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Compositional Video Synthesis by Temporal
Object-Centric Learning

Adil Kaan Akan, Yucel Yemez

We present a novel framework for compositional video synthesis that leverages temporally
consistent object-centric representations, extending our previous work, SlotAdapt, from images to
video. While existing object-centric approaches either lack generative capabilities entirely or treat
video sequences holistically, thus neglecting explicit object-level structure, our approach explicitly
captures temporal dynamics by learning pose invariant object-centric slots and conditioning them
on pretrained diffusion models. This design enables high-quality, pixel-level video synthesis with
superior temporal coherence, and offers intuitive compositional editing capabilities such as object
insertion, deletion, or replacement, maintaining consistent object identities across frames.
Extensive experiments demonstrate that our method sets new benchmarks in video generation
quality and temporal consistency, outperforming previous object-centric generative methods.
Although our segmentation performance closely matches state-of-the-art methods, our approach
uniquely integrates this capability with robust generative performance, significantly advancing
interactive and controllable video generation and opening new possibilities for advanced content
creation, semantic editing, and dynamic scene understanding.

✦

Index Terms—Object-centric learning, compositional video generation
and editing, unsupervised video object segmentation, slot diffusion,
invariant slot attention

1 INTRODUCTION

The real world is inherently compositional, made up of
distinct entities that can be flexibly combined and recon-
figured into richer structures. This property underlies core
cognitive abilities such as abstraction, causal reasoning, and
systematic generalization [19, 35, 5]. However, beyond static
structure, real-world environments are also deeply dynamic:
objects move, interact, appear, and disappear over time.
Humans naturally parse these dynamics into persistent,
interacting entities, forming temporally coherent mental
models that support understanding and prediction [59, 60].
Modeling such temporal compositionality remains a major
challenge for artificial systems. While object-centric learn-
ing has shown promise in uncovering latent structure in
images [22], extending these ideas to video requires cap-
turing not only spatial grouping, but also object continuity,
interaction, and transformation across time. Although recent
text-to-video models have achieved impressive synthesis
quality, they generally lack compositional structure and
offer limited control over object-level content. Bridging this
gap is essential for building video models that can reason,
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generalize, and interact with dynamic environments in a
human-like, compositional manner.

Recent progress in object-centric learning (OCL) has
been especially notable in static image domains, with
models such as SlotDiffusion [68], Latent Slot Diffusion
(LSD) [27], and our prior work SlotAdapt [3] achieving
strong results in unsupervised object discovery, segmen-
tation, and image generation. These methods decompose
scenes into discrete, interpretable object representations
(“slots”) [35, 52], enabling structured understanding and
high-fidelity synthesis. Importantly, they offer a pathway
toward models that can generalize compositionally by rea-
soning over object-level primitives.

In our previous work, SlotAdapt [3], we introduced a
framework that leverages pretrained diffusion models con-
ditioned with slot-based representations via adapter layers.
It outperformed earlier slot-based approaches in both seg-
mentation and image generation and enabled compositional
editing of real-world images—an ability that prior models
lacked. However, generative modeling from object-centric
representations in video remains largely unexplored.

The broader OCL field has gradually progressed from
synthetic datasets [28, 29] to real-world images [18, 37] and
videos [45, 70, 71, 36, 43], typically within an autoencoding
framework [21, 39]. These models aim to uncover object
structure by reconstructing input frames using architectural
or data-driven priors, often guided by static cues like color,
shape, or pretrained features.

Extending object-centric generative modeling to the
video domain introduces unique challenges. Models must
capture temporal continuity, dynamic object transforma-
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tions, and multi-object interactions across frames. Most ex-
isting approaches focus on segmentation or tracking and en-
force temporal consistency through auxiliary signals such as
optical flow [30] or depth maps [15], or by incorporating ar-
chitectural biases that promote slot stability [56, 67] such as
slot-aligned cross-frame attention and slot-specific recurrent
updates. While such cues can aid learning, they introduce
substantial computational overhead and are fragile in the
presence of motion blur, deformation, or occlusion. Recent
works in unsupervised temporal OCL, such as SOLV [4],
TC-Slot [41], and others [14, 47], explore learning tempo-
rally consistent slots using pretrained vision encoders (e.g.,
DINO [10, 53] or CLIP [48]). While effective in producing
stable representations, these methods lack generative capa-
bilities and compositional control, relying on feature-level
decoding instead of pixel-level synthesis. As a result, they
cannot support interactive editing or video generation.

Meanwhile, diffusion-based video generation mod-
els [25, 54, 9] have demonstrated high-quality synthesis us-
ing large-scale text-video datasets. However, these models
treat scenes as monolithic visual fields and do not incorpo-
rate object-centric structure. This limits compositional con-
trollability, semantic disentanglement, and consistent object
identity over time. Some recent efforts [64, 7, 73] introduce
control mechanisms through keyframes, masks, or motion
guidance, but they remain orthogonal to our approach and
do not utilize slot-level object representations.

In this work, we propose a fully self-supervised frame-
work for generative video modeling that combines object-
centric representation learning with high-quality synthesis
capabilities. Building on SlotAdapt [3], we extend object-
centric generation into the temporal domain by learning
temporally consistent slots that encode object identity, mo-
tion, and interactions—without relying on external signals
like optical flow or depth. By conditioning a pretrained
diffusion model on these slot-based temporal features, we
achieve video reconstructions that are both temporally co-
herent and semantically grounded through pixel-level dif-
fusion synthesis.

A key methodological distinction lies in our model’s
ability to discover temporal structure directly from raw
video data. Rather than relying on architectural constraints
such as STEVE’s deterministic slot transitions [56] or Slot-
Former’s slot-aligned cross-frame attention [67] or hand-
designed temporal signals like optical flow guidance in G-
SWM and STOVE [38, 32], our approach learns dynamic
object relationships through self-supervised conditioning
of a pretrained diffusion model with slot-based temporal
features. This design enables object-centric video generation
with compositional editing control, capabilities absent in
existing paradigms.

Unlike conventional text-to-video models [25, 54]
that operate holistically without object-level structure, or
feature-decoding temporal OCL methods [4, 71] that lack
generative capabilities, our slot-based method supports flex-
ible compositional control, allowing users to insert, remove,
or modify individual objects while maintaining temporal
coherence and scene consistency. Empirically, our model
achieves competitive segmentation performance compared
to existing unsupervised methods such as SOLV [4] or
OCLR [69], while also enabling full-resolution video syn-

thesis. Compared to image-based OCL models including
LSD [27], SlotDiffusion [68], and SlotAdapt [3], our ap-
proach establishes new benchmarks for video synthesis
with substantial improvements in temporal consistency and
visual fidelity. To the best of our knowledge, our method is
the first to combine object-centric representation learning
with high-quality video generation on real-world videos,
enabling compositional editing where individual objects
can be inserted, removed, or modified while maintaining
temporal coherence, in a self-supervised framework.

2 RELATED WORK

Unsupervised Object-Centric Learning (OCL). Unsuper-
vised object-centric learning aims to decompose visual
scenes into discrete and semantically meaningful repre-
sentations, typically referred to as “slots”, without ex-
plicit supervision. Early works such as Attend-Infer-Repeat
(AIR) [16] and SQAIR [31] used iterative inference and vari-
ational decoders but were limited to simple, low-complexity
settings. Slot Attention [39] introduced a permutation-
invariant attention mechanism that enabled effective object
discovery and segmentation on synthetic datasets. This
approach has since been extended with autoregressive
transformers (e.g., SLATE [55], discrete tokenization [56],
and self-supervised objectives in feature space (e.g., DI-
NOSAUR [53]). More recently, hierarchical approaches have
been explored, such as COCA-Net [33], which introduces
a hierarchical clustering strategy with spatial broadcast de-
coding to achieve superior segmentation performance on
synthetic datasets.

