reverse AST 488

processing. In contrast, ASTGPool addresses this 489

issue by accounting for both the number of adjacent 490

nodes and their characteristics, thus overcoming the 491

limitations of previous methods. The experimental 492

results demonstrate that ASTGPool outperforms 493

all other pooling methods. 494

Furthermore, we conduct experiments on GNN- 495

Coder without a pooling layer, as shown in Table 5. 496

It indicates that the impact of the pooling layer 497

varies across models. Specifically, the pooling 498

layer has a more pronounced effect on improving 499

the performance of LLM-Embedder compared to 500

CodeT5+. This difference arises from the models’ 501

distinct code processing capabilities. For LLM- 502

Embedder, which has relatively limited code pro- 503

cessing ability, most AST nodes contain noise, and 504

pooling improves model performance. Conversely, 505

for CodeT5+, which has a stronger code processing 506

ability, most AST nodes carry valuable information, 507
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Model Pooling Layer Ruby JavaScript Go Python Java PHP Avg

UniXcoder 110M
TopKPool 49.14 39.37 67.24 42.80 46.10 35.23 46.65
SAGPool 50.08 39.49 66.29 44.90 45.83 35.16 46.96
ASTGPool 50.40 40.22 67.76 44.56 46.42 35.86 47.54

CodeT5+ 110M
TopKPool 73.72 66.93 90.25 70.61 70.70 65.73 73.02
SAGPool 73.66 66.84 90.25 70.44 70.73 66.00 72.99
ASTGPool 73.85 67.20 90.71 70.37 70.80 65.93 73.14

LLM-Embedder
TopKPool 61.62 49.31 84.65 56.84 54.33 48.95 59.28
SAGPool 61.35 49.40 84.63 56.70 54.86 48.75 59.28
ASTGPool 65.00 52.35 87.10 61.71 60.38 54.96 63.58

Table 4: Illustrating the effect of the proposed ASTGPool by comparing different pooling layers in terms of MRR
with respect to various Transformer architectures on the CSN dataset.

Ruby JavaScript Go Python Java PHP Avg
MRR Mean MRR Mean MRR Mean MRR Mean MRR Mean MRR Mean MRR

CodeT5+ 110M 73.55 0.16 65.83 0.17 89.51 0.15 69.75 0.13 69.42 0.14 64.44 0.15 72.08
+ MLP Adapter 73.75 0.07 67.18 0.08 90.35 0.05 70.22 0.06 70.75 0.06 65.76 0.06 73.00
+ GNN wo pooling 73.65 0.02 67.19 0.02 90.37 0.00 70.50 0.01 70.96 0.01 65.84 0.01 73.09
+ GNN w pooling (best) 73.85 0.01 67.20 0.02 90.71 0.00 70.37 0.01 70.80 0.01 65.93 0.01 73.14

- no AST node type 73.64 0.02 66.47 0.03 89.69 0.00 69.78 0.02 70.51 0.02 65.88 0.01 72.66
- undirect AST 73.32 0.02 67.07 0.02 90.34 0.00 70.40 0.01 70.86 0.01 66.10 0.01 73.02

LLM-Embedder 63.07 0.76 49.33 0.77 80.94 0.69 55.86 0.76 53.60 0.76 44.70 0.74 57.92
+ MLP Adapter 61.53 0.19 52.05 0.19 85.87 0.27 60.41 0.26 58.16 0.22 51.72 0.18 61.62
+ GNN wo pooling 61.53 -0.01 49.77 0.01 84.77 0.02 61.69 0.02 58.90 0.02 54.21 0.02 61.81
+ GNN w pooling (best) 65.00 0.02 52.35 0.01 87.10 0.02 61.71 0.02 60.38 0.02 54.96 0.02 63.58

- no AST node type 64.45 0.02 52.13 0.01 86.51 0.02 59.12 0.01 58.57 0.02 54.09 0.02 62.48
- undirect AST 64.78 0.01 52.25 0.01 86.88 0.02 61.51 0.02 55.00 0.01 54.80 0.03 62.54

Table 5: Retrieval results under different settings on the CSN dataset. For experiments removing parts of AST
information, we set the pooling ratio to 0.1, which is generally best.