Several methods have explored temporal extensions of
object-centric modeling by encouraging slot consistency
across frames. SAVi [30] and SAVi++ [15] incorporate predic-
tor/corrector architecture which relies on auxiliary signals
such as optical flow and depth to guide temporal slot align-
ment. However, such additional cues are prone to failure
under deformation, occlusion, or motion blur. To address
these limitations, self-supervised alternatives have been pro-
posed: TC-Slot [41] employs contrastive learning to enforce
cross-frame slot consistency; Betrayed-by-Attention [14] in-
troduces a combination of hierarchical clustering and con-
sistency objective to stabilize slot attention; RIV [47] recon-
siders image-to-video transfer from an object-centric lens;
and SOLV [4] applies Invariant Slot Attention [8] to cluster
DINO features across time for coherent unsupervised slot
assignments. Early work in future prediction and scene
understanding [1, 2] also highlighted the relevance of object-
centric temporal modeling, motivating subsequent develop-
ments in this direction.

Despite these advances in segmentation and tracking,
most temporal OCL methods rely on feature-level decoding
and thus lack pixel-level generative capabilities—crucial for
photorealistic synthesis and fine-grained control. Moreover,
they do not support structured or compositional manipu-
lation of real-world content. In contrast, our method sig-
nificantly advances this direction by enabling pixel-level,
temporally consistent video generation and slot-based com-
positional editing in complex, real-world scenarios.
Diffusion Models for Image Generation. Diffusion mod-
els [58, 24] have rapidly become the state-of-the-art for high-



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

fidelity image generation, with models like ADM [13], Im-
agen [51], and DALLE-2 [49] showcasing controllable, text-
conditioned synthesis. Latent Diffusion Models (LDMs) [50]
reduce the computational cost by operating in compressed
latent space and offer flexible conditioning through cross-
attention. Several recent works have aimed to scale or
improve the underlying architecture [34, 17, 46, 11]. Recent
extensions like T2I-Adapters [42] allow lightweight adap-
tation of pretrained diffusion models to new tasks without
retraining the core model.
Object-Centric Diffusion Models. Several recent works
combine object-centric learning with diffusion-based gen-
eration to improve compositionality and controllability in
images. LSD [27], SlotDiffusion [68], GLASS [57] and our
prior work SlotAdapt [3] use slot-based representations to
condition diffusion decoders, enabling unsupervised object
discovery and structured image generation. However, LSD
and GLASS [57] rely on pretrained diffusion models, and
often suffer from a mismatch between learned slots and
the pretrained attention layers, leading to degraded gen-
erative quality. SlotDiffusion addresses this by training the
diffusion model from scratch, but this approach requires
extensive compute and lacks generalization.

In our previous work, SlotAdapt [3], we introduce
adapter layers specifically designed to better align slot se-
mantics with pretrained diffusion priors, achieving superior
segmentation and image generation performance compared
to prior slot-based methods. Furthermore, SlotAdapt was
the first to successfully demonstrate compositional gen-
eration and editing capabilities on challenging real-world
image datasets. Despite these advancements, existing object-
centric diffusion models—including SlotAdapt—primarily
focus on static images, leaving the challenge of modeling
temporal object dynamics largely unaddressed. Recogniz-
ing this crucial gap, our current work explicitly extends
SlotAdapt’s foundational ideas into the temporal domain,
enabling coherent object-centric video synthesis and editing.
We significantly advance beyond previous image-centric
methods by incorporating mechanisms to model object con-
tinuity and interaction over time.
Video Generation with Diffusion Models. Recent advances
in video synthesis have been driven by diffusion models
capable of producing high-resolution, temporally consistent
outputs. Ho et al. [26] introduced Video Diffusion Models
(VDMs), extending denoising diffusion to sequential data.
Follow-up models such as Imagen Video [25], Make-A-
Video [54], Phenaki [63], and Align Your Latents [9] further
advanced text-to-video generation using large-scale paired
datasets. Despite their impressive results, these models op-
erate on holistic, entangled scene representations and lack
explicit object-level structure. This limits their ability to sup-
port semantic disentanglement, compositional reasoning, or
precise object control.

While there have been early steps toward compositional-
ity in video—e.g., Tune-A-Video [66], VideoComposer [64],
and ControlVideo [73]—these methods rely on fine-tuning
or auxiliary conditioning (e.g., masks, keyframes, or motion)
rather than on disentangled object representations. As such,
they lack an object-centric inductive bias and cannot per-
form structured manipulations such as adding, removing,
or replacing individual entities in a scene.

In contrast, our work addresses this fundamental limita-
tion by learning object-centric temporal representations that
enable direct generative control. Unlike existing approaches
that operate post-hoc on pretrained models [66, 64, 73, 42],
we develop an end-to-end framework that jointly learns
object discovery and temporally consistent synthesis from
raw video data.
3 PRELIMINARIES
3.1 Slot Attention

Slot Attention [39] provides a framework to decompose
visual scenes into discrete, interpretable components termed
slots. Slots are initialized randomly and iteratively refined to
represent distinct objects or entities within the input data
through an attention mechanism. Formally, the slot update
rule can be described as:

U(m) = Attention
(
q(S(m)), k(F), v(F)

)
, (1)

S(m+1) = GRU(S(m),U(m)), (2)

where q, k, and v represent learnable linear transformations
corresponding to queries, keys, and values, respectively; F
denotes extracted image features; S are the slot vectors; U
represents the update generated by the attention operation;
m is the iteration index. Slots compete for pixels through
attention over the slot dimension, encouraging each slot to
bind to a distinct region or object in the scene. The effec-
tiveness of Slot Attention lies in its capacity to disentangle
and encode complex scenes into structured representations
without supervision. This is achieved through the ability
of the mechanism to assign representational capacity where
needed.
3.2 Diffusion Models

Diffusion models [58, 24] have recently emerged as powerful
generative frameworks, producing high-quality samples by
modeling the reverse process of a progressive noise addi-
tion. Given an input image X, the model learns to reverse
a noisy image Xτ at timestep τ 1 back to the original data
distribution.

The underlying generative process consists of a series of
reverse diffusion steps that transform samples from a noise
distribution to the data distribution p(X), where each step
is defined by conditional probabilities p(Xτ−1|Xτ ). During
training, a loss function L is optimized that penalizes the
expected prediction error across random timesteps τ , ef-
fectively teaching the model to denoise progressively cor-
rupted inputs and reconstruct the original data distribution
via:
L(θ) = EX∼p(X),ϵτ∼N (0,1),τ∼U(1,T )

[
∥ϵτ − ϵθ(Xτ , τ, y)∥22

]
,

(3)
where ϵθ denotes the noise prediction network parame-
terized by θ, and y represents optional conditioning in-
formation. For high-resolution images, Latent Diffusion
Models (LDM) [50] are proposed to perform the training
and sampling in a low-dimensional latent space, obtained
through a pretrained variational autoencoder (VAE) [50].
This approach improves computational efficiency while pre-
serving generative fidelity by decoupling image compres-
sion and synthesis.

1. We use the symbol τ for diffusion timesteps to distinguish from t
which denotes video frame index throughout this paper.
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3.3 SlotAdapt

In our prior work, SlotAdapt [3], we introduced a robust
methodology that integrates the strengths of Slot Attention
and pretrained diffusion models to achieve effective object-
centric image generation and compositional editing. Given
an input image X ∈ RH×W×3, SlotAdapt first employs
a visual backbone, typically based on pretrained vision
transformers like DINO [10, 44], to extract a compact set
of visual features represented by F ∈ Rh·w×d, where h,w
indicate reduced spatial dimensions and d is the feature
dimension. Slot Attention is then applied to these features
to dynamically allocate object-centric representations into
discrete slots S ∈ RK×Dslot , with each slot ideally corre-
sponding to a separate object or distinct entity in the scene.

These learned slots condition a pretrained Stable Diffu-
sion decoder, which we augment with specialized adapter
layers. Specifically, these adapter layers, implemented as
additional cross-attention modules inserted into each down-
sampling and upsampling block of the pretrained U-Net
architecture, enable explicit conditioning on slot representa-
tions. This design significantly differs from prior approaches
such as SlotDiffusion [68] and LSD [27], which condition on
slots via cross-attention layers originally trained for text em-
beddings—leading to potential misalignment between slot
semantics and the pretrained diffusion attention pathways.
By separating the adapter conditioning from the text-based
conditioning modules of the pretrained diffusion model, we
allow slots to focus exclusively on object-level semantics,
independent from the original textual embedding space.

To further enhance the conditioning mechanism,
SlotAdapt introduces a dedicated register token, r, com-
puted by mean pooling the slot representations or alter-
natively, the visual backbone features, following [12]. This
register token captures overall contextual scene information
and is conditioned via the original text-based cross-attention
layers of the diffusion model, enabling slots to remain
focused on specific objects without being diluted by global
scene context.

During training, SlotAdapt utilizes a reconstruction-
based loss framed as a noise prediction objective within
the diffusion framework. Formally, given a noisy latent
image representation Xτ obtained at diffusion timestep τ ,
SlotAdapt aims to predict the noise ϵτ using slot S and
register r conditioning:

L(θ) = EX∼p(X),ϵτ∼N (0,I),τ∼U(1,T )

[
∥ϵτ − ϵθ(Xτ , τ,S, r)∥22

]
,

(4)
where ϵθ denotes the diffusion-based noise prediction
model parameterized by θ.

Importantly, SlotAdapt freezes the pretrained diffusion
model parameters throughout training, updating only the
adapter layers and the slot attention mechanism. This strat-
egy allows the method to efficiently leverage the powerful
generative prior encoded in pretrained diffusion models,
significantly enhancing generative performance and train-
ing efficiency. Additionally, SlotAdapt introduces a guid-
ance loss that enforces alignment between slot attention
masks and the diffusion model’s cross-attention maps,
leveraging the prior knowledge residing in the frozen dif-
fusion layers to improve slot-object correspondence during
training.

SlotAdapt achieves state-of-the-art results on object-
centric image generation and compositional editing, partic-
ularly on complex real-world datasets. Its robust method-
ology, which combines structured object representations
with pretrained diffusion, provides a strong foundation for
this work, where we extend these ideas into the temporal
domain for object-centric video generation and editing.

4 METHODOLOGY

Our proposed framework extends SlotAdapt [3] to gener-
ate high-quality, temporally coherent videos from object-
centric representations. It comprises two core components:
a temporal object-centric encoder that captures dynamics
and interactions across video frames, and a slot-conditioned
diffusion decoder that synthesizes photorealistic frames.
The entire architecture is trained in a fully self-supervised
manner, without reliance on auxiliary cues such as optical
flow or depth.

4.1 Object-Centric Temporal Encoding
Given an input video composed of L frames, our model
first extracts visual features from each frame using a frozen
DINOv2 backbone [44]. Specifically, each frame at timestep
t is transformed into patch-level features Ft ∈ RN×d, where
each patch corresponds to a distinct spatial region of the
frame, N is the number of total patches and d is the feature
dimension.

To achieve temporally consistent object-centric represen-
tations, we utilize Invariant Slot Attention (ISA) [8]. While
original ISA enforces spatial invariance by decoupling object
identity from spatial information, our approach retains ISA’s
slot attention mechanism but replaces the spatial broadcast
decoder with a diffusion decoder that is directly conditioned
on pose-invariant slots, with register tokens providing the
necessary spatial context for coherent generation (discussed
in Section 4.3).

Formally, ISA decomposes each frame into K slot vec-
tors, each slot vector zjt ∈ RDslot attending to frame features
as follows:

At := softmax
j=1,...,K

(Mt) ∈ RK×N , (5)

mj
t :=

1√
d

p
(
k (Ft) + g(Gj

rel,t)
)
q(zjt ) ∈ RN (6)

where q : RDslot → RDslot , k : Rd → RDslot , p : RDslot → RDslot ,
and g : R2 → RDslot are learnable linear projections applied
to each patch and slot vector independently and Gj

rel,t ∈
RN×2 encodes the relative spatial position of each patch
with respect to slot j using a learnable scale and shift trans-
formation. The unnormalized attention scores mj

t ∈ RN

represent the j-th row of the matrix Mt ∈ RK×N , computed
for all K slots. The softmax is then applied column-wise
(over slots) to obtain the attention matrix At ∈ RK×N . The
attention matrix is computed per frame, where each row
represents the contribution of each patch to the update of
slot zjt at time t. Please refer to the supplementary material
for details on how we adapted ISA to our case.

These slot vectors are iteratively refined using a Gated
Recurrent Unit (GRU) and residual Multi-Layer Perceptron
(MLP), following the Slot Attention mechanism [39], to
reinforce their object binding consistency across frames.
The output per frame is a set of K slots, denoted by
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Fig. 1. Architecture Block Diagram We extract object-centric and temporally consistent information from input video frames using a visual
backbone composed of DINOv2 and Invariant Slot Attention (ISA). The ISA mechanism generates slots for each frame, which are then aggregated
temporally using a Transformer-based temporal aggregator to produce enriched, temporally-aware video slots. Concurrently, global context
information is summarized by average pooling frame-level features and further processed through a separate temporal aggregator to produce
global scene tokens. A pretrained Stable Diffusion Variational Autoencoder (VAE) encodes a randomly selected frame into latent space, and
Gaussian noise is subsequently added. The diffusion model is explicitly conditioned on both the temporally aggregated video slots and the slots
from the selected frame (shown here as the last frame for visualization purposes, though in practice this could be any frame) via additional adapter
attention layers, and on the global scene token using the diffusion model’s native cross-attention layers. During training, the model learns to predict
the added noise, with the diffusion loss (Lθ) measuring the prediction error. This training strategy ensures temporally coherent, object-centric video
synthesis and intuitive compositional editing capabilities across video frames.

St = {z1t , . . . , zKt }, accompanied by corresponding soft
attention masks At.
Temporal Context Aggregation. To capture broader tempo-
ral context, we concatenate slot sequences from all frames
within the video segment and pass them through a Trans-
former encoder augmented with learnable temporal posi-
tional embeddings:

S̃1:L = Transformer(S1:L), S1:L = concat(S1, . . . ,SL).
(7)

The resulting temporally aggregated slots S̃1:T are reshaped
and concatenated back with original frame-wise slots, creat-
ing augmented slots for each frame:

S̃+
t = concat(St, S̃t). (8)

Additionally, we compute global scene-level context vectors
by average-pooling the DINO features of each frame. These
pooled vectors undergo further temporal encoding via an-
other Transformer encoder to yield temporally-aware global
tokens r̃t ∈ Rd:

rt =
1

N

N∑
i=1

Ft,i, r̃t = Transformer(r1, . . . , rL)t. (9)

These global tokens summarize high-level dynamics and
semantic context, complementing the slot-based object rep-
resentations.