and pooling may result in information loss.508

The Effect of GNN. We conduct an ablation study509

on GNN-Coder with various configurations. First,510

we replace the GNN model with a basic Multi-511

Layer Perceptron (MLP) Adapter, which remaps512

Transformer embeddings without AST information.513

Next, we examine the role of AST information by514

evaluating two variations: excluding AST node515

types and converting directed edges to undirected516

edges. The experimental results in terms of MRR517

and Mean MAM are summarized in Table 5.518

The study reveals that the MLP Adapter miti-519

gates the non-uniformity of the Transformer model520

to some extent, leading to performance improve-521

ments across all models. However, the enhance-522

ment is modest compared to the GNN model, un-523

derscoring the critical role of integrating AST in-524

formation. Additionally, removing the AST infor-525

mation significantly degrades model performance,526

even below the baseline performance with the MLP527

Adapter in some cases. This suggests that per-528

formance gains are primarily driven by the inclu-529

sion of AST data, rather than an increase in model530

parameters. Overall, the proposed GNN-Coder 531

achieves the best performance by incorporating 532

AST semantic information with a GNN model. 533

5 Conclusion 534

we propose GNN-Coder, a novel framework for 535

code retrieval that leverages GNNs and ASTs to 536

overcome the limitations of traditional sequence- 537

based models. By integrating GNNs with Trans- 538

formers, GNN-Coder effectively captures both 539

structural and semantic features of code, addressing 540

the challenges posed by structurally complex code 541

fragments. The introduction of a tailored graph 542

pooling method further enhances the model’s abil- 543

ity to retrieval accuracy through better feature sepa- 544

ration. Our experiments demonstrate that GNN- 545

Coder outperforms existing methods, achieving 546

significant improvements in retrieval performance 547

across multiple datasets. The results highlight the 548

potential of GNN-Coder to advance the field of 549

code retrieval, offering a promising solution for 550

handling complex code structures and enhancing 551

the effectiveness of software development tools. 552
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6 Limitation553

The GNN-Coder framework presented in this work554

is primarily designed for the code retrieval task,555

demonstrating its potential within this domain.556

However, the framework’s applicability could ex-557

tend to other related tasks, such as code clone detec-558

tion and code translation. Future research should559

explore a broader range of tasks to better assess560

the framework’s effectiveness across various code-561

related applications.562

A limitation in the current approach lies in the563

handling of text embeddings. As detailed in Ap-564

pendix C, the uniform distribution of code em-565

beddings does not entirely eliminate slight non-566

uniformity in text embeddings, caused by the dy-567

namic nature of the distribution metrics. Given that568

GNN-Coder is primarily tailored for code modality,569

further investigation into the text embedding non-570

uniformity is necessary. Future work will focus571

on addressing this issue and evaluating the frame-572

work’s generalization capabilities, particularly in573

combination with LLMs.574

Additionally, the experiments conducted so far575

have been limited to models with a relatively small576

parameter scale due to hardware constraints. To577

fully understand the scalability of the GNN-Coder578

framework, future work should explore its perfor-579

mance and applicability on larger models and more580

diverse types of model architectures.581
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A Training Process784