During training, we adopt a 1-frame training strategy:
we randomly select a single frame index t⋆ at each iteration
and retain only its temporally enriched slot set S̃+

t⋆ and

global context token r̃t⋆ for decoding. This 1-frame training
allows efficient supervision using a pretrained image-based
diffusion model.

4.2 Slot-Conditioned Diffusion Decoding
We decode the selected video frame using a pretrained Sta-
ble Diffusion model [50]. The chosen frame Vt⋆ is encoded
into a latent representation Xt⋆ ∈ Rh×w×c via the VAE
encoder of the diffusion model. The latent representation is
then perturbed by Gaussian noise according to the diffusion
schedule, resulting in a noisy latent Xτ at timestep τ .

To condition the diffusion process explicitly on object-
level semantics, we inject lightweight adapter-based cross-
attention layers into each residual block of the U-Net de-
coder, following the SlotAdapt architecture [3]. Adapter
layers are used to condition the diffusion U-Net with
the augmented slots, S̃+

t⋆ . Concurrently, the native cross-
attention layers of the U-Net, originally designed for textual
embeddings, are used to condition the global scene token
r̃t⋆ , which effectively summarizes global contextual infor-
mation.

The diffusion training objective aims to predict the
added noise:

Ldiff =
∥∥∥ϵ− ϵθ

(
Xτ , τ, S̃

+
t⋆ , r̃t⋆

)∥∥∥2 , where ϵ ∼ N (0, I).

(10)
Throughout training, we freeze the pretrained diffusion

model parameters and optimize only the temporal slot
encoder and the adapter layers. This ensures that the model
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benefits from the robust generative prior inherent in the
pretrained diffusion backbone without requiring large-scale
retraining.

Unlike SlotAdapt, we omit auxiliary attention-guidance
losses. Since we employ 1-frame training (randomly select-
ing one frame per iteration for efficient decoding), apply-
ing guidance loss would only align slot attention masks
with diffusion cross-attention masks for the selected frame,
while other frames in the temporal window receive no such
alignment signal. This inconsistent gradient flow across
frames disrupts temporal coherence. Instead, we directly
utilize encoder-derived attention masks without additional
processing or merging, ensuring simplicity and stability.
Inference. At test time, we apply a sliding-window strategy,
decoding the central frame within each overlapping win-
dow independently, following SOLV [4]. We align slot iden-
tities across frames using Hungarian matching based on slot
similarity. This design supports temporally coherent video
synthesis and provides intuitive compositional editing capa-
bilities: objects can be explicitly manipulated across frames
by modifying corresponding slots directly. In contrast to
prior methods, which were limited to synthetic videos or
static images, our approach successfully handles real-world
dynamic video scenes, effectively bridging segmentation
accuracy and high-quality generative performance.

4.3 Invariant Slot Attention Adaptation for Diffusion
Conditioning
The effectiveness of our object-centric video generation
framework relies on the assumption that the slot repre-
sentations are temporally consistent and invariant to pose
changes induced by motion. To achieve this, we employ
ISA on the encoder side, which estimates slot-specific pose
parameters and incorporates them into relative position en-
codings during slot formation. In the original ISA architec-
ture, these pose estimates are also used during decoding via
a spatial broadcast mechanism, enabling spatially accurate
reconstructions from pose-invariant slots.

In our model, while the slot attention computation re-
mains identical to that of the original ISA, we replace
the spatial broadcast decoder with a pretrained diffusion
decoder to enable high-quality generative modeling. This
decoder is directly conditioned on the pose-invariant slots,
which by design lack explicit spatial information. To com-
pensate for this, we leverage the register tokens (introduced
in Sections 3.3 and 4.1), which provide global pose and
background context to the diffusion decoder. The slots and
register tokens together maintain a disentangled represen-
tation of object identity and spatial attributes, enabling
spatially coherent video generation within a diffusion-based
framework.

To empirically verify the role of register tokens, we
generate images with and without register tokens (Fig. 2)
using a model trained with both components. When register
tokens are omitted (replaced with zero vectors), the gen-
erated objects appear in incorrect positions, with incorrect
scales and, in some cases, altered orientations compared to
the ground truth. The backgrounds also deviate significantly
from the original scenes. In contrast, when register tokens
are included, the generated object positions, scales, orien-
tations, and backgrounds closely match the ground truth.

Fig. 2. Pose Invariance in Diffusion Conditioning. Comparison of
video frame generation with and without register tokens on YTVIS
dataset. Without register tokens (middle), objects appear in incorrect
positions and backgrounds deviate from ground truth. With register to-
kens (right), generations accurately match ground truth (left), confirming
that register tokens handle pose information while slots maintain object
identity focus. Full temporal sequences are provided in the Supplemen-
tary Material.

These results demonstrate that the register tokens effectively
capture the pose and spatial context information that would
otherwise be handled by the spatial broadcast decoder in the
original ISA architecture. Please refer to the Supplementary
Material for additional results on the role of register tokens
in capturing spatial context.

5 EXPERIMENTS

We comprehensively evaluate our proposed framework
against state-of-the-art object-centric learning methods. We
focus on two core tasks: unsupervised video object seg-
mentation and temporally consistent video generation. Ex-
periments are conducted on two real-world datasets using
widely adopted metrics to ensure rigorous and meaningful
evaluation.

5.1 Datasets

We evaluate our approach on two widely used real-
world video datasets: DAVIS17 [45] and YouTube-VIS 2019
(YTVIS19) [71].

DAVIS17 is a benchmark specifically tailored for video
object segmentation. It contains short, high-quality video
sequences annotated with precise ground-truth masks, re-
quiring temporal consistency.

YTVIS19 consists of diverse video sequences with com-
plex scenes and significant variation in object appearance,
pose, and background. Following prior work [4], we eval-
uate our model on a subset comprising 300 videos selected
from the original training set of 2,883 high-resolution videos,
as YTVIS19 lacks an official validation or test set with
provided ground-truth masks.

Together, these datasets provide a challenging and re-
alistic evaluation environment for both segmentation and
generation tasks.

5.2 Implementation Details

We follow the implementation practices from our prior
work, SlotAdapt [3], adapting and extending them to
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TABLE 1
Ablation study on YTVIS dataset. We systematically evaluate the

contribution of key components in our unified framework by comparing
against our full model configuration. The full model uses invariant slot

attention, DINO register tokens, register aggregator, and 1-frame
training. We analyze the impact of removing individual components and

varying training strategies.

Method Configuration mIoU FG-ARI

Full Model 40.57 22.40

Component Ablations
w/o Register Aggregator 39.22 20.49
w/ Slot Avg Register Tokens 36.87 18.06
w/ Standard Slot Attention 27.09 11.06

Training Strategy Ablations
5-frame Training 40.67 22.00
5-frame Training + Guidance 41.02 22.69

model temporal dynamics. Specifically, we use a frozen DI-
NOv2 [44] ViT-B/14 as the visual backbone to extract frame-
level features. Invariant Slot Attention (ISA) is applied per
frame with shared initialization across time. A transformer-
based temporal aggregator enriches the slots with temporal
context, using a temporal window of L = 5 frames (2 past,
1 present, 2 future) following previous work [4].

For decoding, we use Stable Diffusion v1.5 [50], with
adapters inserted as in SlotAdapt [3]. During training, we
keep the Stable Diffusion model parameters fixed and op-
timize only the ISA, the temporal transformers, and the
adapter layers. We train all models for 350K iterations on
YTVIS19, then fine-tune for 50K iterations on DAVIS17. All
experiments are conducted on 2× NVIDIA A40 GPUs with
48GB memory each.

5.3 Baselines

For segmentation, we compare against SOLV [4], a recent
state-of-the-art method in unsupervised temporal object-
centric learning.

For the video generation task, no prior method di-
rectly addresses object-centric video generation from un-
supervised representations, as existing object-centric ap-
proaches use feature decoders such as those proposed by DI-
NOSAUR [53]. Thus, we benchmark against existing object-
centric image generation models: SlotDiffusion [68], Latent
Slot Diffusion (LSD) [27], and our previously developed
SlotAdapt [3] method, by training them on video frames
individually. This provides a rigorous baseline, highlight-
ing our method’s unique capability of generating coher-
ent videos directly from object-centric representations that
maintain temporal coherence.

5.4 Evaluation Metrics

Segmentation: We employ two complementary evaluation
metrics for comprehensive segmentation assessment. We
use the Foreground Adjusted Rand Index (FG-ARI) to mea-
sure the quality of clustering foreground pixels into distinct
object segments. Following prior work [4, 29, 6], we calcu-
late per-frame FG-ARI and report the mean across all frames
for consistency with existing approaches.

Additionally, we utilize mean Intersection-over-Union
(mIoU) focusing on foreground objects, which is widely
accepted in segmentation literature [53]. To ensure temporal
consistency between frames, we apply Hungarian matching

TABLE 2
Unsupervised video object segmentation on real-world datasets.
We compare our method with state-of-the-art approaches on YTVIS

and DAVIS datasets. For fair comparison with our encoder-based
approach, we include SOLV-E (encoder attention masks) and SOLV-E +

M (encoder attention masks with merging), alongside the full SOLV
method which uses decoder-generated masks. Our approach

demonstrates strong performance across both clustering-based
(FG-ARI) and overlap-based (mIoU) evaluation metrics.

Method YTVIS DAVIS

mIoU FG-ARI mIoU FG-ARI

LSD [27] 29.55 14.07 29.55 14.35
SlotDiffusion [68] 38.33 15.70 31.27 12.34
SlotAdapt [3] 36.51 20.32 29.95 16.28

SOLV-E 32.91 19.30 31.23 18.89
SOLV-E + M 36.91 21.34 33.12 20.40
SOLV [4]2 42.01 21.55 36.62 20.98

Ours 40.57 22.40 34.93 21.60

between predicted and ground-truth masks following stan-
dard practice [45].
Generation: We evaluate video generation quality through
a number of complementary metrics that capture different
aspects of visual fidelity and perceptual quality. We employ
Peak Signal-to-Noise Ratio (PSNR) to quantify pixel-wise
reconstruction accuracy between generated and ground-
truth frames. To assess perceptual similarity, we utilize
the Structural Similarity Index (SSIM) [65], which evalu-
ates structural information preservation, including lumi-
nance and contrast patterns. For deeper perceptual eval-
uation, we incorporate Learned Perceptual Image Patch
Similarity (LPIPS) [72], which leverages deep features to
measure perceptual differences that correlate with human
judgments. To evaluate distributional quality and realism,
we employ Fréchet Inception Distance (FID) [23], which
measures feature distribution distances between real and
generated images. Additionally, we utilize Fréchet Video
Distance (FVD) [61] to assess temporal consistency and
motion quality in generated video sequences. This multi-
perspective evaluation ensures a robust understanding of
generation quality in both spatial and temporal dimensions.

5.5 Quantitative Results
We first analyze the contribution of individual components
through ablation studies, then compare our unified frame-
work against specialized baselines for both segmentation
and generation tasks.
Ablation Studies. We systematically investigate our frame-
work’s key components and training strategies (Table 1).
Removal of the register aggregator (the version where only
the corresponding frame’s DINO tokens are used with-
out any transformer encoder for temporal aggregation, rt
in Eq. 9) or replacing register tokens with slot averag-
ing (the augmented slots are averaged in the slot dimension,
1
K

∑K
i=1 S̃

+
t,k in Eq. 8) leads to significant performance de-

clines, underscoring the importance of these components.
Using standard slot attention drastically reduces perfor-
mance, highlighting the critical role of pose invariance.

2. The original SOLV results were reported at a higher resolution
(336 × 504) with a different aspect ratio, while our experiments are
conducted at 224× 224. This resolution change partly accounts for the
observed performance differences.
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Fig. 3. Generation Results. Visual comparison of video generation
quality across methods on YTVIS (rows 1-2) and DAVIS17 (rows 3-4)
datasets. Our method generates high-quality frames that closely match
the ground truth, maintaining sharp object boundaries and preserving
fine-grained textures. The results demonstrate faithful reconstruction of
original scenes with superior detail preservation in the small animal’s
features (row 1), natural appearance and accurate coloring of the bird
(row 2), clear structural elements in the urban scene (row 3), and
realistic texture and form of the white animal (row 4). Full temporal
sequences are provided in the Supplementary Material.

By default, we employ 1-frame training where we ran-
domly select one frame from each video sequence, as ex-
plained in Section 4.1. As an alternative, we evaluate 5-
frame training with loss applied to all frames in the video
sequences. This 5-frame training strategy yields minor per-
formance improvements over the 1-frame approach.

As stated in Section 4.2, we omit the auxiliary attention-
guidance loss in our default 1-frame training. However,
when using 5-frame training, the attention guidance loss
can be applied, which further improves performance but
significantly increases computational costs. We therefore
choose the more efficient 1-frame training as our default
setting.
Comparison with Baselines. Table 2 summarizes segmen-
tation results. We report results for three variants of SOLV:
(i) encoder-only (SOLV-E), which evaluates invariant slot
attention masks similar to our architecture; (ii) encoder +
merging (SOLV-E+M), which applies merging to the invari-
ant slot attention masks; and (iii) full decoder-based masks
(SOLV), the default version that uses masks from the spatial
broadcast decoder.

The comparison with SOLV variants reveals an impor-
tant trade-off in existing approaches. While SOLV’s decoder
masks achieve the highest mIoU scores, this comes at a
cost: the decoder masks cannot be used for video synthe-
sis, making the method specialized for segmentation only.
When SOLV operates in configurations comparable to our
approach, using encoder attention masks, its performance
drops across both metrics, falling below our unified method
on all metrics. Importantly, our 5-frame training nearly
matches the mIoU of existing methods like SOLV, indicating
its potential for further improvements, as shown in Table 1.
However, we choose the 1-frame training configuration to

Fig. 4. Segmentation Results. Qualitative comparison of video object
segmentation on YTVIS (rows 1-2) and DAVIS17 (rows 3-4). Our method
successfully delineates objects with accurate boundaries across diverse
challenging scenarios. Row 1 shows segmentation of a bird with detailed
boundary preservation, row 2 demonstrates segmentation of a monkey
that covers most of the frame, row 3 shows segmentation of an animal
against a challenging natural background, and row 4 presents seg-
mentation of closely touching objects (motorcycle and person) that are
difficult to separate. Different colors represent distinct object instances
discovered by each method. Temporal consistency across frames is
demonstrated in the Supplementary Material.

balance performance with computational efficiency, repre-
senting an optimal trade-off for practical applications.
Video Generation Performance. Table 3 presents compre-
hensive video generation results compared to baselines.
Our approach establishes new state-of-the-art results on
YTVIS and DAVIS17 datasets, achieving superior perfor-
mance across all complementary metrics, spanning pixel-
level fidelity, structural preservation, perceptual quality, and
temporal consistency.