During the training process, we choose the AdamW785

optimizer and set the learning rate to 0.004. We786

warm up the learning rate in the first 10% of the787

training steps and then adopt a cosine annealing de-788

cay strategy. Specifically, for Transformer models789

with an output dimension of 256, we train the GNN790

model for 400 iterations with a batch size of 16K.791

For models with an output dimension of 768, to792

ensure the training effect, we adjust the batch size793

to 8K and increase the number of training iterations794

to 1000.795

Notably, for UniXcoder and CodeT5+, different796

from the original settings, we preserve the origi-797

nal format of the code before tokenization instead798

of splitting each word. This is because preserv-799

ing the original code format is more reasonable in800

real-world application scenarios. Therefore, the801

experimental results of UniXcoder and CodeT5+802

may slightly differ from the original reports.803

B Pooling Ratio804

We also investigate the performance of different805

pooling ratios, varying the ratio from 0.1 to 0.9.806

The results on CSN and CosQA datasets are pre-807

sented in Table 6. For CodeT5+, which exhibits808

the best inherent code capability, the performance809

is relatively insensitive to the pooling ratio, with810

optimal results observed at ratios of 0.1 and 0.7.811

This insensitivity may be due to the well-initialized812

AST, where most nodes are significant. As a re-813

sult, while reducing computational complexity, the814

pooling layer may slightly impact performance due815

to information loss, as detailed in Table 5. For the816

other two models, which have lower code capabili- 817

ties, the initialized AST has more noise. Therefore, 818

a lower pooling ratio is more effective in reducing 819

noise and enhancing performance, with the opti- 820

mal ratio being 0.1. In these cases, the pooling 821

layer plays a more significant role in improving 822

performance. 823

C Distribution of Text Embeddings 824

To evaluate the distribution of the text embeddings, 825

we also calculate the standard deviation (SD) of 826

MAM′: 827

MAM′
i =

1

N

N∑
j=1

sim(ci, tj) (4) 828

As shown in Table 7, we observe that after incor- 829

porating the GNN model, the SD of some MAM′ 830

remains the same or even increases. The decrease 831

in the SD of MAM is due to all MAM approaching 832

zero. The increase in the SD of MAM′ is more 833

complex. After adding the GNN model, the code 834

embeddings become more dispersed, leading to 835

more diverse observation angles for the text en- 836

coded space. However, since the text embeddings 837

are not modified, their SD may slightly increase. 838

Finally, the SD of MAM′ are even higher than those 839

of MAM, suggesting that the distribution of text 840

embeddings is less uniform compared with code 841

embeddings. This may be because text embeddings 842

share the encoding space with all texts, which may 843

introduce a certain degree of non-uniformity. Given 844

that GNN-Coder is mainly designed for the code 845

modality, future research should focus on the non- 846

uniformity issues in text embeddings. 847
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model Pooling Ratio CSN CosQA
Ruby JavaScript Go Python Java PHP CSN_Avg

UniXcoder 110M

0.1 50.40 40.22 67.76 44.56 46.42 35.86 47.54 48.22
0.3 50.18 39.54 67.31 44.28 46.00 35.30 47.21 48.20
0.5 49.75 39.78 67.07 43.93 46.10 35.25 46.98 47.16
0.7 49.69 39.57 66.65 44.07 46.11 35.50 46.93 47.22
0.9 49.73 39.68 65.63 43.57 45.97 35.33 46.65 46.64

CodeT5+ 110M

0.1 73.69 67.15 90.71 70.37 70.77 65.91 73.10 65.51
0.3 73.72 67.08 90.48 70.36 70.76 65.93 73.06 64.51
0.5 73.64 67.08 90.46 70.37 70.78 65.90 73.04 64.39
0.7 73.85 67.20 90.47 70.36 70.80 65.93 73.10 66.50
0.9 73.70 67.10 90.51 70.36 70.76 65.91 73.06 65.36

LLM-Embedder

0.1 65.00 52.35 87.10 61.71 60.38 54.96 63.58 67.96
0.3 62.80 51.05 86.92 61.30 60.32 54.94 62.89 67.50
0.5 62.63 50.66 86.92 61.59 60.32 54.76 62.81 66.50
0.7 62.18 50.54 87.07 61.63 60.27 54.66 62.73 67.41
0.9 61.73 50.35 86.97 61.40 60.35 54.45 62.59 67.60

Table 6: MRR of different pooling ratios with various models and datasets.

Model CSN CosQA
Ruby JavaScript Go Python Java PHP

UniXcoder 110M 0.03 0.03 0.02 0.03 0.03 0.04 0.03
+ GNN-Coder 0.02 0.01 0.02 0.02 0.02 0.02 0.02

CodeT5+ 110M 0.02 0.02 0.02 0.02 0.02 0.02 0.05
+ GNN-Coder 0.02 0.02 0.02 0.02 0.02 0.02 0.02

LLM-Embedder 0.01 0.01 0.01 0.01 0.01 0.01 0.02
+ GNN-Coder 0.01 0.02 0.02 0.02 0.01 0.02 0.02

Table 7: The distribution of the text embeddings by different models on different datasets. The data in the table
represents the standard deviation of MAM′. The mean value of MAM′ is the same as that of MAM.
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