The consistent performance across traditional pixel-
based metrics (PSNR, SSIM) and more recent perceptual
measures (LPIPS, FID) is particularly notable, as these met-
rics often exhibit trade-offs in conventional approaches. Our
unified framework’s ability to simultaneously optimize for
reconstruction accuracy and perceptual realism indicates a
fundamental advancement in video generation quality.

The results on DAVIS17 show consistent performance
across all metrics. Our method achieves lower LPIPS and
FID scores compared to baselines, indicating improved per-
ceptual quality and better distributional alignment with real
video content. These improvements in perceptual metrics
complement the gains observed in pixel-level measures,
demonstrating the effectiveness of our approach across dif-
ferent evaluation criteria.

These results establish that high-quality segmentation
and generation can be achieved within a unified architec-
ture, demonstrating significant advantages over methods
that specialize in single tasks. The consistent performance
across both clustering-based and overlap-based segmenta-
tion metrics, combined with improvements across pixel-
level fidelity and perceptual quality measures, validates our
core hypothesis that temporally consistent slot representa-
tions can effectively condition temporally coherent video
generation while maintaining competitive segmentation ca-
pabilities.
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TABLE 3
Video generation performance on real-world datasets. We evaluate our method against state-of-the-art approaches on YTVIS and DAVIS
datasets using comprehensive generation metrics. Our approach demonstrates superior performance across both pixel-level accuracy (PSNR,

SSIM), perceptual quality measures (LPIPS, FID) and temporal coherence (FVD).

Method YTVIS DAVIS

PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
LSD [27] 9.64 0.2793 0.777 100.68 121.41 9.58 0.0356 0.6079 84.30 75.05
SlotDiffusion [68] 9.18 0.1867 0.6484 86.38 123.8413 10.68 0.0340 0.6143 136.18 152.73
SlotAdapt [3] 10.92 0.3669 0.6556 65.30 63.72 12.18 0.0674 0.2681 41.94 29.96

Ours 11.37 0.3933 0.5908 49.51 51.77 12.38 0.0946 0.1886 28.43 16.17

Fig. 5. Compositional Generation Results. Demonstration of object-level editing capabilities through deletion and replacement operations on
YTVIS (columns 1-3) and DAVIS17 (columns 4-5). Top rows show ground truth frames; bottom rows display edited results. Our method handles
challenging scenarios including: (a) removal of closely positioned objects while preserving scene coherence (column 1, bird deletion), (b) deletion
of camouflaged objects with natural background inpainting (column 3, turtle removal), and (c) semantic object replacement maintaining proper
occlusion and lighting (columns 4-5). The edited videos maintain temporal consistency throughout the sequences. Full temporal sequences are
provided in the Supplementary Material.

TABLE 4
Compositional generation performance. We evaluate compositional
generation by mixing slots from different batch samples. Our method

demonstrates superior performance across both datasets.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
YTVIS

LSD 8.05 0.0527 0.8734 127.49
SlotDiffusion 7.83 0.0521 0.9486 129.33
SlotAdapt 9.49 0.0575 0.7313 112.79
Ours 10.07 0.0687 0.629 83.45

DAVIS

LSD 5.22 0.028 1.0234 198.23
SlotDiffusion 6.04 0.031 0.9912 187.13
SlotAdapt 6.93 0.032 0.9721 172.39
Ours 8.27 0.065 0.694 113.86

5.6 Qualitative Results

Segmentation Quality. Figure 4 presents visual compar-
isons of segmentation results across different methods on
challenging video sequences. In these examples, our method
successfully separates different objects with clear boundary
delineation. For instance, in the bottom image of Figure 4,
our approach effectively differentiates individual object in-
stances where other methods struggle to maintain distinct
segmentations.
Generation Performance. Figure 3 compares video genera-
tion results across different methods. Our method generates

higher quality frames with better detail preservation and
cleaner object boundaries compared to baseline approaches.
The visual comparison shows our approach maintains object
identity and spatial relationships effectively while produc-
ing temporally consistent video content. For multi-frame
visualizations, please refer to the Supplementary Material.
Video Editing Capabilities. Figure 5 presents examples of
our framework’s compositional video editing capabilities.
Thanks to a unified architecture, our method allows intu-
itive operations such as inserting, removing, or replacing
objects, while preserving photorealistic detail. These results
demonstrate the practical value of our object-centric repre-
sentation for enabling flexible and interactive video editing.
Additional compositional editing results are provided in the
Supplementary Material.

To assess compositional generation quantitatively, we
follow the setup introduced in SlotDiffusion [68] and ex-
tended in our previous work, SlotAdapt [3]. SlotDiffusion
evaluates compositionality by randomly mixing slot repre-
sentations from different images within a batch. We adapt
this idea to the video domain by first aligning slot corre-
spondences across frames, then randomly exchanging slots
between videos in the batch, frame by frame.

As shown in Table 4, our method consistently outper-
forms prior approaches on this task. Taken together with
the qualitative results in Figure 5, these findings confirm
that our model can effectively handle compositional video
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generation and editing, both in terms of visual quality and
quantitative performance.

6 CONCLUSION

This work introduces the first unified framework for simul-
taneous video object segmentation and compositional video
generation, challenging the conventional separation of these
fundamental tasks. Our approach demonstrates that object-
centric representations can effectively bridge perception and
synthesis, achieving state-of-the-art FG-ARI performance
on YTVIS and DAVIS17 datasets while establishing new
benchmarks across all video generation metrics.

Our core insight is that generative modeling provides in-
ductive structure beneficial for segmentation, while object-
centric decomposition offers strong priors for temporally
coherent synthesis. This synergy allows our model to out-
perform task-specific baselines without relying on hand-
crafted temporal cues or architectural constraints. Extensive
experiments confirm that integrating structured slot repre-
sentations with pretrained diffusion models yields consis-
tent improvements in temporal stability and visual fidelity.

The results demonstrate that structural commonalities
between perception and generation can be exploited for
mutual benefit. Strong clustering accuracy reflects improved
temporal modeling, while generation metrics confirm the
model’s ability to synthesize content that respects both
structural and semantic constraints.

Future work will explore replacing the image-based de-
coder with dedicated video diffusion models for end-to-end
temporal dynamics modeling. Additional directions include
scaling to higher resolutions and longer sequences, and
incorporating text-based supervision for language-guided
generation and editing.
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future instance prediction spatially and temporally. In Proc.
of the European Conf. on Computer Vision (ECCV), 2022.

[3] Adil Kaan Akan and Yucel Yemez. Slot-guided adaptation
of pre-trained diffusion models for object-centric learning
and compositional generation. In Proc. of the International
Conf. on Learning Representations (ICLR), 2025.

[4] Görkay Aydemir, Weidi Xie, and Fatma Güney. Self-
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APPENDIX

This supplementary material includes additional experi-
mental details covering datasets, model configurations, and
training procedures (Section A), elaborates on the Invari-
ant Slot Attention mechanism introduced in the main pa-
per (Section B), and provides extended qualitative visual-
izations (Section C).

APPENDIX A
EXPERIMENTAL DETAILS

A.1 Dataset Details
To ensure consistency across inputs, we removed the black
borders present in all videos from the YTVIS19 dataset.
Given the self-supervised nature of our approach, we com-
bine the standard dataset splits during training. For eval-
uation, we use the publicly available validation sets for
all datasets except YTVIS. As the YTVIS dataset does not
provide annotations for its validation split, we use the
exact same subset of 300 videos from the training set that
are selected by SOLV [4]. During evaluation, we upsample
the predicted segmentation masks to the original frame
resolution using bilinear interpolation.

A.2 Common Experimental Setup
Unless stated otherwise, all experiments use the ViT-B/14
architecture pretrained with DINOv2 [44] as the visual
backbone, 7 slots with dimension 768, temporal window
size L = 5 consecutive frames (corresponds to 2 past, 1
present, 2 future), and input resolution of 256 × 256 for
Stable Diffusion VAE and 224× 224 for the DINO encoder.
Training Schedule: We train models for 350K iterations
on YTVIS19, then fine-tune for 50K iterations on DAVIS17.
All models use AdamW optimizer [40] with batch size 8,
gradient clipping at 0.5, and linear warmup for the first 5K
iterations on 2×A40 GPUs.

A.3 Model Details
Feature Extractor: We use the output of the final trans-
former block from DINOv2 ViT-B/14 [44], excluding the
classification (CLS) token, with positional embeddings
added after feature extraction.
Invariant Slot Attention: The input dimension Dslot = 768
is used throughout the ISA architecture. After positional
encoding addition to DINO tokens Ft, slots and projected
tokens are passed to ISA. Slots are updated with a GRU cell,
followed by a residual MLP with layer normalization. All
projection layers (p, q, k, v, g) have dimension Dslot. GRU is
iterated three times per frame. The scale parameter ss is
multiplied by δ = 5 following [4].

We initialize the components as follows: Gabs is initial-
ized as a coordinate grid in [−1, 1], slots S are initialized
using Xavier initialization [20], and slot scale ss and position
sp are initialized from a normal distribution [4].
Temporal Aggregator: A 3-layer, 8-head transformer en-
coder [62] with hidden dimension 4 × Dslot and learnable
temporal positional embeddings initialized from a normal
distribution. Unavailable frame slots (indices < 0 or > frame
count) are masked. Unlike SOLV [4], all slots attend to one

another across frames, rather than restricting same-index
slots to interact only with their corresponding slots in other
frames.
Temporal Register Aggregator: A 1-layer, 8-head trans-
former encoder with hidden dimension 4×Dslot. DINO fea-
tures are spatially pooled before transformer input. Learn-
able temporal positional embeddings are initialized from
a normal distribution, and unavailable frame tokens are
masked.
Decoder: Adapter-injected Stable Diffusion 1.5 [50] with
frozen pretrained parameters.

A.4 Baselines

All image-based baselines (LSD [27], SlotDiffusion [68],
SlotAdapt [3]) are trained on flattened video frames as
independent images using publicly available code imple-
mentations. To ensure fair comparison, all baselines use
DINOv2 [44] as the image encoder, 7 slots with dimension
768, and follow the same training schedule of 350K itera-
tions on YTVIS19 followed by 50K iterations fine-tuning on
DAVIS17. For models requiring pretrained diffusion compo-
nents, we use Stable Diffusion 1.5 [50].

SOLV [4] is trained on 5-frame sequences following the
same temporal setup as our method.

APPENDIX B
INVARIANT SLOT ATTENTION

This section elaborates on the mechanics of invariant slot
attention (ISA), originally introduced by Biza et al. [8].
In our architecture, ISA is employed within the Object-
Centric Temporal Encoding module (Section 4.1), mak-
ing use of shared initialization as outlined in the main
paper. Starting from the common initialization Zt =

{
(
zjt , s

j
s, s

j
p,Gabs,t

)
}Kj=1, where zjt is the j-th slot represen-

tation, sjs denotes the scale parameters along x and y axes,
likewise, sjp represents the position parameters for x and y
axes, and Gabs,t ∈ RN×2 is the absolute coordinate grid at
time t, our objective is to update the set of slots {zjt}Kj=1. To
clarify, we describe here the procedure for a single time step
t in the invariant slot attention mechanism:

At := softmax
j=1,...,K

(Mt) ∈ RK×N , (11)

mj
t :=

1√
d

p
(
k (Ft) + g(Gj

rel,t)
)
q(zjt ) ∈ RN (12)

Here, q : RDslot → RDslot , k : Rd → RDslot , p : RDslot → RDslot ,
and g : R2 → RDslot are learnable linear transformations
applied to each patch and slot vector independently. The
vector mj

t represents the j-th row of the unnormalized
attention score matrix Mt ∈ RK×N , computing the affinity
between all N spatial locations and slot j. The softmax
operation is applied column-wise over the K slots, yielding
the attention matrix At ∈ RK×N , where ajt denotes the
j-th row containing the normalized attention weights for
slot j over all spatial locations. The relative coordinate grid
associated with each slot is computed as follows:

Gj
rel,t := (Gabs,t − sjp)⊘ sjs ∈ RN×2 (13)
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where ⊘ corresponds to element-wise division. The atten-
tion weights ajt computed via (11) are used to infer both
the position sjp and scale sjs of the slots, according to the
formulation in Biza et al. [8]:

sjs :=

√√√√ (GT
abs,t − sjp1N )2ajt∑N

i=1 a
j
t [i]

∈ R2, (14)

sjp :=
GT

abs,ta
j
t∑N

i=1 a
j
t [i]

∈ R2 (15)

where the
√
· and (·)2 operations are performed element-

wise, and 1N is the broadcast operator that replicates the
vector to match the spatial dimension (all ones row vector
of dimension N). Following the attention computation, fea-
tures are aggregated using a weighted combination guided
by wj and projections v : Rd → RDslot and g : R2 → RDslot

applied to each patch vector independently, similarly to the
original slot attention mechanism:

uj
t := p

(
v (Ft) + g(Gj

rel,t)
)T

wj
t ∈ RDslot , (16)

wj
t :=

ajt∑N
i=1 a

j
t [i]

∈ RN (17)

Here, uj
t represents the aggregated features for updating

slot j, and the vectors {uj
t}Kj=1 form the columns of the

full update matrix Ut ∈ RDslot×K . The aggregated repre-
sentations uj

t from (16) are then used to update the slot
vectors {zjt}Kj=1 via a GRU module, followed by an MLP-
based residual pathway as described in (18). This process is
repeated over three iterative refinement steps:

zjt := GRU
(
zjt ,u

j
t

)
∈ RDslot , (18)

zjt := zjt +MLP
(
LayerNorm(zjt )

)
(19)

Experimental Validation

We validate our register token mechanism introduced in
Section 4.3. As explained in the main paper, register tokens
provide spatial context to the diffusion decoder while keep-
ing ISA slots free from spatial information, which maintains
object-centric representations during generation.
Evaluation Setup. Table 5 compares our model with and
without register tokens (RT) on YTVIS using the metrics
from the main paper. We use the same trained model for
both conditions, but replace register tokens with zero vec-
tors during inference to isolate their effect on maintaining
invariance properties.
Quantitative Results. Removing register tokens degrades
performance across all metrics, confirming their role in pre-
serving invariance. Without register tokens, reconstruction
quality drops (PSNR, SSIM) because spatial information
leaks into the slots, breaking their pose-invariant design.
Perceptual quality also degrades (LPIPS, FID), and temporal
consistency suffers significantly (FVD) as objects cannot
maintain stable relationships across frames.
Temporal Analysis. The problem becomes more evident
when viewing consecutive frames. Without register tokens,
the same object shifts position, changes scale, and alters
orientation between frames. This happens because slots now

TABLE 5
Video generation on YTVIS. Register-token (RT) ablation. The RT

clearly boosts pixel accuracy (PSNR, SSIM), perceptual quality (LPIPS,
FID) and temporal coherence (FVD) by carrying the pose information.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓
w/o RT 9.90 0.28 0.69 85.0 103.0
w/ RT 11.37 0.3933 0.5908 49.51 51.77

include spatial information, which violates the invariance
principle of object-centric learning. With register tokens,
spatial information remains separate, so slots focus on object
identity.
Visual Results. Figures 6 through 14 show results across
different scenarios. Each figure displays ground truth (top),
our method with register tokens (middle), and without
register tokens (bottom).

Without register tokens, objects appear in wrong posi-
tions, show incorrect scaling, have inconsistent poses, and
create background artifacts. These issues occur consistently
across various object types and scenes.

With register tokens, results maintain correct spatial
placement, consistent scaling, proper poses, and clean back-
grounds. The sequences flow smoothly with natural object
motion and stable spatial relationships.

These results confirm that register tokens successfully
preserve ISA’s invariance properties within our diffusion
framework, as detailed in Section 4.3.
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Fig. 6. Temporal video generation results with and without register tokens on YTVIS dataset. Without register tokens (bottom), objects appear
in incorrect positions and backgrounds deviate from ground truth (top). With register tokens (middle), generations accurately match ground truth
positioning.

Fig. 7. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to spatial
inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).
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Fig. 8. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to spatial
inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).

Fig. 9. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to spatial
inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).
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Fig. 10. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to
spatial inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).

Fig. 11. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to
spatial inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).
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Fig. 12. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to
spatial inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).

Fig. 13. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to
spatial inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).
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Fig. 14. Temporal video generation results with and without register tokens on YTVIS dataset. Results without register tokens (bottom) lead to
spatial inconsistencies across frames. Results with register tokens (middle) maintain consistent object positioning relative to ground truth (top).
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APPENDIX C
COMPARISON WITH BASELINES

This section presents comprehensive video generation and
segmentation results, comparing them against baseline
methods across temporal sequences. While single-frame
results are provided in the main paper, this supplemen-
tary material emphasizes temporal consistency and visual
fidelity across consecutive frames to demonstrate the effec-
tiveness of our unified slot-based framework.

C.1 Generation Results
Figures 15, 16, 17, and 18 demonstrate our method’s video
generation capabilities across multiple consecutive frames
on YTVIS and DAVIS17 datasets. Each figure shows five
temporal frames from a single video sequence, with each
row representing a different time step. The leftmost col-
umn shows ground truth frames, followed by results from
baseline methods (LSD, SlotDiffusion, SlotAdapt), and our
method in the rightmost column.
Our approach demonstrates improved temporal coherence,
object identity preservation, and visual fidelity throughout
the sequences. Key aspects to observe include: (1) struc-
tural stability of objects across time, (2) consistency of fine-
grained details such as textures and colors, (3) natural mo-
tion dynamics, and (4) preservation of spatial relationships
between objects and backgrounds. Baseline methods typi-
cally exhibit temporal artifacts, inconsistent object represen-
tations, and degradation in visual quality over time, while
our unified framework successfully handles these challeng-
ing scenarios through effective slot-basedtemporal binding.
The results show our method’s capability to generate high-
quality, temporally consistent video content that maintains
object coherence across complex motion patterns.
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Fig. 15. Temporal Video Generation on YTVIS Dataset. Multi-frame generation results showing object identity preservation and spatial coherence
across five consecutive frames.
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Fig. 16. Temporal Video Generation on YTVIS Dataset. Video generation on challenging sequences with multiple objects and complex
backgrounds.
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Fig. 17. Temporal Video Generation on DAVIS17 Dataset. Results demonstrating object motion tracking and spatial layout consistency over time.
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Fig. 18. Temporal Video Generation on DAVIS17 Dataset. Generation results highlighting fine-detail preservation throughout temporal sequences.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 25

C.2 Segmentation Results
Figures 19, 20, 21, and 22 demonstrate our method’s un-
supervised video object segmentation performance across
temporal sequences on YTVIS and DAVIS17 datasets. Each
figure displays five consecutive frames with segmentation
masks overlaid, where different colors represent distinct
object instances discovered by each method. The evalua-
tion focuses on temporal binding consistency—the ability
to maintain stable object identity and accurate boundaries
across frames.

Our slot-based representations successfully handle var-
ious challenging scenarios including: (1) rapid object mo-
tion and deformation, (2) objects with similar appearances
or spatial proximity, (3) scale changes and partial occlu-
sions, and (4) complex multi-object interactions. The re-
sults demonstrate our framework’s improved capability in
preserving object identity and spatial coherence compared
to baseline approaches, which often exhibit segmentation
instability, identity confusion, and boundary degradation
across temporal sequences. The consistent performance
across diverse video content shows the effectiveness of our
temporal object-centric learning approach for video under-
standing applications.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 26

Fig. 19. Segmentation Results on YTVIS. Consistent object boundary detection and identity preservation across dynamic motion and pose
changes.
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Fig. 20. Segmentation Results on YTVIS. Handling of significant shape and appearance variations with temporal tracking.
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Fig. 21. Segmentation Results on DAVIS17. Tracking and segmentation of small, fast-moving objects through rapid motion and scale changes.
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Fig. 22. Segmentation Results on DAVIS17. Distinguishing and tracking multiple closely positioned objects with stable segmentation masks.
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C.3 Compositional Generations
Figures 23, 24 and 25 demonstrate our framework’s com-
positional editing capabilities through object deletion and
replacement across temporal sequences. Our slot-based rep-
resentation enables targeted removal or replacement of spe-
cific objects while maintaining scene coherence and tempo-
ral consistency. The top row (GT) shows original ground
truth frames, while the bottom row (Gen) displays gener-
ated results after object removal.

The model addresses several technical challenges: (1)
background inpainting where objects were removed, (2)
preservation of natural motion dynamics in remaining scene
elements, (3) maintenance of lighting and shadow consis-
tency, and (4) integration of filled regions with surrounding
context. These results show our approach’s effectiveness in
enabling object-level control for video editing applications,
demonstrating the practical utility of our unified slot-based
framework for compositional video manipulation tasks.
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Fig. 23. Compositional Editing Examples. Targeted object removal while maintaining scene coherence and temporal consistency.
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Fig. 24. Compositional Editing Examples. Object deletion across diverse video sequences with realistic scene completion.
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Fig. 25. Compositional Editing Examples. Targeted object replacement is performed while preserving scene coherence and temporal consistency.
Top: the white dog is replaced with a black dog. Middle and bottom: the motorcycle is replaced with a black car.


	Introduction
	Related Work
	Preliminaries
	Slot Attention
	Diffusion Models
	SlotAdapt

	Methodology
	Object-Centric Temporal Encoding
	Slot-Conditioned Diffusion Decoding
	Invariant Slot Attention Adaptation for Diffusion Conditioning

	Experiments
	Datasets
	Implementation Details
	Baselines
	Evaluation Metrics
	Quantitative Results
	Qualitative Results

	Conclusion
	Biographies
	Adil Kaan Akan
	Yucel Yemez

	Appendix A: Experimental Details
	Dataset Details
	Common Experimental Setup
	Model Details
	Baselines

	Appendix B: Invariant Slot Attention
	Appendix C: Comparison with baselines
	Generation Results
	Segmentation Results
	Compositional Generations


